
Next-Generation DPP with Sangam and Facetop

Kanyamas Navoraphan, Edward F. Gehringer
Department of Computer Science

North Carolina University
Raleigh, NC 27695-8206

{knavora, efg}@ncsu.edu

James Culp, David Stotts
Department of Computer Science

University of North Carolina
Chapel Hill, NC 27599-3175
{culp, stotts}@cs.unc.edu

ABSTRACT
This paper describes a state-of-the-art environment for
distributed Extreme Programming that results from combining
the Sangam editor, developed at NCSU and the Facetop user
interface, developed at UNC-Chapel Hill. Sangam facilitates
distributed Extreme Programming by sending events back and
forth between a driver and a navigator working under the
Eclipse development environment. Concurrently, Facetop
allows the distributed pair to recapture some of the face-to-face
communications that are lost in no-video distributed pairing
sessions. The integrated tool is a quantum leap forward for
distributed Extreme Programming as well as distributed agile
development.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
integrated environments; D.2.3 [Software Engineering] :
Coding Tools and Techniques – programming editors.

General Terms
Management, Design

Keywords
Sangam, Facetop, pair programming, distributed pair
programming

1. INTRODUCTION
Since the beginning of the current century, agile development
methodologies such as Extreme Programming (XP) [1], and
Pair Programming (PP) [2] in particular, have exploded in
popularity. At the same time, global broadband networking
has made it increasingly possible to pair with colleagues in
distant locations, even internationally. Preliminary data [3]
indicates that distributed pair programming (DPP) seems
competitive with collocated PP in terms of software quality
and development time.

To support distributed pair programming, we created the
Eclipse plug-in Sangam [5] to synchronize Eclipse workspaces
at different sites. The Facetop application [6] addresses a

different problem, allowing the members of a team to see each
other while working together.

The idea to combine Sangam and Facetop originated to fill the
void that exists in most collaboration tools currently in use,
namely, the ability for distributed team members to
communicate as if they are sitting next to each other in front of
the same workstation. By this we mean the sense of presence,
facial expressions, as well as a way to point at the shared work
being discussed. The combination gives us the best of both
worlds, with Eclipse’s powerful development environment
through Sangam, and the video capabilities of Facetop at the
other end.

The paper first introduces Sangam and Facetop as separate
tools, then proceeds to describe how the two tools were
merged, what major issues were encountered during the merge,
and finally how users will be studied to analyze the benefits of
the tool for DPP.

2. SANGAM
Sangam is an Eclipse plug-in that has been specifically
designed for DPP. It is a robust collaboration tool that
synchronizes the development environments for two
programmers, allowing them to work together remotely over a
shared workspace as if they were using the same computer.

One of the main advantages of Sangam is that it is event-
driven. It only transmits messages that are important for PP;
therefore it can perform efficiently even without a broadband
connection. With Sangam, each developer is free to customize
his/her screen as desired, since both sides are running a
separate instance of Eclipse. Unlike other desktop-sharing
tools, Sangam allows its users to move the mouse
independently of each other.

With Sangam, one user is designated as a driver, while the
other is a navigator. The roles can be interchanged as many
times as necessary during a pairing session. The plug-in
intercepts keystrokes and events at the driver’s end, then
sends them across a message server to the other plug-in at the
navigator’s end. These events include Java editor events,
program-launching events, and resource-change events. The
message server parses the message and triggers Eclipse to
perform the driver’s action on the navigator’s machine. This
allows the navigator to see whatever the driver is doing in
Eclipse on his/her machine.

Sangam uses Kizna SyncShare as its message server due to its
lightweight protocol. SyncShare was developed as an Eclipse
plug-in so that it can run alongside Sangam within the Eclipse
IDE itself.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Figure 1 above shows the Sangam editor with two extra
buttons on the Eclipse toolbar. The developers use the
Connect button to connect or disconnect from the message
server. Once all participants are connected to the server, one
developer can use the Start/Stop Driving button to control or
release control of the session. Apart from allowing developers
to edit source code synchronously, Sangam also allows
synchronous launch of the program being edited over the
network.

3. FACETOP
Facetop [7, 9] is a collaborative system developed at the
University of North Carolina at Chapel Hill for the purposes of
facilitating distributed pair programming while retaining a
sense of physical presence for the users.

The software displays transparent video overlays of both the
local and remote users on the screen such that collaborators
may point, gesture, and otherwise naturally interact with one
another despite being geographically separate. They see one
other over the entire desktop and retain the ability to click and
type through the image into other programs.

A design goal of the system was to use inexpensive, off-the-
shelf components such as normal webcams instead of more
sophisticated equipment. This decision was made to encourage
and enable users to use Facetop spontaneously, rather than
require them to schedule time in a specially set-up room or
office to collaborate. Thus, since the camera may be set up
haphazardly by the user or might even be moved mid-
conference, displaying the local image is important. The
remote user's image exists to allow the local user to see her.
The local image is displayed for self-registration purposes, so
that said local user can see her own image and use it to register
her hand movements relative to on-screen elements in
accordance with what the remote user will see her doing. The
result is that Facetop effectively provides users the ability to
naturally interact with each other and their displayed
materials, while not requiring any significant compromise of
flexibility or investment in hardware.

Facetop has been expanded to include video filtering in
several forms to address certain problems inherent in
overlaying video over arbitrary other data. On textual data like
code, Facetop’s overlays are very easy and natural to see
through. The human brain has an easy time distinguishing
which parts of the image come from the video, and which come
from the text. However, graphical data poses some new
problems. For example, a displayed X-ray image will have a
decidedly human form to it, and the brain may confuse pieces
of the X-ray with pieces of the participants’ faces. Facetop
solves this by allowing the user to run edge-detection
algorithms on its video streams to distinguish Facetop video
from the data underneath, effectively reducing the level of

detail displayed in the users’ faces. This helps the user focus
on the important data while retaining gesturing and pointing.

In order for pointing to have meaning between computers, a
shared workspace must be in place. To date, Facetop has used
VNC for full desktop sharing or otherwise collaborative
programs like SubEthaEdit that synchronize themselves.

4. SANGAM AND FACETOP
Combining Sangam and Facetop turned out to be a relatively
non-trivial task. We realized early on that certain features of
both Sangam and Facetop needed to be harmonized. The
majority of the issues that we encountered were largely
because Sangam had previously been tested only on the
Windows platform, whereas Facetop in the two-user mode i s
currently supported only on the Macintosh platform. Even
though an effort is currently underway to make Facetop
available on the Windows platform, no release is scheduled.
Therefore, we made the Macintosh our main platform for the
combined tool.

4.1 Merging Sangam and Facetop
One of the original advantages Sangam was designed to
deliver to its users was the ability of the parties to customize
their own displays as desired. This was possible due to the fact
that the plug-in only synchronizes keystrokes and events, and
not any of the underlying Eclipse screen components. With the
original Sangam, the driver could have been looking at a Java
perspective on his screen, while the navigator would be
looking at a Debug perspective on her screen, and they could
still work together on the same piece of code without
difficulties. However, with Facetop incorporated, it would not

Figure 1: Sangam buttons on the Eclipse toolbar.

Figure 2: Facetop at fully transparent level.

Figure 3: Facetop at fully opaque level.

have made sense for the driver to point to and start a
conversation on a particular object on his screen and expect
the navigator to comprehend, when in fact that particular
object might be either located at a totally different position on
her screen or not even present at all.

This pointing interaction satisfies a potential shortfall in the
original Sangam. Sangam transmits only Eclipse events over
the synchronization server. Participants could be focusing on
different parts of the display. They could not get each other’s
attention with the mouse because simple mouse motions are
not sent. The driver could select, cut, and paste a piece of text
in order to communicate but this seems a very clumsy way to
attract attention. With Facetop, each party sees the other any
time he points.

In order for the developers to communicate through Facetop, i t
became obvious that the developers’ screens would need to be
synchronized in every aspect. First of all, the Eclipse
perspective of each screen would need to match, with each and
every view part located at exactly the same position. To make
sure that each component is of the exact same size, both
screens’ resolution settings would also need to be similar.
Finally, as the Facetop image would take up the entire screen,
the Eclipse application window would need to take up the
entire screen as well. That way, the different desktop contents
at both ends would not appear in the background.

In the resulting combined tool, as soon as both users are
connected to Sangam’s message server and one of them starts
to drive, the plug-ins at both ends begin to exchange
information regarding their current perspective and resolution
settings. Later on, when Facetop is successfully invoked, the
display settings are automatically synchronized as needed.
The Eclipse application window is maximized to take up the
entire screen.

For the Eclipse perspective, if the original settings are
different, we simply forced the navigator to change his/hers to
match that of the driver’s. Resolution adjustment, on the other
hand, turns out to be a bit more complicated. Since maximum
resolution varies between machines, we made sure that a
request would only be made to lower a setting, never to raise it.
In other words, the screen with the lower resolution setting
would keep it, while the higher-resolution screen would
receive a request to lower the setting to match its counterpart.

4.2 Unsupported SWT_AWT on Mac OS X
To programmatically reset a screen resolution in Java, we
initially opted for the least complicated way of creating an
SWT_AWT bridge to run an AWT thread within the Eclipse
SWT application, then using the AWT to directly manipulate
the screen resolution setting as needed. This method works
fine on the Windows platform. However, we discovered that the
SWT_AWT feature was not supported on the Mac OS X
platform.

According to the Eclipse bug report #67384 [8], the problem
originated from the fact that Eclipse uses the Carbon
framework for its SWT implementation, while Apple uses the
Cocoa framework for its AWT implementation. Both toolkits
have an event dispatcher running on the main thread. When an
SWT application is started on the main thread (thread 0), it i s
not possible for another AWT thread to run as thread 0.
Running the AWT in another thread however results in an
event-thread deadlock.

The Eclipse and Apple teams eventually joined forces to have
the issue resolved once and for all in May 2006, almost two
years since the bug was first reported in June 2004. However,
by that time, we had already decided to go instead with an
unobtrusive way of explicitly displaying a pop-up window
requesting the user to change his/her resolution setting
manually to match the other partner’s. This way, the user has
absolute control over the setting and is well aware of the
change that needs to take place.

4.3 Cross-Platform Character-Offset Issue
Another major issue arose while we tested Sangam communi-
cation across platforms, with a Windows machine at one end
and a Mac OS X machine at the other end. We began to notice
that the driver’s keystrokes were being replicated at the
navigator’s end at positions that were a few locations off from
the originals’. After a careful analysis, we found out that the
issue was caused by the difference in character representations
on the two operating systems, specifically the newline
character. On the Mac OS X, the newline character i s
represented with only LF (Line Feed, 0x0A), while the
Microsoft Windows uses CR+LF (Carriage Return, 0x0D,
followed by Line Feed, 0x0A) to represent the same thing.

When Sangam computes the offset for the location of the first
character being typed by the driver on a Windows platform,
each newline gets counted as two characters. Thus, when the
keystroke message reaches the navigator’s plug-in running on
the Mac, the specified character position is always a few
characters ahead of the actual location, depending on how
many newline characters are present preceding the position, as
each counts here as only one character instead of two.
Similarly, when the driver is typing on a Mac, the specified
character position always falls a few characters behind the
actual position when viewed on a Windows.

To fix the problem, every time a user starts to type, the plug-in
internally recalculates character offset position, taking into
account the representation difference and adjusts the offset
accordingly before sending the message to its counterpart at
the other end.

4.4 Licensing Issues
The last issue is licensing incompatibility. Sangam is open-
source and has been distributed under the GNU General Public
License, whereas Facetop is patent-pending and not openly
distributed. According to the terms imposed by the GNU GPL,
in order for Sangam to be distributed with Facetop, Facetop
would have to adopt the GPL license. This option is, however,
not possible under current circumstances. Therefore, we cannot
combine the two products together in the same bundle.
Negotiation is still under way as to what the final packaging
will look like. In the meantime, users will need to acquire the
tools separately. Specific permission is needed in order to gain

Figure 4: Start/Stop Facetop icon on the Eclipse toolbar.

access to Facetop. Once the tools are installed, users need to
tell Sangam through its Preferences page as to where the
Facetop installation can be found.

5. USER STUDIES
It is difficult to perform scientifically valid studies of pair
programming, because, if variability is to be kept to a
minimum, we need many pairs performing the same
programming task, some with Sangam/Facetop and some
without. The second author’s CSC 517, Object-Oriented
Languages and Systems class, offers one of the best
environments for carrying out such studies. It is a large (60-to-
100 student) graduate class consisting of experienced
programmers who can participate in the experiments.
Moreover, 1/3 to 1/2 of them are distance-education students,
who have a vested interest in doing distributed pair
programming. In a class, unlike industry, it is possible to
compare teams implementing on the same specifications in
distributed vs. collocated environments.

The plan is to use the abovementioned CSC 517 class in the
Fall 2006 semester to carry out our user studies on
Sangam/Facetop. The class has a total of 73 students currently
enrolled, 53 of which are on-campus and the remaining 20 are
distance-education students. They will be divided into 4
different groups according to the results from a preliminary
questionnaire which collects information including:

- whether the student is attending the class as on-
campus or distance-education

- the type of machine the student owns

- whether the student owns a web camera

- whether the student prefers Eclipse, or Netbeans, or
have no preference over either IDEs, and

- whether the student has access to high-speed Internet

The groups will be given the same programming assignment to
be coded in Java. The first group of students will be carrying
out the task as collocated pairs. The second group will be

distributed pairs using VNC to accomplish the same task. The
third group will be using Sangam for their distributed PP. The
last group will be using Sangam and Facetop together for the
same purpose. We expect the last three groups to be using an
instant messaging tool of their choice for voice
communication during the pairing sessions. Quantitative data
will be collected using Hackystat [4], a software development
metrics collection tool developed by the Collaborative
Software Development Laboratory (CSDL) at the University of
Hawaii. After finishing the assignment, qualitative surveys
will be administered to collect feedbacks on the efficacy and
ease of use of the programming environments each group was
assigned with. The data collected from each group will then be
analyzed and compared against one another.

If all go as planned, we hope to show that the distributed pairs
using Sangam and Facetop provides a result closest to that of
the collocated pairs, in terms of productivity, quality, and user
satisfaction when compared to those distributed pairs who use
either Sangam alone or VNC.

6. CONCLUSIONS
The Sangam and Facetop combination promises to be the
effective collaborative software development tool that
distributed partners were looking for, as it provides not only a
powerful integrated development environment, but also a way
for them to communicate visually while they work. Our user
studies will be completed in December 2006. We expect the
results to indicate that we are one step closer to making DPP
experience comparable to that of collocated PP.

7. ACKNOWLEDGMENTS
Funding for the current project comes from the corporate
sponsors of the Center for Advanced Computing and
Communications (CACC) at North Carolina State University.
We gratefully acknowledge IBM for their 2004 Eclipse
Innovation Grant for Sangam development. James Branigan of
the IBM/OTI Raleigh lab was the first to suggest integrating
Sangam and Facetop.

8. REFERENCES

[1] Beck, K., Extreme Programming Explained: Embrace
Change. Reading, Massachusetts: Addison-Wesley, 2000.

[2] Baheti, P., Williams, L., Gehringer, E., and Stotts, D.,
“Exploring pair programming in distributed object-
oriented team projects,” OOPSLA 2002: Object-Oriented
Programming Systems, Languages, and Applications
(Educators’ Symposium), Seattle, WA, Nov, 2-6, 2002.

[3] Baheti, P., Gehringer, E., and Stotts, D., “Exploring the
efficacy of distributed pair programming,” Proc. XP Agile
Universe 2002, Chicago, August 4-7, 2002, Springer-
Verlag Lecture Notes in Computer Science 2418.

[4] Hackystat (Research Summary), Retrieved August 30,
2006 from http://csdl.ics.hawaii.edu/Research/Hackystat/
.

[5] Ho, C., Raha, S., Gehringer, E., Williams, L., “Sangam – A
Distributed Pair Programming Plug-in for Eclipse,” Proc.
Eclipse Technology Exchange, OOPSLA 2004, Vancouver,
October 24, 2004.

Figure 4: Sangam and Facetop communication
between two users both running Mac OS X.

[6] Smith, J., Facetop – Transparent Video Interface: A quick
discussion of Facetop to dispell some misconceptions
that have been showing up. Retrieved August 30, 2006
from http://www.cs.unc.edu/~smithja/facetop .

[7] Stotts, D., Smith, J., and Gyllstrom, K., “Support for
Distributed Pair Programming in the Transparent Video
Facetop,” XP/Agile Universe 2004, Calgary, Aug 15-18,
pp. 92-104.

[8] SWT_AWT not implemented for Mac, BugZilla Bug
6 7 3 8 4 . Retrieved August 30, 2006 from
https://bugs.eclipse.org/
bugs/show_bug.cgi?id=67384 .

[9] Stotts, D., Williams, L., et al., “Virtual Teaming:
Experiments and Experiences with Distributed Pair
Programming,” TR03-003, Dept. of Computer Science,
Univ. of North Carolina at Chapel Hill, March 1, 2003.

