
Lighthouse: Coordination through Emerging Design
Isabella A. da Silva*, Ping H. Chen**, Christopher Van der Westhuizen**, Roger M. Ripley**, and

André van der Hoek**
*Federal University of Rio de Janeiro

COPPE - System Eng. and Computer Science

Rio de Janeiro, RJ 21945-970 Brazil

+55 21 2562 8675

isabella@cos.ufrj.br

**Department of Informatics

University of California, Irvine

Irvine, California 92697-3440, U.S.A.

+1 949 824 6326

{pchen, cvanderw, rripley,
andre}@ics.uci.edu

ABSTRACT
Despite the fact that software development is an inherently
collaborative activity, a great deal of software development is
spent with developers in isolation, working on their own parts of
the system. In these situations developers are unaware of parallel
changes being made by others, often resulting in conflicts. One
common approach to deal with this issue is called conflict
resolution, which means that changes have already been checked-
in and developers must use merge tools to resolve conflicts and
then retest the code to ensure its correctness. Unfortunately, this
process becomes more difficult the longer the conflicts go
undetected. In order to address these issues, have been proposed
conflict avoidance approaches that detect conflicts as soon as they
occur. In this paper, we present Lighthouse, an Eclipse plug-in
that takes the conflict avoidance approach to coordinate
developers. Lighthouse distinguishes itself by utilizing a concept
called emerging design, an up to date design representation of the
code, to alert developers of potentially conflicting implementation
changes as they occur, indicating where the changes have been
made and by whom.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques -
computer-aided software engineering, user interfaces; D.2.7
[Software Engineering]: Distribution, Maintenance, and
Enhancement - restructuring, reverse engineering, and
reengineering; H.5.3 [Information Interfaces and
Presentation]: Group and Organizational Interfaces -
collaborative computing, computer-supported cooperative work.

General Terms
Design, Coordination.

Keywords
Design, reverse-engineering, coordination, awareness, abstraction,

emerging design.

1. INTRODUCTION
Software development is a collaborative activity. However, a great
deal of development time is spent with developers in isolation,
working on their own specific parts of the system. In such setups,
it is not easy to be aware of the other developers’ tasks at all
times, and conflicts regularly happen. Many of the existing tools
for software development use Software Configuration
Management (SCM) repositories to handle the shared code [1]
[10]. Unfortunately, this means that the developers will only be
aware of the other’s parallel changes and potential conflicts once
the changes are checked in. While the SCM tools usually have
merging tools to deal with different versions of the same files,
merging code and retesting it is a time consuming activity.
Furthermore, the longer the conflicting changes go undetected, the
greater will be the difficulty of correctly merging in one’s changes
[5] [7].We call this is a conflict resolution approach.

To alleviate these concerns, some tools [4] [6] have started using
a conflict avoidance approach. In this approach, conflicts can be
detected as they are emerging, allowing the developers to
proactively coordinate to discuss and address a conflict before it
reaches the repository or grows out of hand. Thus, the conflicts
can be addressed sooner, avoiding the greater impact of late
consideration. In order to enable such an approach, these tools
have to deal with some specific requirements and desirable
features:

• Instead of having only the repository monitored, each
developer workspace has to be monitored for changes to
the software artifacts, so that the conflicts are detected
as soon as possible;

• The tool has to present relevant information so that the
developer does not need to spend a lot of time finding
and understanding what he needs to know about other’s
work. Since there can be a lot of information to show,
the representation choice determines the tool’s
effectiveness;

• The information representation should be integrated
with the tools used by the developers. Otherwise they
would need to interrupt their development tasks to glean
the necessary information, incurring a context switch
that is unnecessary and disruptive [2][8];

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

• The information should be provided to the developers in
a proactive manner, so that the developers do not need
to take actions to receive the latest information updates
[11].

Most existing conflict avoidance tools are file-based, informing
the developers about new versions of the file by e-mail, by adding
notes to the file, or by annotating the changed lines inside editors.
However, we feel that, in order to best help coordinate developers,
we need to present finer-grained information. Instead of simply
informing the user which files have changed, we want to inform
them of how each file has changed in order to provide more
context. At the same time, we do not want to overwhelm the
developers with implementation details. Thus, we chose to raise
the abstraction level and show only information about changes
that impact the software design.

In order to do so, we developed the concept of Emerging Design
[12], an up-to-date abstraction of the code as it exists in the
developers’ workspaces. Emerging Design is built as the
developers implement each part of the code and is automatically
updated when the code evolves. In support of coordination, the
design is annotated with information about the changes made, so
that the developers can be aware of how the design has evolved
throughout the implementation phase, who is responsible for each
design change, and whether the changes have been checked into
the repository and already checked out by other developers.

To implement the Emerging Design concept, we are building an
Eclipse [5] plug-in called Lighthouse. This plug-in uses Eclipse
listeners to keep track of all changes being made to the code in the
developers’ workspaces and also listens to Subversion events such
as check ins and check outs. Lighthouse then uses the collected
data to build and update the Emerging Design view automatically.

The rest of this paper is organized as follows. In Section 2, a small
motivational example for this work is presented. Section 3
introduces the proposed approach of Emerging Design and its use
for coordination purposes. Section 4 shows how the approach was
implemented as an Eclipse plug-in called Lighthouse. Section 5
details our Lighthouse integration with Eclipse. Finally, in
Section 6, we present our conclusions and future work.

2. MOTIVATION
Imagine a situation in which two developers, John and Susan, part
of a larger team, have been assigned to implement related features
that involves changing some set of overlapping files. Susan is
working to encapsulate a particular class behind an abstract
interface, so that other pieces of code should refer to the interface
instead of the class. In the mean time, John is adding a new piece
of code that uses that class directly, without knowing about
Susan’s recent changes. So Susan refactors all the code to
properly access the new interface, but John checks in his code that
directly refers the class to the repository.

From the above scenario, one immediately notices that a critical
requirement for supporting coordination is awareness. Developers
should be aware of which other developers are contributing to the
project and what changes they are making (or have made) to the
code. In order to best help developers avoid (or lessen the severity
and impact of) conflicts and inconsistencies, awareness
information should be available to the developers in real-time;

this allows developers to see what changes are being made
without requiring that the changes be checked in. In the above
example, if John was able to see the changes Susan was making in
real-time, he would have been able to adapt his work
appropriately and, in doing so, avoid the consequent
inconsistency and code decay.

3. APPROACH
In this work, we apply the concept of Emerging Design, an up-to-
date representation of the design as it exists in the developers’
code. The Emerging Design diagram is built dynamically as the
developers implement each part of the code, without the need to
save or check in the changes made. The diagram is automatically
updated with each code change, enabling the developers to always
have an accurate representation of the design as it is currently
exists in the developers’ workspaces. For instance, if a developer
adds a new class, the Emerging Design is updated accordingly,
showing the new class representation on the diagram. The view is
updated not only in this developer workspace, but in all
developers’ workspaces. Hence, all the developers have the same
exact view of the current design, even if they have not yet checked
in or checked out the latest changes.

The Emerging Design is annotated to present additional
information about the ongoing changes. Through these, the
developers can be aware of how the design has evolved
throughout the implementation phase, who is responsible for each
design change, and whether the changes have been checked into
the repository or, already checked out by other developers.

OnlineStore

name:String

address:Address

address:URL

Store

Store

placeOrder(order:Order):void

getQuantity(item:String):int

scan(item:ID):boolean

scan(item:ID):boolean

addItem(item:Item):void

Class

Figure 1. Emerging Design Basic Representation.

3.1 Emerging Design Representation
Currently, the Emerging Design is being represented as a UML-
like class diagram, as can be seen in Figure 1. It presents the main
elements found in these diagrams (classes, fields, methods, and
relationships) with additional evolution information. Arrows are
used to link the changes made in the same element. For instance,
the class was originally named “Store”. However, as indicated by
the arrows, there were some changes made by the developers.
First, someone deleted the class, as indicated by the next line,
“Store”. Also, another arrow points to the third line, indicating
that the class was renamed to “OnlineStore”. Notice that both
arrows come from the same line. This represents a potential
conflict, since it indicates that one developer removed the class in
their workspace while another renamed it. We can also see that

the “address” field had its type changed from “Address” to
“URL”. Towards the bottom we can also observe that the method
“scan” was deleted.

It is important to notice that the diagram only keeps track of
changes that impact the software design. Internal implementation
changes in methods are not considered in our current
representation, which is a conscious choice relying on the nature
and use of interfaces.

3.2 Coordination
With the Emerging Design, developers can follow the design
evolution by simply observing the chain of changes for the
diagram elements. However, it is also important for the developers
to have additional information, such as who is responsible for a
particular change, for them to be able to better coordinate their
tasks. We therefore chose to annotate the basic Emerging Design
with extra columns in the class representation, as shown in Figure
2. The first extra column holds location indicators for each
change. A small circle is placed in the respective column, if the
change is in the developer’s workspace, if it has been checked in
to the repository, and if it is in other workspaces. Additionally, a
line connects all circles if the change is present in all workspaces,
meaning that all developers have checked out that change.
Progressing from left to right, then, means that my changes are
being adopted by others. Progression from right to left means that
I am adopting other’s changes. This way, any developer can be
aware not only of all design changes, but also know when these
changes are checked in to the repository or checked out by the
other developers.

address:Address

address:URL

Store

Store

placeOrder(order:Order):void

getQuantity(item:String):int

scan(item:ID):boolean

scan(item:ID):boolean

addItem(item:Item):void

Class

OnlineStore
name:String

M
y

W
or

ks
pa

ce

R
ep

os
ito

ry

O
th

er
W

or
ks

pa
ce

s

Figure 2. Coordination Annotations.

The method “AddItem” was checked into the repository and
some developers have already checked it out. The new “Place-
Order” method exists in the repository and has been adopted by
all developers, as denoted by the line connecting all three dots.

The last columns indicate which authors made which changes.
Three different symbols indicate the types of changes made. A
plus symbol indicates an element addition, a minus symbol
indicates a removal, and a triangle symbol a modification. Also, a
small arrow is placed on the top of each symbol to indicate the
recentness of the change. The arrow rotates in a clockwise fashion
over time, so for the most recent changes the arrow appears
pointing to the top.

3.3 Side-by-Side Presentation
It is important to keep the Emerging Design view always visible,
so that the developers can keep constant peripheral awareness of
design changes being made by colleagues. However, in order to
deal with the amount of information displayed, Lighthouse
requires a dual-monitor setup, as depicted in Figure 3. With this
setup, the developers can keep a side-by-side view of the code and
the Emerging Design view at all times. We do not consider this a
problem, but rather a great opportunity. Awareness information
has always had to be restricted to fit into an existing environment.
We view Lighthouse as a first pilot in which one can design the
interface as on desires. The two monitor setup particularly avoids
explicit context switching, which is known to be detrimental to
effective insertion of awareness in an environment [8].

Figure 3. Side-by-Side View of Code and Emerging Design.

4. IMPLEMENTATION
This section details the implementation of Lighthouse, the plug-in
that brings the approach presented in the previous section to
Eclipse. Lighthouse dynamically builds the Emerging Design
view from Java code being developed in Eclipse workspaces. It
also adds the proposed coordination annotations to the design,
using information from both source code changes and Subversion
[10] event listeners. First, Lighthouse architecture is specified.
Then, the current implementation status is presented.

4.1 Architecture
The architecture of Lighthouse is shown in Figure 4. As can be
seen, Lighthouse relies on the Eclipse development environment
and a standard configuration management (CM) system (the
current Lighthouse implementation utilizes the Subclipse Eclipse
plug-in [9]). Components in dark-gray make up the architecture
for the Lighthouse client: ECLIPSE WRAPPER, EVENT LOGIC, EVENT

REPLICATOR, LOCAL MODEL, DISPLAY LOGIC, and VISUALIZATION.

Through the use of the ECLIPSE WRAPPER, Lighthouse intercepts
all relevant events from the CM system and from Eclipse and
passes those events onto the EVENT LOGIC component. It is then
the responsibility of the EVENT LOGIC to translate the events into
Lighthouse events that can be understood by the rest of the
Lighthouse client. This way, the Lighthouse system is shielded

from the details of the original events and can continue to work
even if the underlying CM system and event changes; one simply
adjusts the ECLIPSE WRAPPER. Following this translation, the
EVENT LOGIC propagates events to the rest of the Lighthouse
client as well as to the LOCAL EVENT DATABASE. Upon receiving
the events, the EVENT LOGIC updates the LOCAL MODEL
appropriately and then broadcasts a data model event notifying
other components that the data model has changed. The LOCAL

MODEL stores the data model that describes the emerging design.
In addition to storing the emerging design, the LOCAL MODEL is
also responsible for keeping track of each element’s change
history. The DISPLAY LOGIC component determines how the
elements in the LOCAL MODEL should be displayed. Whenever the
LOCAL MODEL is updated, this component is notified (via data
model events) and then updates the VISUALIZATION accordingly.

Figure 4. Lighthouse Architecture.

Finally, the EVENT REPLICATOR periodically pushes local events
that are stored in the LOCAL EVENT DATABASE to the MASTER

EVENT DATABASE, while pulling new remote events left by other
Lighthouse clients into the LOCAL EVENT DATABASE. This allows
for disconnected operation without any loss of functionality. The
MASTER EVENT DATABASE keeps a history of all events,
supporting bootstrapping of information when new developers
join a project. It should be noted that, while there can be any
number of Lighthouse clients, each deployed configuration will
only have one MASTER EVENT DATABASE.

4.2 Current Status
We have developed a Lighthouse prototype with the specified
architecture. All the features described in the approach section are
already supported by the architecture, but some still need to be
implemented by the Visualization component. The current state of
the plug-in Visualization is depicted on Figure 5. Comparing it
with Figure 2, one can notice that the main proposed features are
already available, but some details, such as the arrow links and the
recentness indicators are not yet implemented.

5. ECLIPSE INTEGRATION
The Lighthouse integration with Eclipse is made through the
ECLIPSE WRAPPER component. This component is broken up into

two main parts, the Eclipse event listener that monitors source
code changes and the Subclipse listener that monitors CM
activity.

Figure 5. Lighthouse on Eclipse: Emerging Design View.

5.1 Eclipse Listener
The Eclipse event listener is implemented as an Eclipse JDT’s
IELEMENTCHANGEDLISTENER and monitors changes to source
code elements. The IELEMENTCHANGEDLISTENER is notified of
changes to resources (projects, directories, and files) and fine-
grained changes to Java elements such as classes or methods.
Each change event contains a set of deltas describing the Java
element or resource that was changed, annotating the element with
either added, removed, or changed. Furthermore, there are a
number of flags that provide additional information such as if the
scope modifiers or the type hierarchy has changed. The wealth of
information provided in a change event helps simplify the logic
required to translate Eclipse events into Lighthouse events.

The listener itself is only responsible for parsing each change
event to determine the types of changes and the elements that
were changed and pass this information on to the EVENT LOGIC
component. Before the logic can broadcast the event to other
Lighthouse clients, it must first translate the Eclipse event to a
corresponding Lighthouse event. The logic combines pairs of
related events based on some simple heuristics. For example, the
logic will combine the deletion and then the addition of a similar
element with a different name into a rename event. As part of the
translation process, the logic must also determine whether the
change event was the result of a CM action such as checkout or
update. This information can be obtained from the Subclipse
listener as described in the following section.

5.2 Subclipse Listener
The Subclipse listener is implemented as an IConsoleListener that
intercepts all the interaction with the Subversion repository.
Currently, Lighthouse only supports the most basic types of CM
operations such as check-in, check-out, update, add, and remove.
While the IConsoleListener itself is not meant to be an event
listener, it originally was meant to be a logger, it provides a great
deal of flexibility in the types of information we can gather and
allows us to easily customize the CM operations of interest. The
listener operates in three basic phases: (1) begin operation, (2) log
the file(s) that are involved in the operation, and (3) complete the

operation or log any errors that occur. Our listener
implementation remembers the state it is currently in and the
operation/files, and also passes the information on to the original
Subclipse console listener. Once the operation completes
successfully, the listener stores the information in a centralized
table for the Event Logic to access.

5.3 Lessons Learned
While both the Eclipse and Subclipse listeners are able to capture
all the necessary information, the integration with Eclipse was not
smooth. One of the most difficult aspects of the integration is
filtering out extraneous Eclipse events. For example, it was
difficult to determine if our listener always needs to process
changes made to “working copies” of Java elements. In certain
cases, we needed to ignore events dealing with working copies
since they are also used in order to test potential problems with a
refactoring. We currently filter these events with heuristics, but a
better solution would be to hook into the refactoring system.

Furthermore, sometimes the same action may result in different
change events depending on the circumstances. One such example
is updating files from the CM repository. Eclipse actually
broadcasts different events based on whether or not the file is
open in the Eclipse editor. In the end, our listener had to include
an increasing number of specific tests to ensure that we capture
exactly the right events. Unfortunately, this makes the listener
very specific and difficult to maintain or extend in order to
accommodate new types of events.

In order to capture CM interaction, we initially attempted to
implement the Subclipse listener as an IResourceStateChange-
Listener, which is notified when a resource is synced up with the
repository or is modified to be different from the repository.
Unfortunately, it was impossible to tell how the file was changed
once it has already fallen out of sync with the repository. That is,
once the file has been modified, it was impossible to differentiate
between whether the file has been changed through an update
from the repository or through additional user changes. In order to
differentiate between the modifications from a CM update and
user changes, the Subclipse listener is therefore implemented as
an IConsoleListener that interprets the UI console events.
Unfortunately, this forces us to work at a low level, in some cases
requiring the listener to parse log strings in order to determine the
files involved and CM operations. This creates an unnecessary
dependency between the listener and the format of the logs as well
as the data flow of the Subclipse UI console framework. This
though seems to be the best solution to date.

6. CONCLUSION AND FUTURE WORK
In this paper we presented Lighthouse, an Eclipse plug-in that
implements the Emerging Design concept, an up-to-date design
representing the code as it exists on the developers' workspaces.
The design is annotated with additional information to help
developers be more aware of other's changes and, thus, to better
coordinate their work.

Besides coordination, we still want to explore the use of Emerging
Design in two more contexts. The first would be to detect design
decay, i.e., to determine where the implementation is diverging
from the original design. In order to do that, we plan to overlay
the Emerging Design on top of a conceptual design, made prior to

the implementation. This will allow us to highlight design
deviations, an important source of development problems. The
second context we want to explore is the application of Emerging
Design to project management. The main idea is to try to answer
some common management questions with the help from the
Emerging Design representation.

7. ACKNOWLEDGMENTS
This research has been funded by a 2005 IBM Eclipse
Technology Exchange grant, a 2006 IBM Technology Fellowship,
and by the National Science Foundation under grant numbers
CCR-0093489 and IIS-0205724.

8. REFERENCES
[1] Allen, L., Fernandez, G., Kane, K., Leblang, D. B., Minard,

D., and Posner, J. 1995. ClearCase MultiSite: Supporting
Geographically-Distributed Software Development. In
Selected Papers From the ICSE SCM-4 and SCM-5
Workshops on Software Configuration Management,
LKNCS 1005. Springer-Verlag, 194-214.

[2] McCrickard, D. S., Chewar, C. M., Somervell, J. P., and
Ndiwalana, A. 2003. A model for notification systems
evaluation—assessing user goals for multitasking activity.
ACM Trans. Comput.-Hum. Interact. 10(4), 312-338.

[3] Eclipse, Eclipse, http://www.eclipse.org

[4] Hupfer, S., Cheng, L., Ross, S., and Patterson, J. 2004.
Introducing collaboration into an application development
environment. In Proceedings of the 2004 ACM Conference
on Computer Supported Cooperative Work, 2004, 21-24.

[5] Perry, D. E., Siy, H. P., and Votta, L. G. 2001. Parallel
changes in large-scale software development: an
observational case study. ACM TOSEM. 10(3), 308-337.

[6] Sarma, A., Noroozi, Z., and van der Hoek, A. 2003. Palantír:
raising awareness among configuration management
workspaces. Twenty-fifth international Conference on
Software Engineering, 444-454.

[7] Sarma, A., van der Hoek, A. 2004. A conflict detected earlier
is a conflict resolved easier. Fourth Workshop on Open
Source Software Engineering".

[8] Speier, C., Valacich, J. S., and Vessey, I. 1997. The effects
of task interruption and information presentation on
individual decision making. Eighteenth International
Conference on Information Systems, 21-36.

[9] Subclipse, Subclipse, http://subclipse.tigris.org/

[10] Subversion, Subversion, http://subversion.tigris.org/

[11] Van der Hoek, A., Redmiles, D., Dourish P., Sarma, A.,
Silva Filho R., and De Souza, C. 2004. Continuous
coordination: a new paradigm for collaborative software
engineering tools. Workshop on Directions in Software
Engineering Environments

[12] Van der Westhuizen, C., Chen, P. H., and van der Hoek, A.
2006. Emerging design: new roles and uses for abstraction.
2006 International Workshop on Role of Abstraction in
Software Engineering, 23-2

