
SSVChecker: Unifying Static Security Vulnerability
Detection Tools in an Eclipse Plug-In

Josh Dehlinger
Dept. of Computer Science

Iowa State University

dehlinge@iastate.edu

Qian Feng
ABC Virtual Communications

qfeng@abcv.com

Lan Hu
Dept. of Computer Science

Utah State University

lanhu@cc.usu.edu

ABSTRACT
The increasing complexity of secure software applications has
given rise to static analysis security tools to alert developers to
potential security flaws within source code. However, these static
security vulnerability detection tools tend to be difficult to use and
are not integrated with common software development
environments. The contribution of this work is SSVChecker, an
Eclipse plug-in that unifies existing static security vulnerability
detection tools into a powerful, intuitive tool. We make three
fundamental claims for SSVChecker. First, it contains
functionality not found in other static security vulnerability
detection tools (e.g., union and intersection of multiple tool
results). Second, the tool can adapt to the results of user-
performed analysis to prevent repeatedly reporting user-dismissed
security vulnerabilities. Lastly, it operates on a user-friendly,
generic framework allowing for the inclusion of future static
security vulnerability detection tools. To illustrate these claims,
we use SSVChecker on a security-sensitive networking package.
Results show the benefits of the tool in identifying potential
security vulnerabilities.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification –
Validation.

General Terms
Security

Keywords
Software security, secure programming, security auditing

1. INTRODUCTION
The necessity for software developers to consistently produce
secure code for security-critical software applications continues to
increase as software becomes progressively more immersed in our
lives (e.g., e-commerce, online banking, etc.). The recent surge of
interest in developing and improving security vulnerability tools

is one response by which researchers are trying to cope with the
demand for secure applications. Despite existing security
vulnerability detection tools (e.g. RATS [10], ITS4 [14], Splint
[12], MOPS [2], etc.), extensive software security literature (e.g.,
[3, 11, 13]) and documented security attacks used to exploit
software systems (e.g., [1, 7, 8, 9]), a large amount of software
produced continues to have security vulnerabilities that have been
repeatedly exploited for nearly 20 years (e.g., the format-string
vulnerability in C) [8, 9, 16].

Potential security vulnerabilities are often introduced into
software by commonly used library functions and language-
specific constructs unknowingly by software developers [4].
There are two likely contributing factors as to why software
developers have failed to adequately mitigate known security
vulnerabilities in today’s software. First, software developers may
not be aware that they are introducing potentially devastating
security vulnerabilities into software [4, 14]. This likely stems
from a lack of education and awareness of common software
attacks and proper secure programming. Second, software
developers do not have adequate, easy-to-use tools in a familiar
environment containing desired features to flag potential security
risks in their developed code and provide explanations and
possible solutions during development [4, 14].

If software developers were warned of potential security
vulnerabilities, provided with an explanation and given possible
remedies within a software IDE, we believe that even novice
software developers could produce applications devoid of
commonly exploited, known security vulnerabilities. Until then, it
is futile to expect secure software in everyday applications.

This work addresses these two problems by providing a tool that
alerts software developers to potential security vulnerabilities in
their source code. Moreover, we hope to bridge the gap between
existing static analysis security vulnerability detection tools and
software developers by unifying existing security vulnerability
detection tools into a single interface, SSVChecker (Static Security
Vulnerability Checker). SSVChecker is an Eclipse plug-in to fuse
existing static security vulnerability detection tools into a
powerful, developer-friendly tool. Specifically, SSVChecker offers
three fundamental advantages to static analysis security
vulnerability detection:

• Provides features not found in other security vulnerability
detections tools (e.g., union and intersection of multiple tool
results) that better aids developers in identifying potential
security vulnerabilities.

• Adapts to the results of user-performed analysis, without
altering the original source code, to prevent repeatedly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Eclipse Technology Exchange Workshop at OOPSLA’06, October 22–
23, 2006, Portland, OR, USA.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

<?xml version="1.0" ?>

<Vulnerability-List>

 <Vulnerability>

 <Filename>C:\its4\inet.c</Filename>

 <Line-Number>92</Line-Number>

 <Priority>Very Risky</Priority>

 <Function>strcpy</Function>

 <Source-Code>strcpy(name, np->n_name);</Source-Code>

 <Description>This function is high risk for buffer overflows.</Description>

 <Suggestion>Use strncpy instead.</Suggestion>

 </Vulnerability>

</Vulnerability-List>

Figure 1. SSVChecker’s XML format for potential security vulnerabilities.

reporting user-dismissed security vulnerabilities allowing
developers to concentrate on those flagged security
vulnerabilities that still warrant attention.

• Operates on a user-friendly, generic framework allowing the
inclusion of future static security vulnerability detection tools.

The remainder of this paper is organized as follows. Section 2
reviews related work in existing static security vulnerability
detection tools. Section 3 presents an overview of SSVChecker
and describes its interface. Section 4 presents an evaluation and
discussion of SSVChecker. Finally, Section 5 provides concluding
remarks and planned future work.

2. RELATED WORK
Static analysis security tools attempt to find security
vulnerabilities without executing the software by scanning the
source code for known potentially security-compromising
functions. They then perform analyses to try to determine if,
indeed, a function call could be maliciously attacked. These tools
can not guarantee to find all security vulnerabilities in a program
and often report many false positives (those potential
vulnerabilities reported by a tool which are not actual
vulnerabilities).

This work illustrates SSVChecker by integrating three existing
static security vulnerability detection tools into an Eclipse plug-in:
ITS4 [14], RATS [10] and Splint [12]. Although these tools were
used here to illustrate the features of SSVChecker, Section 3
briefly discusses how SSVChecker can be used with any static
security vulnerability detection tool because of the use of a
generalized XML format for security vulnerabilities.

ITS4 was one of the first available static security analysis tools to
search C source code looking for potentially dangerous function
calls [14]. ITS4 performs limited analysis to determine how risky
a function call is and, for every problem reported provides
suggestions how to mitigate the security vulnerability.

RATS is similar to ITS4 in its approach but performs additional
analysis to attempt to reduce the number of false positives
reported [10]. Unlike ITS4, however, RATS performs analysis to
discover Time Of Check, Time Of Use race conditions.

Splint (Secure Programming Lint) is an improvement over another
static security analysis tool, Lint [12] that does additional analysis
on potential security vulnerabilities beyond both ITS4 and RATS.

Other tools perform different analysis techniques to try and
discover a different type of security vulnerability or eliminate a
different type of false positives. For example, BOON [15]
performs analysis focusing primarily on the detection of the buffer
overflow security vulnerability whereas FlawFinder [5] uses a

vulnerability database as does ITS4 and RATS. Thus, different
tools often produce different sets of results. SSVChecker allows
users to exploit the differences in analysis by providing the
potential security vulnerabilities of multiple tools’ results.

3. SSVCHECKER DESCRIPTION
This section provides an overview and description of the interface
and features of SSVChecker. A full demonstration of SSVChecker
is available online at http://www.cs.iastate.edu/~dehlinge
/ssvchecker/SSVCheckerDemo.htm.

SSVChecker relies on reading the results from external static
analysis security vulnerability detection tools in an XML format,
shown in Figure 1. Although existing tools do not provide output
in this XML format, it is trivial to provide a wrapper to convert a
tool’s existing output to our XML schema.

The XML schema was designed after studying the results
produced by a number of existing tools (including ITS4 [14],
RATS [10], Splint [12], FlawFinder [5], MOPS [2] and BOON
[15]). This was done to generalize the results reported by the
various static analysis security tools currently available and to
give the software developer adequate information pertaining to a
potential security vulnerability. The XML schema is also intended
to generalize a file format in which future static analysis tools
could produce output allowing SSVChecker to unify all static
analysis security tools in a user-friendly software IDE.

SSVChecker provides software developers with an interface within
Eclipse to run existing static analysis security vulnerability
detection tools (e.g., ITS4 [14], RATS [10] and Splint [12]) to
find potential security vulnerabilities in source code during
development. Within SSVChecker, software developers have the
option of executing a single or multiple static analysis security
vulnerability detection tools on the source code in development.

Software developers electing to run a single static analysis
security vulnerability detection tool within SSVChecker have
access to all the features of the desired tool (i.e., parameters can
still be provided to the tool to perform specialized/concentrated
analysis). However, the software developer benefits by getting the
results displayed in Eclipse for simultaneous viewing of the
source code and flagged potential security vulnerabilities.

Moreover, SSVChecker allows software developers to execute
multiple static analysis security vulnerability detection tools and
calculate and return either the union or intersection of the results.
Users select the tools they desire to run on their source code and
select intersection or union. SSVChecker will automatically
execute the appropriate tools, calculate the intersection/union and
present the results to the user within Eclipse.

Figure 2. SSVChecker’s interface in Eclipse.

Figure 2 presents a screenshot within the Eclipse IDE illustrating
the results of running a single static analysis security vulnerability
detection tool from SSVChecker. The results are presented in the
Vulnerability Viewer allowing for each column to be sorted by
the user. Double-clicking any potential vulnerability automatically
focuses on the associated line of code, as shown in Figure 2.

The Vulnerability Viewer, shown in Figure 2, provides a
summary of the results by listing the number of vulnerabilities and
ignored vulnerabilities, discussed next, above the list of potential
security vulnerabilities. These features allow software developers
to easily use static analysis security vulnerability detection tools
to analyze their source code, quickly identify high priority
potential security vulnerabilities and efficiently mitigate them
using the provided suggestions. Thus, we envision SSVChecker as
a tool that software developers can utilize on a semi-frequent basis
much like a compiler, during security-critical software
development.

SSVChecker provides functionality to be able to adapt to the
results of user-performed analysis to prevent repeatedly reporting
user-dismissed security vulnerabilities. This allows developers to
concentrate on those flagged security vulnerabilities that still
warrant attention (analogous to Microsoft Word’s “Ignore Once”
option for misspelled words). To achieve this, SSVChecker
provides users with the option of ignoring a potential vulnerability
if the user has manually determined that the reported vulnerability
does not pose a security risk. This prevents repeatedly drawing the
developers’ attention to the same vulnerability on subsequent
executions of SSVChecker. As shown in Figure 2, previously

ignored vulnerabilities are filtered to the bottom of the list and are
tagged as a warning (with a different icon). SSVChecker also
provides users with the ability to stop ignoring (called “Cancel
Ignore”) a specific vulnerability as is shown in Figure 2.

4. EVALUATION AND DISCUSSION
This section provides an evaluation of SSVChecker by examining
the results of running three different static security vulnerability
detection tools separately using SSVChecker and then using
SSVChecker to calculate the intersection and union of the tools to
justify the advantage of such features to a software developer.

We evaluated SSVChecker using portions of the net-tools 1.46
networking package. Net-tools 1.46 is an open source package
written in C for the Linux operating system consisting of several
commands related to networking [6]. Specifically, we used
SSVChecker on the netstat.c (approximately 1,400 LOC) and
inet.c (approximately 400 LOC) files of the net-tools 1.46
package.

4.1 SSVChecker’s Intersection and Union
Results
We provide the results and analysis from preliminary tests
showing the results of using SSVChecker to calculate and return
the intersection and union sets of potential security vulnerabilities
on portions of the net-tools 1.46 package. The results, shown in
Table 1 and discussed below, illustrate the value of SSVChecker’s
intersection/union calculation feature.

Table 1. Number of potential security vulnerabilities reported by various static security vulnerability detection
tools as well as intersection/union results using SSVChecker.

 ITS4 RATS Splint ITS4 ∪ RATS ITS4 ∩ RATS ITS4 ∪ RATS ∪ Splint ITS4 ∩ RATS ∩ Splint

inet.c 12 16 51 16 12 58 9

netstat.c 111 94 485 139 66 581 43

When using SSVChecker to run ITS4, RATS and Splint separately
on the inet.c source file 12, 16 and 51 potential security
vulnerabilities, respectively, were reported. For the netstat.c code
111, 94 and 485 potential security vulnerabilities were reported
from ITS4, RATS and Splint, respectively, by SSVChecker.

Retrieving the intersection of ITS4 and RATS for the inet.c code
yielded 12 potential vulnerabilities. Unfortunately, this set
represented the same 12 vulnerabilities originally reported by
ITS4. Thus, for this particular file, the results reported by ITS4
were a subset of the results reported by RATS and the intersection
feature of SSVChecker did not provide any additional insight or
advantage for a software developer.

Retrieving the intersection for ITS4 and RATS for the netstat.c
code yielded in 66 potential vulnerabilities reported, representing
a reduction of 45 and 28 possible security vulnerabilities from
executing ITS4 and RATS separately, respectively. In this case,
there were vulnerabilities reported by ITS4 that were not reported
by RATS and vice versa. This reduction is advantageous in that it
assists a software developer in identifying likely security
vulnerabilities since more than one static security vulnerability
detection tool, each using different analysis methods, flagged
them as being a potential security vulnerability.

Calculating the intersection of the ITS4, RATS and Splint results
for the inet.c code yielded only 9 potential vulnerabilities.
Likewise, using SSVChecker to calculate the intersection of the
ITS4, RATS and Splint results for the netstat.c code yielded 43
potential security vulnerabilities and is discussed further in
Section 4.2.

Using SSVChecker to calculate the union of the ITS4 and RATS
results for the inet.c and netstat.c source files yielded 16 and 139
potential security vulnerabilities, respectively. Similarly, the
union set of potential vulnerabilities for ITS4, RATS and Splint
for the inet.c and netstat.c source files are 58 and 581 potential
security vulnerabilities, respectively.

4.2 Discussion
From the experimental results, it appears that SSVChecker can
benefit software developers when developing security-critical
software. The convenience of a generalized tool allowing a
developer to execute any existing static security vulnerability
detection tools gives software developers the desired flexibility
within the Eclipse IDE. Further, SSVChecker integrates the results
of static security vulnerability detection tools to allow software
developers to simultaneously view the source code and potential
security vulnerabilities, allowing for a shorter vulnerability
mitigation cycle.

Through the evaluation results, we believe that SSVChecker’s
feature to calculate the intersection set of potential security

vulnerabilities from the results of several executed tools can help
software developers concentrate on an initial set of likely security
vulnerabilities. Assuming that a security vulnerability is more
likely an actual vulnerability if multiple tools flag it,
SSVChecker’s ability to calculate the intersection set provides
software developers with a feature that is not found elsewhere.
Thus, the calculation of intersection sets in SSVChecker provides
developers with a useful asset during the development of security-
critical code or during a security audit/code review by
circumventing the poor precision (i.e., the high rate of false
positives) of a single static security vulnerability detection tool.

The ability to calculate the union of potential security
vulnerabilities in SSVChecker from the results of several executed
tools may be valuable when security is a high priority and a listing
of all possible vulnerabilities is more desirable than a list of likely
security vulnerabilities. While the resulting union sets always
increased the number of potential security vulnerabilities
compared to the results of any single tool, it did not give any
indication which potential security vulnerabilities were more or
less likely to be actual vulnerabilities. Rather, the union set gave a
more comprehensive list of potential security risks in the source
code. This may be a valuable asset during code reviews or security
audits when security is a high priority.

Although not measured in the evaluation results, SSVChecker’s
ability to “ignore” previously flagged potential security
vulnerabilities allows the tool to adapt to the manual analysis
performed by the user so that they are not repeatedly bothered by
previously dismissed flagged vulnerabilities. In our experience
from using ITS4 and RATS when securing C code, repeatedly
being warned about a specific potential security vulnerability even
after, through a manual inspection of the code, we know it can not
be exploited by a malicious user is annoying and distracting from
those other potential vulnerabilities that still warrant our attention.
Thus, we believe that the ability to temporarily ignore a
vulnerability (and, thus, having SSVChecker filter it to the bottom
of the list) is a valuable feature that focuses developers attention
on those potential security vulnerabilities that have not yet been
considered by other static security vulnerability detection tools.

Finally, this work illustrated SSVChecker’s application to C/C++
source code with static security vulnerability detection tools
targeted for performing analysis to detect vulnerabilities in C/C++
code. However, there is nothing preventing SSVChecker from
being applied in the same manner to other types of source code
using static security vulnerability detection tools for other
languages. For example, the Eclipse IDE can be used to develop
an application in Python and SSVChecker can be used to execute
RATS [10], which can also check for security vulnerabilities in
Python, to identify and report potential security vulnerabilities.

5. CONCLUSION AND FUTURE WORK
This paper described SSVChecker, an Eclipse plug-in to unify
existing static security vulnerability detection tools into a
powerful, developer-friendly tool. SSVChecker provides software
developers the ability to analyze their code using existing static
security vulnerability detection tools within the Eclipse IDE and
displays the results in a familiar, customizable manner. This work
bridges the gap between research-oriented, command-line-based,
static security analysis tools and development IDE's so that both
novice and advanced software developers can take advantage of
security analysis tools when developing security-critical code.

SSVChecker allows software developers to run either a single tool
or multiple tools and provides a generic framework such that any
existing or future static security vulnerability detection tool can be
used within SSVChecker. When executing multiple tools,
SSVChecker provides the user with the ability to return either an
intersection or union of the results of multiple tools. This allows
the software developer to view a narrowed set of likely security
vulnerabilities (i.e., the intersection set of multiple tools) or a
large set of possible security vulnerabilities (i.e., the union set of
multiple tools). Finally, SSVChecker is able to adapt to user-
performed analysis by temporarily ignoring previously reported
security vulnerabilities so that the user’s attention is focused on
those security vulnerabilities not yet considered.

Planned future work is threefold. First, SSVChecker was initially
developed as a proof-of-concept tool. Thus, SSVChecker’s
calculation of intersection/union potential vulnerability sets of
multiple tools is currently more time-consuming than necessary.
Depending on the size of the source code and the number of tools
selected to analyze the code and the number of potential security
vulnerabilities, SSVChecker may take up to 10 seconds to display
results. We have identified a number of areas in which
SSVChecker efficiency can be improved so that its calculation of
intersection/union sets is faster. Thus, our first planned future
work includes tuning SSVChecker’s efficiency as well as
performing an analysis of the length of time required by
SSVChecker to return intersection/union sets as the number of
tools and vulnerabilities increase. We would like to keep the time
performance fast enough that software developers will use
SSVChecker during the development of security-critical code.

Second, we plan on introducing SSVChecker into a classroom to
study its use as a learning tool to teach secure programming
practices to upper-level undergraduate students. We believe that
its integration into the Eclipse IDE along with its ease-of-use can
help novice developers with little security programming
experience the ability to quickly adopt secure programming
practices. By following the guidelines in the suggestions given by
the static security vulnerability detection tools shown in
SSVChecker’s Vulnerability Viewer, their programs will be more
secure. In this study, we would also like to identify how
SSVChecker is used by novice software developers as well as its
usefulness in producing secure code. In particular, the usefulness
of the ability to calculate intersection/union sets of potential
security vulnerabilities in identifying and prioritizing possible
security vulnerabilities for the user.

Finally, we would eventually like to include a “Quick Fix” feature
(analogous to Eclipse’s “Quick Fix” feature for some compiler
errors). Such a feature could help expedite and partially automate
the process of transforming insecure code to secure code.

6. ACKNOWLEDGEMENTS
The authors would like to thank Dr. Suraj C. Kothari for his
valuable suggestions throughout this work and Dr. Robyn R. Lutz
for her helpful feedback on an earlier version of this work.

Josh Dehlinger and Qian Feng were supported by the National
Science Foundation under grants 0204139 and 0205588.

7. REFERENCES
[1] CERT Coordination Center. http://www.cert.org/. (current

August 2006).

[2] Chen, H. and Wagner, D. MOPS: Model Checking Programs
for Security Properties. http://www.cs.berkeley.edu/
~daw/mops/. (current August 2006).

[3] Engler, D., Chen, D. Y., Hallem, S., Chou, A. and Chelf, B.
Bugs as Deviant Behavior: A General Approach to Inferring
Errors in Systems Code. In Proc. 18th ACM Symposium on
Operating System Principles, pp. 57-72, Banff, Alberta,
Canada, 2001.

[4] Evans, D. and Larochelle, D. Improving Security Using
Extensible Lightweight Static Analysis. In IEEE Software,
pp. 42-51, January, 2002.

[5] FlawFinder Home Page. http://www.dwheeler.com/
flawfinder/. (current August 2006).

[6] Linux.com – Net-tools. http://howtos.linux.com/guides/html/
appendixa/net-tools.shtml. (current August 2006).

[7] Linux Security Resources – The Community’s Center for
Security. http://www.linuxsecurity.com/
content/view/101892/155/. (current August 2006).

[8] Microsoft TechNet Security Center.
http://www.microsoft.com/technet/security/default.mspx.
(current August 2006).

[9] Open Source Vulnerability Database. http://www.osvdb.org/.
(current August 2006).

[10] RATS: Rough Auditing Tool for Security.
http://www.securesoftware.com/resources/tools.html.
(current August 2006).

[11] Seacord, R. C. Secure Coding in C and C++. Addison-
Wesley Professional, 2005.

[12] Splint: Secure Programming Lint. http://www.splint.org/.
(current August 2006).

[13] Tsipenyuk, K., Chess, B. and McGraw, G. Seven Pernicious
Kingdoms: A Taxonomy of Software Security Errors. In
IEEE Security and Privacy, pp. 81-84, 2005.

[14] Viega, J., Bloch, J. T., Kohno, T. and McGraw, G. ITS4: A
Static Vulnerability Scanner for C and C++ Code. In Proc.
16th Computer Security Applications Conferences pp. 257-
266, New Orleans, LA, 2000.

[15] Wagner, D. BOON: Buffer Overrun Detection.
http://www.cs.berkeley.edu/~daw/boon/. (current August
2006).

[16] Wagner, D., Foster, J. S., Brewer, E. A. and Aiken, A. A
First Step Towards Automated Detection of Buffer Overrun
Vulnerabilities. In Network and Distributed System Security
Symposium, pp. 3-17, San Diego, CA, 2000.

