
HAM: Cross-Cutting Concerns in Eclipse

Silvia Breu
University of Cambridge

Computer Laboratory
Cambridge, UK
silvia@ieee.org

Thomas Zimmermann
Saarland University

Dept. of Computer Science
Saarbrücken, Germany

tz@acm.org

Christian Lindig
Saarland University

Dept. of Computer Science
Saarbrücken, Germany
lindig@cs.uni-sb.de

Abstract
As programs evolve, newly added functionality sometimes no
longer aligns with the original design, ending up scattered across
the software system. Aspect mining tries to identify such cross-
cutting concerns in a program to support maintenance, or as a first
step towards an aspect-oriented program. Previous approaches to
aspect mining applied static or dynamic program analysis tech-
niques to a single version of a system. We exploit all versions from
a system’s CVS history to mine aspect candidates; we are about to
extend our research prototype to an Eclipse plug-in called HAM:
when a single CVS commit adds calls to the same (small) set of
methods in many unrelated locations, these method calls are likely
to be cross-cutting. HAM employs formal concept analysis to iden-
tify aspect candidates. Analysing one commit operation at a time
makes the approach scale to industrial-sized programs. In an eval-
uation we mined cross-cutting concerns from Eclipse 3.2M3 and
found that up to 90% of the top-10 aspect candidates are truly
cross-cutting concerns.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Restructuring,
reverse engineering, and re-engineering

General Terms Algorithms, Measurement, Documentation, Per-
formance, Design, Experimentation

Keywords Aspect Mining, Aspect-Oriented Programming, CVS,
Eclipse, Formal Concept Analysis, Java, Mining Version Archives

1. Introduction
As a program evolves it is easy to overlook that certain function-
ality is not, or is no longer, properly encapsulated but scattered
over many methods. Aspect mining aims at identifying such cross-
cutting concerns, also referred to as aspects. Aspects constitute
structural problems that either have to be taken care of manually,
through object-oriented refactoring, or by moving towards aspect-
oriented programming (AOP). However, we believe that aspects do
not necessarily exist from the beginning but may be introduced
over time to a system. Motivated by dynamic approaches for as-
pect mining that investigate execution traces of programs [2, 3], we
build our analysis on CVS commits that insert method calls. We are

working on an Eclipse plug-in called HAM that will identify such
cross-cutting concerns and will inform the programmer unobtru-
sively when she is about to add more such functionality. She might
then go on as planned, or think about introducing an abstraction to
encapsulate this functionality properly. HAM employs formal con-
cept analysis to compute all potential aspects from which we filter
the most likely ones. Aspects from a CVS commit may not be inde-
pendent but form a hierarchy. Besides showing all instances of an
aspect candidate, HAM also visualises this hierarchy to inform the
user about potentially conflicting aspects.

2. Examples from Eclipse
In Eclipse, we found numerous aspect candidates, of which a few
are presented in more detail in the following.

Locking Mechanism. Calls to both methods lock and unlock
were inserted in 1284 method locations. Here is such a location:

public static final native void _XFree(int address);
public static final void XFree(int /*long*/ address) {

lock.lock();
try {

_XFree(address);
} finally {

lock.unlock();
}

}

The other 1283 method locations look similar. First lock is called,
then a corresponding native method, and finally unlock. It is a
typical example of a cross-cutting concern which can be easily re-
alised using AOP. Note that this lock/unlock concern cross-cuts
different platforms. It appears in both the GTK and Motif version
of Eclipse. Typically such cross-platform concerns are recognised
incompletely by static and dynamic aspect mining approaches un-
less the platforms are analysed separately and results combined.

Bytecode Visitor. Another example for a cross-cutting concern
is the call to method dumpPcNumber which was inserted to 205
methods in the class DefaultBytecodeVisitor. This class im-
plements a visitor for bytecode, in particular one method for each
bytecode instruction; the following code shows the method for in-
struction aload 0.

/**
* @see IBytecodeVisitor#_aload_0(int)
*/

public void _aload_0(int pc) {
dumpPcNumber(pc);
buffer.append(OpcodeStringValues

.BYTECODE_NAMES[IOpcodeMnemonics.ALOAD_0]);
writeNewLine();

}

(A)

(B)

(C)

(D)

Figure 1. Screenshot of the HAM plug-in. The Aspect Candidates view (A) lists cross-cutting concerns that can be investigated with other
views (B,C,D). View (B) shows the hierarchy of aspect candidates.

The call to dumpPcNumber can obviously be realised as an aspect.
However, in this case aspect-oriented programming can even gener-
ate all 205 methods (including comments) since the methods differ
only in the name of the bytecode instruction.

Abstract Syntax Trees. Eclipse represents nodes of abstract syn-
tax trees (ASTs) using the abstract class ASTNode and several sub-
classes. These subclasses fall into the following simplified cate-
gories: expressions (Expression), statements (Statement), and
types (Type). Additionally, each subclass of ASTNode has proper-
ties that cross-cut the class hierarchy. An example for a property
is the name of a node: There are named (QualifiedType) and
unnamed types (PrimitiveType), as well as named expressions
(FieldAccess). Additional properties of a node include the type,
expression, operator, or body.

This concern is a typical example of role super-imposition [8].
As a result, every named subclass of ASTNode implements method
setName which results in duplicated code. With AOP the concern
could be realised via the method-introduction mechanism.

public void setName(SimpleName name) {
if (name == null) {

throw new IllegalArgumentException();
}
ASTNode oldChild = this.methodName;
preReplaceChild(oldChild, name, NAME_PROPERTY);
this.methodName = name;
postReplaceChild(oldChild, name, NAME_PROPERTY);

}

Our mining approach revealed this cross-cutting concern with
several aspect candidates. The methods preReplaceChild and
postReplaceChild are called in the aforementioned setName
method; the methods preLazyInit and postLazyInit guarantee
the safe initialisation of properties; and the methods preValue-
Change and postValueChange are called when a new operator is
set for a node.
Cloning. Another cross-cutting concern was surprising because it
involved two getter methods getStartPosition and getLength.
These are always called in clone0 of subclasses of ASTNode and
were also identified by our approach.
ASTNode clone0(AST target) {

BooleanLiteral result = new BooleanLiteral(target);
result.setSourceRange(this.getStartPosition(),

this.getLength());
result.setBooleanValue(booleanValue());
return result;

}

3. The HAM Plug-in
So far we have implemented a prototype of HAM that identifies
cross-cutting concerns from CVS archives and presents the results
in Eclipse. In our future work, we will inform the programmer un-
obtrusively when she is about to change cross-cutting functionality.

Figure 1 shows a screenshot when analysing ArgoUML [1]
(a UML modelling tool) for cross-cutting concerns. In the left
pane (A), the view ”Aspect Candidates” lists all transactions

of the CVS repository for which we found aspect candidates.
For the transaction on April 4 2004 HAM finds five candidates:
illegalArgument/1 (for which a call was inserted into 45 loca-
tions), illegalArgument/2 (101 locations), illegalArgument-
Object/1 (75 locations), illegalArgumentBoolean/1 (27 lo-
cations), and illegalArgumentCollection/1 (72 locations).

Double clicking a transaction opens the corresponding lattice
in view ”Concept Lattice” (B) on the lower right hand side. This
view allows to explore the relationship between candidates. The
middle layer of five nodes represent the five aspect candidates
that we found in this particular transaction. In this case, nodes are
incomparable and thus the locations of the candidates are disjoint
and unlikely to interfere (see Section 4.3 for formal details).

Double clicking an aspect candidate (in any view) opens the
”Search” view (C) of Eclipse in the lower left pane. This view
lists all locations where a candidate was inserted. In our example,
illegalArgumentBoolean was called in 27 locations—among
them equalsPseudostateKind. We can now inspect the code
in the editor on the upper right hand side (D) and verify that the
candidate is actually cross-cutting.

4. Underlying Technique
In the following, we describe in more detail what our prototype
HAM and approach build upon.

4.1 Preprocessing
Our approach can be applied to any version control system. How-
ever, we based our implementation on CVS since most open-source
projects currently use it. First, we reconstruct CVS commits with a
sliding time window approach [10]. A reconstructed commit con-
sists of a set of revisions R where each revision r ∈ R is the result
of a single check-in.

Additionally, we compute method calls that have been inserted
within a commit operation R. A commit R is a set of changed
locations—in our case locations are method bodies but could be
classes or packages as well. For every location l that was changed
in R we compute the set M(l) of added method calls by comparing
the abstract syntax tree of l before and after commit R. As a result
we obtain the set T (R) = {(l, m) | l ∈ R, m ∈ M(l)} of new
calls from location l to method m. We call a set T (R) of new calls a
transaction; transactions serve as main input for our aspect mining.
Here is an example from the Eclipse project:{

(DefaultBytecodeVisitor. aaload(int), dumpPcNumber/1),
(DefaultBytecodeVisitor. aastore(int), dumpPcNumber/1),
(DefaultBytecodeVisitor. aload(int, int), dumpPcNumber/1)

}
Into three locations aaload, aastore, and aload a call to
method dumpPcNumber/1 was inserted. In order to reduce com-
putational cost, we analyse only the differences between single re-
visions but not between the resulting programs before and after a
revision. Therefore we cannot resolve signatures for called meth-
ods. Instead we use their names (e.g., dumpPcNumber) and number
of arguments (e.g., 1). For more details on our preprocessing, we
refer to the APFEL plug-in [9].

4.2 Mining Transactions
For our analysis, the history (of a program) is a sequence of trans-
actions. Each transaction is a set of added method calls (l, m) from
location l to method m1. A transaction T is formally a relation and
can be depicted as a cross table between locations L and methods
M—cf. Figure 2 .

1 We ignore changes and deletions of calls as we are only interested in
aspects emerging over time.

Methods

complex aspect
candidate

simple aspect
candidate

log
lock

unlock

Lo
ca

tio
ns

T

Figure 2. A transaction T ⊆ L×M is a relation between locations
L and methods M. The maximal (rectangular) blocks of T are
aspect candidates, which form a hierarchy when ordered by their
sets of locations.

Simple Aspects. When a transaction inserts calls to a logging
method log in 7 locations these calls show up in the cross table as a
block of size 1× 7. Pictorially, this may require the location axis to
be permuted. We consider adding a call to be an aspect candidate
when it cross-cuts at least 8 locations. At each location where a
call to log was added, calls to other methods may have been added
as well. Still, aspects where a call to a single method (like log) is
added are simple to detect in a transaction by sorting calls (l, m)
by the called method m. We call these simple aspect candidates.
Obviously a candidate is more likely to be a genuine aspect when
the number of locations it cross-cuts is high.

Complex Aspects. Some aspects come as pairs of function calls: a
call to lock for locking a resource is typically followed by a call to
unlock. Given an appropriate permutation of rows and columns,
the addition of calls to lock and unlock in 3 locations also be-
comes visible as a (2× 3) block in the cross table. Figure 2 shows
a block of size 3 × 3 as an example. We call the addition of calls
to two or more methods a complex aspect candidate. Again, we
consider such a block only a candidate if it cross-cuts at least 8 lo-
cations. Unlike simple aspect candidates, it is not immediately ob-
vious how to detect such complex aspect candidates in a transaction
efficiently.

4.3 Formal Concept Analysis
The problem of identifying all blocks is the subject of formal
concept analysis, an algebraic theory for binary relations [6], which
also provides efficient algorithms [7]. A block in a transaction
T ⊆ L ×M is a maximal pair (L, M) of locations and methods
where the following holds:

L = {l ∈ L | (l, m) ∈ T for all m ∈ M}
M = {m ∈M | (l, m) ∈ T for all l ∈ L}

Formal concept analysis considers all blocks in a relation, not just
those exceeding certain limits2. We therefore compute all blocks
and filter them later for aspect candidates.

Interestingly, blocks and therefore aspects form a lattice, de-
fined by the partial order (L, M) ≤ (L′, M ′) ⇔ L ⊆ L′. How-
ever, typically the aspect candidates of a transaction are incompara-
ble. Figure 3 shows the lattice of blocks for such a transaction from
the Eclipse project.

5. Experience and Results
Because a cross table of size n × n may have up to 2n blocks,
concept analysis is potentially expensive. This has not been a prob-

2 In particular, the top node holds methods called in all locations—typically
none. Conversely, the bottom node holds locations that call all methods—
typically also none.

113

2 5

11 12

14

15 17 18

19

3 4 7 16 20 2122 6 8

9

10

23

24 25

26

0

27

Figure 3. Hierarchy of blocks from an Eclipse transaction. Labels
identify blocks but otherwise are arbitrary. Block 6 is an aspect
candidate of size 14× 1, cross-cutting 14 locations.

Aspect Candidates in Eclipse 3.2M3

methods 1 2 3 ≥ 4
candidates 1878 363 88 24

Table 1. Aspect candidates mined from 43 270 CVS transactions
for Eclipse 3.2M3. There are 88 candidates that added exactly three
method calls.

lem so far: for 43 270 transactions in the Eclipse CVS repository,
the average transaction adds 5.4 calls in 3.8 locations and has
3.7 blocks. However, the largest transaction had 1235 blocks. On
average, computing all blocks for a transaction took less than 1 sec.

The 43 270 transactions of the Eclipse CVS archive constitute
159 448 blocks. From these we mined 2353 aspect candidates,
with the distribution shown in Table 1. We found 1878 simple and
363 + 88 + 24 = 475 complex candidates.

In [4] we had previously mined Eclipse for simple and com-
plex aspect candidates, albeit with a less general approach. There
we reported 31 unique complex candidates that cross-cut at least
20 locations (out of which we found six to be true aspects and addi-
tional three to be partial aspects). With our new approach we found
64 unique aspect candidates, including all 31 aspect candidates re-
ported in [4]. This confirms our two claims: formal concept anal-
ysis provides the right formal and algorithmic framework to mine
aspects, and aspects can be mined efficiently from large projects by
analysing code additions over time.

6. Contributions
We are the first to leverage version history to mine aspect can-
didates. The underlying hypothesis and motivation is that cross-
cutting concerns may emerge over time. Our work shows that ver-
sion archives are indeed useful for aspect mining.

HAM adds a new dimension to aspect mining. Previous work on
aspect mining considered only a particular version of a pro-
gram. Our approach uses project history as additional input.
This enables a new view on the evolution of aspects.

HAM scales and is platform independent. HAM is the first as-
pect mining approach that scales to industrial-sized projects
like Eclipse. Furthermore, it recognises cross-cutting concerns
across code for different platforms.

HAM comes with high precision. We thoroughly evaluated 405
aspect candidates returned by HAM [4]. The precision increases
with project size and history, for Eclipse up to 90% for the top-
10 candidates. For small projects, HAM suffers from the much
fewer data available, resulting in lower precision (about 60%).

For for more information on HAM, log on to:

http://www.st.cs.uni-sb.de/softevo/

7. Acknowledgements
We are grateful for the recent award of an Eclipse Innovation Grant
“Mining the History of Method Calls to Assist Developers” which
will enable to extend the HAM prototype to a full Eclipse plug-in.
Thanks are also due to Alan Mycroft for his valuable comments on
earlier revisions of this paper.

References
[1] ArgoUML. ArgoUML project homepage. http://argouml.tigris.org/.

[2] S. Breu. Aspect Mining Using Event Traces. Master’s thesis,
University of Passau, Germany, March 2004.

[3] S. Breu and J. Krinke. Aspect Mining Using Event Traces. In
Proc. of 19th Intl. Conf. on Automated Software Engineering (ASE),
pp. 310–315. IEEE Press, 2004.

[4] S. Breu and T. Zimmermann. Mining Aspects from Version History.
In 21st IEEE/ACM International Conference on Automated Software
Engineering (ASE), Tokyo, Japan, September 2006.

[5] S. Breu and T. Zimmermann and C. Lindig. Mining Eclipse for
Cross-Cutting Concerns. In Proc. Intl. Workshop on Mining Software
Repositories (MSR), Shanghai, China, May 2006.

[6] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical
Foundations. Springer, Berlin, 1999.

[7] C. Lindig. Fast Concept Analysis. In G. Stumme, editor, Working
with Conceptual Structures – Contributions to ICCS 2000, pages
152–161, Germany, 2000. Shaker Verlag.

[8] M. Marin, L. Moonen, and A. van Deursen. A Classification of
Crosscutting Concerns. In ICSM, pp. 673–676. IEEE Computer
Society, 2005.

[9] T. Zimmermann. Fine-grained Processing of CVS Archives with
APFEL. Technical Report, Saarland University, Saarbrücken, Ger-
many, 2006. Available online at: http://www.st.cs.uni-sb.de/softevo/

[10] T. Zimmermann and P. Weißgerber. Preprocessing CVS Data for
Fine-Grained Analysis. In Proc. Intl. Workshop on Mining Software
Repositories (MSR), Edinburgh, Scotland, May 2004.

