
Generating Run-Time Progress Reports for a Points-to
Analysis in Eclipse∗

Jason Sawin
Ohio State University

Mariana Sharp
Ohio State University

Atanas Rountev
Ohio State University

ABSTRACT
Eclipse plug-ins have access to a rich collection of GUI com-
ponents. One such component is the progress bar, which al-
lows a long-running task to provide Eclipse users with feed-
back about its progress. This paper considers the problem of
providing precise progress bar reports for plug-ins that per-
form static code analysis. Since static analyses often take a
long time to execute, progress indicators can inform the user
whether the analysis is actually making progress, and how
long it will take to complete. This type of responsiveness is
essential for providing positive user experience.

In this paper we consider points-to analysis, which is a
popular static analysis for object-oriented software. Re-
porting the run-time progress of a points-to analysis re-
quires heuristics for a priori estimates of the total running
time of the analysis. We define several such heuristics for
a whole-program subset-based points-to analysis for Java,
implemented as part of the Soot Eclipse plug-in. We also
present an experimental evaluation of the heuristics on a
large set of Java programs. These results provide useful in-
sights for the creators of points-to analyses and other static
analyses that will be built and distributed in Eclipse.

1. INTRODUCTION
Research on static code analysis aims to increase the pro-

ductivity of software developers and to facilitate the creation
of reliable software. However, without an intuitive, mean-
ingful, and responsive user interface, it is doubtful that an
analysis will achieve this goal on a large scale. That is why
more and more static analysis researchers are choosing to im-
plement their analyses as extensions to existing integrated
development environments (IDEs) and to provide access to
the analysis results using the GUI facilities of the IDE.

For static analysis of Java, Eclipse is the obvious IDE
to extend — after all, one of Eclipse’s defining features is
the ease with which it can be extended. The Eclipse tool
framework provides many low-level services on which static
analysis can rely, such as parsers, intermediate representa-
tions of code, editors, etc. In addition, Eclipse also provides
sophisticated GUI components that plug-in developers can
use to create production-level user interface. One such GUI
component that is often neglected or poorly implemented is
the progress bar. These unostentatious components are an
integral part of any well-designed user interface. They are
especially apt for the UI of most static analyses. Often static
analyses run behind the scenes and can take a considerable

∗
This work was supported by an IBM Eclipse Innovation Grant.

amount of time to complete. Without the use of a progress
indicator, there is no way for the end user to determine (1)
if the analysis is actually making progress and (2) how long

will the analysis take to complete. This type of user respon-
siveness has been shown to be paramount for providing a
pleasant user experience that creates product loyalty [2].

Even though Eclipse provides a rich API, conveying to
the user the progress of most static analyses in a meaningful
way is difficult. Precise tracking of a task’s progress during
execution is dependent upon prior knowledge of some mea-
sure of the total amount of work that will be performed by
that task. This prior knowledge is generally not available
for the first execution of a static analysis on a particular
body of code. Thus, designers of static analyses must rely
on heuristics to estimate the total amount of work that will
be performed by their product. To ensure a successful user
interface, these heuristics must be both lightweight (in terms
of time and resources) and accurate. Such heuristics are also
necessary for repeated executions of the analysis on succes-
sive versions of the same program; in this case, information
from previous runs can be used to achieve greater accuracy.

This paper present our work on creating and evaluating
several progress estimation heuristics for a points-to analysis
available in Eclipse. Points-to analysis determines the ob-
jects pointed to by a reference variable or a reference object
field. Such information plays a fundamental role as a prereq-
uisite for many other static analyses. Our work is based on
the open-source Soot plug-in [7, 6] and its Spark points-to
analysis engine [3] which implements several state-of-the-art
analysis algorithms. We considered the standard configura-
tion for Spark’s engine, which implements a subset-based
whole-program points-to analysis. The goal of this paper is
to define and evaluate several heuristics for producing (1) a
priori estimates of analysis running time and (2) run-time
estimates of analysis progress.

In earlier work [4] we considered similar questions for the
run-time progress of the Rapid Type Analysis (RTA) [1] call
graph construction algorithm implemented in our TACLE
Eclipse plug-in [5]. This RTA implementation and the Spark
points-to analysis differ significantly. The RTA implementa-
tion uses Eclipse ASTs for application classes together with
pre-computed library summary information for the Java li-
braries. In contrast, Spark uses Soot’s JIMPLE interme-
diate representation for all application and library classes.
More importantly, the complexity of the two algorithms dif-
fers radically: RTA is essentially linear in the size of the
program call graph, while the points-to analysis is poten-
tially cubic in the number of statements in the intermediate

representation. Thus, the techniques and results from [4]
cannot be directly applied to the problem of estimating the
run-time progress of the points-to analysis in Spark.

The contributions of this work are as follows:

• We define several heuristics for Eclipse progress indica-
tors for a whole-program subset-based points-to anal-
ysis for Java. The approach considers both the case
of a fledgling analysis (executed for the first time on
a given program) and a repeated analysis (executed
repeatedly on different versions of the same program).

• We present an experimental evaluation of the heuris-
tics on a large set of Java programs. These results pro-
vide useful understanding for the creators of points-to
analyses and other static analyses that will be built
and distributed in Eclipse.

2. BACKGROUND
Our work extends the points-to analysis in Spark to utilize

the Eclipse progress monitoring API. This section provides
brief descriptions of the points-to analysis and the progress
monitor interface in Eclipse.

2.1 Points-to Analysis
The Spark analysis engine [3] in Soot [7] implements a

generic framework for points-to analysis of Java programs.
Our focus is on Spark’s default subset-based flow- and context-
insensitive points-to analysis. The analysis takes as input
an entire program, starting from a class containing a main
method, and builds points-to sets which represent potential
run-time points-to relationships.

The algorithm is based on a pointer assignment graph
(PAG). PAG nodes represent the memory locations accessed
by the program (e.g., local variables and fields of heap ob-
jects), and PAG edges represent the flow of pointer values to
these locations due to assignments and parameter passing.
Spark maintains a list of reachable methods, initialized with
the main method and with the methods executed at JVM
startup.

Spark offers a variety of options. The worklist-based algo-
rithm with on-the-fly call graph construction is the default
analysis used by Spark, and it is the one considered in this
paper. (Our techniques can also be easily applied to the
other variations of Spark’s analysis.) The analysis main-
tains a worklist of PAG nodes whose points-to sets need to
be propagated. In the main loop of the algorithm, nodes
are removed from the worklist and the PAG edges associ-
ated with those nodes are processed. Whenever points-to
relationships are added to the points-to set of a PAG node,
the node is added to the worklist. With the on-the-fly op-
tion, methods are added to the list of reachable methods
whenever the points-to set propagation produces new po-
tential receiver objects at instance calls. Every time a new
reachable method is discovered, the nodes and edges for its
statements are added to the PAG and the node points-to
sets are initialized appropriately.

2.2 Eclipse Progress API
The Eclipse Jobs API allows plug-in developers to par-

tition their applications into tasks that can be executed in
separate threads. The Jobs API also provides plug-ins with
access to Eclipse’s progress monitoring components. For
brevity we will only discuss those methods in the Jobs API

that are relevant to tracking the progress of a task. A task
wrapped in a subclass of class Job is executed when its run

method is called by the scheduler. This method takes as its
only parameter an IProgressMonitor object. The scheduler
passes to run an implementation of a progress monitor.

An implementation of interface IProgressMonitor defines
the following key methods:

• void beginTask(String taskName, int totalWork):
this method notifies the progress monitor that a task
has started. Parameter totalWork is the total number
of work units the task is expected to complete.

• void worked(int work): this method notifies the mon-
itor that a task has completed the number of work
units indicated by work.

• void done(): alerts the monitor that the task has
completed its work.

These methods are used to drive the GUI progress bar pro-
vided by Eclipse. With each invocation of method worked,
the monitor updates the progress bar. The progress bar will
indicate 100% of the work completed when either the ac-
cumulative installments of work add up to totalWork, or
method done is invoked. The plug-in designer must en-
sure that the progress monitor is initialized with the correct
totalWork value, and that methods worked and done are
invoked correctly.

3. ESTIMATION HEURISTICS
This section describes the heuristics that we developed

to estimate the progress of the points-to analysis in Spark.
There are two tasks that such heuristics must complete:
(1) estimating the total amount of work to be passed to
beginTask, and (2) where in the analysis and with what
values should worked be invoked.

We propose several heuristics for two different circum-
stances: fledgling analysis and repeated analysis. A fledgling
analysis is an execution of the analysis in the absence of his-
torical information being saved from a previous run. Con-
versely, a repeated analysis is the case when the analysis
has been previously executed on a particular application.
This earlier execution saves relevant information which is
utilized by subsequent executions of the analysis on modi-
fied versions of the same applications.

3.1 Fledgling Analysis
The techniques outlined in this section attempt to pre-

dict the total amount of work needed to be conducted by
the points-to analysis. These estimates are made without
the benefit of historical information. This case occurs when
executing the analysis for the first time on a particular pro-
gram.

Least Effort Estimate: During an execution of the
points-to analysis, the bulk of the running time is spent
in the loop in which every iteration removes and processes
a single PAG node from the worklist. One possible estima-
tion technique would be to predict the number of loop itera-
tions needed to completely analyze an application, and then
to call worked(1) for each iteration. However, the average
number of such iterations for our benchmarks applications
approaches 200,000. Monitoring progress at such a fine grain
would be detrimental to analysis running time.

The approach we propose monitors progress at a coarser
grain. Since the analysis performs work for only methods
that are reachable from the main method, the total num-
ber of reachable methods can be used to determine a rough
measure of progress. Our approach produces an estimate
of the total number of reachable methods. This value is
then passed to beginTask upon invocation of the points-to
analysis. Every time the analysis discovers a new reachable
method, worked(1) is invoked, indicating 1 unit of work has
been completed.

The key issue for this technique is determining the es-
timated value of the totalWork. Since there is no way to
precisely predict the total number of reachable methods that
will be discovered by the points-to analysis, the simplest ap-
proach would be to hardcode some estimate. The hardcoded
value used in our experiments was 5667. This value was at-
tained by taking the average number of reachable methods
across 17 sample Java applications. These sample applica-
tions did not include any benchmark applications used in
the experiments presented in this paper.

Number of User-Defined Methods: This technique
tailors its estimations to each unique application under anal-
ysis. To do this, it introduces a light pre-processing phases.
This pre-processing phase utilizes the Eclipse API to deter-
mine the number of user-defined methods (i.e., non-library
methods) in the application under analysis. Our previous
work has shown this task to be very quick and unperceivable
to the client [4]. This number is then used as the estimate
of total work passed to beginTask. During the analysis,
worked(1) is called immediately after a new user-defined
method is discovered.

Total Derived from User Methods: This technique
combines the approaches from above. It uses a hardcoded
ratio to predict the total number of reachable methods as
a percentage of user-defined methods. The ratio of user-
defined methods to library methods was calculated for the
17 sample applications. These results indicate that on av-
erage 9.81% of the reachable methods in a call graph cre-
ated by the points-to analysis are methods defined by the
user. Using this result and the same preprocessing phase
described above, the total amount of work can be estimated
as totalWork = η/.0981, where η equals the total number
of user-defined methods. During the analysis, worked(1) is
called when any new method is discovered.

3.2 Repeated Analysis
Many static analyses may be invoked on successive ver-

sions of the same application. For example, during the de-
velopment process, many programmers will use some form
of change impact analysis. Such analyses are used for a va-
riety of reasons — for example, determining the scope of
a particular change, or deciding which unit tests should be
rerun as a result of the change. Thus, if a fledgling analy-
sis saves certain historical information and stores it in the
Eclipse workspace structure, a subsequent repeated analysis
could use that information to greatly improve the progress
estimates. The following heuristics are dependent upon such
historical information being available.

Number of Reachable Methods: Similarly to the least
effort heuristic for the fledgling analysis, this technique
uses the number of reachable methods to estimate the total
amount of work. However, rather than hardcoding the pre-
diction, this approach uses the number of reachable meth-

ods discovered during the last execution of the analysis on
this program — more precisely, on the earlier version of the
program at the time of that last run. During the worklist al-
gorithm, every processed method (in user code or in library
code) corresponds to a unit of work.

Methods Weighted by Number of Statements: In
the points-to analysis, each statement in a method needs to
be processed. Thus, a method which contains more state-
ments will require more work then one with fewer state-
ments. This technique attempts to account for this uneven
distribution of work. When a new method is discovered,
worked is invoked with the number of statements contained
in that method. The total estimated amount of work passed
to beginTask is the total number of statements processed
during the analysis of an earlier version of the application.

4. EVALUATION OF PROGRESS REPORTS
This section presents the metrics we used to evaluate

progress estimation techniques. One crucial measure of a
progress monitor is how accurately it portraits the progress
of the running application. For any one estimation point
(i.e., an invocation of worked) accuracy can be measured by
taking the accumulated estimated progress up to that point
and calculating the difference between that value and the
actual amount of progress made. To calculate these results
we recorded (1) the heuristic’s current estimate of progress
at each call to worked, and (2) the actual system time for
which the analysis has been running up to this point. Using
this information we are able to calculate

pi = (Σk≤iworkedk)/totalWork

where workedk is the amount of work reported by the call to
worked at time tk. We also calculate perfect

i
= ti/totalTime

where ti is the actual system time recorded at the ith esti-
mation point and totalTime is the total system time it took
the analysis to complete. Using these results we compute

∆i = |pi − perfect
i
|

We use the average value of ∆i across all estimation points to
measure the accuracy of a heuristic. The closer the average
∆i is to zero the more accurate the heuristic.

Another important attribute of a progress monitor is how
smoothly it reports progress. A progress bar that only indi-
cates progress at 23%, 25%, and 85% would be very frustrat-
ing to the clients. Smoothness is a function of: the number
of times worked is called, the estimated amount of work be-
ing completed with each call and the length of time between
consecutive calls. Since all our heuristics invoke worked fre-
quently, we concern ourselves with the last 2 factors.

We evaluate the smoothness of a progress monitor by com-
paring the slope of the “real” function to that of the “per-
fect” function, which has slope of 1. For each estimation
point we calculate

εi = |1 − (pi − pi−1)/(ti − ti−1)|

We use the average value for εi across all estimation points
to provide the measure of smoothness achieved by a monitor.
Ideally this value would be close to zero.

5. EXPERIMENTAL STUDY
This section presents an experimental study of the esti-

mation techniques defined above. For the experiments we

Comp .java .class Meths ReachMeths
javacup h 39 41 382 4030
javacup i 39 41 382 4010
javacup j 40 42 391 4035
jflex1.3.3 48 60 446 6148
jflex1.3.4 48 60 447 6149
jflex1.3.5 48 60 447 6149
jgraph5.7.4.6 58 137 1467 9330
jgraph5.7.4.7 58 137 1467 9330
jgraph5.8 59 137 1475 9342
jpws.2.0 89 141 1130 10108
jpws.3.0 103 187 1459 10611
jpws.3.1 104 193 1491 10665
sablecc.2.8 210 249 2108 5237
sablecc.3.1 198 267 2138 5572
sablecc.3.2 198 267 2137 5571
verbos.1.4 50 57 479 8571
verbos.1.5 52 58 513 8616
verbos.1.7 54 60 545 8546
vietpad.1.2 79 197 577 9231
vietpad.1.2.1 79 197 578 9236
vietpad.1.3 97 215 596 9269

Table 1: Subject Programs

used three different versions of open-source Java applica-
tions, as shown in Table 1. Columns “.java” and “.class”
show the number of java files and class files present in the
application respectively. Column “Meths” shows the num-
ber of user-defined methods in the program, while column
“ReachMeth” shows the number of reachable methods re-
ported by the points-to analysis.

5.1 Fledgling Analysis
Columns under (1) (2) and (3) in Table 2 contains the

results for the three fledgling analysis (Section 3.1) estima-
tion techniques. Columns “Avg ∆i” show the average dif-
ference between pi and perfect

i
for all estimation points, as

described in Section 4. Recall that the closer the average val-
ues for ∆i is to zero the more accurate the result. Columns
“Avg εi” shows the average difference between the slopes
of the estimation function and that of the perfect function
(Section 4). Smaller values indicate a smoother result, with
ideal values being close to 0.

Least effort estimate. The results of hardcoding the
estimated totalWork varied widely from application to ap-
plication. Applications with a total number of reachable
methods close to the estimated total of 5667 produced a
fairly accurate result. For example, sablecc.3.1, which
has 5572 reachable methods, produced an average ∆i of
.04. This means, that on average, each estimation point for
sablecc.3.1 was only off the perfect estimation by 4%. Un-
fortunately the accuracy of this technique diminishes if the
application under analysis has either a significantly greater
or less number of total reachable methods then the hard-
coded prediction. The most extreme cases being jpws and
vietpad, both of which have a total number of reachable
methods near 10,000. For these applications this technique
produced a progress monitor which indicated 100% of the
work being completed when in actuality only about 50% of
the work had been finished. This result is extremely unde-
sirable as it may lead the user into believing that the analy-
sis has either malfunctioned or completed, causing them to
terminate the process prematurely. The average value for
εi across all applications was fairly low, indicating that re-

porting progress at the reachable method level produces a
satisfactory result.

Number of user-defined methods. The columns un-
der the heading (2) in Table 2 display the results for the
estimation technique based on the number of user-defined
methods. On average this technique did not produce a more
accurate result than the least effort method. In some cases
it produced a significantly worse result. There are several
variables which can cause imprecision in this technique’s
estimation of progress. The first being that not all user
methods will necessarily be reachable from main. For ex-
ample, methods that are only used for testing or are defined
in dead coded will not be included in the call graph but
will be counted in the preprocessing phase of this technique.
The other major contributing factor to this technique’s lack
of accuracy is the fact that not all calls to user-defined
methods are evenly dispersed throughout an application.
The amount of time spent processing library methods could
vary widely between the processing of any two user-defined
methods. This last factor also explains why the smooth-
ness of this technique is significantly worse than that of (1).
These bursts of reporting progress followed by long periods
of silence creates a very erratic progress monitor and con-
sequently an estimation function with very irregular slope.
This technique has one distinct advantage over its predeces-
sor in that it did not stall at 100%. For all our benchmark
applications the preprocessing phase of this technique dis-
covered slightly more user-defined methods then were actu-
ally reachable. This resulted in the progress bar never quite
reaching 100% before the application called done.

Number of total reachable methods calculated as
a percentage of user-defined methods. Technique (3)
corresponds to the approach which attempts to predict the
total number of reachable methods as a percentage of the
user-defined methods. This technique produced the least ac-
curate result of all the techniques considered for the fledgling
analysis. This is due to the fact that not all the appli-
cations conform to the estimate that user-defined methods
comprise 9.81% of the total number of reachable methods.
For applications which vary significantly from the estimate
the results were disastrous. For example, roughly 40% of
the reachable methods discovered by the points-to analysis
for sablecc.2.8 come from user-defined methods. This dif-
ference leads to an average ∆i value of .45, an unacceptable
result. The technique did produce a fairly smooth result,
because it was reporting progress for all reachable methods
and not just a subset as in technique (2).

5.2 Repeated Analysis
The columns under (4) and (5) in Table 2 display the

results from the repeated analysis techniques. These tech-
niques rely on historical information being saved during a
previous execution of the analysis on the earlier version of
the application. In our experiments we considered consecu-
tive releases of the same applications. The historical infor-
mation saved by the earlier version was used in the analysis
of the later version. Since there is no historical information
available for the first version of the subject applications, no
results were recorded for them.

Total number of reachable methods. Technique (4)
uses the total number of reachable methods discovered dur-
ing the analysis of the preceding version as its estimate for
totalWork. It monitors progress in the same manner as tech-

(1) (2) (3) (4) (5)
Program Avg ∆i Avg εi Avg ∆i Avg εi Avg ∆i Avg εi Avg ∆i Avg εi Avg ∆i Avg εi

javacup h .17 1.26 .10 21.52 .04 1.98 – – – –
javacup i .17 1.15 .12 20.46 .04 1.78 .03 1.71 .05 1.54
javacup j .15 1.21 .09 19.79 .03 1.82 .03 1.81 .03 1.53
jflex1.3.3 .06 1.75 .08 23.43 .12 2.33 – – – –
jflex1.3.4 .06 1.75 .09 23.57 .13 2.33 .04 1.57 .02 1.36
jflex1.3.5 .07 1.79 .10 21.41 .14 2.36 .04 1.60 .03 1.21
jgraph5.7.4.6 .21 2.54 .22 7.53 .17 1.81 – – – –
jgraph5.7.4.7 .21 2.57 .22 7.59 .17 1.83 .03 1.38 .03 1.18
jgraph5.8 .21 2.50 .21 7.35 .16 1.80 .03 1.32 .03 1.21
jpws.2.0 .26 3.25 .07 13.86 .03 1.34 – – – –
jpws.3.0 .25 3.25 .10 11.12 .12 1.01 .06 1.56 .05 1.36
jpws.3.1 .25 3.25 .10 10.44 .13 .99 .05 1.46 .03 1.26
sablecc.2.8 .11 1.51 .36 5.79 .45 1.60 – – – –
sablecc.3.1 .04 1.88 .23 7.51 .40 1.65 .05 2.07 .06 1.78
sablecc.3.2 .05 1.82 .24 7.21 .40 1.64 .05 1.86 .03 1.52
verbos.1.4 .17 2.28 .24 16.80 .22 2.75 – – – –
verbos.1.5 .18 2.27 .24 16.84 .18 2.31 .05 1.36 .03 1.18
verbos.1.7 .18 2.27 .26 15.82 .20 2.51 .04 1.33 .02 1.14
vietpad.1.2 .26 3.18 .22 24.30 .25 3.04 – – – –
vietpad.1.2.1 .26 3.10 .22 9.11 .25 2.95 .08 1.68 .06 1.44
vietpad.1.3 .27 3.11 .21 20.00 .25 2.85 .08 1.68 .06 1.41
AVERAGE .17 2.27 .17 17.47 .18 2.01 .04 1.59 .03 1.37

Table 2: Initial analysis: (1) least effort, (2) number of user-defined methods, (3) derived number of total
method – Repeated Analysis: (4) total reachable methods (5) methods weighted by number of statements

nique (1) by calling worked(1) every time a new method
is discovered. Even with this very simple historical infor-
mation the results show a marked improvement over all the
heuristics investigated for the fledgling analysis. Imprecision
in the technique has two main sources: (A) not account-
ing for the difference of cost to analyze distinct methods
and (B) the total number of reachable methods can change
between versions of the application. Since this approach
records progress for every method discovered, it produces a
fairly smooth result.

Methods weighted by the number of statements.
Technique (5) is very similar to technique (4) in that it relies
on a single integer value (the number of statements evalu-
ated) being saved from a previous execution of the analysis.
However, varying the amount of work being reported with
each call to worked as measured by the number of statements
in each method does produce a more accurate result. Of
course, this is only a rough estimation of the total amount
of work needed to be performed by the analysis for each
method. If in a particular application the ratio of analysis
time to the number of statements varies widely from method
to method, this technique will become less accurate. Accu-
racy will again decrease as the difference between the total
number of statements processed between the previous ver-
sion of the application and the current one increases.

6. CONCLUSIONS AND FUTURE WORK
This paper presents work which proposed and evaluated

several techniques for estimating the run-time progress of a
points-to analysis. For the fledgling analysis, which does not
utilize historical information, the accuracy of the techniques
were dependent upon the composition of the application un-
der analysis. The experimental results for the fledgling anal-
ysis failed to establish one heuristic as being clearly better
than the others. The results for the repeated analysis shows
that by saving even simple historical information between

consecutive runs, a points-to analysis can greatly increase
the accuracy of its progress estimates.

In the future we intend to focus on improving the tech-
niques used to estimate progress of static analysis in the
absence of historical information. We plan to investigate
more sophisticated classification techniques which will bet-
ter tailor progress estimates to individual applications.

7. REFERENCES
[1] D. Bacon and P. Sweeney. Fast static analysis of C++

virtual function calls. In Conference on Object-Oriented

Programming Systems, Languages, and Applications,
pages 324–341, 1996.

[2] J. Johnson, editor. GUI Bloopers: Don’ts and Do’s for

Software Developers and Web Designers. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
2000.

[3] O. Lhoták and L. Hendren. Scaling Java points-to
analysis using Spark. In International Conference on

Compiler Construction, LNCS 2622, pages 153–169,
2003.

[4] J. Sawin and A. Rountev. Estimating run-time progress
of a call graph construction algorithm. In IEEE

International Workshop on Source Code Analysis and

Manipulation, 2006.

[5] M. Sharp, J. Sawin, and A. Rountev. Building a
whole-program type analysis in Eclipse. In Eclipse

Technology Exchange Workshop, pages 6–10, 2005.

[6] www.sable.mcgill.ca/soot/eclipse.

[7] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam,
P. Pominville, and V. Sundaresan. Optimizing Java
bytecode using the Soot framework: Is it feasible? In
International Conference on Compiler Construction,
LNCS 1781, pages 18–34, 2000.

