SSVChecker: Unifying Static Security Vulnerability
Detection Tools in an Eclipse Plug-In

Josh Dehlinger
Dept. of Computer Science
lowa State University

dehlinge@iastate.edu

ABSTRACT

The increasing complexity of secure software apgibims has
given rise to static analysis security tools tortateevelopers to
potential security flaws within source code. Howevkese static
security vulnerability detection tools tend to hfficlilt to use and
are not
environments. The contribution of this work $8VCheckeran

Eclipse plug-in that unifies existing static setunulnerability

detection tools into a powerful, intuitive tool. Weake three
fundamental claims for SSVChecker First, it contains
functionality not found in other static security Inverability

detection tools (e.g., union and intersection ofltipie tool

results). Second, the tool can adapt to the resviitaiser-
performed analysis to prevent repeatedly repottiser-dismissed
security vulnerabilities. Lastly, it operates onuaer-friendly,
generic framework allowing for the inclusion of due¢ static
security vulnerability detection tools. To illudiathese claims,

we useSSVCheckeon a security-sensitive networking package.

Results show the benefits of the tool in identifyipotential
security vulnerabilities.

Categories and Subject Descriptors
D.2.4 [Software Engineering: Software/Program Verification —
Validation.

General Terms
Security

Keywords

Software security, secure programming, securitytaugd

1. INTRODUCTION

The necessity for software developers to consistgmioduce
secure code for security-critical software applaa continues to
increase as software becomes progressively moreiisat in our
lives (e.g..e.commerce, online banking, etc.). The recent sofge
interest in developing and improving security vuislity tools

Permission to make digital or hard copies of afpart of this work for
personal or classroom use is granted without fegiged that copies
are not made or distributed for profit or commeradvantage and that
copies bear this notice and the full citation oae finst page. To copy
otherwise, or republish, to post on servers orewistribute to lists,
requires prior specific permission and/or a fee.

Eclipse Technology Exchange Workshop at OOPSLA@tober 22—
23, 2006, Portland, OR, USA.

Copyright 2006 ACM 1-58113-000-0/00/0004...$5.00.

Qian Feng
ABC Virtual Communications

gfeng@abcv.com

integrated with common software development

Lan Hu
Dept. of Computer Science
Utah State University

lanhu@cc.usu.edu

is one response by which researchers are tryirppe with the
demand for secure applications. Despite existingursiy

vulnerability detection tools (e.g. RATS [10], IT$44], Splint

[12], MOPS [2], etc.), extensive software seculitgrature (e.g.,
[3, 11, 13]) and documented security attacks usedxploit

software systems (e.g., [1, 7, 8, 9]), a large amhad software
produced continues to have security vulnerabilitieg have been
repeatedly exploited for nearly 20 years (e.g., fivenat-string

vulnerability in C) [8, 9, 16].

Potential security vulnerabilities are often intnodd into

software by commonly used library functions and glaage-

specific constructs unknowingly by software develsp [4].

There are two likely contributing factors as to whgftware

developers have failed to adequately mitigate knaseourity

vulnerabilities in today’s software. First, softwattevelopers may
not be aware that they are introducing potentialgvastating
security vulnerabilities into software [4, 14]. Shiikely stems
from a lack of education and awareness of commdtware

attacks and proper secure programming. Secondwaeft
developers do not have adequate, easy-to-use ito@sfamiliar

environment containing desired features to flageptial security
risks in their developed code and provide explamati and
possible solutions during development [4, 14].

If software developers were warned of potential uséc
vulnerabilities, provided with an explanation anideg possible
remedies within a software IDE, we believe thatrevevice
software developers could produce applications idevof
commonly exploited, known security vulnerabilitiémtil then, it
is futile to expect secure software in everydayliappons.

This work addresses these two problems by providingol that
alerts software developers to potential securitihenabilities in
their source code. Moreover, we hope to bridgegdye between
existing static analysis security vulnerability elgton tools and
software developers by unifying existing securityinerability
detection tools into a single interfa&SVChecke(Static Security
Vulnerability Checker). SSVCheckeis an Eclipse plug-in to fuse
existing static security vulnerability detectionok® into a
powerful, developer-friendly tool. Specificall3SVCheckeoffers
three fundamental advantages to static analysisurigec
vulnerability detection:

e Provides features not found in other security vidbdity
detections tools (e.g., union and intersection aftiple tool
results) that better aids developers in identifyjmgtential
security vulnerabilities.

* Adapts to the results of user-performed analysighout
altering the original source code, to prevent reguig

<?xml version="1.0" ?>
<Vulnerability-List>
<Vulnerability>

<Filename>C:\its4\inet.c</Filename>
<Line-Number>92</Line-Number>

<Priority>Very Risky</Priority>
<Function>strcpy</Function>

<Source-Code>strcpy(name, np->n_name);</Source-Code>
<Description>This function is high risk for buffer overflows.</Description>
<Suggestion>Use strncpy instead.</Suggestion>

</Vulnerability>
</Vulnerability-List>

Figure 1. SSVChecker'sXML format for potential security vulnerabilities.

reporting user-dismissed security vulnerabilitieBoveing
developers to concentrate on
vulnerabilities that still warrant attention.

« Operates on a user-friendly, generic frameworkvailg the
inclusion of future static security vulnerabilitgtéction tools.

The remainder of this paper is organized as follo8ection 2
reviews related work in existing static securitylnarability
detection tools. Section 3 presents an overvieve®¥Checker
and describes its interface. Section 4 presentsvafuation and
discussion o5SVCheckerfFinally, Section 5 provides concluding
remarks and planned future work.

2. RELATED WORK

Static analysis security tools attempt to find sigu
vulnerabilities without executing the software bgasning the
source code for known potentially security-comprging
functions. They then perform analyses to try toedaine if,
indeed, a function call could be maliciously atetkThese tools
can not guarantee to find all security vulneraietitin a program
and often report many false positives (those paknt
vulnerabilities reported by a tool which are nottuat
vulnerabilities).

This work illustratesSSVCheckeby integrating three existing
static security vulnerability detection tools irsto Eclipse plug-in:
ITS4 [14], RATS [10] and Splint [12]. Although thesools were
used here to illustrate the features S8VCheckerSection 3
briefly discusses hoveSVCheckecran be used with any static
security vulnerability detection tool because ot thse of a
generalized XML format for security vulnerabilities

ITS4 was one of the first available static secuaitylysis tools to
search C source code looking for potentially damggrfunction
calls [14]. ITS4 performs limited analysis to detére how risky
a function call is and, for every problem reportptbvides
suggestions how to mitigate the security vulneigbil

RATS is similar to ITS4 in its approach but perferadditional
analysis to attempt to reduce the number of falesitipes
reported [10]. Unlike ITS4, however, RATS perforamsalysis to
discover Time Of Check, Time Of Use race conditions

Splint (Secure Programming Lint) is an improvenmarer another
static security analysis tool, Lint [12] that deeklitional analysis
on potential security vulnerabilities beyond bofi$4 and RATS.

Other tools perform different analysis techniques tty and
discover a different type of security vulnerability eliminate a
different type of false positives. For example, BOQ15]

performs analysis focusing primarily on the detatif the buffer
overflow security vulnerability whereas FlawFindg] uses a

vulnerability database as does ITS4 and RATS. THifferent

those flagged securitytools often produce different sets of resu&VCheckeallows

users to exploit the differences in analysis byvjating the
potential security vulnerabilities of multiple tsotesults.

3. SSVCHECKERDESCRIPTION

This section provides an overview and descriptibthe interface
and features 08SVCheckerA full demonstration o8SVChecker
is available online at http://www.cs.iastate.edu/~dehlinge
[ssvchecker/SSVCheckerDemo.htm

SSVCheckerelies on reading the results from external static
analysis security vulnerability detection toolsan XML format,
shown in Figure 1. Although existing tools do nodyide output

in this XML format, it is trivial to provide a wraer to convert a
tool’s existing output to our XML schema.

The XML schema was designed after studying the ltsesu
produced by a number of existing tools (includifigs4 [14],
RATS [10], Splint [12], FlawFinder [5], MOPS [2] dnrBOON
[15]). This was done to generalize the results megoby the
various static analysis security tools currenthaikable and to
give the software developer adequate informatiamapeng to a
potential security vulnerability. The XML schemaaiso intended
to generalize a file format in which future statinalysis tools
could produce output allowin@SVChecketo unify all static
analysis security tools in a user-friendly softwHd&.

SSVCheckeprovides software developers with an interfacdiwit
Eclipse to run existing static analysis securitylnesability
detection tools (e.g., ITS4 [14], RATS [10] and i8p[12]) to
find potential security vulnerabilities in sourcede during
development. WithirSSVCheckersoftware developers have the
option of executing a single or multiple static lgae security
vulnerability detection tools on the source coddémelopment.

Software developers electing to run a single statialysis

security vulnerability detection tool withil8SVCheckerhave

access to all the features of the desired toal, (b@ameters can
still be provided to the tool to perform speciatizmncentrated
analysis). However, the software developer benbfitgetting the

results displayed in Eclipse for simultaneous wiewiof the

source code and flagged potential security vulriktiab.

Moreover, SSVCheckemllows software developers to execute
multiple static analysis security vulnerability eetion tools and
calculate and return either the union or intersectf the results.
Users select the tools they desire to run on tmirce code and
select intersection or unionSSVCheckerwill automatically
execute the appropriate tools, calculate the iatgien/union and
present the results to the user within Eclipse.

[€inet.c &2

struct netent *np; T
struct addr *pn;
unsigned long ad, host_ad;
/% Grmpf. -FvE */
if (sin->sin family != AF_INET) {
#ifdef DEEUG
fprintf (stderr, ("rresolve: unsupport address family %d !“n"), sin->sin f:arr
#endif o
errno = EAFNOSTPPORT:
return(-1);
i
ad = (unsigned long] sSin->sin addr.s_addr;
if (ad == INADDR_ANY) {
if | (nuwweric & O0x7FFF) == 0) {
if (numweric & 0x8000) stropyi(nsme, "default™):
else stropyiname, ")
return (0] ;
i
i
if [(nuweric & O0x7FFF) {
stropviname, inet ntoa (Sin->sin addril: - n
2 =
““r Priority [Line "| File: Marne | Function Mame Description Suggestions |
] Wery Risky 9z inet.c skropy This Function is high risk For buffer overflows — Use strncpy instead,
2] Wery Risky 106 inet.c skropy This function is high risk For buffer overflows — Use strncpy instead.
@i Urgent: ww Mon-coniskant format strings can oftern be ... | Use & constant for. ..
a Wery Risky 133 Tanare skropy This Function is high risk For buffer overflows — Use strncpy instead,
a Wery Risky 147 — skropy This Function is high risk For buffer overflows — Use strncpy instead,
a Wery Risky 173 inet.c skropy This function is high risk For buffer overflows — Use strncpy instead.
a ‘ery Risky 368 inet.c sprinkf This function is high risk For buffer overflows Use snprintf if avail,..
‘_1"_\, Wery Risky 371 inet.c sprinkf This function is high risk For buffer overflows Use snprintf if avail,..
,‘_?';. Wery Risky 374 inet.c sprinkf This function is high risk For buffer overflows Use snprintf if avail...

Figure 2. SSVChecker'dnterface in Eclipse.

Figure 2 presents a screenshot within the Eclipgeillustrating
the results of running a single static analysisiggcvulnerability
detection tool fronSSVCheckerThe results are presented in the
Vulnerability Viewer allowing for each column to ts®arted by
the user. Double-clicking any potential vulnerahiautomatically
focuses on the associated line of code, as shoWwigure 2.

The Vulnerability Viewer, shown in Figure 2, progsl a
summary of the results by listing the number oheubilities and
ignored vulnerabilities, discussed next, abovelidteof potential
security vulnerabilities. These features allow wafe developers
to easily use static analysis security vulnerapifietection tools
to analyze their source code, quickly identify highiority
potential security vulnerabilities and efficientipitigate them
using the provided suggestions. Thus, we enviSiBiCheckeas
a tool that software developers can utilize onraigeequent basis
much like a compiler, during security-critical sedre
development.

SSVCheckeprovides functionality to be able to adapt to the

results of user-performed analysis to prevent repiareporting
user-dismissed security vulnerabilities. This alogevelopers to
concentrate on those flagged security vulnerabditthat still
warrant attention (analogous to Microsoft Word’gribre Once”
option for misspelled words). To achieve thiSSVChecker
provides users with the option of ignoring a patEntulnerability
if the user has manually determined that the regdovulnerability
does not pose a security risk. This prevents repgatrawing the
developers’ attention to the same vulnerability subsequent
executions ofSSVCheckerAs shown in Figure 2, previously

ignored vulnerabilities are filtered to the bottofirthe list and are
tagged as a warning (with a different icolSVCheckerlso

provides users with the ability to stop ignoringlled “Cancel

Ignore”) a specific vulnerability as is shown irg&re 2.

4. EVALUATION AND DISCUSSION

This section provides an evaluation®8VCheckeby examining
the results of running three different static sagurulnerability

detection tools separately usinfgSVCheckerand then using
SSVCheckeo calculate the intersection and union of theddol
justify the advantage of such features to a sofivdaveloper.

We evaluatedSSVCheckeusing portions of the net-tools 1.46
networking package. Net-tools 1.46 is an open syrackage
written in C for the Linux operating system corigigtof several
commands related to networking [6]. Specificallye wised
SSVCheckeron the netstat.c (approximately 1,400 LOC) and
inet.c (approximately 400 LOC) files of the neti®o0l.46
package.

4.1 SSVChecker's Intersection and Union

Results

We provide the results and analysis from prelimindests
showing the results of usingSVChecketo calculate and return
the intersection and union sets of potential sécurtilnerabilities
on portions of the net-tools 1.46 package. Theltgsshown in
Table 1 and discussed below, illustrate the vafug3VChecker's
intersection/union calculation feature.

Table 1. Number of potential security vulnerabilities reported by various static security vulnerabiliy detection
tools as well as intersection/union results usinBSVChecker

ITS4 RATS Splint | 1ITS4 U RATS ITS4N RATS ITS4 U RATS U Splint ITS4 N RATSN Splint
inet.c 12 16 51 16 12 58 9
netstat.c 111 94 485 139 66 581 43

When usingSSVCheckeio run ITS4, RATS and Splint separately
on the inet.c source file 12, 16 and 51 potentietusty
vulnerabilities, respectively, were reported. Aue hetstat.c code
111, 94 and 485 potential security vulnerabilitiesre reported
from ITS4, RATS and Splint, respectively, 8VChecker

Retrieving the intersection of ITS4 and RATS foe ihet.c code
yielded 12 potential vulnerabilities. Unfortunatelyhis set
represented the same 12 vulnerabilities originadported by
ITS4. Thus, for this particular file, the resuleported by ITS4
were a subset of the results reported by RATS hadntersection
feature ofSSVCheckedid not provide any additional insight or
advantage for a software developer.

Retrieving the intersection for ITS4 and RATS fbe tnetstat.c
code yielded in 66 potential vulnerabilities repdrtrepresenting
a reduction of 45 and 28 possible security vulniéitegs from

executing ITS4 and RATS separately, respectivalythis case,
there were vulnerabilities reported by ITS4 thateveot reported
by RATS and vice versa. This reduction is advardagen that it
assists a software developer in identifying likebgecurity

vulnerabilities since more than one static secwitynerability

detection tool, each using different analysis meéthoflagged
them as being a potential security vulnerability.

Calculating the intersection of the ITS4, RATS &plint results
for the inet.c code yielded only 9 potential vubtslities.
Likewise, usingSSVChecketo calculate the intersection of the
ITS4, RATS and Splint results for the netstat.cecgtelded 43
potential security vulnerabilities and is discusskedther in
Section 4.2.

Using SSVChecketo calculate the union of the ITS4 and RATS

results for the inet.c and netstat.c source fileldgd 16 and 139
potential security vulnerabilities, respectivelyimf@arly, the
union set of potential vulnerabilities for ITS4, R8 and Splint
for the inet.c and netstat.c source files are 58 381 potential
security vulnerabilities, respectively.

4.2 Discussion

From the experimental results, it appears B8V Checkecan
benefit software developers when developing seecaritical
software. The convenience of a generalized toabwatlg a
developer to execute any existing static securitynerability
detection tools gives software developers the désflexibility
within the Eclipse IDE. Furthe§SVCheckentegrates the results
of static security vulnerability detection tools atlow software
developers to simultaneously view the source cadk potential
security vulnerabilities, allowing for a shorter Inverability
mitigation cycle.

Through the evaluation results, we believe tB&VChecker's
feature to calculate the intersection set of paergecurity

vulnerabilities from the results of several exeduti®ols can help
software developers concentrate on an initial §&kely security
vulnerabilities. Assuming that a security vulneliépiis more
likely an actual vulnerability if multiple tools &g it,
SSVChecker'sability to calculate the intersection set provides
software developers with a feature that is not tbefsewhere.
Thus, the calculation of intersection setsSi8VCheckeprovides
developers with a useful asset during the developwiesecurity-
critical code or during a security audit/code rawieby
circumventing the poor precision (i.e., the higheraf false
positives) of a single static security vulnerabitietection tool.

The ability to calculate the union of potential séty
vulnerabilities inSSVCheckeirom the results of several executed
tools may be valuable when security is a high fsi@nd a listing
of all possible vulnerabilities is more desiralilan a list of likely
security vulnerabilities. While the resulting uniaets always
increased the number of potential security vulniétis
compared to the results of any single tool, it dit give any
indication which potential security vulnerabilitiegere more or
less likely to be actual vulnerabilities. Rathée uinion set gave a
more comprehensive list of potential security rigkghe source
code. This may be a valuable asset during codewswvor security
audits when security is a high priority.

Although not measured in the evaluation resu®SVChecker’'s
ability to ‘“ignore” previously flagged potential @ity
vulnerabilities allows the tool to adapt to the mananalysis
performed by the user so that they are not replabethered by
previously dismissed flagged vulnerabilities. Inr axperience
from using ITS4 and RATS when securing C code, atgully
being warned about a specific potential securitperability even
after, through a manual inspection of the codekm@w it can not
be exploited by a malicious user is annoying arstracting from
those other potential vulnerabilities that stillrveant our attention.
Thus, we believe that the ability to temporarilynage a
vulnerability (and, thus, havin§SVCheckéiilter it to the bottom
of the list) is a valuable feature that focusesettepers attention
on those potential security vulnerabilities thavéaot yet been
considered by other static security vulnerabiliggetttion tools.

Finally, this work illustratedSSVChecker'application to C/C++
source code with static security vulnerability d#ten tools
targeted for performing analysis to detect vulngitas in C/C++
code. However, there is nothing preventi8§VCheckeifrom
being applied in the same manner to other typesoafce code
using static security vulnerability detection tooler other
languages. For example, the Eclipse IDE can be tesel@velop
an application in Python ar@iSVCheckecan be used to execute
RATS [10], which can also check for security vubdglities in
Python, to identify and report potential securitynerabilities.

5. CONCLUSION AND FUTURE WORK

This paper describe@SVCheckeran Eclipse plug-in to unify
existing static security vulnerability detectionol® into a
powerful, developer-friendly tooSSVCheckeprovides software
developers the ability to analyze their code usmisting static
security vulnerability detection tools within thelpse IDE and
displays the results in a familiar, customizablenmex. This work
bridges the gap between research-oriented, comtiramtbased,
static security analysis tools and development $B#6' that both
novice and advanced software developers can takentape of
security analysis tools when developing securitifeal code.

SSVCheckeallows software developers to run either a singbd
or multiple tools and provides a generic framewsukh that any
existing or future static security vulnerabilityteetion tool can be
used within SSVChecker When executing multiple tools,
SSVCheckeprovides the user with the ability to return eithae
intersection or union of the results of multiple@lg This allows
the software developer to view a narrowed set laflyi security
vulnerabilities (i.e., the intersection set of rpl# tools) or a
large set of possible security vulnerabilities.(ithe union set of
multiple tools). Finally, SSVCheckeis able to adapt to user-
performed analysis by temporarily ignoring previguseported
security vulnerabilities so that the user’'s attemtis focused on
those security vulnerabilities not yet considered.

Planned future work is threefold. Fir&SVCheckewas initially
developed as a proof-of-concept tool. ThuSSVChecker’s
calculation of intersection/union potential vulngfitdy sets of
multiple tools is currently more time-consuming nth@ecessary.
Depending on the size of the source code and theuof tools
selected to analyze the code and the number ohf@tsecurity

vulnerabilities,SSVCheckemay take up to 10 seconds to display

results. We have identified a number of areas iniclvh
SSVCheckeefficiency can be improved so that its calculatadn
intersection/union sets is faster. Thus, our fpktnned future
work includes tuning SSVChecker'sefficiency as well as
performing an analysis of the length of time reedirby

SSVChecketo return intersection/union sets as the number of

tools and vulnerabilities increase. We would likekeep the time
performance fast enough that software developent wge
SSVCheckeduring the development of security-critical code.

Second, we plan on introducirf®SVCheckeinto a classroom to
study its use as a learning tool to teach secuogramming
practices to upper-level undergraduate studentsbwleve that
its integration into the Eclipse IDE along with éase-of-use can
help novice developers with little security prograimg
experience the ability to quickly adopt secure paogming
practices. By following the guidelines in the sustgEns given by
the static security vulnerability detection tooldhown in
SSVChecker'¥ulnerability Viewer, their programs will be more
secure. In this study, we would also like to idgnthow
SSVCheckeis used by novice software developers as weltsas i
usefulness in producing secure code. In partictier,usefulness
of the ability to calculate intersection/union setk potential
security vulnerabilities in identifying and pridzing possible
security vulnerabilities for the user.

Finally, we would eventually like to include a “Q@uiFix” feature
(analogous to Eclipse’s “Quick Fix” feature for seraompiler
errors). Such a feature could help expedite antiafigrautomate
the process of transforming insecure code to sesnde.

6. ACKNOWLEDGEMENTS

The authors would like to thank Dr. Suraj C. Kothtr his
valuable suggestions throughout this work and @byR R. Lutz
for her helpful feedback on an earlier versionhid tvork.

Josh Dehlinger and Qian Feng were supported byNgténal
Science Foundation under grants 0204139 and 0205588

7. REFERENCES

[1] CERT Coordination Centehnttp://www.cert.org/ (current
August 2006).

[2] Chen, H. and Wagner, D. MOPS: Model Checking Progra
for Security Propertiesttp://www.cs.berkeley.edu/
~daw/mops/(current August 2006).

[3] Engler, D., Chen, D. Y., Hallem, S., Chou, A. arftef, B.
Bugs as Deviant Behavior: A General Approach teririfig
Errors in Systems Code. Rroc. 18" ACM Symposium on
Operating System Principlepp. 57-72, Banff, Alberta,
Canada, 2001.

[4] Evans, D. and Larochelle, D. Improving Securityrigs
Extensible Lightweight Static Analysis. IREE Software
pp. 42-51, January, 2002.

[5] FlawFinder Home Pagéttp://www.dwheeler.com/
flawfinder/. (current August 2006).

[6] Linux.com — Net-toolshttp://howtos.linux.com/guides/html/
appendixa/net-tools.shtncurrent August 2006).

[7] Linux Security Resources — The Community’s Certer f
Security.http://www.linuxsecurity.com/
content/view/101892/155(current August 2006).

[8] Microsoft TechNet Security Center.
http://www.microsoft.com/technet/security/defaugn
(current August 2006).

9] Open Source Vulnerability Databagétp://www.osvdb.org/
(current August 2006).

[10] RATS: Rough Auditing Tool for Security.
http://www.securesoftware.com/resources/tools.html
(current August 2006).

[11] Seacord, R. CSecure Coding in C and C++#Addison-
Wesley Professional, 2005.

[12] Splint: Secure Programming Linhttp://www.splint.org/
(current August 2006).

[13] Tsipenyuk, K., Chess, B. and McGraw, G. Seven iBieus
Kingdoms: A Taxonomy of Software Security Errors. |
IEEE Security and Privacyp. 81-84, 2005.

[14] Viega, J., Bloch, J. T., Kohno, T. and McGraw, GS4: A
Static Vulnerability Scanner for C and C++ CodePhac.
16" Computer Security Applications Conferenpps 257-
266, New Orleans, LA, 2000.

[15] Wagner, D. BOON: Buffer Overrun Detection.
http://www.cs.berkeley.edu/~daw/boo¢urrent August
2006).

[16] Wagner, D., Foster, J. S., Brewer, E. A. and AikenA
First Step Towards Automated Detection of Buffee@®un
Vulnerabilities. InNetwork and Distributed System Security
Symposiumpp. 3-17, San Diego, CA, 2000.

