
FrUiT: IDE Support for Framework Understanding

Marcel Bruch Thorsten Schäfer Mira Mezini
Software Technology Group

Department of Computer Science
Darmstadt University of Technology

{bruch,schaefer,mezini}@st.informatik.tu-darmstadt.de

ABSTRACT
Frameworks provide means to reuse existing design and func-
tionality, but first require developers to understand how to
use them. Learning the correct usage of a framework can
be difficult due to the large number of rules to obey and the
complex collaborations between the classes. We propose the
use of data mining techniques to extract reuse patterns from
existing framework instantiations. Based on these patterns,
suggestions about other relevant parts of the framework are
presented to novice users in a context-dependent manner.
We have built FrUiT, an Eclipse plug-in that implements
this approach and present a first assessment by mining parts
of the Eclipse framework.

1. INTRODUCTION
Software reuse is one of the major goals in software engi-
neering. It provides several benefits to developers such as
reduced costs, higher quality, and shorter time to market.
Several approaches to reuse exist, one of which are object-
oriented frameworks. A framework is a “set of cooperating
classes that makes up a reusable design for a specific class of
software” [2]. By extracting the design into abstract classes
and defining their responsibilities and collaborations, frame-
works not only enable reusing functionality at code level, but
also enable reuse at the design level.

Unfortunately, framework reuse suffers from the disadvan-
tage that it is sometimes difficult to master them. Espe-
cially novice users of a framework require a lengthy learn-
ing process [7]. To support a wide range of specific appli-
cations, frameworks are designed with flexibility in mind.
This involves more abstract classes and complicates the un-
derstanding process. Further, developers need to know the
design of a framework. It is not sufficient to comprehend a
single class, but one also needs to understand its collabora-
tions.

Even though several approaches exist to give developers an
understanding of how to use a framework correctly, they

have some disadvantages. Some techniques (e.g., tutorials or
cookbooks) require the creation of additional artifacts which
can be very costly. In most cases, framework developers are
expert programmers and do not have the time (and are not
keen on) writing appropriate documentation. Hence, even
when such documentation artifacts exist, they are often out-
dated [4]. Other approaches focus on using artifacts that do
not have to be created additionally. For instance, the frame-
work code itself can be explored [1] or existing instantiations
can serve as examples [6]. But, following such approaches,
users often need to read large portions of code which is not
related to the understanding of the framework’s usage, e.g.,
internal framework code or code specific to a single frame-
work instantiation. Further, developers have to search for
appropriate framework or example code on their own. Given
the large size of frameworks and the large number of instan-
tiations, this is a difficult task.

Summarizing, techniques are needed that

• do not involve a large additional effort for the frame-
work developer,

• present only those parts needed to understand how to
use the framework, and

• show relevant information in a context-dependent man-
ner.

To satisfy these requirements, we propose to combine the use
of data mining techniques [5] with a context-dependent pre-
sentation [3]. Based on existing framework instantiations,
frequently occurring reuse rules are extracted and stored in
a database. Framework users can then automatically query
those rules that are relevant in the context of their current
task. We have build the prototype FrUiT, a Framework
Understanding Tool integrated into Eclipse1, which imple-
ments this approach. It provides means to a) mine reuse
rules and b) present them in a context-dependent manner.

The remainder of this paper is structured as follows. Section
2 shows our tool from a user’s point of view. In section 3 we
elaborate on its implementation. In section 4 we present first
results. Section 5 discusses issues of the current prototype
and presents future work. Finally, we summarize the paper
in section 6.

1http://www.eclipse.org

2. WALKTHROUGH
To illustrate how FrUiT can improve the software devel-
opment process, we will show its capabilities in a short
walkthrough. The walkthrough describes the creation of
an Eclipse wizard using the UI framework JFace. It demon-
strates which usage patterns were extracted from existing
applications that use the classes WizardDialog, Wizard and
WizardPage.

We start the implementation by creating a new WizardDialog

(index 1 in figure 1), which is the top-level dialog for an
Eclipse wizard. We analyze the source code with FrUiT and
examine the implementation hints shown in the suggestion
view (index 2 in figure 1).

The first rule suggests to call method open() on our wizard
dialog with a confidence of 100%. The confidence of a rule
indicates how many percent of the classes in a similar con-
text followed the suggestion – in this case how many classes
that instantiated a wizard dialog also invoked the method.
We follow the first hint and add the call on the wizard dialog.

Rerunning the analysis does not change the results further-
more. We turn to the second rule which suggests to instan-
tiate a subtype of Wizard with a confidence of 82% (the caret
symbol before the class name stands for “subtype of”). The
rationale view (index 3 in figure 1) shows the preconditions
of the rule selected in the suggestion view. In our case, we
see that 82% of the classes that create a WizardDialog (an-
tecedent 1 in the first row) also followed the suggestion and
instantiated a subtype of Wizard.

We point the mouse above the suggestion to reveal the cor-
responding JavaDoc comment (index 4 in figure 1). It shows
us that a Wizard is primary responsible for the creation of a
set of WizardPages and it provides the logic executed when
the user presses the finish button. Hence, we follow the sec-
ond rule and create a subclass of Wizard in order to instanti-
ate it later. After analyzing the newly created Wizard class,
FrUiT shows 10 programming hints. The most interesting
ones are:

• override performFinish() with 100%,

• override addPages() with 87%,

• call addPage(IWizardPage) with 93%, and

• instantiate IWizardPage with 80% confidence.

After reading the corresponding API documentation we de-
cide to override methods performFinish() and addPages().
Rerunning the analysis with these two new facts increases
the confidence for call addPage(IWizardPage) to 100% and
for the rule instantiate IWizardPage to 88%.

In order to satisfy the call addPage(IWizardPage) suggestion
we create a new class which implements the IWizardPage in-
terface. The IWizardPage has to provide the SWT controls
that represent the page and determines whether the user has
supplied enough information to complete the page.

Again we analyze the empty class file that only contains the
class declaration. We get one rule with a confidence of 99%

saying that we should rather extend the class WizardPage

than implement the IWizardPage interface from scratch. We
change the class declaration accordingly and a new analysis
leads to a large number of suggestions. Most of them con-
cern SWT components like buttons, labels and text fields.
One rule of interest is call setControl(Control) which has
a confidence of 100%. Reading the API documentation of
IDialogPage.setControl(Control) shows that we must call
this method from inside method createContents() to get a
working wizard page.

In this walkthrough we have shown how FrUiT supports
novice framework users in learning the correct usage of a
framework. Based on a given context, FrUiT suggests pro-
gram elements that seem relevant, because other framework
developers used them together. The suggestions guide de-
velopers to collaborators of a class (e.g., from a Wizard to a
WizardPage) or alternative implementations (e.g., by suggest-
ing to use a WizardPage instead of implementing IWizardPage

from scratch).

3. IMPLEMENTATION
Mining reuse rules
To find frequently occurring reuse rules, we follow a three
step approach. First, we extract information from the frame-
work instantiation examples. Second, we use data mining
techniques to mine for reuse rules based on this informa-
tion. Third, we apply filters on the found rules to remove
those that are not relevant for framework understanding. In
the following, we elaborate on each step.

Extraction phase: The basic idea of finding reuse patterns
in code is to search the example instantiations for similarities
that might represent a pattern. We transform each example
class into a set of class properties, which will be used as the
input for the mining algorithm. We currently consider 5
kinds of class properties:

extends:A denotes that the example class inherits from
class A.

implements:A is created if the example class implements
interface A.

overrides:A.b() expresses that the example class overrides
method b() from class A.

calls:A.b() is used when the example class calls method
b() from class A.

instantiates:A represents a call to a constructor of A within
the example class.

The first three kinds of class properties occur frequently
when inheritance is used to specialize the framework, i.e.,
in the case of white-box frameworks. The other two kinds
of class properties can be found in instantiations of both
white-box and black-box frameworks.

Mining phase: After creating a set of class properties for
each class in the instantiation examples, we pass them to
the data mining algorithm. We use Opus [8], an association
rule mining algorithm which has a reasonable performance

Figure 1: The FrUiT plug-in in Action

and low memory requirements for in-memory mining. Given
a user-specified minimum support s, the algorithm creates
rules of the form x ⇒ y if at least s example classes that
fulfill the precondition x, i.e., contain the elements of x in
their class properties, also fulfill y. Often, such rules do not
hold in all cases, e.g., due to a slightly different reuse of a
component. To indicate the strength of a rule, we use their
confidence c which is the number of classes that fulfill both
x and y divided by the number of classes that fulfill the
precondition x only.

Filtering phase: In the last step, we filter out rules that
deem not interesting for our application. Three different
classes of rules are filtered:

Misleading rules Assume that we found a rule y ⇒ z with
a confidence of 80%. We refer to a rule x∧y ⇒ z which
has a confidence below 80% as misleading, because the
presence of x actually decreases the likelihood of find-
ing the item z.

Overfitting rules Suppose that we have a rule y ⇒ z with
a confidence of 80%. A second rule x ∧ y ⇒ z with a
confidence of 80.5% is rejected as an overfitting rule,
because the introduction of an additional precondition
does not yield to a significantly higher confidence.

Specific rules Imagine that we have two rules extends :
A ⇒ overrides : A.m() and overrides : A.n() ⇒
overrides : A.m(), both with the same confidence. If a
class overrides A.n(), it always also extends A; thus, we
remove the second rule because it is already covered
by the first one.

Presenting reuse rules
After creating a database with the reuse rules, we present
the “relevant” rules to novice users of the framework in a

context-dependent manner. Therefore, we extract the con-
text, i.e., all class properties of the currently edited file in
the Eclipse editor. This works similar to the extraction
phase described above. We then execute a query on the rules
database to find all rules that match the given context. The
results are grouped by the suggestion (the right-hand side of
a rule) and presented in the suggestion view together with
their confidence. By selecting a suggestion, users can see
the rationale, which is the left-hand side of the rules. They
can also see all examples and counter-examples of a rule.

4. EVALUATION
To evaluate our approach, we mined plug-ins containing user
interface code for rules in the SWT/JFace framework. We
searched for rules with at most two class properties in their
context. Further, we required a minimum support of 10
and a minimum confidence of 50%. The example basis was
comprised of all plug-ins shipped with the Eclipse IDE that
have the term ui in their name2. We present the application
of FrUiT by using three different parts of the framework and
discuss the resulting rules in the following.

Layout
Alice wants to create a user interface comprised of several
widgets. She knows that a composite widget is needed, but
has no experience with layout management in SWT. She
starts by creating a field holding the composite:
private Composite c = new Composite(null, SWT.NONE);

After analyzing the code, FrUiT presents the following ten
rules with suggestions to other program element:

2This is the Eclipse naming convention for plug-ins contain-
ing user interface code.

Rule Conf.

1 call method Composite.setLayout(Layout) 94%
2 instantiate ˆorg.eclipse.swt.widgets.Layout 92%
3 instantiate org.eclipse.swt.layout.GridLayout 88%
4 call method Layout.Layout() 84%
5 instantiate org.eclipse.swt.layout.GridData 83%
6 call method Control.setLayoutData(Object) 83%
7 call method GridLayout.GridLayout() 80%
8 instantiate org.eclipse.swt.layout.Label 61%
9 call method Label.Label(Composite, int) 61%
10 call method Label.setText(String) 55%

The three bottom-most rules concern the usage of labels,
which seem to be used often together with composites. More
interesting, the top-most rules all concern layout manage-
ment. Alice takes a look at the first rules and sees that
most users call method Composite.setLayout (rule 1) and in-
stantiate an object of type Layout or one of its subtypes
(rule 2). Further, rule 3 indicates that a GridLayout is used
in most cases.

After creating a GridLayout instance and reanalyzing the
code, rules 2 to 4 vanish because they are fulfilled now. New
rules do not appear, but the existing ones get a higher con-
fidence. For instance, rule 1 now has a confidence of 100%
and the confidence of rules 5 and 6 raise to 93%. Alice reads
the documentation for the suggested program elements and
recognizes that she needs a GridData object which should
also be passed to the Composite. After writing correspond-
ing code, she successfully handeled the layout management
and FrUiT only provides further suggestions to widgets of-
ten used within a composite, such as labels or buttons.

Toolbar
Bob wants to implement a toolbar for his new research
project. A search for the corresponding term brings him
to the class ToolBar and he creates an instance of it:
ToolBar bar = new ToolBar (null, SWT.BORDER);

Next, he uses FrUiT and 18 rules with a confidence ranging
from 52% to 79% are presented in the suggestions view. 10
rules concern layout management (a ToolBar is a subtype
of Composite), 4 rules concern tool bar management, 3 rules
suggest to create other widgets and one rule proposes the
use of a ContributionManager. The toolbar related rules are:

Rule Conf.

1 instantiate org.eclipse.swt.widgets.ToolItem 75%
2 call method ToolItem.setImage(Image) 69%
3 call method ToolItem.setTooltipText(String) 62%
4 call method ToolItem.ToolItem(Toolbar,int) 62%

These four rules indicate that Bob should consider to create
and initialize a ToolItem. In fact, the documentation states
that “instances of this class represent a selectable user inter-
face object that represents a button in a tool bar.” Hence,
Bob adds another line of code to his class:
ToolItem item = new ToolItem(toolBar, SWT.PUSH);

Again, the analysis with FrUiT brings up 19 suggestions.
However, rules 3 and 4 are removed (we already created
a ToolItem) and the confidence of rules 2 and 3 changed to
100%. Further, two new rules came up. They suggest to call

ToolItem.addSelectionListener(SelectionListener) (100%)
and Item.setText(String) (71%).

Bob takes a look at the suggested methods, initializes the
ToolItem with a text, an image, and a tooltip text and adds
a SelectionListener to it. He gets a working toolbar con-
taining a single button.

TableViewer
Carol was asked to implement a table viewer. After creating
a field of type TableViewer and analyzing the code, FrUiT
presents more than 40 rules. Carol is not willing to investi-
gate all suggestions, but only considers the top 10 rules:

Rule Conf.

1 instantiate ˆorg.eclipse.swt.widgets.Layout 100%
2 instantiate ˆorg.eclipse.swt.widgets.Widget 100%
3 call method Layout.Layout() 100%
4 call method TableViewer.setContentProvider(...) 100%
5 call method TableViewer.setLabelProvider(...) 100%
6 call method Composite.setLayout(Layout) 97%
7 instantiate org.eclipse.swt.widgets.Table 97%
8 call method Table.Table(Composite, int) 97%
9 call method TableViewer.setInput(Object) 97%
10 instantiate org.eclipse.swt.layout.GridData 96%

Half of the rules concern tables. All other framework users
pass a content provider and a label provider to the table
viewer. Further, most of them also pass an input to the
viewer and create a Table. Carol follows the suggestions
and reanalyzes her code. In addition to many layout related
hints, FrUiT suggests to take a look at the viewer’s methods
addSelectionChangedListener, getSelection and getTable. In
addition, a rule suggests to create a TableColumn, and two
others indicate that the Table’s methods setHeaderVisible

and setLayout could be important.

Summarizing, our tool shows Carol many collaborators of
the TableViewer, which are needed to implement a visual
table in the SWT/JFace framework.

5. DISCUSSION AND FUTURE WORK
The first results of using FrUiT for the SWT/JFace frame-
work are promising. We have shown that, given a start-
ing point to the desired framework functionality, our tool
presents relevant program elements to the user. Further,
as more context is available, the confidence of the relevant
suggestions tends to increase.

However, our first experiences with using the FrUiT proto-
type revealed the following issues that will be considered in
our future work.

Scalability: FrUiT “learns” how to use a framework by
analyzing existing instantiations. We assume that the more
examples are used in the mining process, the better the
quantity and quality of the resulting reuse rules will be. Un-
fortunately, simple mining algorithms as used in [5] and also
our Opus algorithm are not scalable enough to mine a large
amount of example code. We are currently implementing an
efficient algorithm based on frequent closed itemsets [9].

Rule pruning: While the three pruning techniques pre-
sented in section 3 significantly decrease the number of rules
that do not contribute to the understanding of a framework,
we identified the need also to remove “transitive rules”. For
instance, consider you have two rules: A ⇒ B (confidence
100%) and B ⇒ C (confidence 95%). Often, you will also
get a transitive rule A ⇒ C with a high confidence. How-
ever, in our domain such transitive rules clutter the sug-
gestion view. For instance, consider the layout example in
section 4. Rule #10 suggests to initialize a label by calling
its setText(String) method. However, this transitive rule is
based on the observation that most composites first instanti-
ate a label (rule #9) and then initialize it. Thus, we should
present the rule #9 only and postpone the suggestion to call
setText(String) after a label is instantiated.

Rule quality: Currently we only provide suggestions at the
class level, e.g., “if you implement a Wizard, you should also
instantiate an IWizardPage and call addPage(IWizardPage)”.
We will improve the detail of a suggestion by incorporat-
ing information from static analysis. This will enable us to
provide instance based suggestion, i.e., that they should in-
stantiate an IWizardPage and pass this page as a parameter
to addPage(IWizardPage)” declared in the current Wizard.

Rule presentation: Another observation from the proto-
type is, that suggestions often can be categorized. For in-
stance, the tool bar example from section 4 showed sugges-
tions for the layout concern and the tool bar management.
Having these groups explicit would enable users to hide all
suggestions that are currently not relevant for them. We will
investigate along which properties the suggestions should be
grouped and provide a tree-based presentation that enables
to collapse or expand single suggestion categories.

Context definition: FrUiT’s suggestions are presented in
a context-sensitive manner. Currently, we use the whole
Java class in the active editor as the context. However,
we experienced that it is sometimes useful to have a single
line of code as a context. For instance, consider you are
implementing a view and want to add a new table to it (cf.
section 4). If your view implementation already contains
other code, e.g., for initializing the other widgets, you will
also see suggestions related to those widgets, and not only
suggestions concerning the creation of a table viewer. We
will provide a feature that enables users to select a specific
range of the source code, which will serve as the context for
the suggestions.

We will implement the features discussed above in our fu-
ture work. Further, we will create rule databases by mining
instantiations of several parts of the Eclipse API. These will
be made available to the Eclipse community and we plan to
perform a field study to investigate the benefits and weak-
nesses of our approach in detail.

6. SUMMARY
We presented FrUiT, a tool that combines data mining tech-
niques with a context-dependent presentation. FrUiT sup-
ports novice programmers when using a framework. Our
approach has several benefits. First, by using existing frame-
work instantiations written by experts to learn from, we do
not require additional effort to create special artifacts such

as documentation or code snippets. Second, by using data
mining we extract significant reuse rules. Hence, only knowl-
edge that concerns using the framework is presented to the
user. Third, we relieve developers from searching for rules of
interest explicitly. Instead, the tool uses the current context
and presents relevant rules automatically.

More information about our research on framework under-
standing can be found at the following website:

http://www.st.informatik.tu-darmstadt.de/Frameworks

Acknowledgments
We would like to thank Ivica Aracic, Christoph Bockisch,
and Johannes Fürnkranz for their fruitful comments on our
work. This research is supported by a 2006 IBM Eclipse
Innovation Award.

7. REFERENCES
[1] M. Eichberg, M. Haupt, M. Mezini, and T. Schäfer.

Comprehensive software understanding with
SEXTANT. In Proceedings of the International
Conference on Software Maintenance, pages 315–324.
IEEE Computer Society, 2005.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley, 1995.

[3] R. Holmes and G. C. Murphy. Using structural context
to recommend source code examples. In Proceedings of
the International Conference on Software Engineering,
pages 117–125. ACM Press, 2005.

[4] T. C. Lethbridge, J. Singer, and A. Forward. How
software engineers use documentation: The state of the
practice. IEEE Software, 20(6):35–39, 2003.

[5] A. Michail. Data mining library reuse patterns using
generalized association rules. In Proceedings of the
International Conference on Software Engineering,
pages 167–176. ACM Press, 2000.

[6] L. R. Neal. A system for example-based programming.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 63–68. ACM
Press, 1989.

[7] F. Shull, F. Lanubile, and V. R. Basili. Investigating
reading techniques for object-oriented framework
learning. IEEE Transactions on Software Engineering,
26(11):1101–1118, 2000.

[8] G. I. Webb and S. Zhang. Beyond association rules:
Generalized rule discovery. http://www.csse.monash.
edu.au/~webb/Files/WebbZhang03.pdf.

[9] M. J. Zaki. Generating non-redundant association
rules. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 34–43. ACM Press, 2000.

