
JExercise –
a specification-based and test-driven exercise support

plugin for Eclipse
Hallvard Trætteberg

Associate Professor
Dept. of Computer and information sciences

Norwegian University of Science and Technology
7491 Trondheim, Norway

+47 918 97263

hal@idi.ntnu.no

Trond Aalberg
Associate Professor

Dept. of Computer and information sciences
Norwegian University of Science and Technology

7491 Trondheim, Norway
+47 976 31088

trond.aalberg@idi.ntnu.no

ABSTRACT
Programming exercises are an important part of an introductory
course in programming. To improve the focus on encapsulation,
requirements-based testing and give better feedback given to the
students during their work, we have created an Eclipse-based
plugin called JExercise. Based on a model of an exercise, it
presents the structure of requirements to the student and allows
her to test the code by running accompanying JUnit tests.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education; D.1.5 [Programming techniques] Object-
oriented Programming; D.2.5. [Software Engineering]: Testing
and Debugging—testing tools; D.3.2 [Programming
Languages]: Language Classifications—Java.

General Terms
Languages, Verification.

Keywords
Test-driven development, JUnit framework, Eclipse IDE.

1. INTRODUCTION
Programming is a practical skill that requires both conceptual and
practical training. It’s not just a matter of learning the
programming language semantics, but also learning to use it in a
sensible way, by utilizing sound object-oriented methods and
modern development tools. Hence, a programming course’s
exercises should be based on sound object-oriented methods and
drive the student through the relevant practical experiences.

For our introductory Java course we have developed a set of
specification-based and test-driven exercises and an Eclipse
plugin named JExercise. In the following sections we explain our
approach to exercise design, the role and design of the JExercise
tool, JExercise’s implementation and our experiences after our
first semester using our approach and tool.

2. OUR INTRODUCTORY COURSE
Our introductory Java course is taken by 500+ students from
many engineering faculties, including our own ICT students, and
has three main learning objectives: 1) Java language semantics, 2)

object-oriented principles and methods (including JUnit testing)
and 3) practical programming skills using modern development
tools. A requirement for taking the course is a basic understanding
of procedural programming (scripting). In practice, the interest,
understanding and skills vary considerably; some don’t know
what a variable is, while some have programmed for many years
already.

Several observations led us to developing JExercise-based
exercises: 1) Students follow the 20/80 rule: 20% of the effort
gives 80% of the solution. However, 80% correct code have little
(20%?) value, so it’s important to force them to write 100%
correct code. 2) Grading exercises requires a lot of effort, which
should rather be used for supporting the learning process. 3)
Weaker students need continuous feedback that they’re on the
right track, while stronger ones prefer freedom.

The “solution” is a set of exercises based on precise and testable
requirements and a support system that lets the student
continuously test their code’s correctness and their overall
progress. In addition to being a remedy for the problems noted
above, we hope this implicit way of teaching test methods will be
a pedagogical gain, as testing methods have increased focus in
several of our courses.

3. SPECIFICATION-BASED AND TEST-
DRIVEN EXERCISES
A specification for an exercise may be given at many levels and
in many ways. Although we ideally would like students to
practice all relevant language constructs and ways of using them,
a too detailed specification will give little room for important
exploration and experimentation. A too vague and high-level
specification is however difficult to test and leaves little guarantee
that sound and relevant skills and practices are acquired.

Based on the learning objectives, we use object encapsulation, i.e.
an object’s externally visible behavior, as the guiding principle
for our specification. This is sound both from a methodological
and pedagogical viewpoint: Many design practices, patterns and
modern testing methods are based on object encapsulation, and
the freedom given to the student may be varied by defining an
encapsulation at the appropriate level of detail.

3.1 Specifying the behavior of an object
The externally visible (and testable) behavior of an object
includes many elements:

• the value of public fields and the return value of public
methods over time

• side-effects, i.e. changes to any accessible data, the
console and file system or other elements of the class’
environment

• exceptions, i.e. how certain conditions aborts the
“normal” flow of control

• method trace, i.e. that calling a method on one object
should result in a method call on an other object

When specifying the behavior of a class or method, more or less
of these elements may be included, depending on the topics
covered so far in the course. The canonical first exercise may
simply require that there is a static void main(String[]) method
that prints “Hello world” to Standard.out. An exercise focusing on
validation of arguments would introduce exceptions and specify
when they are thrown, while an exercise on the observer-observed
pattern would specify the required sequences of method calls, that
Observed.addObserver(Observer) followed by Observed.change()
should result in Observer.notify(Observed)).

To be able to test such behavior, the structure of named elements
(packages, classes and methods) and their visibility must be well-
defined and specified. This may seem like a drawback, as it
makes the specification fairly detailed. However, many standard
practices prescribe both the specific set of classes and methods
(i.e. their names and members and their parameters) that are part
of the encapsulating interfaces. E.g. getter/setter pairs are standard
for 1-1 associations, while several variant sets of methods are
used for 1-n associations. Similarly, although design patterns are
generic and must by definition be adapted to the specific context
of the application, they are fairly well-defined in the context of a
specific exercise, so the syntactic elements and behavior may
often be specified in detail.

3.2 Testing the specified behavior
Our approach is based on specifying the behavior of objects, or
rather, classes and their methods. However, we also require that
the specification is testable by means of unit tests using the JUnit
framework. This style of testing, where individual methods,
groups of methods, classes and small groups of classes are tested
for functional behavior, suits our needs well, since we want to
give the students feedback during the work on the exercise, rather
than when it is completed. The JUnit framework [5] supports
running both whole test classes and individual test methods in
such classes, each of which may test one or more exercise
methods. This gives great flexibility for the exercise author.

In the simplest case, there is a one-to-one correspondence
between exercise methods and test methods. I.e., once an exercise
method is written and a single test method may be run to give the
student feedback about the correctness. Fairly often methods are
so interrelated that they cannot be tested separately, so one test
method may cover several exercise methods. For complex
exercise methods, it may also be possible and desirable to have
several test methods, one for each specific requirement. E.g. one

method may test the standard behavior, while another may test
boundary cases, like null arguments and empty collections. This
makes it possible to give more precise feedback and guidance,
since it is easier to pinpoint the fault. Of course, for more
advanced courses and students, the other extreme case may be
desirable, that of testing a whole application with a single test
method.

Although few specifications can be tested completely, e.g. how do
you test that a method correctly sums any two integers, it’s fairly
easy to test students’ code for correctness, since there are limited
ways of incorrectly implementing typical exercises. Besides tests
for the return values of method, we use tests for output to
System.out (using regular expressions), tests for correct use of
exceptions (whether they are thrown or not), processing of files
and JavaBean-compliant event notifications (that the listeners’
method is called with the correct values). In a different course,
we’ve used a JUnit add-on called JFCUnit for testing Swing
GUI’s.

4. USING JEXERCISE1

4.1 Installing and preparing JExercise
The JExercise system is packaged as one feature which may be
installed by pointing to the JExercise update site.2 The package
consists of two plugins, one for the underlying model and one for
Eclipse view, and depends on the standard Java Development
Tools (JDT) and EMF 2.2.0.

Using JExercise for the first time requires three steps. First, the
Java project must be set up, with a standard folder structure and
build path (including junit.jar), and the JExercise preferences
filled in accordingly. Second, one or more exercises must be
imported into the project (more may be imported later). Third, the
JExercise view must be opened and a specific exercise selected.

Currently, the import step utilizes Eclipse’s built in wizard for
zip-files. The zip-file contains XML and HTML files describing
the exercises and test files for testing the student’s code and may
additionally contain java source files and resources that the
student may start from. By standardizing the folder structure, the
files may be imported into the Java project’s top level, and the
files be spread across sub-folders. We have chosen to have one
folder for each kind of content mentioned above, named ex, tests
and src, but other structures will work as long as the Java
project’s configuration and zip-files agree.

4.2 The JExercise view
JExercise is designed to integrate into Eclipse, as a view below
the main editor pane. The view contains three main elements, as
shown in Figure 1. In the top left drop-down a specific exercise
(.ex file) may be selected. The requirements structure of this
exercise will then be shown in the tree at the left. I.e. each line in
the tree corresponds to one a requirement, either for a syntactic
element or a testable, functional requirement. At the right a
standard web browser window shows the exercise text. The
browser is linked to the tree, so when a requirement is selected in

1 For details and demos, see JExercise’s Home Page at

http://www.idi.ntnu.no/~hal/development/jexercise/
2 http://www.idi.ntnu.no/~hal/development/site/

the tree, the browser navigates to the corresponding text in the
browser (if the underlying XML and HTML files are correctly
linked, that is).

An exercise is typically structured as a set of parts containing
requirements for specific syntactic elements, some of which may
be tested with a JUnit test. The exercise shown in Figure 1, has

several parts, the first of which is the canonical Hello World
application. This part requires a HelloWorld class with a main
method with correct signature and modifiers. A test for the main
method is provided, but has not yet been run. The text for each
requirement may be generated from the model or explicitly
authored.

Figure 1. The JExercise view

The requirement’s icon indicates whether or not the requirement
is met. Requirements for syntactic elements are continuously
checked (when a Eclipse’s Java model update notification arrives)
and the icons updated correspondingly. Testing functional
requirements using JUnit tests is more costly and must be
triggered manually. When the test run is finished, the success or
failure is indicted by the icon. The different icons and their
meanings are shown in Table 1.

Table 1. The icons used by the JExercise view

Icon Meaning

The requirement’s state is currently undecided,

presumable because a pre-condition is unsatisfied.

The requirement is completely satisfied, as indicated by

the green color.

The requirement itself is satisfied, but there are

undecided sub-requirements

The requirement itself is satisfied, but come sub-

requirements are violated, as indicated by the red color.

 The requirement is violated

 The requirement is a JUnit test that has not been run.

 The requirement is a JUnit test that has succeeded

 The requirement is a JUnit test that has failed

As can be seen, the icons encode three kinds of states, undecided
(yellow), success (green) and fail (red), indicate the state of the
requirement (symbol) and the sub-requirements (background) and
if it is testable by means of a JUnit test (JU symbol).

In Figure 1, we see that the HelloWorld class exits and the
main(String[]) method is present with correct modifiers, as
indicated by the check marks. However, since the test has not
been run, the background is yellow, indicating undecided sub-
requirements. Once the test run completes, the icons will be green
or red, depending on the result.

Note that during the test run, JUnit runner pane in Eclipse will be
activated as usual. Thus, by carefully designing the tests, and in
particular the message argument to the assertXXX methods, the
student gets additional guidance in the debugging process.

5. THE JEXERCISE MODEL
The JExercise system is based on a logical exercise model
conceptually split in two. The solution model describes the
structure of syntactic Java elements, i.e. packages, classes,
method, fields and their signatures and modifiers that the
complete exercise requires. The requirements model describes a
hierarchy of requirements, both syntactic requirements, with
references to the solution model, and functional requirements and
their corresponding JUnit tests. It is the requirements model that
is shown in the JExercise view, the solution model is hidden.

The most important elements of the models are shown in Figure 2
as a UML class diagram. The left part with the JavaElement class
as its root is the solution model, while the right part with
Requirement class as its root is the requirements model. The link
between these is the association between a JavaRequirement and
the corresponding JavaElement. As can be seen, both models are
hierarchical, the solution model has three levels, the JavaPack,
JavaClass and Member levels, while the Requirement hierarchy
may be many-leveled. In a specific exercise model, the solution
hierarchy of JavaElements and JavaRequirements will be similar.

The reason for this logical split, is to make the granularity of the
requirements structure independent of the solution. E.g. it is
possible to have several requirements for one java method, or a
single (and large) requirement for a whole class. Hence, the
exercise author may tailor the level of feedback and guidance to
the course and students for the same programming problem.

6. THE JEXERCISE IMPLEMENTATION3
JExercise is implemented as two Eclipse plugins, the model and
the client view. The model is implemented using the Eclipse

3 The JExercise code is open source and available from

http://opensource.idi.ntnu.no/projects/jexercise/

Modeling Framework (EMF), i.e. the code is generated from a
Ecore model similar to the one shown in Figure 2. Each
JavaElement subclass has methods for finding and comparing
itself against the corresponding element in Eclipse JDT’s internal
model of the Java exercise project. As the latter model is
continuously updated when the student edits the code, JExercise
is able to have a correspondingly up-to-date model of what parts
of the solution is student has implemented.

The JExercise view is an extension to the org.eclipse.ui.views
extension point, and uses JFace and SWT for the GUI. The drop-
down control implements a view on the exercise (.ex) files in the
Java exercise project, and hence listens for changes to the
resource structure to ensure the list of available exercises is up-to-

date. The tree control is similarly a view on the requirements
model (and indirectly the solution model), and hence listens to
changes to the exercise code. Any change triggers a refresh of the
icons, so they always reflect the current state of satisfaction of the
syntactic requirements.

Since JUnit test runs are time-consuming, they are must be
triggered manually. JExercise listens for completed runs and
updates the model and tree label icons based on the success or
failure of the individual tests (Unfortunately, it’s not possible to
listen to individual runs, so JExercise must listen “globally” for
completed test runs and look up the requirement based on the
provided (and undocumented) test run name).

Figure 2. The JExercise model

7. EVALUATION
JExercise was implemented during the fall and early winter of
2005 and was used by 400-500 students for the exercises in
TDT4100 – object-oriented programming (see
http://tdt4100.idi.ntnu.no/ for details and example exercises) the
following spring. JExercise was used on Windows XP (thin
clients and standard PCs), Linux and MacOS X. Although many
students had initial installation problems on the Unix-based
platforms, due to Eclipse and Java VM issues, JExercise worked
without causing much frustration.

During the semester, the students used a web-based system for
providing feedback (and letting out frustration). The main
complaints were that the requirements, as formulated in the
exercise text, were difficult to understand, vague and
ambiguous. Sometimes this was intentional, to avoid giving too
much guidance, but we also admit that it was harder than we
thought to formulate precise and complete requirements.

The student assistants had the task of scoring the exercises,
based on JExercise test runs and code inspection. They were
allowed to give more points than JExercise indicated, if the code
was “good enough”. The assistants reported that it was easier to
be “hard” on the students with backing from JExercise, i.e. they
gave fewer points with JExercise than they would have without
it. They also used less time grading, as the code was inspected
only when the students felt they deserved more points.

After the semester, the course as a whole was evaluated by
means of a questionnaire, with particular focus on the exercises
and the JExercise. The main findings were:

• Over 70% of the students felt that precise, testable
requirements were a good starting point for
implementing the exercises.

• Students liked getting feedback about their progress,
without having to get in touch with the course’s staff,
whether working on campus or at home.

• Most students appreciated the guidance the system
gave, while some stronger students considered the
exercises too constraining.

• Some felt there was too much focus on (testing)
fragments of code, instead of interesting and complete
applications.

• Over 70% would have preferred a PC-based exam
with Eclipse+JExercise instead of the current paper-
based one!

The feedback indicates that JExercise worked well for all but
the strongest students. It is therefore recommended to
complement this kind of exercises with more open projects, as
we do with our game project [7]. The strongest students weren’t
only dissatisfied, however, as they read the test code with
interest, and took pride in fooling our tests and suggesting
improvements to remove holes!

Midway through the semester, we gave an exam-like
Eclipse+JExercise-based test, to let unfortunate students collect
missing points and other students a chance to test themselves.
This experience was interesting in several ways: It effectively
revealed the students that relied too much on (or simply copied)
fellow students. The students that did well used more time than
expected to get the code completely correct. This is important to
consider if JExercise is to be used for a real exam, as the
evaluation indicates would be favorable received.

Finally, the test showed that although Eclipse+JExercise work
well, the scalability (all students must take the exam
simultaneously) and robustness of the client/server and network
setup is a major concern.

A different concern is the resources used on making the
exercises, both formulating the requirements and writing the
corresponding exercise (.ex) files and test code. The exercises
were made from scratch and this work took more time and effort
than expected. We expect future work on an editor to help, but
the resources needed for developing requirements of high
enough quality should not be underestimated.4

8. RELATED WORK
The idea of combining testing and programming exercises has
been explored by many others. Edwards [4] discuss how testing
may be an integrated part of the programming assignments,
while Wick [8] discuss integrating it into the curriculum. While
the work described here focus on using tests for giving feedback
to the students, we also have exercises were the students write
tests themselves. Ideally this should be integrated with
JExercise, but we haven’t found a way of using JUnit tests for
testing other JUnit tests.

Most modern Java development tools support JUnit testing, and
such functionality has also been introduced into pedagogical
programming tools like BlueJ [2][6]. Since BlueJ, like Eclipse,
has an extension mechanism, we thought of writing JExercise
for BlueJ, but quickly found that Eclipse was better suited, both
for our course’s learning goals and technically.

There exists several systems for supporting managing
assignments. BlueJ includes a mechanism for submitting code.
The Web-CAT project includes an Eclipse for submitting code
and advanced tools for automatic analysis and grading [1]. The
eAssignment project [3] also extends Eclipse with functionality
for submitting, managing and testing code. Both of these,
however, focus more on the teachers’ work(flow) than on
supporting the students’ learning process, thus complementing,
rather than competing with our work.

9. CONCLUSION AND FUTURE WORK
We have presented a specification-based and test-driven
exercise support plugin for Eclipse, named JExercise. The
plugin gives the student continuous feedback about her progress
and lets her test the code for correctness with respect to the
exercises’ requirements.

The evaluation after one semester of using JExercise in a
introductory course with 500+ students, indicates that the

4 An open source repository of exercises would be valuable.

students appreciate the feedback and guidance that JExercise
gives. The increased resources used for authoring the exercises,
should, however, not be underestimated.

The planned work goes in two directions. First, we will develop
an editor to improve the most time-consuming and error-prone
aspects of the authoring process. In particular, much of the
structure and cross-references may be generated: the solution
model may be partly generated from the real solution, the
requirements structure from the solution and the structure of the
exercise HTML from the requirements structure. Second, we
plan to integrate JExercise with Web-CAT’s infrastructure for
automatic grading, both client-side submission and server-based
JUnit testing.

10. REFERENCES
[1] Allowatt, A., Edwards, S.H. IDE support for test-driven

development and automated grading in both Java and
C++. In Proceedings of the Eclipse Technology Exchange
(eTX) Workshop at OOPSLA 2005, October 2005
Edwards.

[2] BlueJ Home Page, http://www.bluej.org/
[3] Bruch, M., Bockisch, C., Schäfer, T., Mezini, M.

eAssignment - A Case for EMF. In Proceedings of the 2005
OOPSLA Workshop on Eclipse Technology eXchange,
October 2005; San Diego, California, USA; ACM Press,
Pages 110-114.

[4] Edwards, S.H. Adding software testing to programming
assignments. Workshop at the 37th SIGCSE Technical
Symposium on Computer Science Education, March 2006.

[5] JUnit Home Page, http://junit.sourceforge.net
[6] Patterson, A., Kölling, M., Rosenberg, J. Introducing unit

testing with BlueJ. Annual Joint Conference Integrating
Technology into Computer Science Education. In
Proceedings of the 8th annual conference on Innovation
and technology in computer science education,
Thessaloniki, Greece, 2003. ACM Press, Pages 11-15.

[7] Sindre, G., Line, S., Valvåg, O.V. Positive experiences
with an open project assignment in an introductory
programming course. In Proc. 25th International
Conference in Software Engineering (ICSE'03), Portland,
OR, USA, 3-10 May 2003.

[8] Wick, M., Stevenson, D., Wagner, P. Using testing and
JUnit across the curriculum. In Proceedings of the 36th
SIGCSE technical symposium on Computer science
education, St. Louis, Missouri, USA, 2005. ACM Press,
Pages: 236-240.

