
Proof General in Eclipse

System and Architecture Overview

David Aspinall
Daniel Winterstein
School of Informatics

University of Edinburgh
U.K.

da@inf.ed.ac.uk

Christoph Lüth
Ahsan Fayyaz

Department of Mathematics and Computer
Science

Universität Bremen
Germany

cxl@informatik.uni-bremen.de

ABSTRACT
Interactive theorem proving is the art of constructing elec-
tronic proofs. Proof development, based around a proof
script, has much in common with program development,
based around a program text. Proof developers use rather
primitive tools for developing and manipulating proof scripts
at present. The Proof General project aims at to change
this, by providing powerful generic tools and interfaces. The
flagship tool is our Eclipse plugin, which brings the features
of a industrial-strength IDE to theorem proving for the first
time. In this paper we give an overview of the Eclipse plugin
and its underlying architecture.

1. BACKGROUND
An electronic proof is the representation of a mathemati-
cal proof on machine, usually in a fully formalised way. This
means that there is a formal syntax for the logical language,
which makes statements of properties to be proven, and for
the proof language, which describes how those properties are
proved following a set of rules. Electronic proofs are desir-
able for at least three reasons, when (i) the properties are
too complex for human readability, (ii) a high degree of con-
fidence is desired in a proof, or (iii) the proof itself is too
detailed to be managed manually. These reasons motivate
the typical application areas:

• software and hardware verification, dealing with many
thousands of correctness conditions [8];

• domain specific logics and meta-theory [4];

• deep proofs of mathematical results [6].

With maturing technology, theorem proving in-the-large is
becoming more feasible, with significant sized formalisations
being attempted in both industry and academia. Recent ex-
amples of large efforts include verifying parts of the Pentium

micro-architecture [8], formalising type safety and a pro-
gramming logic for Java [11], a detailed proof of the Four
Colour Theorem [6], and the ongoing attempt to construct a
formal version of Hales’s proof of the Kepler Conjecture [7].

These proofs range in length from around 10,000 lines to
100,000 lines, each proving hundreds or thousands of lemmas
and representing some person-years of work. It is encour-
aging that developments of this size are now possible, but
they are far from easy. Formal proof texts are arguably more
complex, dense, and interdependent than similarly sized pro-
grams. Yet they are being developed with primitive tools,
often little more than basic text editors, with no high-level
means of rapid construction, easy modification or browsing.
Lack of support for in-the-large theorem proving is one rea-
son that theorem proving tools are not used routinely for
applied verification and mathematical assistance.

We are interested in proof engineering, an emerging field
concerned with the construction, maintenance and under-
standing of large formal proof developments.

The Proof General project is building tools for proof en-
gineering which work in a generic setting. Just as there are
different programming languages for different applications,
so there are many different proof languages and support-
ing systems presently in use. However, the theorem proving
communities for each system are much smaller than they are
for popular programming languages, so there are limited re-
sources available for building development environments. It
is also a reason that makes implementing generic tools, as
far as possible, particularly attractive.

The setting of our work is on interactive theorem proving
with a class of systems that follow a traditional of goal-
directed interaction; this includes popular systems such as
Isabelle, HOL, Coq, PhoX, ACL2, Twelf, Agda and PVS.
The user writes a proof script in the proof language, which
contains proof commands to be checked step-by-step by the
theorem prover system. As each step, the system reports on
the progress and outstanding goals remaining.

We want to bring modern software engineering tools to bear
on this related area, and our main vehicle for doing this is
an IDE for proof constructed within Eclipse.

2. PROOF DEVELOPMENT IN ECLIPSE
The central artefacts of proof development are proof scripts
which are files containing declarations of types and con-
stants, as well as proof goals and proofs themselves. In-
teractive provers check proof scripts to guarantee their cor-
rectness, but rely on users to manually write the input. A
simple example proof for Isabelle/Isar [13] appears below:

lemma fn1: ”(∃ x. P (f x)) −→ (∃ y. P y)”
proof

assume ”∃ x. P (f x)”
thus ”∃ y. P y”
proof

fix a
assume ”P (f a)”
show ?thesis ..

qed
qed

This proof language has a declarative style, intending to be
a readable (if verbose) format. The proof of the simple im-
plication is as follows: suppose that ∃x.P (fx) holds. Then,
for some unknown parameter a, we have P (fa). But now we
have exhibited a y such that ∃y.Py. The logical rules which
connect this reasoning are hidden within the language.

Other proof languages have instead a procedural style which
consist of a series of instructions which describe how to find
a proof by explicitly naming logical rules and search proce-
dures (known as tactics). This style of proof script describes
how the proof is found, but can be difficult to understand
later, especially without interacting with the system.

Proof General works with both kinds of proof languages pro-
vided they are designed to be incrementally checked, so that
as we write the proof the theorem prover can check each line.
The central idea of the Proof General interface is script man-
agement which synchronises the state of the theorem prover
with the text editor by colouring the background of pro-
cessed text. At first sight, script management is reminiscent
of running a symbolic debugger step-by-step, except that
this is the normal interaction mode and we always have the
possibility to go back and forth in the history.

The screenshot in Fig. 1 shows this in action: the shaded re-
gion is the text that has been processed so far by the system.
This region is locked (read only) to prevent inconsistencies.
The backward and forward buttons allow navigation of the
proof script by processing or undoing steps; to change a
previous step one has to undo to unlock it first.

As each step is sent to the theorem prover, output is dis-
played from the system in the output view. The outline
displays the structure of the proof and is also annotated to
indicate progress. Another view (the PG Teacher View) is
provided to display wizard-style tutorials, and finally there
is a view on complete log of the interaction with the system.
The latter is seldom of interest in normal use.

The interface provides light-weight syntax highlighting (for
keywords, strings, etc.) implemented by the standard Eclipse
mechanisms, and dynamic parsing of the proof script by the
prover. This two-level handling allows both on-the-fly high-
lighting and structural parsing (see below), as required.

3. THE PGIP ARCHITECTURE
The Eclipse plugin is part of a larger architecture which al-
lows connection to other front ends and offloads complex
symbolic manipulation. The architecture connects compo-
nents together using a custom protocol for message exchange
called PGIP (the Proof General Interaction Protocol) [1].

PGIP defines:

• A protocol for conducting proof with a goal directed
prover.

• A generic system architecture to connect provers to
interfaces.

PGIP gives us a software framework for interactive proof.
The reference implementation of this is called PG Kit,
based around a central Broker component; see Fig. 2.

PGIP

PGIP

PGIP

PGIP
Prover

Prover

Graphical User
Interface

Text Editor

Eclipse

Broker

File System Theory Store

PGIP

Prover Components Display Components

Figure 2: The PGIP system architecture.

Our aim is for the Broker to capture the extra-logical func-
tionality of interactive theorem provers and support the core
complex proof engineering operations. Although it would
be possible to integrate the Broker into Eclipse, at the mo-
ment it is implemented as a separate component written in
Haskell. This also allows us to connect additional display
components, for example, GUIs which may display graphi-
cal representations of proofs, or web browser interfaces.

The components communicate using messages in the PGIP.
The general control flow is that a user’s action causes a com-
mand to be sent from the display to the broker, the broker
sends commands to the prover, which sends responses back
to the broker which relays them to the displays. The for-
mat of the messages is defined by an XML schema written
in RELAX NG. Messages are sent over channels, typically
sockets or Unix pipes. There is a secondary schema called
PGML, for Proof General Markup Language, which is used
for annotating concrete syntax within messages (for exam-
ple, to generate clickable regions) and for representing math-
ematical symbols.1

There are two main sub-protocols within PGIP:

• The prover protocol connecting to theorem provers is
designed to be simple, small and powerful, to make it
easy to implement for existing provers.

1Another possibility is MathML [12], but PGML is designed
to be easier to support for existing systems.

Figure 1: Editing a proof script using Proof General in Eclipse

• The display protocol connecting to interfaces is de-
signed to be nearly stateless, very verbose, to make
it easy to add displays.

Fig. 3 shows a schematic message exchange which illustrates
how the display (here Eclipse) triggers commands to be sent
to the prover, and how the Broker relays messages from the
display to the prover.

The pattern of exchanges between the components is more
permissive than in simple synchronous RPC mechanisms like
XML RPC or most web services; this is necessary because
interactive provers may send a lot of information while a
proof proceeds. Since a proof may diverge (e.g. during
proof search), it is essential that this feedback is displayed
eagerly so the user can take action as soon as possible.
The message exchange between Eclipse and the Broker is
always asynchronous (single request, non-waiting multiple
response): the display sends a command, and the Broker
may send several responses later. The message exchange
between the Broker and the prover can be asynchronous or
synchronous (single request, waiting single response). The
<ready> message indicates that the prover is ready for new
input.

3.1 Proof script markup
The basic principle for representing proof scripts in PGIP
is to use the prover’s native language and mark up the con-
tent with PGIP commands which give the proof script the
structure needed for the interface. The markup partitions a
file into non overlapping commands which can be processed
incrementally by the prover.

For example, the PGIP markup on the Isabelle/Isar proof

Prover command

Display message
Display message

Display message

...

...

BrokerDisplay Prover

Display command

Display message

<ready>

Figure 3: Message exchange in the PGIP protocol.

script shown earlier looks like this:

<opengoal name=”fn1”>lemma fn1: "(EX x. P (f x))
<sym name=”longrightarrow”>−−></sym>

(EX y. P y)"</opengoal>
<openblock/><proofstep>proof</proofstep>

<proofstep>assume "EX x. P (f x)"</proofstep>
<opengoal>thus "EX y. P y"</opengoal>
<openblock/><proofstep>proof</proofstep>

<proofstep>fix a</proofstep>
<proofstep>assume "P (f a)"</proofstep>
<opengoal>show ?thesis</opengoal><openblock/>

<closegoal>..</closegoal><closeblock/>
<closegoal>qed</closegoal><closeblock/>

<closegoal>qed</closegoal><closeblock/>

This shows the XML markup imposed on the original text.
The <sym> symbol element is part of PGML (we omit
the symbol markup on ∃ for brevity and write it as EX).
The named and unnamed <opengoal> elements indicate
the beginning of a proof or sub-proof, and the indentation
structure of the script is reflected by the <openblock> and
<closeblock>.

The theorem prover must provide the markup on arbitrary
text for us using its own parser; this allows the interface to
be generic without needing to hard-wire syntax and parsers
for each different system. It even allows for dynamically
extensible command syntax within the same system — a
feature which is quite common in proof languages.

Apart from the basic structure, additional meta-information
can be added to the markup which indicates the names of
definitions made in each command, or the required def-
initions (dependencies) which are referenced. Additional
markup can be added either during parsing or later on, dur-
ing actual execution (proof checking).

The Broker manages the file contents and communicates it
to Eclipse by sending individual text segments and their
PGIP markup. Eclipse reassembles this in the text editor
view, using the markup to maintain the outline view. User
edit actions send commands to the Broker to signal the dele-
tion or insertion of text fragments, which are relayed to the
prover for parsing. We describe how this happens next.

3.2 Display protocol
The PGIP display protocol [2] gives an edit-parse-prove cy-
cle for commands, which implements script management.
Commands appear to the user to be in one of five possible
states, shown in Fig. 4.

Edit command

Unparsed

Outdated Outdate request

Processed

Normal response

response

Send to prover

Parsed

Being processed

proof
ReplayErrorParse

command

Figure 4: Command states in PGIP displays.

A text segment starts off as unparsed, and after parsing be-
comes one (or more) freshly parsed prover commands. Ac-
tual proving consists of sending the command to the prover.
While waiting for a response from the prover, the command
is being processed. Once the prover has sent a positive an-
swer, the command becomes processed ; on the other hand,
if the prover sends an error, the command reverts to being
parsed. When we outdate a command, all commands de-
pending on it are outdated as well. Similarly, to successfully
process a command we will need to have processed all com-
mands it is depending on. To edit a processed command,
we have to outdate it first.

This model extends the previous model used by Proof Gen-
eral in Emacs and other similar script management sys-
tems, which typically provide only unparsed/parsed, being
processed and processed states; parsing attempts occur only
as a request to process a command is issued. The extra
states here are useful for the user. Text may be unparsed
because a parse attempt has failed, which can be indicated
to the user by the familiar wavy red underlines. Text which
has been outdated has a different status: we expect that it
will be possible to redo such commands without problem.

Eclipse is informed about state changes of command regions
by the Broker, and may make change requests triggered
by actions in the interface. State change requests are con-
verted into commands that control the prover; the Broker
has its own history management which it synchronises with
the prover as necessary.

The Eclipse implementation can parse the file as the user
types (after an amount of idle time); this updates the outline
view and syntax highlighting dynamically. Currently, the
plugin assumes parsing to be fast and blocks editing while it
happens; this could be improved by adding a sixth command
state of being parsed behind-the-scenes (to the user this can
appear the same as freshly parsed, but the system knows
that edited commands must always be reparsed).

3.3 Dependency in proofs
The display protocol also allows an important generalisation
of the previous script management dependency model. Clas-
sical script management [5] uses linear dependency, where
every line potentially depends on all lines that come before,
because the prover only processes them in a linear fashion.
This divides the proof script into a part which has been
processed, and a part which still needs to be processed, as
shown on the left of Fig. 5.

Lemma 2

Theorem 2

Theorem 1

Theory T1

Definition 1

Lemma 1

Lemma 2

Theorem 2

Theorem 1

Theory T1

Definition 1

Lemma 1

Figure 5: Linear and explicit dependencies in proofs.

By splitting the text into commands, we can have a more
fine-grained explicit dependency, shown on the right of Fig. 5.
Here, to process a command we need only process the prior
commands which are really needed. Similarly, to undo a
command we only need undo the command and its true
dependents. For this to work, the prover must report the
necessary dependency information as additional markup.

Similarly, inter-theory dependencies are deduced by Proof
General in a linear order by default, or in a graph structure
with prover assistance, as shown in Fig. 6.

We want to get a handle on dependencies in proof scripts
to enable more sophisticated manipulations, such as smart
folding and basic refactorings like renaming and moving the-
orems between proof scripts. There is much anecdotal evi-
dence from proof developers that support for refactoring is
desperately needed, but implementing it correctly for proof
scripts (and in a generic way) needs further research.

Theory T1 Theory T2

import T1

Definition 1

Theorem 1

Theorem 2

Theorem 2

Theorem 1

Lemma 2

Lemma 1

Definition 1

Figure 6: Inter-theory dependencies

4. CONCLUSIONS
We hope that the new Proof General interface based on
Eclipse will become the standard working environment for
many users of interactive proof systems, as it continues to
be developed. Eventually it should replace the existing pop-
ular Proof General system based on Emacs. There are still
outstanding issues to resolve before we get there.

One issue is that the new PGIP architecture is only so far
supported by the Isabelle theorem prover. In principle it
would be possible to support others without much effort by
using a filtering component which interprets the ordinary
prover interaction language (in ASCII), exploiting the ex-
isting per-prover customisations taken from our Emacs Lisp
code. But we would rather encourage theorem prover im-
plementors to support PGIP directly.

On the Eclipse side, perhaps the most important challenge
is in providing the same (or better) flexibility of display and
editing of mathematical content which is afforded elsewhere.
The X Symbols package in Emacs, the MathML markup
used by web browsers, and the scientific document editor
TeXmacs [10] all go beyond what we could manage with
Eclipse. The present symbol support is limited and requires
access to a suitably rich unicode font. As a possible im-
provement, we are experimenting with converting MathML
markup from the prover into SVG to be displayed inside
Eclipse.

Generalising further, we have designed ways for extending
our system to cope with a literate style of development [3].
Using this mechanism, a central document stores all content
and can be edited by the user in different views. One view
reflects the formal proof script, while another reflects a user-
oriented view in the style of an informal mathematical paper.
Other extensions include the possibility to allow interaction
via user gestures such as drag-and-drop; the PGIP protocol
already caters for these in a generic way, but this is not
supported by the Eclipse display yet.

Proof General Kit is unique in proposing a specific frame-
work customised for interactive proof, although related work
exists in other settings. One notable example is the Math-
Web project, which provides a standardised XML-RPC in-
terface to a range of automated provers, using the semantic
content format OMDoc [9] as an exchange language.

Acknowledgments
Proof General in Eclipse was developed with the assistance
of two Eclipse Innovation Grants from IBM, awarded in 2004
and 2005 to Aspinall and Lüth respectively. The actual work
on the plugin was undertaken by Winterstein and Fayyaz.
Additions and improvements to the system were made by
Alex Heneveld. The EPSRC platform grant GR/S01771 has
provided some support for the continuing development of
Proof General.

For details and downloads of Proof General in Eclipse, please
visit http://proofgeneral.inf.ed.ac.uk/kit/.

5. REFERENCES
[1] D. Aspinall and C. Lüth. Commentary on PGIP.

http://proofgeneral.inf.ed.ac.uk/kit/, 2006.

[2] D. Aspinall, C. Lüth, and D. Winterstein. Parsing,
editing, proving: The PGIP display protocol. In User
Interfaces for Theorem Provers UITP’05, Apr. 2005.

[3] D. Aspinall, C. Lüth, and B. Wolff. Assisted proof
document authoring. In Proc. Intl. conf. Mathematical
Knowledge Management 2005, LNAI 3863. Springer,
2005.

[4] B. Aydemir, A. Bohannon, M. Fairbairn, J. Foster,
B. Pierce, P. Sewell, D. Vytiniotis, G. Washburn,
S. Weirich, and S. Zdancewic. Mechanized metatheory
for the masses: The POPLmark challenge, 2005.

[5] Y. Bertot and L. Théry. A generic approach to
building user interfaces for theorem provers. Journal
of Symbolic Computation, 25(7):161–194, Feb. 1998.

[6] G. Gonthier. A computer-checked proof of the four
colour theorem. Technical report, Microsoft Research
Cambridge, 2004. http://research.microsoft.com/
∼gonthier/4colproof.pdf.

[7] T. C. Hales. The Flyspeck project page. http://www.
math.pitt.edu/∼thales/flyspeck/index.html.

[8] R. Kaivola and K. R. Kohatsu. Proof engineering in
the large: formal verification of Pentium 4
floating-point divider. STTT, 4(3):323–334, 2003.

[9] M. Kohlhase. OMDoc: An Open Markup Format for
Mathematical Documents. LNAI 4180. Springer, 2006.

[10] TeXmacs. Web page, 2006.
http://www.texmacs.org/.

[11] D. von Oheimb. Hoare logic for Java in Isabelle/HOL.
Concurrency and Computation: Practice and
Experience, 13(13):1173–1214, 2001.

[12] Mathematical markup language (MathML). W3C
Recommendation, 1999.

[13] M. Wenzel. Isabelle/Isar — a versatile environment
for human-readable formal proof documents. PhD
thesis, Technische Universität München, 2001.

