
A Focused Learning Environment for Eclipse

Izzet Safer and Gail C. Murphy
Department of Computer Science

University of British Columbia
201 - 2366 Main Mall

Vancouver, BC, V6T 1Z4, Canada
{isafer, murphy}@cs.ubc.ca

Julie Waterhouse and Jin Li
IBM Toronto Laboratory
8200 Warden Avenue

Markham, ON, L6G 1C7, Canada
{juliew, jinli}@ca.ibm.com

ABSTRACT
The support available in Eclipse to help software developers
learn complex APIs and development tools is inadequate;
the support is largely passive and the support typically op-
erates alongside the resources associated with normal soft-
ware development tasks, thereby overloading the environ-
ment with additional complexity. In this paper, we describe
an approach that enables a dynamic learning process within
the context of a developer’s Eclipse work environment. Our
approach integrates a mechanism for explicit support of a
learning process flow (cheat sheets) with a mechanism for
explicit representation of different work contexts (Mylar).
We have implemented a working prototype of our approach.
We found it relatively easy to integrate cheat sheets with
Mylar through available extension points. We describe our
architecture and report on some limitations and missing fea-
tures in the existing plug-ins we discovered as we developed
our prototype.

Categories and Subject Descriptors
H.5.2 [Information Systems]: User Interfaces - Training,
help, and documentation—User-centered design

General Terms
User Assistance

Keywords
Cheat Sheet, Mylar

1. INTRODUCTION
Increasingly, software development involves writing source

code with complex APIs, and using tools to generate and
transform source code artifacts. For example, building an
application according to a service-oriented architecture (SOA)
involves the use of APIs such as JavaTMServer Faces (JSF)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

as well as prescribed processes to model, transform, con-
struct, assemble, test, and deploy several types of program-
ming artifacts involved in such an application.

Learning to use these APIs and tools often requires a de-
veloper to painstakingly follow steps laid out in documen-
tation. Sometimes, the developer may have computerized
support to aid this process, such as wizards or online help.
Although such support can make it easier for the software
developer to work through the learning process, it is all pas-
sive and is inadequate to guide the developer through com-
plex end-to-end scenarios. In some domains, it is possible
to introduce specialized environments or tools to aid the
learning process. For instance, many systems have been de-
veloped to aid students in learning subjects (e.g., [1]). In
contrast, in software development, a user needs to learn an
API or tool in the context of the same environment in which
he or she normally works, as the learning requirements are
driven directly from the tasks he or she is performing.

In this paper, we present an approach that supports a dy-
namic learning process within the context of a developer’s
work environment. Our focused cheat sheets approach inte-
grates a mechanism for explicit support of a learning process
flow with a mechanism for explicit representation of differ-
ent work contexts. This integration presents the developer
with a means of stepping through and revisiting parts of
the learning process, and focuses the environment by pre-
senting only the information related to a particular step.
Moreover, the integration allows the learning process to ap-
pear as if it is occurring in a separate environment since the
focusing mechanism hides the full complexity of the normal
work environment during the learning activity. We have
built a proof-of-concept prototype for this approach within
the Eclipse IDE in which we use cheat sheets1 to support
the learning process flow and Mylar2 to support the explicit
representation of work contexts.

We begin by demonstrating how the learning process can
be improved for a developer through the integration of these
two technologies (Section 2). We then describe the architec-
ture and mechanics behind the integration (Section 3) before
discussing how these technologies both supported and hin-
dered the integration (Section 4). We briefly discuss related
efforts (Section 5) before summarizing how this work may
be taken forward in the future (Section 6).

1
http://help.eclipse.org/help32/index.jsp?topic=/org.

eclipse.platform.doc.user/reference/ref-cheatsheets.htm
verified 28/08/06
2
http://www.eclipse.org/mylar/ verified 28/08/06

(a) Using cheat sheets in Eclipse 3.2 leads to a cluttered learning environment

(b) Our focused learning environment makes learning tasks explicit and displays
only the resources relevant to a learning task

Figure 1: Two views of a developer’s working environment: a) without focus and b) with focus

2. EXAMPLE
Consider the case of a software developer who must learn

how to combine a particular set of technologies to complete
a development task. To help the developer (user) in this
process, Eclipse provides support for a largely passive learn-
ing approach called cheat sheets. A cheat sheet consists of a
number of steps3; steps can have sub-steps, enabling a cheat
sheet to be structured as a tree. A user follows a cheat sheet
by opening a step, which typically displays text about the
item and either directs the user to perform commands man-
ually or presents a link that automatically runs commands
for the user. Steps can be marked complete, skipped, or
redone.

Figure 1-(a) shows a user working through a cheat sheet

3We use the term step for a cheat sheet task and reserve the
term task to refer to Mylar tasks.

that presents directions about creating a Web application;
the particular Web application used as an example is for
school scheduling.4 The cheat sheet (shown in the upper
right) walks the user through the creation of an administra-
tive view to manage a catalog of courses offered, a student
view to build a schedule, and a main page with links to
the views. Notice the cluttered areas marked with * on the
screen in Figure 1-(a); this clutter arises because the user’s
own projects and views are intermixed with the new project
that is the subject of the cheat sheet. This intermixing with
existing work and inclusion in the workspace of all cheat
sheet steps performed to date makes it difficult for the user

4This cheat sheet is an extension of a WTP Tu-
torial Creating a School Schedule Web Application
http://www.eclipse.org/webtools/community/tutorials/
SchoolSchedule/BuildingAScheduleWebApp.html verified
28/08/06

to see the effects of a particular step and to review a step
once it is completed.

Figure 1-(b) shows a user working with our enhanced
cheat sheet environment. In this environment, the steps
of the cheat sheet have been overlaid with (Mylar) tasks,
groups of steps that share a common context of resources
and relationships. For this application, we have overlaid
five tasks: creating and configuring the Web project, cre-
ating the course catalog, designing user interfaces, building
application logic, and creating server side logic. When the
user starts working with the cheat sheet, the task associated
with the first step is created automatically (Figure 1-(b),
#1) and the Eclipse user interface is focused on the resources
associated with that step. In this case, the SchoolSchedule

project and WebContent folder are displayed in the Project
Explorer, instead of other resources created with the project
associated with this cheat sheet. Also, the standard J2EE
perspective is modified to show only the useful views.

As the user moves through the steps of the cheat sheet,
new subtasks are created (Figure 1-(b), #25) and the Eclipse
user interface is refocused accordingly (Figure 1-(b), #36).
If a user wishes to revisit a step, it is sufficient to select the
step and click on Review. This action reactivates the corre-
sponding Mylar task, focusing the UI again on the resources
relevant to the step. Furthermore, the user can inspect views
provided by Mylar to reflect on their learning; for instance,
the user can see the time spent on each step.

By integrating cheat sheets and Mylar functionality, we
are able to provide a dynamic learning environment that
allows users to focus on their learning while completing an
interactive tutorial within their existing environment.

3. THE FOCUSED LEARNING
ENVIRONMENT

Our learning environment is a plug-in that includes three
components (the UI Manager, the Context Augmentor, and
the Event Pattern Matcher) and that integrates two exist-
ing plug-ins within Eclipse: cheat sheets and Mylar. The
UI Manager shows and hides views so that only those views
relevant to the current cheat sheet task are visible. The
Context Augmentor fills in a Mylar task context with rele-
vant resources. Finally, the Event Pattern Matcher matches
sequences of events in the user interaction so that the tool
can respond with suggested next steps.

Figure 2 portrays the architecture of the environment,
specifying the components, the role each component plays in
the environment, and their interactions7. Our contribution
is presented in solid lines whereas the existing technologies
are shown in dashed lines.

3.1 Producing an Interactive Tutorial
Creating a cheat sheet is time intensive for two reasons.

First, conceptualizing stories with a clear-cut division of
steps requires expertise in user assistance. Second, even
though the cheat sheets are simple XML documents, it is a

5The tasks that are completed have their titles struck out
as per standard Mylar functionality.
6The children of Admin.jsp and Student.jsp in the Project
Explorer tree are mock-ups as if there existed Mylar JSP
structure and UI bridges [5].
7Boxes in the figure describe the roles, and the arrows point
the direction of the message flow.

Figure 2: Architecture of the Learning Environment

painstaking job to place the content in between the abun-
dant number of XML tags. We leave the resolution of the
first issue to cheat sheet designers. However, the second
problem can be mitigated through tool support. Eclipse 3.3
is likely to contain cheat sheet authoring tools8 to create the
stories easily.

Designing a focused cheat sheet requires a small amount
of extra work on top of creating a cheat sheet. The cheat
sheet designers have to make the tutorial communicate with
Mylar, UI Manager, Context Augmentor and Event Pattern
Matcher in the appropriate cheat sheet steps (Figure 2-A,
B).

It is important to distinguish cheat sheet steps and Mylar
tasks as two different concepts; one cheat sheet task may or
may not map directly to a Mylar task. Currently, there is
no mechanism to determine automatically how Mylar tasks
should span cheat sheet steps; the designer of the focused
cheat sheet must determine this mapping. To complete the
focused learning support, the designer may have to prepare a
list of views that should be shown or hidden during different
tasks, figure out which resources cheat sheets are interested
in to augment a task’s context, and finally create patterns
of events to compare with what the user is performing.

3.2 Architecture
We have integrated cheat sheets, Mylar, and our plug-in

through commands and command handlers. Eclipse com-
mands are function pointers to the handlers, which are the
implementation for the commands. The following sections
present the components in the architecture of our focused
learning environment and how each component can be reached
using commands.

3.2.1 Mylar
Mylar is a task-focused UI for Eclipse that reduces the

information shown in Eclipse to just the information relevant
to the task at hand [4] (Figure 2-C). Mylar determines what
is relevant for a task based on the interactions performed by
a user as part of the task [5] (Figure 2-D). Mylar supports
task switching: when a task is switched, the contents of
Eclipse views are updated according to the new task context.

8Personal communications, Eclipse Bugzilla Bug IDs 146988
and 123921.

Mylar tasks and subtasks can be created, activated, deac-
tivated, marked complete, and marked incomplete through
commands we have created. For example, the following com-
mand may be placed in a cheat sheet step to create a new
Mylar task:

<command autorun = "true" serialization = "org.

eclipse.mylar.tasklist.commands.addNewLocalTask

(taskName=School Schedule Application,

taskHandle=sschedapp-1,categoryName=Cheat Sheets,

resetContext=false,activateTask=true)"/>

Similarly, a Mylar subtask can be created by specifying a
parent task handle instead of a task category name:

<command autorun = "true" serialization = "org.

eclipse.mylar.tasklist.commands.addNewLocalSubTask

(taskName=Create Course Catalog,taskHandle=

sschedcatalog-2,parentHandle=sschedapp-1,

resetContext=false,activateTask=true)"/>

Note that in order to avoid inconsistencies, we actually
use placeholders instead of handles and task names.

3.2.2 UI Manager
We took the idea of Mylar one step further by filtering

the views themselves. Even though Eclipse perspectives en-
able a set of views to be easily switched, some of the views
within a perspective may still may be unrelated to the cur-
rent task, thus taking up valuable screen real estate. Our
UI Manager enables views within a perspective to be shown
or hidden depending upon the context of the work being
performed (Figure 2-E). At present, the UI Manager per-
forms this functionality statically, reading a configuration
file to determine the appropriate views to show. Future
work may involve making this adaptive user interface [2]
dynamic, more in the spirit of Mylar.

The UI Manager can be invoked using a command by
supplying the path of a view configuration file as the pa-
rameter. The reason we are not using the existing Show

View command registered in Eclipse Workbench is that the
complementary command to hide views does not exist. In
addition, reading a configuration file makes the design sim-
pler and reusable.

3.2.3 Context Augmentor
Mylar creates a context — a set of resources and relation-

ships relevant to the user’s task — based on how the user
interacts with the system’s resources and with Eclipse. A
context for a new Mylar task typically starts empty. To sup-
port a learning environment, we needed the ability to seed
a task context, adding resources and relationships known to
be of interest for the learning step being presented.

Our Context Augmentor plays this role, adding resources
specified by the creator of the tutorial to the specified task’s
context as if the resources had been explicitly selected by the
user (Figure 2-F). This imitation of an interaction event in-
creases the degree-of-interest of the resources, making them
pass beyond the threshold required for Mylar to display
them in the views.

When the Context Augmentor executes, it is provided
as parameters a Mylar task handle and a configuration file
path. Specifying a task handle in the configuration file al-
lows resources of interest to be inferred, rather than specify-
ing them one by one; the resources that are displayed in the

views when that task is active are automatically added to
the target task’s context. This idea is similar to cloning task
contexts, but discards the interaction history of the original
tasks.

The Context Augmentor can be applied to a Mylar task
at any time. Applying the augment more than once does
not reset the existing context, but continues to augment the
context with new resources.

3.2.4 Event Pattern Matcher
Pattern matching is used to detect when a user has per-

formed a recognized sequence of steps. When a pattern is
detected, the learning environment can react, for example
by suggesting that a user advances to the next step or even
to the next cheat sheet (Figure 2-G).

We use sequences of interaction events performed by the
user (selections, edits, and commands) to check whether a
predefined event pattern occurs or not (Figure 2-H). We de-
signed the event pattern configuration file with the same
externalization as a task context. As a result, an event pat-
tern can be created easily by performing the desired actions
on a temporary Mylar task, and then the required interac-
tion information can be copied to a separate event pattern
configuration file.

The Event Pattern Matcher command takes three param-
eters: the path to the event pattern file, the qualified name
of the class that will be invoked via reflection when there
is a match, and the handle of Mylar task that must be ac-
tive during pattern matching. The pattern matcher can also
span multiple tasks; if the handle to a Mylar task is omitted
as a parameter, the matcher will be valid for any active task.

4. DISCUSSION
The most significant factor in facilitating the integration

of the two existing plug-ins was the ability to use modular,
model-view-controller style commands contributed through
Eclipse’s org.eclipse.ui.commands extension point. By
using commands, we obtained a loose coupling between cheat
sheets and Mylar. However, we also encountered a few is-
sues in cheat sheets and the Eclipse platform that required
special attention.

4.1 Command support in cheat sheets
By design, cheat sheets can invoke only one command

or action per step. However, to support our approach, we
needed the ability to execute multiple commands. For exam-
ple, to support the focusing of the UI on the current task,
three commands must execute: one to modify the views,
one to create a Mylar task, and one to augment the task’s
context.

Invoking multiple commands per cheat sheet step revealed
a missing feature in the cheat sheet API: the ability to in-
voke commands automatically. Filling a step with multiple
commands is not a solution by itself; the commands should
run without requiring a selection by the user. In our cur-
rent solution, we modified the cheat sheet parser and item
structure to allow more than one command per step, and
introduced the autorun attribute to be able to invoke these
commands automatically as soon as the user reaches that
step. On the other hand, we preserved the regular struc-
ture; there can be only one command assigned to the Click
to Perform link.

4.2 Consistency
We noticed two features lacking in the wizard structures

of the Eclipse platform. First, when wizards are opened us-
ing the org.eclipse.ui.newWizard command, there is no
parameter to set the current project as the container for the
newly created file. Instead, users have to manually choose
the project each time. Second, new file creation wizards do
not permit the name of the file to be assigned to a prede-
fined value, nor return the path to the newly created file.
For these reasons, cheat sheet developers may not be sure
whether a user entered the right names or not. In the case of
a mistake, it is likely for the story to be inconsistent and for
the context augmentors and event pattern matchers to fail,
causing our focused environment to become inconsistent.

We tried to cover a part of this problem by having con-
sistency in the presentation and usage of resource names.
When the cheat sheet creator advises the user to create and
fill the contents of a file named Admin.jsp, the exact same
handle should appear in the story of the cheat sheet, context
augmentor and event pattern description files. To achieve
this situation, we introduced placeholders and a property file
reader. While parsing the cheat sheet, reading the context
augmentor and event pattern configuration files, a property
file is used and the placeholders are replaced with their ac-
tual values. Beyond our approach, we can only advise cheat
sheet creators to trust the users until the features lacking in
the wizards are implemented.

5. RELATED WORK
A substantial amount of work has been carried out on

learning environments in the fields of artificial intelligence
and human computer interaction. For instance, COACH [8]
is a learning environment for Lisp that watches user actions
to create an adaptive user model. Then, the model is ana-
lyzed to reason about how to provide personalized comments
without interfering with the user’s actions.

On the human computer interaction side, Kelleher et al.
developed a stencil-based interaction technique on procedu-
ral tutorials to draw users’ attention to the correct compo-
nent in the interface, in order to prevent users from inter-
acting with unrelated components [3]. According to their
study, users completed the tutorials with fewer errors and
26% faster. In our approach, Mylar serves as a stencil to
the UI by focusing on the related parts of the project and
of the resources.

There is also a significant amount of related research within
the Eclipse community. GILD [9] and Penumbra [7] trans-
form Eclipse into a simple collaborative learning environ-
ment for novice Java programmers, by adding their own
perspectives. GILD and Penumbra perspectives just show
enhanced versions of common views, but none of them fo-
cuses the UI adaptively, like Mylar does. Kojouharov et al.
created JTutor [6], a set of Eclipse plug-ins to create and re-
play cheat-sheet-like tutorials. JTutor focuses the UI on the
tutorial steps and on the editor containing initial code pre-
pared by a developer. The code is then gradually modified
for the users as they advance through the steps manually.
By automating the replay process, JTutor aims to represent
the relevant and important parts of the code for the users.

6. CONCLUSIONS AND FUTURE WORK
We have developed an approach to link the flow of a com-

plex task, in this case a learning task, with task context
information. This approach allows a user to step through
an end-to-end scenario and focuses the user’s learning envi-
ronment by presenting just the information relevant to the
particular step.

Our future work consists of determining how our approach
can be generalized to task context and task flow integration
problems encountered in fields other than software develop-
ment. Moreover, in order to prove the improvement in the
learning process, we need to validate our approach with field
studies.

7. ACKNOWLEDGMENTS AND
TRADEMARKS

This research was funded by an IBM CAS fellowship. The
views expressed in this paper are those of the authors and
not necessarily of IBM Canada Ltd. or IBM Corporation.

IBM is a registered trademark of International Business
Machines Corporation in the United States, other countries,
or both.

Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or
both.

Other company, product, and service names may be trade-
marks or service marks of others.

8. REFERENCES
[1] C. Conati and X. Zhao. Building and evaluating an

intelligent pedagogical agent to improve the
effectiveness of an educational game. In Proc. of the 9th
Int’l Conf. on Intelligent User Interface, pages 6–13,
New York, NY, USA, 2004. ACM Press.

[2] E. A. Edmonds. Adaptive man-computer interfaces. In
M. J. Coombs and J. L. Alty, editors, Computing Skills
and the User Interface, pages 389–426, 1981.

[3] C. Kelleher and R. Pausch. Stencils-based tutorials:
design and evaluation. In Proc. of the SIGCHI Conf. on
Human Factors in Computing Systems, pages 541–550,
New York, NY, USA, 2005. ACM Press.

[4] M. Kersten and G. C. Murphy. Mylar: a
degree-of-interest model for ides. In Proc. of the 4th
Int’l Conf. on Aspect-Oriented Software Development,
pages 159–168, New York, NY, USA, 2005. ACM Press.

[5] M. Kersten and G. C. Murphy. Using task context to
improve programmer productivity. In FSE ’06, 2006.

[6] C. Kojouharov, A. Solodovnik, and G. Naumovich.
Jtutor: an eclipse plug-in suite for creation and replay
of code-based tutorials. In Proc. of the 2004 OOPSLA
Workshop on Eclipse Technology eXchange, pages
27–31, New York, NY, USA, 2004. ACM Press.

[7] F. Mueller and A. L. Hosking. Penumbra: an eclipse
plugin for introductory programming. In Proc. of the
2003 OOPSLA Workshop on Eclipse Tech. eXchange,
pages 65–68, New York, NY, USA, 2003. ACM Press.

[8] T. Selker. Coach: a teaching agent that learns.
Commun. ACM, 37(7):92–99, 1994.

[9] M.-A. Storey, D. Damian, J. Michaud, D. Myers,
M. Mindel, D. German, M. Sanseverino, and
E. Hargreaves. Improving the usability of eclipse for
novice programmers. In Proc. of the 2003 OOPSLA
Workshop on Eclipse Technology eXchange, pages
35–39, New York, NY, USA, 2003. ACM Press.

