Taxonomy of dynamic task scheduling schemes in
distributed computing systems

H.G. Rotithor

Indexing terms: Distributed computing systems, Taxonomy, Dynamic Task scheduling, State estimation, Decision making

Abstract: System state estimation and decision
making are the two major components of dynamic
task scheduling in a distributed computing system.
Combinations of solutions to each individual
component constitute solutions to the dynamic
task scheduling problem. It is important to con-
sider a solution to the state estimation problem
separate from a solution to the decision making
problem to understand the similarities and differ-
ences between different solutions to dynamic task
scheduling. Also, a solution to the state estimation
problem has a significant impact on the scalability
of a task scheduling solution in large scale distrib-
uted systems. In this paper we present a taxonomy
of dynamic task scheduling schemes that is syn-
thesised by treating state estimation and decision
making as orthogonal problems. Solutions to esti-
mation and decision making are analysed in detail
and the resulting solution space of dynamic task
scheduling is clearly shown. The proposed tax-
onomy is regular, easily understood, compact, and
its wide applicability is demonstrated by means of
examples that encompass solutions proposed in
the literature. The taxonomy illustrates possible
solutions that have not been evaluated and those
solutions that may have potential in future
research.

1 Introduction

Task scheduling in distributed computing systems (DCS)
consists of ‘local’ scheduling and ‘global’ scheduling. A
DCS refers to a loosely coupled collection of processing
elements (PEs). Local scheduling involves assignment of
tasks to time-slices of a single PE whereas global sched-
uling involves deciding where a task should be scheduled
for execution [1]. In this paper task scheduling refers to
global task scheduling. Advantages of task scheduling are
well known and have been discussed in most of the liter-
ature pertaining to the subject [2, 3]. Task scheduling
schemes are broadly classified as ‘static [4-7] or
‘dynamic’ [8-11]. Static schemes use enumerative [12],
graph theoretic [13, 14], mathematical programming
[15] and queuing theoretic [16-19] approaches to gener-

© IEE, 1994

Paper 9630E (C1), first received 11th September 1992 and in revised
form 15th March 1993
The author is with the Department of Electrical and Computer Engin-

eering Worcester Polytechnic Institute, 100 Institute Road, Worcester,
MA 01609

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 1, January 1994

ate either optimal or suboptimal solutions. Static
schemes use a priori knowledge about task behaviour
and do not obtain information about the dynamically
changing state of the system before making a task sched-
uling decision. Dynamic schemes make few assumptions
about task characteristics and obtain information of the
system state before making a task scheduling decision
[20-22]. Dynamic schemes may be adaptive or non-
adaptive [1].

Dynamic task scheduling may be implemented as
‘dynamic task sharing’ or ‘dynamic task balancing’ [23,
24]. Dynamic task scheduling schemes have been applied
extensively in experimental distributed systems and have
shown significant potential for performance improvement
[8-11, 25, 26]. Following the present trend of price
reduction in hardware components, it is anticipated that
large scale DCS incorporating dynamic task scheduling
will rapidly evolve in the future. The major thrust of
research in dynamic task scheduling will be centred on
providing solutions that are scalable to large scale DCS
[8, 27]. To clearly understand current research trends in
dynamic task scheduling and anticipate future trends, it is
important to analyse carefully the characteristics of solu-
tions proposed in the literature and classify them based
on those characteristics. It is the objective of this paper to
present a classification scheme for dynamic task sched-
uling. The taxonomy presented facilitates observing simi-
larities and differences between dynamic task scheduling
schemes based on the characteristics of policies used for
system state estimation and decision making. A tax-
onomy based on a detailed analysis of estimation and
decision making policies provides a lucid insight into the
solution space of dynamic task scheduling because esti-
mation and decision making are two major components
of this process. A need for a detailed analysis of solutions
to estimation and decision making becomes evident after
studying the solutions proposed in the literature which
are either monolithic in nature or combine components
of estimation and decision making in an ambiguous
manner. The taxonomy is applied to differentiate between
solutions reported in the literature and it provides a
common framework within which new solutions to
dynamic task scheduling can be studied. Solutions to
static task scheduling have been classified by Casavant et
al. [1] and are not considered here.

2 Motivation for the proposed taxonomy

Dynamic task scheduling has two major components:
‘system state estimation’ and ‘decision making’. System
state estimation involves disseminating state information
throughout the DCS and constructing an estimate of the

system state based on the states of individual PEs. Deci-
sion making involves choosing a PE to schedule a task
based on the estimate of the system state. A solution to
dynamic task scheduling should thus provide a solution
to estimation and a solution to decision making.
Although decision making involves use of the system
state estimate, it is beneficial to treat solutions to the two
components orthogonal to clearly understand the pos-
sible solutions to dynamic task scheduling. A careful
analysis of solutions to dynamic task scheduling pro-
posed in the literature reveals in many cases that the
solutions do not clearly distinguish between estimation
and decision making and a solution to the estimation
problem is often implicit in the solution to dynamic task
scheduling (overall solution). In some cases the distinc-
tion is maintained and state estimation is called ‘informa-
tion policy’ [20, 28, 29] or ‘information exchange’ [30]
and decision making is called ‘placement policy’ [20, 29],
‘location policy’ [28], or ‘decision making’ [30]. Even in
those cases where an attempt is made to maintain a dis-
tinction, components of estimation and decision making
are not clearly identified and a monolithic solution is
provided to estimation and decision making.

A problem with a monolithic solution, where import-
ant components of estimation and decision making are
not clearly identified, is that the solutions that differ with
respect to these components appear identical. For
example, demand driven information policies are classi-
fied as either sender, receiver, or symmetrically initiated
[29]. This is an example where the distinction is unclear;
a demand driven information policy indicates when infor-
mation dissemination begins, whereas a sender, receiver,
or symmetrically initiated policy relates to how decision
making is done. Similarly, the polling location policy
described in Reference 29 combines state estimation with
decision making into a monolithic solution. Relating esti-
mation and decision making as projected above blurs the
distinction between them, makes it difficult to identify
components of estimation and decision making, and
limits their possible combinations that are usable as dis-
cussed in our analysis later. In this paper we maintain a
clear distinction between estimation and decision making
and provide a set of regular criteria that high-light the
important components of solutions to estimation and
decision making. A detailed analysis based on the selec-
ted criteria clearly separates the solution spaces of esti-
mation and decision making and provides a better view
of solutions to dynamic task scheduling. Our approach
facilitates a study of solutions proposed in the literature
under one framework and an understanding of their simi-
larities and differences. This approach also illustrates
some solutions that have not been evaluated and that
may have potential for providing high performance in
large scale DCS. Such an analysis of estimation and deci-
sion making policies has not been reported in the liter-
ature and is important for the following reasons.

First, it allows one to see different components of a
dynamic task scheduling algorithm clearly and facilitates
a detailed intercomparison of different algorithms as
against a comparison based on a monolithic solution.
Second, Zhou [31] and Ramamritham [32] have shown
that the estimation performance has a significant impact
on the overall performance due to the overhead incurred.
Zhou [8] has also observed that in a large scale DCS, the
scalability of a task scheduling algorithm depends signifi-
cantly on the solution to the estimation problem. The
importance of considering the estimation problem in
detail is thus evident, and its significance is expected to

increase further in future research as large scale DCS
evolve. Third, it motivates choosing appropriate metrics
to evaluate performance of estimation and decision
making so that the effect of each component on the
metric that measures overall performance can be clearly
seen [33]. This can provide an important feedback that is
useful in improving those components of a dynamic task
scheduling algorithm that affect the overall performance
most. Using a monolithic solution for estimation, deci-
sion making, or dynamic task scheduling may not
provide such an insight.

Before describing the taxonomy it is imperative to put
our work in perspective with respect to related work
reported in the literature. Wang et al. [34] have proposed
a taxonomy that classifies task scheduling schemes in one
dimension as source initiative or server initiative and in
the other dimension based on the level of information
dependency in scheduling. However, this taxonomy does
not consider estimation and decision making separately.
Components of estimation are implicit in the scheduling
policy, the number of solutions proposed is limited, and
the taxonomy does not incorporate techniques that
combine source and server initiated policies that have
been implemented since the paper was published. An
elaborate taxonomy of scheduling in general purpose
DCS was proposed by Casavant [1]. This taxonomy
includes static scheduling as well, thus has a much
broader scope than the scope of this paper. However, the
taxonomy presented for dynamic scheduling portion does
not consider estimation and decision making separately
in detail. We provide a better and a more detailed view of
estimation and decision making policies using a well
defined and a regular set of criteria. The criteria used for
analysing estimation and decision making policies are
represented by a set of questions that a designer would
answer while designing the policies. It is not possible to
include every issue that a designer would have to address
as a possible criterion in the analysis because such an
approach will result in the analysis getting too specialised
or unwieldy and cloud up the important issues. Two
important considerations are used in selecting the cri-
teria. First, the selected criteria are relevant to all policies
and any significant differences between policies can be
isolated using these criteria. Second, the selected criteria
address either directly or indirectly important goals that
are common to the design of a large number of policies
such that various policies incorporating different trade-
offs with respect to these goals can be differentiated. For
example, system responsivencss and robustness goals are
affected by choosing either centralised, decentralised, or
hybrid control, communication overhead depends on the
choice of components of an estimation policy whereas
computational overhead depends on the choice of a deci-
sion making transformation as discussed later.

3 A taxonomy for dynamic task scheduling

First, solutions to estimation are examined in detail.

3.1 State estimation

When the PEs responsible for estimation and the PEs
responsible for decision making are different, a state
estimate that is constructed is sent to the PEs that make
decisions. The state information disseminated depends on
a specific implementation and different type of dissem-
ination schemes may be used for different components of
the state information based on the significance of those

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 1, January 1994

components. Examples of state information that may be
disseminated are: time-averaged task queue length [20,
35], memory surplus at a PE [36], computing capacity
surplus at a PE [32], operational status of a PE, etc.
CPU task queuc length has been shown to be an effective
candidate for load index [37]. It should be noted that the
end user of system state information is the decision
making policy which computes a task scheduling decision
based on the available state information. Thus, a specifi-
cation of the nature of state information and a specifi-
cation of the type of transformations performed on the
state information to compute a decision should be
designed to suit the decision making policy. An estima-
tion policy merely provides an infrastructure for exchang-
ing state information and constructing an estimate of the
system state. The computation involved in constructing
an estimate of the system state from the state information
of individual PEs may range from simply creating a
vector of individual state of all PEs [8, 22] to computing
a complex function of individual components of the state
information [36, 38].

Solutions to state estimation are classified based on
answers to the following questions:

(i) Which PEs are responsible for collecting state infor-
mation and constructing an estimate of the system state?

(i) During any state information exchange how many
PEs are involved?

(iii) How does an individual PE choose to disseminate
local state information?

— centralised

£ ——decentralised

solution space under
hybrid option ———

|
|
|
|
|
|
|
I
I
!
|
|
|
I
!
L— hybrid [
|
|
|
|
|
[
|
|
!
|
I
I
I
I
I

Fig. 1 Solution space of estimation schemes

__ complete
information

| partial
information

L variable
information

(iv) At what instant does an individual PE choose to
initiate information dissemination?

Note that it is possible to pose many more questions in
order to capture finer details of an estimation policy. The
answers to questions above contain enough detail to
highlight the important characteristics of the possible
solutions. Various possibilities are discussed in detail
below and are shown in Fig. 1.

Answers to the first question point to various logical
organisations of PEs that are possible for the purpose of
estimation. Three types of organisations commonly used
are: ‘centralised’, ‘decentralised’, and ‘hybrid’.

Centralised [9, 39-42]: A central agent collects state
information and constructs an estimate of the system
state. The central agent may be a physical PE [39, 41] or
a globally shared file that is accessed and updated by all
PEs [9, 43]. This organisation has an advantage that it
incurs low overhead during estimation [31]. The dis-
advantages are a poor responsiveness of a central
resource in a large scale system resulting in poor scal-
ability and the failure-prone nature of a central resource.

Decentralised [20, 25, 28, 44, 45]: In a decentralised
organisation each PE is responsible for collecting state
information and obtaining an estimate of the system
state. This type of organisation has higher availability in
the presence of failures, but it can potentially incur large

periodic
voluntary {cperiodic

combination

periodic
involuntary aperiodic
combination
periodic
composite aperiodic

combination

periodic
voluntary AEqperiodic
combination
periodic
~Eqperiodic

involuntary
combination

periodic
aperiodic
combination

composite

— periodic
voluntary —f—aperiodic
‘—combination
—periodic
involuntary ——aperiodic
‘—combination
— periodic
composite ——aperiodic
—combination

|
|
|
|
|
|
|
|
|
|
|
[
I
|
|
|
I
!
|
|
|
|
I
I
I
|
|
|
|
I
I

Note: The solution space inside the box (dashed) is repeated under centralised and decentralised options

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 1, January 1994

overhead to maintain accurate state infromation and
therefore is not easily scalable to a large scale DCS [20].
Decentralised organisation has been considered for a
number of small to medium size DCS.

Hybrid [8, 22]: A hybrid organisation combines central-
ised and decentralised organisations, inherits their
properties, and attempts to extract advantages of both
organisations. A hybrid organisation may be imple-
mented in two ways. In the first case, PEs are divided
into clusters and state information is exchanged within
and between clusters. Membership within clusters may be
decided by various factors such as network proximity,
type of service performed by PEs etc. An example of this
approach is Utopia [8], which contains physical clusters
and virtual clusters. Virtual clusters contain powerful
PEs with large resource capacities. State information
within clusters is exchanged in a centralised manner
whereas between clusters it is exchanged in a decentral-
ised manner. In the second case, a part of the state infor-
mation is exchanged in a decentralised manner and the
remaining state information is exchanged in a centralised
manner. Stankovic’s [22] scheme is an example of this
approach. In this scheme, all PEs exchange their estim-
ates with neighbors in a decentralised manner and each
PE sends its local state to a central monitor in a central-
ised manner. A cluster-based hybrid scheme has shown
potential for providing the desired performance in large
scale DCS [8].

Answers to the second question decide how many PEs
are involved in exchanging state information. Three
broad categories that can be used to answer this question
are: complete information exchange, partial information
exchange, and variable information exchange. When all
PEs arc involved in every exchange of state information
it is called a ‘complete information exchange’. When only
a subset of all the PEs is involved in every exchange of
state information it is called a “partial information
exchange’. Actual size of the subset and members of the
subset depend on specific implementations. For example
the members of the subset may be chosen based on
network proximity and capacity considerations or at
random. Shin et al. [45] have proposed an algorithm to
specify members of a ‘buddy set’ such that accurate state
information is maintained and instability is avoided. A
‘variable information exchange’ scheme combines com-
plete information exchange and partial information
exchange. Such a scheme may be implemented in two
ways. In the first method, a part of the information is
exchanged involving all PEs in the system whereas the
remaining information is exchanged involving only a
subset of PEs in the system. Stankovic’s [22] scheme is
an example of this method where state estimates are
exchanged only between neighbours (partial) whereas the
local state information is sent by all PEs to a central
monitor (complete) for the purpose of updating the likeli-
hood function and computing optimal strategies. Another
method of implementing a variable information exchange
scheme is to dynamically vary the number of PEs
involved in information exchange during execution,
based on some heuristic, with the intention of optimally
utilising the communication network. The number of PEs
chosen may vary depending on the system state [29].
Shivaratri et al. [29, 46] have described a variable
information exchange policy that adapts to the system
state by appropriately updating and accessing senders,
reccivers, and OK lists which contain PE names with
whom state information is exchanged.

4

Three possibilities for answering the third question
are: voluntary dissemination, involuntary dissemination,
and composite dissemination. In a voluntary scheme, a
PE voluntarily sends out state information to other PEs
when certain conditions are met. Examples of these con-
ditions are described later. In an involuntary scheme, a
PE sends out its state information only when it is
requested by another PE. A PE may request information
from other PEs when certain conditions are met. The
involuntary scheme has been called as ‘information
exchange on demand’ [20] or ‘query based’ [47]. A com-
posite scheme uses a combination of voluntary and invol-
untary schemes, where a PE sends information
voluntarily when certain conditions are met and requests
information when some other conditions are met. An
advantage of the voluntary scheme is that those PEs
which receive state information during the exchange
always have a fairly accurate estimate of the system state
which may be used for making a decision with a minimal
delay; a factor that is important for real time systems
[45]. A disadvantage of the voluntary scheme is that the
information may be sent to PEs which may not have a
use for all the information received. This is true when a
PE receives successive state information updates from
another PE and does not make any decision between
those updates. The involuntary scheme has an advantage
that the information is sent only to that PE which needs
it, but this scheme involves a delay between the instant a
request is made and the instant a reply is received, there-
fore any decision that needs to be made based on the
information received may be delayed. A composite
scheme attempts to extract advantages of the two
schemes. Examples of the composite scheme are:
‘bidding’ and ‘flexible’ algorithms described by Ramamri-
tham [32] and the ‘microeconomic’ algorithms discussed
by Fergusson et al. [48]. In Ramamritham’s algorithms,
surplus information is broadcast periodically to a subset
of PEs voluntarily whereas bids are obtained from a
subset of PEs (involuntary) when a task is to be sched-
uled. It should be noted that bidding uses involuntary
information dissemination. In the microeconomic algo-
rithms, price change information is broadcast voluntarily
whereas the Dutch auction algorithm obtains bids when
a resource becomes idle (involuntary).

The final question involves deciding when information
dissemination begins. Information dissemination involves
either voluntarily sending out state information or invol-
untarily requesting state information. Three techniques
commonly used are: periodic, aperiodic, and combination.
In the ‘periodic’ case, information dissemination repeats
after a prespecified interval. In the ‘aperiodic’ case, infor-
mation dissemination begins when certain conditions
have been met. Examples of conditions that might be met
are: when a PE makes specific state transitions or when a
PE enters a specific state. For example a PE may volun-
tarily disseminate state information when it makes a
transition to a lightly loaded or a heavily loaded state.
Similarly, a PE may request state information when it is
in a lightly loaded state or a heavily loaded state before
making a task scheduling decision. The exact specifi-
cation is algorithm dependent. A ‘combination’ scheme
disseminates a part of the state information periodically
and a part of the state information aperiodically. Exam-
ples of a combination scheme are the ‘bidding’ and the
‘flexible’ schemes, proposed by Ramamritham [32],
where each PE periodically broadcasts its surplus infor-
mation and requests bids aperiodically, that is, only when
a task is to be scheduled. For periodic dissemination

1EE Proc.-Comput. Digit. Tech., Vol. 141, No. 1, January 1994

[22], it is usually difficult to decide a period a priori,
because the system dynamics is not always predictable.
Too small a period causes high overhead and unneces-
sary information being exchanged whereas too large a
period may cause inaccurate estimates. Aperiodic
schemes are relatively easier to specify but they too can
incur high overhead under certain conditions. If the PEs
change state often, a voluntary aperiodic scheme that dis-
seminates all state changes when state transitions occur,
can potentially incur high overhead because information
about all state changes may not be useful to all the PEs.
Involuntary aperiodic scheme that obtains information
only at decision making time can circumvent this
problem by avoiding redundant exchanges of state infor-
mation. However, if PEs continue in a decision making
state for a long time and consequently not change state
very often, an involuntary scheme can incur high over-
head because the system state between successive
requests may not have changed. The overhead problems
with aperiodic dissemination can be handled by use of
intelligent heuristics [45, 46, 497. It should be noted that
the scheduler or the load information module may be
invoked periodically, but information dissemination may
still be aperiodic if it is initiated after specific conditions
have been met.

A solution to the state estimation problem, denoted &,
is given as:

¢ € {(Centralised, Decentralised, Hybrid)
x (Complete, Partial, Variable)
% (Voluntary, Involuntary, Composite)
x (Periodic, Aperiodic, Combination)} (1)

Where & contains one member from each set above and
*x’ denotes a Cartesian product. This formulation results
in 81 possible schemes for estimation.

3.2 Decision making
Most task scheduling schemes use a threshold ‘transfer
policy’ to initiate decision making [21, 28, 297. When the
resource requirements of tasks at a PE cross a threshold,
the PE enters a decision making state and makes a deci-
sion to send or request tasks in that state. The selected
threshold and/or the number of tasks transferred when a
scheduling decision is made decide whether task sharing
or task balancing is achieved. Solutions to decision
making are classified based on answers to the following
questions:

(i) Which PEs are responsible for computing and exe-
cuting task scheduling decisions?

(ii) Whether a decision maker is a source or sink for
tasks in the scheduling process?

(iii) What type of transformations are performed on
the state information that affect computation of a task
scheduling decision?

Various possibilities are discussed in detail below and are
shown in Figs. 2 and 3.

The first question is answered along the line of the
estimation problem. Three possibilities are: centralised,
decentralised, and hybrid. In the ‘centralised’ case, a single
PE makes task scheduling decisions for all PEs in the
system [21, 39, 42]. In the ‘decentralised’ case, each PE is
responsible for computing and executing its own deci-
sions [20, 25, 28, 44, 45]. In the hybrid case, decisions
within a cluster are made by a PE designated as a
manager as described by Zhou [8] and Ahmad [50], that

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 1, January 1994

is, intracluster decisions are centralised at the cluster
manager. Decisions made in one cluster do not directly
depend on those made in the other clusters; thus inter-
cluster decision making is decentralised. The only way

sender simple

initiated model based

. simple
— centralised fetC'e';’:; {
initta model based
simple
symmetric{
model based
sender simple
initiated model based
simple
& —— decentralised i:\eif%\t/:; ‘
model based
simple
symmetric—[
model based
cender simple
initiated model based
. simple
. receiver
L— hybrid initiated

mode! based

simple
symmemc‘l
model based

a

Fig. 2 Solution space of decision making schemes

— first fit
simple
transformation

— best fit

__auction based on
microeconomic model

| stochastic learning automata
(SLA) model

‘Qﬁgfgr;g?;i —— Bayesian decision model
| bidding based on McCulloch
Pitts Neuron

— GAMMON, VWP protocol

b

Fig. 3 Transformations in decision making

intercluster decisions interact is via the estimation
scheme. A hybrid scheme thus combines centralised and
decentralised decision making.

The second question is answered by choosing one of
the three policies: sender initiated [8, 31], receiver initi-
ated [49, 51, 52], and symmetrically initiated {46, 53]. In
the ‘sender initiated policy’, a PE with tasks searches for

5

another PE with lesser number of tasks for remote execu-
tion whereas in a ‘receiver initiated policy’, a PE that has
a relatively smaller number of tasks searches for another
PE that has a higher number of tasks. A ‘symmetrically
initiated policy’ combines sender initiated and receiver
initiated policies in an attempt to extract advantages of
both the policies. Sender initiated decision making pro-
vides good performance at low system loads but is sus-
ceptible to instability at high system loads. Receiver
initiated decision making provides good performance at
high system loads. Symmetrically initiated decision
making has a potential to provide a quick redistribution
of tasks at any load. A stable symmetric policy has been
discussed by Shivaratri [29, 46] and Mirchandaney [53].
The third question can be answered by observing the
transformations that are performed on the state informa-
tion which affect computation of a task scheduling deci-
sion. A classification based on the transformations
performed on the state information is a valuable factor in
distinguishing between decision making policies because
a specification of the state information and transform-
ations performed on the state information are designed to
suit the decision making policy. Such transformations
may be performed when state information is exchanged
[36] and/or at the time of computing a task scheduling
decision [37, 54]. The transformations are classified into
two types. The first type of transformations are simple
and are not based on a specific model. The second type of
transformations are based on a fomal model and the
computations involved are dictated by the model [38,
55]. As an example of the first case, state information
containing current load, memory size, and other resource
utilisation may be directly exchanged between PEs with
very simple transformation (like scaling) or no transform-
ation. Simple transformations that a PE may employ
while computing a decision include finding the first solu-
tion that meets the requirements (first fit) [28, 31, 46, 51]
or the best solution (best fit) [8, 52, 56, 57] that meets the
requirements using the available information. Examples
of requirements that PEs might satisfy include having a
minimum or a maximum value of load index, a value of
load index above or below a threshold, being idle etc. If
more than one candidate meets the requirements, then a
solution may be chosen based a selected discipline like
FCFS or random. For example, choose the PE with
lightest load [8, 56] or heaviest load [52, 57], choose a
PE with the highest surplus [32] or best bid [30, 54], or
choose one of the idle PEs at random [58]. All such solu-
tions are clubbed together into a transformation called
‘simple’. Simple transformation includes weighting com-
ponents of state information, linearly combining
weighted components, and applying the first fit or the
best fit strategies to the result in order to compute a deci-
sion. We do not further classify simple transformations in
a finer detail. A disadvantage of such a decision is that it
may not be possible to differentiate between schemes
which differ only in those fine details, but this is accept-
able, because in that case, it would be desirable to treat
such schemes as identical. A large number of policies
described in the literature use simple transformation for
decision making. Examples of model based transform-
ations are: Bayesian decision model [22], stochastic
learning automata model [37, 54], bidding based on
McCulloch Pitts Neuron [36], auction based on the
microeconomic model [48, 59, 60], and GAMMON
strategy based on a limited contention virtual window
protocol [44]. Various transformations in decision
making are shown in Fig. 3. Regardless of the type of

transformation used, solutions to decision making are
computed under uncertainty about the system state. The
uncertainty is due to finite communication delays in the
network and it may cause the state information to be
inaccurate and decisions to be not optimal [61].

A solution to the decision making problem, denoted 4,
is given as

8 € {(Centralised, Decentralised, Hybrid)
x (Sender initiated, Receiver initiated, Symmetric)
x (Decision making transformation)} ()]
Decision making transformation
€ {Simple, Model based} (3)

The solution space of decision making in Figs. 2 and 3
depicts 63 possible schemes. A solution to the dynamic
task scheduling problem, denoted 7, is then given as

t=¢x6 (]

The proposed taxonomy for generating 7 is thus regular,
easily understood, and provides a large number of solu-
tions to dynamic task scheduling. Not all of the resulting
solutions are interesting from practical considerations.
For example, decentralised estimation paired with cen-
tralised decision making may not be of practical use.
Some of the solutions have been implemented in previous
works reported in the literature whereas some others
with practical merit have not been explored. The utility
of the taxonomy is discussed in the next section.

4 Application to previous works

Application of the taxonomy to previous works is dis-
cussed first. The examples are meant to be illustrative
and not exhaustive.

1. S. Zhou [31], ‘Trace-driven simulation study of
dynamic load balancing’, IEEE Trans. Software Eng.,
Sept. 1988, 14, (8), pp. 1327-1341, IEEE Computer
Society
GLOBAL algorithm: § = {Centralised, Complete, Volun-
tary, Periodic}, 4 = {Decentralised, Sender initiated,
Simple (least loaded PE)}

DISTED algorithm: & = {Decentralised, Complete, Vol-
untary, Periodic}, & = {Decentralised, Sender initiated,
Simple (least loaded PE)}

CENTRAL algorithm: & = {Centralised, Complete, Vol-
untary, Periodic}, 6 = {Centralised, Sender initiated,
Simple (least loaded PE)}

THRHLD algorithm: & = {Decentralised, Partial, Invol-
untary, Aperiodic}, & = {Decentralised, Sender initiated,
Simple (first fit)}, first fit: select first PE whose load is
below a threshold value

LOWEST algorithm: § = {Decentralised, Partial, Invol-
untary, Aperiodic}, é = {Decentralised, Sender initiated,
Simple (least loaded PE)}

RESERVE algorithm: ¢ = (Decentralised, Partial, Invol-
untary, Aperiodic}, § = {Decentralised, Receiver Initiated,
Simple (reserve PEs with load above threshold)}, reser-
vations are stacked when received, most recent reser-
vation wins.

2. D. Eager, E. Lazowska, and J. Zahorjan [28],
‘Adaptive load sharing in homogeneous distributed
systems’, IEEE Trans. Software Eng., May 1986, SE-12,
(5), pp. 662-675, IEEE Computer Society

1EE Proc.-Comput. Digit. Tech., Vol. 141, No. 1, January 1994

Threshold algorithm: & = {Decentralised, Partial, Invol-
untary, Aperiodic}, 6 = {Decentralised, Sender initiated,
Simple (first fit)}

Shortest algorithm: & = {Decentralised, Partial, Involun-
tary, Aperiodic}, & = {Decentralised, Sender initiated,
Simple ((best fit) PE with shortest queue length)}.

3. K. Ramamritham, J. Stankovic, and W. Zhao [32],
‘Distributed scheduling of tasks with deadlines and
resource requirements’, IEEE Trans. Comput., Aug. 1989,
38, (8), pp. 1110-1123, IEEE Computer Society
Focussed algorithm: & = {Decentralised, Partial, Volun-
tary, Periodic}, & = {Decentralised, Sender initiated,
Simple (PE with maximum surplus)}

Bidding algorithm: & = {Decentralised, Partial, Compos-
ite, Combination}, § = {Decentralised, Sender initiated,
Simple (PE with best bid)}

Flexible algorithm: & = {Decentralised, Partial, Compos-
ite, Combination}, & = {Decentralised, Sender initiated,
Simple (max surplus + best bid)} first check max surplus
then best bid. Surplus information is broadcast period-
ically whereas bids are requested aperiodically when a
task is to be scheduled.

4. K.G. Shin, and Y. Chang [45], ‘Load sharing in dis-
tributed real time systems with state change broadcasts’,
IEEE Trans. Comput., Aug. 1989, 38, (8), pp. 1124-1142,
IEEE Computer Society
§ = {Decentralised, Partial (buddy set), Voluntary,
Aperiodic}, § = {Decentralised, Sender initiated, Simple
(underloaded PE at the top of the preferred list)}.

5. I. Ahmad, and A. Ghafoor [50], ‘Semi distributed
load balancing for massively parallel multicomputer
systems’, IEEE Trans. Software Eng., Oct. 1991, SE-17,
(10), pp. 987-1003, IEEE Computer Society
¢ = {Decentralised, Complete, Involuntary, Aperiodic},
8 = {Hybrid, Sender initiated, Simple (based on inter-
sphere and intrasphere loads)}

The PEs within a sphere do not maintain any load infor-
mation, dissemination among schedulers is in a decen-
tralised manner.

6. J.A. Stankovic [22], ‘An application of bayesian
decision theory to decentralised control of job sched-
uling’, IEEE Trans. Comput., Feb. 1985, C-34, (2), pp.
117-130, IEEE Computer Society

¢ = {Hybrid, Variable, Voluntary, Periodic}, &=
{Decentralised, Sender initiated, Bayesian decision
model)}.

7. T. Kunz [37], ‘The influence of different workload
descriptions on a heuristic load balancing scheme’, IEEE
Trans. Software Eng., July 1991, 17, (7), pp. 725-730,
IEEE Computer Society
§ = {Decentralised, Complete, Voluntary, Periodic},
& = {Decentralised, Sender Initiated, SLA model}.

8. K. Baumgartner and B.W. Wah [44], ‘GAMMON:
A load balancing strategy for local computer systems
with multiaccess networks’, IEEE Trans. Comput., Aug.
1989, 38, (8), pp. 1098-1109, IEEE Computer Society
£ = {Decentralised, Complete, Voluntary, Aperiodic},
0 = {Decentralised, Sender Initiated, GAMMON (VWP
Protocol to search for min-max pair)}.

9. S. Zhou, X. Zheng, J. Wang, and P. Delisle [8],
‘Utopia: A load sharing facility for large, heterogeneous
distributed computer systems’, Technical Report, CSRI-
257, (University of Toronto, Toronto, April 1992)

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 1, January 1994

Global algorithm: & = {Hybrid, Partial, Voluntary,
Periodic}, 4 = {Decentralised, Sender initiated, Simple
(least loaded PE)}

Central algorithm: & = {Hybrid, Partial, Voluntary,
Periodic}, 6 = {Hybrid, Sender Initiated, Simple (least
loaded PE)}.

10. D. Ferguson, Y. Yemini, and A. Nikalaou [48],
‘Microeconomic algorithms for load balancing in distrib-
uted computer systems’. Proceedings of the International
Conference on Distributed computing systems, 1988, pp.
491-499
Sealed Bid Auction: § = {Decentralised, Partial, Volun-
tary, Aperiodic}, & = {Decentralised, Sender initiated,
Microeconomic model)}

Dutch auction: § = {Decentralised, Partial, Composite,
Aperiodic}, 6 = {Decentralised, Receiver initiated, Micro-
economic model)}

Price changes are broadcast to all neighbours in both
auctions. Bids are sent by processes to resources in the
secaled bid auction whereas in the Dutch auction bids are
requested when a resource is idle.

11. N.G. Shivaratri, and P. Krueger [46], ‘Two adapt-
ive location policies for global scheduling algorithms’.
Proceedings of the International Conference on Distrib-
uted Computing Systems, 1990, pp. 502-509
Symmetric algorithm: & = {Decentralised, Partial, Invol-
untary, Aperiodic}, & = {Decentralised, Symmetric,
Simple (first fit)}.

12. R.M. Bryant, and R.A. Finkel [62], ‘A stable dis-
tributed scheduling algorithm’. Proceedings of 2nd Inter-
national Conference on Distributed Computing Systems,
1981, pp. 314-323
¢ = {Decentralised, Partial, Voluntary, Aperiodic},
6 = {Decentralised, Sender Initiated, Simple (transfer
tasks in PE pairs from a heavy loaded to a lightly loaded
PE)}.

The following observations are made after applying the
taxonomy to different examples. The first observation
relates to the fact that estimation and decision making
are considered separate problems. Estimation and deci-
sion making do not always use the same type of logical
control organisation. The taxonomy clearly distinguishes
between the type of organisations used for estimation and
decision making; a distinction that is not obvious with a
monolithic solution to estimation or decision making,
For example GLOBAL algorithm [31] uses centralised
estimation and decentralised decision making, the algo-
rithm presented in Reference 22 and the Global algorithm
[8] use hybrid estimation and decentralised decision
making, and the algorithm in Reference 50 uses decentral-
ised estimation and hybrid decision making. The tax-
onomy helps identify significant similarities or differences
that may exist between algorithms. For example
GLOBAL and DISTED algorithms [31] use the same
solution for decision making ({Decentralised, Sender ini-
tiated, Simple (best fit)}) but differ in estimation;
GLOBAL uses centralised estimation whereas DISTED
uses decentralised estimation. THRHLD and RESERVE
algorithms [31] use the same estimation policy
({Decentralised, Partial, Involuntary, Aperiodic}) but use
different decision making policies; THRHLD uses sender
initiated decision making whereas RESERVE uses recei-
ver initiated decision making. The taxonomy is applic-
able to dynamic task scheduling in real-time systems as
well. The real-time systems differ mainly in their decision
making transformations.

It is observed that the simple decision making trans-
formation is applied in a large number of cases whereas
estimation and decision making using a hybrid scheme is
implemented only in a few recent cases. Estimation
schemes that are commonly implemented are:
{Decentralised, Partial, Involuntary, Aperiodic} and
{Decentralised x (Complete, Partial) x Voluntary x
(Periodic, Aperiodic)}, whereas a popular decision
making scheme is {Decentralised, Sender initiated,
Simple (best fit)}.

It should be noted that, individually, every solution for
¢ and 6 can be implemented in practice but all of their
possible combinations may not be of interest. Application
of the analysis to previous works indicates that less than
30% of the solution space for ¢ and & is used. Among
those solutions for ¢ and & that have been implemented,
a small subset of their possible combinations exists. A
study of the solution space of 1 reveals that at least one
third of the space contains useful solutions. This portion
consists of combinations of centralised estimation with
centralised decision making, decentralised estimation
with decentralised decision making, and hybrid estima-
tion with hybrid decision making. In addition, com-
binations of centralised estimation with decentralised
decision making, hybrid estimation with decentralised
decision making further expand the usable space of 7.

The taxonomy illustrates new possibilities that may
have potential to provide the necessary performance in
large scale DCS as discussed below. The solutions devel-
oped in the earlier research were of a puristic nature.
That is, the solutions used either centralised or decentral-
ised policies, voluntary or involuntary dissemination,
sender initiated or receiver initiated policy etc. Each
puristic solution has merits and demerits of its own. In
order to make solutions scalable and applicable to large
scale DCS, an apparent trend in the recent literature is to
develop mixed policies [8, 29, 50] that combine puristic
approaches and have shown potential for providing high
performance in large scale DCS. Such mixed policies
inherit merits and demerits of the constituent puristic
policies and it is possible to tune them beneficially with a
good wunderstanding of the engineering trade-offs
involved. Examples of mixed policies for estimation are:
hybrid policy that combines centralised and decentralised
policies, variable information exchange policy that com-
bines complete information exchange and partial infor-
mation exchange, composite scheme that combines
voluntary and involuntary initiation of information dis-
semination. Examples of mixed policies for decision
making are: a hybrid policy that combines centralised
and decentralised policies, a symmetric policy that com-
bines sender initiated and receiver initiated policies.
Examples of solutions that incorporate mixed policies
which have not been evaluated in the literature and that
may have potential for providing the required per-
formance in large scale DCS are: {Hybrid x (Partial,
Variable) x Composite x Combination} for estimation
and {Hybrid x Symmetric x (Simple, Model based)} for
decision making. It should be noted that different algo-
rithms can be designed using each of these policies with
different heuristics. A mixed policy can be more difficult
to specify as compared to a puristic policy because a
mixed policy may require the use of intelligent heuristics
for efficient adaptation. Such heuristics are not always
easy to incorporate because they are either difficult to
design and/or they increase the overhead. Puristic poli-
cies will have an application in systems that have charac-
teristics conducive for implementing them; for example, if

8

the system size is small and robustness is important,
decentralised control may be used, if the system state
changes rapidly and if estimation delay should be mini-
mised, voluntary dissemination may be used.

The taxonomy presented in this paper will help the
designer of a dynamic scheduling algorithm in comparing
various solutions using a common framework and enable
the designer to precisely specify the components of esti-
mation and decision making policies based on the system
requirements. For example, if the system is moderately
sized and the system state does not change very often, the
designer may choose {Decentralised, Complete, Volun-
tary, Aperiodic} estimation policy whereas if the system
is a large size DCS which rapidly changes state, the
designer may choose {Hybrid, Variable, Involuntary,
Aperiodic} estimation policy. Similar reasoning may be
applied in choosing a decision making policy. The
designer may also choose to switch between the policies
making them adaptive by use of appropriate heuristics
and evaluate the utility of solutions that have not been
considered in the past.

5 Conclusions

A taxonomy for dynamic task scheduling has been pre-
sented. It consider solutions to state estimation and deci-
sion making problems in detail and treats them
orthogonally. Treating the two problems orthogonally is
conceptually beneficial because it allows one to study,
understand, and classify the solutions using a regular and
well defined set of criteria. A detailed understanding of
the estimation solutions is important because the scal-
ability of a dynamic task scheduling algorithm in a large
scale DCS depends significantly on the estimation poli-
cies. Utility of the proposed taxonomy was demonstrated
by applying it to classify solutions proposed in the liter-
ature. The proposed taxonomy illustrates solutions which
may have potential for future research.

Although, treating solutions to estimation in a mono-
lithic manner has shown that an estimation policy signifi-
cantly affects the performance in a large scale DCS, the
effects of varying each component of estimation and deci-
sion making have not been fully analysed. Such an
analysis will be necessary to specify the components for
estimation and decision making in large scale systems.
This problem is being currently addressed as part of the
ongoing research. It is the author’s conjecture that com-
binations using mixed policies will provide solutions to
dynamic task scheduling for large scale DCS in future
research. Another area in which future research is
expected to evolve is in design of new heuristics for esti-
mation and decision making that better adapt to the
changing system state.

6 References

—_

CASAVANT, T.L, and KUHL, J.G.: ‘A taxonomy of scheduling in
general-purpose distributed computing systems’, JEEE Trans. Soft-
ware Eng., Feb. 1988, 14, (2), pp. 141-154

LIVNY, M., and MELMAN, M.: ‘Load balancing in homogeneous
broadcast distributed systems’. Proceedings of the ACM computer
network performance symposium, (ACM, Maryland, April 1982),
pp. 47-55

MUTKA, M.W.,, and LIVNY, M.: ‘Profiling workstations’ available
capacity for remote execution’. Performance ’87. Proceedings of the
12th IFIP WG 7.3 Symposium on Computer performance Brussels,
7-9 Dec. 1987

4 EFE, K.: ‘Heuristic models of task assignment scheduling in distrib-
uted systems’, Computer, IEEE Computer Society, June 1982, PP-
50-56

1

w

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. I, January 1994

5 CHU, W.W., HOLLOWAY, LJ., LAN, M, and EFE, K.: ‘Task
allocation in distributed data prc ing’, IEEE, Computer, Nov.
1980, 13, pp. 57-69

6 HO, Y.C., and KURTARAN, B.: ‘Distributed computing viewed as

a team problem with constraints’, J. Opt. Theory & Appl. (JOT A),

Nov. 1978, 26, (3), pp. 352-365

NICOL, D.M.,, and SALTZ, J.H.: ‘An analysis of scatter decomposi-

tion’, JEEE Trans. Comput., Nov. 1990, 39, (11), pp. 1337-1345

ZHOU, S, ZHENG, X, WANG, J,, and DELISLE, P.: ‘Utopia: A

load sharing facility for large heterogeneous distributed computer

systems’, to appear in ‘Software — Practice and Experience’; also
available as Technical report CSRI-257, University of Toronto,

Toronto, Canada, April 1992

DOUGLIS, F., and OUSTERHOUT, J.: ‘Process migration in the

sprite operating system’. Proceedings of the 7th international con-

ference of Distributed computing systems, Berlin, Germany, 21-25,

Sep., 1987, pp. 18-25

10 EZZAT, A.: ‘Load balancing in NEST: a network of workstations’.

Proc. 1986 Fall Joint Computer Conference, Dallas, TX, No. 1986,

pp. 1138-1149

BERSHAD, B.: ‘Load balancing with maitre d’, Technical report

UCB/CSD 85/276, University of California, Berkeley, CA, Dec. 1985

12 SHEN, C,, and TSAI, W.: ‘A graph matching approach to optimal
task assignment in distributed computing systems using a minimax
criterion’, IEEE Trans. Comput., March 1985, C-34, 3, pp. 197-203

13 BOKHARI, SH.: ‘Dual processor scheduling with dynamic re-
assignment’, IEEE Trans. Software Eng., July 1979, SE-5, (4), pp.
341-349

14 STONE, H.S.: ‘Critical load factors in two processor distributed
systems’, IEEE Trans. Software Eng., May 1978, SE-4, (3), pp. 85-93

15 YI, P, MA, R, LEE, E, and TSUCHIYA, M.: ‘A task allocation
model for distributed computing systems’, IEEE Trans. Comput.,
Jan. 1982, C-31, (1), pp. 41-47

16 CHOU, T.CK., and ABRAHAM, J.A.: ‘Load balancing in distrib-
uted systems’, IEEE Trans., July 1982, SE-8, (4), pp. 401-412

17 KLEINROCK, L.: ‘Queuing systems: volume 2, computer applica-
tions’. John Wiley & Sons (1976)

18 KLEINROCK, L. and NILSSON, A.: ‘On optimal scheduling
algorithms for time-shared systems’, J. ACM, July 1981, 28, (3), pp.
477-486

19 CHOW, Y., and KOHLER, W.H.: ‘Models for dynamic load bal-
ancing in a heterogeneous multiple process or system’, I[EEE Trans.

Comput., May 1979, C-28, (5), pp. 354-361

20 ZHOU, S, and FERRARI, D.: ‘An experimental study of load bal-
ancing performance’, Technical Report UCB/CSD 87/336, Uni-
versity of California, Berkeley, CA, Jan. 1987

21 ZHOU, S, and FERRARI, D.: ‘A measurement study of load bal-
ancing performance’. Proceedings of the international conference on
Distributed computing systems, 1987, pp. 490-497

22 STANKOVIC, J.A.: ‘An application of Bayesian decision theory to

decentralized control of job scheduling’, IEEE Trans. Comput., Feb.

1985, C-34, (2), pp. 117-130

KRUEGER, P, and LIVNY, M,: “When is the best load sharing

algorithm a load balancing algorithm?, Computer Sciences Techni-

cal Report 85-04-01, University of Wisconsin, Madison, MD, April

1987

24 KRUEGER, P, and LIVNY, M.: ‘The diverse objectives of distrib-

uted scheduling policies’. Proceedings of the International con-

ference on Distributed computing systems, 1987, pp. 242-249

THEIMER, M\M,, LANTZ, K.A,, and CHERITON, DR.: ‘Pre-

emptable remote execution facilities for the V-system’. Proceedings

of the 10th symposium on Operating systems principles, Dec. 1985,

pp- 2-12

FINKEL, R, and ARTSY, Y.: ‘Designing a process migration

facility: the charlotte experience’, IEEE, Computer, Sept. 1989, 22,

%), pp. 47-56

MULLENDER, S, VAN ROSSUM, G., TANNENBAUM, AS,

VAN RENESSE, R, and VAN STAVEREN, H.: ‘Amoeba: a dis-

tributed operating system for the 1990s’, IEEE. Computer, May

1990, 23, (5), pp. 44-53

28 EAGER, D, LAZOWSKA, E,, and ZAHORJAN, J.: ‘Adaptive load
sharing in homogeneous distributed systems’, I[EEE Trans. Software
Eng., May 1986, SE-12, (5), pp. 662-675

29 SHIVARATRI, N.G., KRUEGER, P., and SINGHAL, M.: ‘Load
distributing for locally distributed systems’, IEEE Computer, Dec.

1992, 25, (12), pp. 33-44

30 CASAVANT, TL, and KUHL, JG.: ‘A communicating finite

automata approach to modeling distributed computation and its

application to distributed decision making’, IEEE Trans. Comput.,

May 1990, 39, (5), pp. 628-639

ZHOU, S.: ‘Trace-driven simulation study of dynamic load bal-

ancing’, IEEE Trans. Software Eng., Sept. 1988, 14, (9), pp. 1327~

1341

~

o

o

1

o

2

w

2

[y

2

(=)

2

~

3

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 1, January 1994

32

33

34

35

36

37

3

o

39

41

42

4

@

45

46

4

R

4

3

49

50

5

—-

52

5

@

54

5

Yy

56

RAMAMRITHAM, K., STANKOVIC, J.,, and ZHAO, W.: ‘Distrib-
uted scheduling of tasks with deadlines and resource requirements’,
1EEE Trans. Comput., Aug. 1989, 38, (8), pp. 1110-1123
ROTITHOR, H.G, and PYO, S.S.: ‘Decentralized decision making
in adaptive task sharing’. Proceedings of the IEEE symposium on
Parallel and distributed processing, Dallas, TX, 9-13, Dec. 1990,
pp- 34-41

WANG, Y.T., and MORRIS, RJ.T.: ‘Load sharing in distributed
systems’, I[EEE Trans. Comput., March 1985, C-34, (3), pp. 204-217
FERRARI, D., and ZHOU, S.: ‘A load index for dynamic load bal-
ancing’. Proceedings, 1986 Fall joint computer conference, Dallas,
TX, 4-6 Nov., 1986, pp. 684690

STANKOVIC, 1A, and SIDHU, LS.: ‘An adaptive bidding algo-
rithm for proceses, clusters, and distributed groups’. Proceedings of
International Conference on Distributed computer systems, 1984, pp.
49-59

KUNZ, T.: ‘The influence of different workload descriptions on a
heuristic load balancing scheme’, I[EEE Trans. Software Eng., July
1991, 17, (7), pp- 725-730

STANKOVIC, J.A, CHOWDHURY, N, MIRCHANDANEY, R,
and SIDHU, L.: ‘An evaluation of the applicability of different math-
ematical approaches to the analysis of decentralized control algo-
rithms’. Proceedings of the International Conference on Parallel
processing, IEEE Computer Society, 1982, pp. 62-69

HAGMANN, R.: ‘Processor server: sharing power in a workstation
environment’. Proceedings of the 6th IEEE Distributed computing
conference, Cambridge, MA, May 1986, pp. 260-267

LITZKOW, M.J.: ‘Remote Unix’. Proceedings of the summer
USENIX conference, Phoenix, AZ, June 1987

LITZKOW, M.J,, LIVNY, M., and MUTKA, M.W.: ‘Condor — a
hunter of idle workstations’. Proceedings of the 8th International
Conference on Distributed computing systems, San Jose, CA, 13-17
June, 1988, pp. 104-111

LIN, H.C,, and RAGHAVENDRA, C.S.: ‘A dynamic load balancing
policy with a central job dispatcher’, IEEE Trans. Software Eng.,
Feb., 1992, 18, (2), pp. 148-158

MORRIS, JH., SATYANARAYAN, M., CONNER, MH,
HOWARD, JH, ROSENTHAL, DSH., and SMITH, F.D.:
‘Andrew: a distributed personal computing environment’, Commun.
ACM, March 1986, 29, (3), pp. 184-201

BAUMGARTNER, K., and WAH, B.W.: ‘GAMMON: a load bal-
ancing strategy for local computer systems with multiaccess net-
works’, IEEE Trans Comput., Aug. 1989, 38, (8), pp. 1098-1109
SHIN, K.G., and CHANG, Y.: ‘Load sharing in distributed real
time systems with state change broadcasts’, IEEE Trans. Comput.,
Aug, 1989, 38, (8), pp. 11241142

SHIVARATRI, N.G,, and KRUEGER, P.: “Two adaptive location
policies for global scheduling algorithms’. Proceedings of the inter-
national conference on Distributed computing systems, 1990, pp.
502-509

THEIMER, MM, and LANTZ, K.A.: ‘Finding idle machines in
workstation-based distributed system’. Proceedings of the 8th inter-
national conference on Distributed computing systems, 1IEEE, San
Jose, CA 13-17 June, 1988, pp. 112-122

FERGUSON, D., YEMINI, Y., and NIKOLAOU, C.: ‘Micro-
economic algorithms for load balancing in distributed computer
systems’. Proceedings of the international conference on Distributed
computing systems, IEEE 1988, pp. 491-499

NI, LM, XU, C, and GENDREAU, T.B.: ‘A distributed drafting
algorithm for load balancing’, IEEE Trans. Software Eng., Oct.
1985, SE-11, (10), pp. 1153-1161

AHMAD, 1., and GHAFOOR, A.: ‘Semi distributed load balancing
for massively parallel multicomputer systems’, IEEE Trans. Soft-
ware Eng., Oct. 1991, SE-17, (10), pp. 987-1003

EAGER, D., LAZOWSKA, E,, and ZAHORJAN, J.: ‘A comparison
of receiver-initiated and sender-initiated adaptive load sharing’, Sig-
metrics, 1985, 13, (2), pp. 1-3

HAC, A, and JIN, X.: ‘Dynamic load balancing in a distributed
system using a decentralized algorithm’. Proceedings of the inter-
national conference on Distributed computing systems, 1987, pp. 170~
177

MIRCHANDANEY, R., TOWSLEY, D., and STANKOVIC, JA.:
‘Analysis of the effects of delays on load sharing’, IEEE Trans.
Comput., Nov. 1989, 38, (11), pp. 1513-1525

STANKOVIC, J.A.: ‘Stability and distributed scheduling algo-
rithms’, JEEE Trans. Software Eng., Oct. 1985, SE-11, (10), pp.
1141-1152

STANKOVIC, J.A.: ‘A comprehensive framework for evaluating
decentralized control’. Proceedings of the international conference
on Parallel processing, 1980, pp. 181-187

HWANG, K., CROFT, W.,, GOBLE, G., WAH, B., BRIGGS, F.,,
SIMMONS, W., and COATES, C.: ‘A Unix based local computer
network with load balancing’, IEEE, Computer, Apr. 1982, 18, (4),

9

pp. 55-66

57 KALE, L.V.: ‘Comparing the performance of two dynamic load dis-
tribution methods’. Proceedings of the international conference on
Parallel processings, St. Charles, 1L, 1988, pp. 8-12

58 DOUGLIS, F., and OUSTERHOUT, J.: ‘Transparent process
migration for personal workstations’, Technical Report, UCB/CSD
89/540, University of California, Berkeley, CA, 1989

59 MILLER, M.S., and DREXLER, K.E.: ‘Markets and computations:
Agoric open systems’, in HUBERMAN, B.S. (Ed.): ‘The ecology of
computation’ {North-Holland, Amsterdam, 1988), pp. 133176

60 MALONE, T.W., FIKES, RE, GRANT, K.R, and HOWARD,
M.T.: ‘Enterprise: a market-like task scheduler for distributed com-

10

=

6

62

puting environments', in HUBERMAN, B.A. (Ed.): ‘The ecology of
computations’ (North-Holland, Amsterdam, 1988), pp. 177-205
STANKOVIC, J.A.: ‘Achievable decentralized control for functions
of a distributed processing operating system’. Proceedings on the
international conference on Parallel processing. IEEE Computer
Society, 1982, pp. 226-230

BRYANT, R, and FINKEL, R.A.: ‘A stable distributed scheduling
algorithm’. Proceedings of the 2nd international conference on Dis-
tributed computing systems, 1981, pp. 314-323

IEE Proc.-Comput. Digit. Tech., Vol. 141, No. 1, January 1994

