
A Toolsuite for the Verification of Real-Time Systems in
Eclipse∗

Lucía Cavatorta, Guido de Caso,
Andrés Ferrari, Víctor Braberman,

Diego Garbervetsky, Nicolás Kicillof,
Fernando Schapachnik

Departamento de Computación, FCEyN,
Universidad de Buenos Aires,

Buenos Aires, Argentina
{lcavat, gdecaso, aferrari, vbraber,
diegog, nicok, fschapac}@dc.uba.ar

Alfredo Olivero

Centro de Estudios Avanzados, FIyCE,
Universidad Argentina de la Empresa,

Buenos Aires, Argentina
aolivero@uade.edu.ar

ABSTRACT
In this work we present an Eclipse plug-in for the VInTiMe
(Verifier of INtegrated TImed ModEls)1 suite of tools that
combines high-level expressive power, unassisted property-
preserving model reduction and distributed model checking
to describe and verify complex real-time system designs and
their properties.

Keywords
Eclipse plug-in, timed model checking, verification, timed
automata, Lapsus, ObsSlice, VTS, Zeus

1. INTRODUCTION
Real-time systems are often complex and critical. Their

formal verification has gained attention in the last few
decades, specially due to several cases in which the usage
of automated tools unveiled design errors not found by hu-
mans [12, 13, 16]. However, adoption of these techniques has
faced some reluctance from practitioners, mainly because
they require significant mathematical skills and verification
consumes expensive computational resources.

The response from academia has been to develop easier
to use formalisms and new tools to handle more complex
systems and to verify their properties in less time. VInTiMe
is a step forward in this direction, consisting of an integrated
approach to solve the problems of usability and scalability.

In order to verify real world applications, usually the fol-
lowing steps should be followed:

• The system is precisely described.

∗Supported by IBM Eclipse Innovation Grants 2005.
1The tool homepage is http://dependex.dc.uba.ar/vintime

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

• System requirements are specified.

• A (time consuming) verification is executed.

• If requirements do not hold, appropriate counterexam-
ples are obtained in order to fix the system.

The VInTiMe toolset covers the full specification and ver-
ification cycle. This is actually the result of a decoupled ap-
proach in which autonomous tools with clear interfaces were
developed independently. They were unified under a single
framework once they became mature enough, using timed
automata as a lingua franca between them.

Timed automata [3] (TA) are finite automata extended
with positive real valued clocks that record the dense time
elapsed between events. Clocks can be used to guard transi-
tions, and to force control locations to be abandoned in case
an invariant does not hold.

Automated Software Engineering tools must have a solid
mathematical background and yet provide a simple and in-
tuitive interface to users. In the next section we will show
how the VInTiMe tools hide complexity from the user by
providing a smooth interaction with our kernel formalism.

2. INTEGRATED TIMED MODELS VERI-
FICATION

VInTiMe comprises the integration of the tools Lapsus,
VTS, ObsSlice and Zeus as described in [2].

Lapsus [6, 5] translates real-time system designs based on
fixed-priority scheduling into timed automata. Succinctly, it
uses Worst-Case Completion Times (WCCT) and Best-Case
Completion times (BCCT) –which can be calculated using
analytical techniques provided by these theories– to build an
abstract and analyzable model of the system as a collection
of timed automata. We use those timed automata to analyze
complex properties involving coordination of a set of tasks.

Once Lapsus’ job is done, VTS [1] comes into play. Using
simple graphical patterns, the designer can define interest-
ing properties over the system under analysis (SUA). More
precisely, VTS is a notation for expressing real-time require-
ments in a visual and friendly –yet powerful– language, by
means of negative scenarios. A VTS scenario is basically
an annotated partial order of relevant events, denoting a
(possibly infinite) set of matching time-stamped executions.

1

VTS is meant to existentially predicate on system execu-
tions. That is, it is used to state a simple though relevant
family of questions of the form “Is there a potential run that
matches this generic scenario?”. When interpreted as nega-
tive scenarios, these questions can express infringements of
safety or progress requirements, which turn out to be decid-
able. The tool translates a scenario into a timed automaton
(observer) that recognizes matching runs. This automaton
is composed with the SUA in order to check whether a vio-
lating execution is reachable in that behavioral model.

It should be noted that the tools presented so far tackle
the usability issue by simplifying the construction of formal
models of both timed systems and properties over them.
There is still a scalability problem to deal with, and that is
the goal of the two remaining components of the suite: they
deal with the state explosion problem in orthogonal ways.

ObsSlice [7] is an optimization tool suited for the verifica-
tion of networks of timed automata using virtual observers,
the same kind of observers that VTS produces. It auto-
matically discovers the set of modeling elements that can be
safely ignored at each location of the observer by synthesiz-
ing behavioral dependence information among components.
ObsSlice is fed with a network of timed automata and gen-
erates a transformed network which is equivalent to the one
provided, as far as the properties are concerned.

ObsSlice automatically derives a subset of components
which is enough to perform the verification process. That
is, one of the most appealing aspect of this approach is that
generally only a small subset of a system’s components is
really needed to perform model checking, dramatically re-
ducing the cost of this step. Hence, the complexity of our
approach mainly depends on the number of components in-
volved in the requirement instead of the size of the complete
model, which is the case in previous works on automatic ver-
ification of real time applications.

Contrary to other approaches that use schedulers, Lap-
sus modeling of real-time tasks helps ObsSlice reduce the
amount of components that are relevant to verify a given
property. If schedulers were used, the resulting system
would be highly coupled, making optimization harder [5].

Finally, the model checker Zeus [9, 10, 11] tackles the
state explosion by performing a distributed computation.
Even though timed model checking is a problem ill-suited
for distribution, Zeus makes good use of multiple processors
using interesting rebalancing techniques.

3. PLUGGING VINTIME INTO ECLIPSE
The development of real-time systems requires specifica-

tion and implementation frameworks, usually realized as
separate software tools, which forces designers to constantly
switch between them. The integration of VInTiMe as an
Eclipse plug-in greatly simplifies this process. Designers can
have their systems both specified and implemented entirely
within the Eclipse platform.

Eclipse also provides VInTiMe users with additional fea-
tures such as the ability to have their verification projects
saved in CVS repositories or exported to ZIP files.

3.1 Features
In order to support the integration of the tools described

in section 2, the VInTiMe Eclipse plug-in offers a set of
editors for each of the formalisms.

The verification process begins with the creation of a new

VInTiMe project to contain the different elements necessary
to model the SUA and to guide its verification.

Figure 1: A Lapsus component

Figure 2: A TA component

Since real-time systems are usually made up of several
interacting components, the designer starts by constructing
each of them independently. Main system components are
modeled using Lapsus tasks (Figure 1), while environment
and user defined connectors can be directly modeled with
TA (Figure 2).

Once the components are defined, the user can create a
SUA by dragging together instances of them. Making com-
ponent construction and composition separate steps of the
process maximizes reusability of system parts.

After the SUA has been defined, users can express re-
quirements over it in the form of VTS patterns, as shown
in Figure 3. Since these scenarios can contain variables, an
instantiation phase is required: users drag goals and SUAs
together while a wizard helps them bind variables.

2

Figure 3: A VTS scenario

This binding of goals to SUAs is called an Analysis. Fig-
ure 4 shows the Analysis Editor.

Figure 4: Analysis Editor and Trace View

This is the final step in the design stage, now the verifi-
cation phase can begin. From the Analysis Editor users can
call Zeus to perform a distributed model check of a goal on
a cluster2.

If the SUA can produce a behavior expressed by the (neg-
ative) goal, a trace showing how it can be reproduced is
presented in a Trace View, as shown in Figure 4. Other-
wise, the goal is valid and no trace is found. As a visual aid,

2A cluster is a network of workstations that can be graphi-
cally defined in the bundled Cluster Editor.

a color cue is used to mark goal states.

Figure 5: Users select how they want the trace to
continue

The SUA can be traversed by following a trace. While do-
ing so, current states and transitions are highlighted appro-
priately. As a result of applying ObsSlice during verifica-
tion, SUA components are dynamically enabled or disabled
in a trace. Our tool automatically minimizes disabled SUA
components during trace traversal and restored when they
are enabled again. This greatly simplifies the task of un-
derstanding error traces, as only relevant components need
to be analyzed. Traces can also be manually modified, or
generated from scratch in order to allow the user to simulate
additional interesting behaviors, as shown in Figure 5.

3.2 Architecture
The software architecture of the VInTiMe plug-in, shown

in Figure 6, can be divided into three different parts: Basic
Editors, Composition Editors and External Tools.

Figure 6: Plug-in architecture

The Basic Editors are used in the first steps of the verifica-

3

tion process. Designers can use them to specify the different
components that make up a system. The Trace View is a
special case because it extends ViewPart, but it is similar to
an editor, as it can import, modify and export traces.

Components specified with the Basic Editors are then
dragged into the Composition Editors to create larger and
more complex systems. The Analysis Editor is an essential
piece of the plug-in. It allows users to launch Zeus, open
the generated traces in the Trace View, traverse them, watch
the system evolve, etc.

The backend components that are used to translate the
system, optimize it and verify it are treated as external tools.
The system translator is written in Java and consists of three
parts: one handles the translation of the graphical TA mod-
els to a file format understandable by Zeus, the other two
are in charge of translating Lapsus components and VTS
scenarios to timed automata. ObsSlice is also a Java ap-
plication, only minor adjustments to its original code were
necessary. Finally Zeus is written in pure C; interfacing
with this tool is described in the next section.

3.3 Design and Implementation
Several challenges had to be faced during the implemen-

tation of the VInTiMe Eclipse plug-in.

Figure 7: Graph and node hierarchies

3.3.1 Graph Editors
First we needed to create several graphical editors: one

for each notation and one to edit workstation clusters. They
have different features, but are based on common grounds:
they are all graph editors. We have created an abstract Basic
Graph Editor managing nodes and edges, to contain the
shared functionality. The editor for each notation extends
this Basic Graph Editor and adds the needed capabilities.

Following the same spirit, as shown in Figure 7, each kind
of node for a specific notation overrides a basic node class
and each kind of transition overrides a basic edge class. Each
editor allows only certain kinds of nodes and edges into its
graph. In the figure this is shown with dotted lines between
the nodes and the graphs that accept them.

3.3.2 Integration with Zeus

Another issue to solve was Zeus integration. Being a dis-
tributed tool written in C, communication was achieved fol-
lowing the scheme in Figure 8.

Figure 8: Cluster integration

Solid lines represent SSH connections that link the com-
puter running the VInTiMe plug-in with every computer
in the cluster. Using this protocol, the plug-in transmits
the (platform dependent) Zeus executable, the configura-
tion and TA files, launches the process itself and finally
fetches the generated results. Prior to the introduction of
our tool, all these tasks required manual intervention.

Dotted lines denote socket connections between the Zeus
coordinator and the rest of the computers in the cluster.

3.3.3 Synchronization issues
We have mentioned that complex models can be created

by gluing together several components. In the implementa-
tion, we had to decide whether to use references or copies for
shared components. References have the advantage to eas-
ily reflect component changes in every location where they
appear. On the other hand, copies avoid synchronization
conflicts that could arise if one component is modified while
a SUA using it is being edited in another window.

Since the VInTiMe plug-in uses references, a mechanism
to deal with synchronization was required. Using file times-
tamps to establish if a component has changed presents a
problem: graphical changes (e.g., node positions) as well
as some operating system activities would force unneces-
sary dependent-file reloads. To avoid this, we implemented
a hash function that depends only on the semantic proper-
ties of the models. Each time a SUA editor gets focus we
compare each component hash with the one stored in its
corresponding file header. If they are the same, then the
reloading process is not necessary.

4. CONCLUSIONS AND FUTURE WORK
We managed to integrate into Eclipse a verification

toolset originally made up of several different –although
compatible– command line tools. The end user is now pro-
vided with a simple, yet powerful, interface to solid Soft-
ware Engineering tools. The project’s main goal has been
achieved: via Eclipse, we offer the real-time system designer
an integrated specification and implementation platform.

4

As future work, we wish to continue developing the dif-
ferent individual applications such as Zeus and ObsSlice.
As long as they keep using the same interface the VInTiMe
plug-in will not need to be modified. We would also like to
improve the user experience by adding more wizards and
keeping up to date with Eclipse guidelines and improve-
ments, as well as being able to interchange data with other
tools like Uppaal [4], OpenKronos [15], etc.

A current line of research is to generate code from models.
We would like to incorporate such a feature as it will fit
naturally into the Eclipse platform. Adding UML-RT [14]
formalisms to our tool suite is also in our research agenda.

Finally, we are also evaluating support for conditional sce-
narios in the VTS language [8]. Essentially, conditional sce-
narios state that, whenever a matching for a sub-scenario
(the antecedent) is encountered in a given trace, the same
matching must be extensible to cover one in a set of conse-
quent scenarios. Consequents are not necessarily subsequent
(future) events as in other approaches: they can predicate
about previous occurrences of events (e.g., “if ack is found,
then request must have been issued at least 10 t.u. before”),
and they can even add constraints to the antecedent event-
pattern (e.g., “if two events a and b are encountered in a
trace, then either no c event can be found in between, or
the distance is greater than 5 t.u.”). Support for this kind
of scenarios requires few modifications of the VTS syntax
as well as integrating an existing tool that translates them
into a set of antiscenarios (the ones already supported by
the toolsuite).

5. ABOUT THE AUTHORS
Lućıa Cavatorta, Guido de Caso and Andrés Ferrari: CS

students and main developers of the VInTiMe plug-in.
Vı́ctor Braberman: PhD in CS, Assistant Professor working
on modeling and verification of real-time and distributed
systems. Diego Garbervetsky: PhD candidate in CS and
Assistant Professor working on program analysis and verifi-
cation. Nicolás Kicillof: PhD candidate in CS and Assistant
Professor working on modeling and verification of software
systems. Alfredo Olivero: PhD in CS and Professor work-
ing on modeling and verification of real-time and distributed
systems. Fernando Schapachnik: PhD candidate in CS and
Lecturer working on modeling and verification of real-time
and distributed systems.

6. REFERENCES
[1] A. Alfonso, V. Braberman, N. Kicillof, and A. Olivero.

Visual timed event scenarios. In Proc. of the 26th
ACM/IEEE International Conference on Software
Engineering. ACM Press, 2004.

[2] A. Alfonso, D. Garbervetsky, V. Braberman,
A. Olivero, N. Kicillof, and F. Schapachnik. Vintime:
Combining high-level finesse with low-level muscle to
verify real-time systems. In First International
Conference on Principles of Software Engineering,
PRISE 2004, Buenos Aires, Argentina, November
2004.

[3] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[4] J. Bengtsson, K. Guldstrand Larsen, F. Larsson,
P. Pettersson, and W. Yi. UPPAAL - a tool suite for

automatic verification of real-time systems. In Hybrid
Systems, pages 232–243. Springer-Verlag, 1995.

[5] V. Braberman. Modeling and Checking Real-Time
Systems Designs. Ph d. thesis, Departamento de
Computación, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires, 2000.

[6] V. Braberman and M. Felder. Verification of real-time
designs: Combining scheduling theory with automatic
formal verification. In Software Engineering -
ESEC/FSE’99: 7th European Software Engineering
Conference, Held Jointly with the 7th ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, volume 1687 of LNCS, pages 521–525,
Touluse, France, September 1999. Springer-Verlag.

[7] V. Braberman, D. Garbervetsky, and A. Olivero.
ObsSlice: A timed automata slicer based on observers.
In Proc. of the 16th Intl. Conf. CAV ’04, LNCS.
Springer Verlag, 2004.

[8] V. Braberman, N. Kicillof, and A. Olivero. A
scenario-matching approach to the description and
model checking of real-time properties. IEEE
Transactions on Software Engineering,
31(12):1028–1041, 2005.

[9] V. Braberman, A. Olivero, and F. Schapachnik. Zeus:
A distributed timed model checker based on Kronos.
In 1st Workshop on Parallel and Distributed Model
Checking, affiliated to CONCUR 2002 (13th

International Conference on Concurrency Theory),
volume 68 of ENTCS, Brno, Czech Republic, August
2002. Elsevier.

[10] V. Braberman, A. Olivero, and F. Schapachnik. Issues
in Distributed Model-Checking of Timed Automata:
building zeus. International Journal of Software Tools
for Technology Transfer, 7:4–18, feb 2005.

[11] V. Braberman, A. Olivero, and F. Schapachnik.
Dealing with practical limitations of distributed timed
model checking. Formal Methods in System Design,
2006.

[12] C. Daws and S. Yovine. Two examples of verification
of multirate timed automata with kronos. In
Proceedings of the 16th IEEE Real-Time Systems
Symposium (RTSS’95), pages 66–75, Pisa, Italy,
December 1995. IEEE Computer Society Press.

[13] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some
progress in the symbolic verification of timed
automata. In O. Grumberg, editor, Proceedings of the
9th International Conference on Computer Aided
Verification (CAV’97), volume 1254 of LNCS, pages
179–190, Israel, June 1997. Springer-Verlag.

[14] B. Selic, A. Moore, M. Woodside, B. Watson,
M. Bjorkander, M. Gerhardt, and D. Petriu. UML
Profile for Schedulability, Performance and Time
Specification. Object Management Group, 2005.

[15] S. Tripakis. L’Analyse Formelle des Systemès
Temporisés en Practique. PhD thesis, Univesité
Joseph Fourier, 1998.

[16] S. Tripakis and S. Yovine. Verification of the fast
reservation protocol with delayed transmission using
the tool kronos. In Proceedings of the 4th IEEE
Real-Time Technology and Applications Symposium
(RTAS’98), pages 165–170, Denver, Colorado, USA,
June 1998. IEEE Computer Society Press.

5

