
GRID RESOURCE MANAGEMENT

GRID RESOURCE MANAGEMENT
State of the Art and Future Trends

Edited by

JAREK NABRZYSKI
Poznań Supercomputing and Networking Center

JENNIFER M. SCHOPF
Argonne National Laboratory

JAN WĘGLARZ
Institute of Computing Science, Poznań University of Technology

Kluwer Academic Publishers
Boston/Dordrecht/London

Contents

Preface ix

Contributing Authors xiii

Part I Introduction to Grids and Resource Management

1
The Grid in a Nutshell 3
Ian Foster and Carl Kesselman

2
Ten Actions When Grid Scheduling 15
Jennifer M. Schopf

3
Application Requirements for Resource Brokering in a Grid Environment 25
Michael Russell, Gabrielle Allen, Tom Goodale, Jarek Nabrzyski, and Ed Seidel

4
Attributes for Communication Between Grid Scheduling Instances 41
Uwe Schwiegelshohn and Ramin Yahyapour

5
Security Issues of Grid Resource Management 53
Mary R. Thompson and Keith R. Jackson

Part II Resource Management in Support of Collaborations

6
Scheduling in the Grid Application Development Software Project 73
Holly Dail, Otto Sievert, Fran Berman, Henri Casanova, Asim YarKhan, Sathish Vad-
hiyar, Jack Dongarra, Chuang Liu, Lingyun Yang, Dave Angulo, and Ian Foster

7
Workflow Management in GriPhyN 99
Ewa Deelman, James Blythe, Yolanda Gil, and Carl Kesselman

vi GRID RESOURCE MANAGEMENT

Part III State of the Art Grid Resource Management

8
Grid Service Level Agreements 119
Karl Czajkowski, Ian Foster, Carl Kesselman, and Steven Tuecke

9
Condor and Preemptive Resume Scheduling 135
Alain Roy and Miron Livny

10
Grid Resource Management in Legion 145
Anand Natrajan, Marty A. Humphrey, and Andrew S. Grimshaw

11
Grid Scheduling with Maui/Silver 161
David B. Jackson

12
Scheduling Attributes and Platform LSF 171
Ian Lumb and Chris Smith

13
PBS Pro: Grid Computing and Scheduling Attributes 183
Bill Nitzberg, Jennifer M. Schopf, and James Patton Jones

Part IV Prediction and Matching for Grid Resource Management

14
Performance Information Services for Computational Grids 193
Rich Wolski, Lawrence J. Miller, Graziano Obertelli, and Martin Swany

15
Using Predicted Variance for Conservative Scheduling on Shared Resources 215
Jennifer M. Schopf and Lingyun Yang

16
Improving Resource Selection and Scheduling Using Predictions 237
Warren Smith

17
The ClassAds Language 255
Rajesh Raman, Marvin Solomon, Miron Livny, and Alain Roy

18
Multicriteria Aspects of Grid Resource Management 271
Krzysztof Kurowski, Jarek Nabrzyski, Ariel Oleksiak, and Jan Węglarz

Contents vii

19
A Metaheuristic Approach to Scheduling Workflow Jobs on a Grid 295
Marek Mika, Grzegorz Waligóra, and Jan Węglarz

Part V Data-Centric Approaches for Grid Resource Management

20
Storage Resource Managers 321
Arie Shoshani, Alexander Sim, and Junmin Gu

21
NeST: A Grid Enabled Storage Appliance 341
John Bent, Venkateshwaran Venkataramani„ Nick LeRoy, Alain Roy, Joseph Stanley,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Miron Livny

22
Computation Scheduling and Data Replication Algorithms for Data Grids 359
Kavitha Ranganathan and Ian Foster

Part VI Quality of Service: QoS

23
GARA: A Uniform Quality of Service Architecture 377
Alain Roy and Volker Sander

24
QoS-Aware Service Composition for Large-Scale Peer-to-Peer Systems 395
Xiaohui Gu and Klara Nahrstedt

Part VII Resource Management in Peer-to-Peer Environments

25
A Peer-to-Peer Approach to Resource Location in Grid Environments 413
Adriana Iamnitchi and Ian Foster

26
Resource Management in the Entropia System 431
Andrew A. Chien, Shawn Marlin, and Stephen T. Elbert

27
Resource Management for the Triana Peer-to-Peer Services 451
Ian Taylor, Matthew Shields, and Ian Wang

Part VIII Economic Approaches and Grid Resource Management

28
Grid Resource Commercialization 465
Chris Kenyon and Giorgos Cheliotis

viii GRID RESOURCE MANAGEMENT

29
Trading Grid Services within the UK e-Science Grid 479
Steven Newhouse, Jon MacLaren, and Katarzyna Keahey

30
Applying Economic Scheduling Methods to Grid Environments 491
Carsten Ernemann and Ramin Yahyapour

References 507

Index 567

Preface

Grid computing can be defined as coordinated resource sharing and prob-
lem solving in dynamic, multi-institutional collaborations. More simply, Grid
computing typically involves using many resources (compute, data, I/O, in-
struments, etc.) to solve a single, large problem that could not be performed
on any one resource. Often Grid computing requires the use of specialized
middleware to mitigate the complexity of integrating of distributed resources
within an Enterprise or as a public collaboration.

Generally, Grid resource management is defined as the process of identi-
fying requirements, matching resources to applications, allocating those re-
sources, and scheduling and monitoring Grid resources over time in order to
run Grid applications as efficiently as possible. Grid applications compete for
resources that are very different in nature, including processors, data, scien-
tific instruments, networks, and other services. Complicating this situation is
the general lack of data available about the current system and the competing
needs of users, resource owners, and administrators of the system.

Grids are becoming almost commonplace today, with many projects using
them for production runs. The initial challenges of Grid computing—how to
run a job, how to transfer large files, how to manage multiple user accounts on
different systems—have been resolved to first order, so users and researchers
can now address the issues that will allow more efficient use of the resources.

While Grids have become almost commonplace, the use of good Grid re-
source management tools is far from ubiquitous because of the many open
issues of the field.

Multiple layers of schedulers. Grid resource management involves
many players and possibly several different layers of schedulers. At
the highest level are Grid-level schedulers that may have a more gen-
eral view of the resources but are very “far away” from the resources
where the application will eventually run. At the lowest level is a local
resource management system that manages a specific resource or set of
resources. Other layers may be in between these, for example one to

x GRID RESOURCE MANAGEMENT

handle a set of resources specific to a project. At every level additional
people and software must be considered.

Lack of control over resources. Grid schedulers aren’t local resource
management systems; a Grid-level scheduler may not (usually does not)
have ownership or control over the resources. Most of the time, jobs
will be submitted from a higher-level Grid scheduler to a local set of
resources with no more permissions than the user would have. This lack
of control is one of the challenges that must be addressed.

Shared resources and variance. Related to the lack of control is the
lack of dedicated access to the resources. Most resources in a Grid envi-
ronment are shared among many users and projects. Such sharing results
in a high degree of variance and unpredictability in the capacity of the
resources available for use. The heterogeneous nature of the resources
involved also plays a role in varied capacity.

Conflicting performance goals. Grid resources are used to improve
the performance of an application. Often, however, resource owners
and users have different performance goals: from optimizing the per-
formance of a single application for a specified cost goal to getting the
best system throughput or minimizing response time. In addition, most
resources have local policies that must be taken into account. Indeed, the
policy issue has gained increasing attention: How much of the schedul-
ing process should be done by the system and how much by the user?
What are the rules for each?

These issues have been addressed only in part by the relevant literature in
the field of Grid computing. The first book on Grid computing, The Grid:
Blueprint for a New Computing Infrastructure by Foster and Kesselman, and
its updated second edition, available in 2004, are a good starting point for any
researcher new to the field. In addition, the recent book by Berman, Fox, and
Hey entitled Grid Computing: Making the Global Infrastructure a Reality,
presents a collection of leading papers in the area, including the “Anatomy
of the Grid” and the “Physiology of the Grid”, two papers that provide an
overview of the shape, structure, and underlying functionality of Grid com-
puting. Research results on the topic of resource management in Grid envi-
ronments are presented regularly in selected sessions of several conferences,
including SuperComputing (SC), the IEEE Symposium on High-Performance
Distributed Computing (HPDC), and the Job Scheduling Strategies for Parallel
Processing workshop, as well as in the Global Grid Forum, a standards body
for the field. We present the first book devoted entirely to the open research
questions of Grid resource management.

PREFACE xi

Goals of This Book

Our goal in Grid Resource Management is to present an overview of the state
of the field and to describe both the real experiences and the current research
available today. Other work has discussed the larger Grid community; this
work focuses on the important area of resource management.

A secondary goal of this book is to elucidate the overlap with related areas
of work. Toward this end, we include discussions of work with peer-to-peer
computing, economic approaches, and operations research.

Grid computing is a rapidly developing and changing field, and the chapters
presented here point toward the future work need to make practical resource
management commonplace. A third goal is to help guide this research.

Plan of the Book

In this book we cover the current problems facing users, application de-
velopers, and resource owners when working with Grid resource management
systems. The book is divided into eight topical parts and consists of 30 chap-
ters overall.

Part 1 gives an overview of Grid computing and the general area of re-
source management in Grid environments. The chapters survey the field of
Grid computing, Grid resource management from a user’s point of view, ways
of describing Grid schedulers, and security issues.

Part 2 examines resource management approaches in two collaborative pro-
jects, GrADS and GriPhyN, and how these projects provide Grid capabilities
to researchers.

Part 3 gives an overview of existing resource management systems that are
more production oriented than research oriented. This includes a review of
the current resource management approaches in the Globus Toolkit, Legion,
Condor, PBS, LSF, and Maui/Silver.

Part 4 discusses current research for matching and prediction techniques. It
shows how prediction can be used in Grid resource management and describes
techniques that are used to map the resources to jobs.

Part 5 presents many aspects of scheduling data in a Grid environment. The
issue is important to data-driven Grid applications, where large files (up to
petabyte scale) are needed by jobs in remote locations, where the job is to be
executed either by creating a storage appliance, such as in the NeST approach,
or by using more efficient replication of data.

Part 6 describes the use of quality of service (QoS) for Grid systems. In a
Grid environment, QoS applies not just to networks but to all resources.

Part 7 presents some of the issues related to resource management on Peer-
to-Peer (P2P) Grids, that is, those that combine the complexity of Grids with

xii GRID RESOURCE MANAGEMENT

the scale and dynamism of peer-to-peer communities. Discussions of Entropia
and Triana follow a resource location approach for small-world environments.

Part 8 focuses on several economic approaches to Grid resource manage-
ment. Many researchers have begun to make comparisons between the open
commodities market and ways of sharing resources in a distributed community,
and these are discussed in the context of several projects.

Audience

We intend this book for a broad audience, including practitioners and re-
searchers interested in scheduling and also graduate students and advanced
undergraduate students in computer science interested in Grid computing, op-
erations research, management sciences, distributed computing, and networks.

We believe that this book will be especially useful as a college text for a se-
nior undergraduate- or graduate-level course, one lecture spent on each chapter.
In a semester-length course, some topics can be covered in greater depth, and
many chapters include recommendations for further reading. This book will
also be useful for a full-year course if combined in the first semester with one
of the general overview texts listed earlier for the first semester.

Thanks

With great pleasure we acknowledge the efforts of the many people who
have contributed to the development of this book. First and foremost we thank
the contributing authors, who took time out of their busy schedules to con-
tribute their work and comments to this volume.

We are also very grateful for the expert help we received during the prepa-
ration of the manuscript. Special thanks to Bogdan Ludwiczak, PSNC, for
assistance with editing and LaTex, and Gail Pieper, ANL, for amazing techni-
cal editing. Both went out of their way to help us meet seemingly impossible
deadlines.

JENNIFER M. SCHOPF, JAREK NABRZYSKI, AND JAN WĘGLARZ

Contributing Authors

Gabrielle Allen
Max Planck Institute for Gravitational Physics

allen@aei-potsdam.mpg.de

Dave Angulo
Department of Computer Science, The University of Chicago

dangulo@cs.uchicago.edu

Andrea C. Arpaci-Dusseau
Department of Computer Science, University of Wisconsin-Madison

dusseau@cs.wisc.edu

Remzi H. Arpaci-Dusseau
Department of Computer Science, University of Wisconsin-Madison

remzi@cs.wisc.edu

John Bent
Department of Computer Science, University of Wisconsin-Madison

johnbent@cs.wisc.edu

Fran Berman
San Diego Supercomputer Center, University of California, San Diego
Department of Computer Science and Engineering, University of California, San Diego

berman@cs.ucsd.edu

James Blythe
Information Sciences Institute, University of Southern California

blythe@isi.edu

xiv GRID RESOURCE MANAGEMENT

Henri Casanova
San Diego Supercomputer Center, University of California, San Diego
Department of Computer Science and Engineering, University of California, San Diego

casanova@sdsc.edu

Giorgos Cheliotis
IBM Zürich Research Lab

gic@zurich.ibm.com

Andrew A. Chien
Department of Computer Science and Engineering, University of California, San Diego

achien@cs.ucsd.edu

Karl Czajkowski
Information Science Institute, University of Southern California

karlcz@isi.edu

Holly Dail
San Diego Supercomputer Center, University of California, San Diego

hdail@cs.ucsd.edu

Ewa Deelman
Information Sciences Institute, University of Southern California

deelman@isi.edu

Jack Dongarra
Department of Computer Science, University of Tennessee

dongarra@cs.utk.edu

Stephen T. Elbert
International Business Machines

selbert@us.ibm.com

Carsten Ernemann
Computer Engineering Institute, University Dortmund

carsten.ernemann@uni-dortmund.de

Contributing Authors xv

Ian Foster
Department of Computer Science, The University of Chicago
Mathematics and Computer Science Division, Argonne National Laboratory

foster@mcs.anl.gov

Yolanda Gil
Information Sciences Institute, University of Southern California

gil@isi.edu

Tom Goodale
Max Planck Institute for Gravitational Physics

goodale@aei-potsdam.mpg.de

Andrew S. Grimshaw
Department of Computer Science, University of Virginia

agrimshaw@avaki.com

Junmin Gu
Lawrence Berkeley National Laboratory

jgu@lbl.gov

Xiaohui Gu
Department of Computer Science, University of Illinois at Urbana-Champaign

xgu@cs.uiuc.edu

Marty A. Humphrey
Department of Computer Science, University of Virginia

humphrey@cs.virginia.edu

Adriana Iamnitchi
Department of Computer Science, The University of Chicago

anda@cs.uchicago.edu

David B. Jackson
Cluster Resources, Inc.

jacksond@supercluster.org

xvi GRID RESOURCE MANAGEMENT

Keith R. Jackson
Lawrence Berkeley National Laboratory

krjackson@lbl.gov

Katarzyna Keahey
Mathematics and Computer Science Division, Argonne National Laboratory

keahey@mcs.anl.gov

Chris Kenyon
IBM Zürich Research Lab

chk@zurich.ibm.com

Carl Kesselman
Information Science Institute, University of Southern California

carl@isi.edu

Krzysztof Kurowski
Poznań Supercomputing and Networking Center

kikas@man.poznan.pl

Nick LeRoy
Department of Computer Science, University of Wisconsin-Madison

nleroy@cs.wisc.edu

Chuang Liu
Department of Computer Science, The University of Chicago

chliu@cs.uchicago.edu

Miron Livny
Department of Computer Science, University of Wisconsin-Madison

miron@cs.wisc.edu

Ian Lumb
Platform Computing Inc.

ilumb@platform.com

Contributing Authors xvii

Jon MacLaren
Manchester Computing, The University of Manchester

jon.maclaren@man.ac.uk

Shawn Marlin
Science Application International Corporation

shawn.r.marlin@saic.com

Marek Mika
Institute of Computing Science, Poznań University of Technology

mika@cs.put.poznan.pl

Lawrence J. Miller
Department of Computer Science, University of California, Santa Barbara

ljmiller@cs.ucsb.edu

Jarek Nabrzyski
Poznań Supercomputing and Networking Center

naber@man.poznan.pl

Klara Nahrstedt
Department of Computer Science, University of Illinois at Urbana-Champaign

klara@cs.uiuc.edu

Anand Natrajan
Department of Computer Science, University of Virginia

an4m@cs.virginia.edu

Steven Newhouse
London e-Science Centre, Imperial College London

sjn5@doc.ic.ac.uk

Bill Nitzberg
Altair Grid Technologies

bill@computer.org

xviii GRID RESOURCE MANAGEMENT

Graziano Obertelli
Department of Computer Science, University of California, Santa Barbara

graziano@cs.ucsb.edu

Ariel Oleksiak
Poznań Supercomputing and Networking Center

ariel@man.poznan.pl

James Patton Jones
Altair Grid Technologies

jjones@pbspro.com

Rajesh Raman
Department of Computer Science, University of Wisconsin-Madison

dr rajesh raman@yahoo.com

Kavitha Ranganathan
Department of Computer Science, The University of Chicago

kavitha@uchicago.edu

Alain Roy
Department of Computer Science, University of Wisconsin-Madison

roy@cs.wisc.edu

Michael Russell
Max Planck Institute for Gravitational Physics

russell@aei-potsdam.mpg.de

Volker Sander
Central Institute for Applied Mathematics, Forschungszentrum Jülich GmbH

v.sander@fz-juelich.de

Jennifer M. Schopf
Mathematics and Computer Science Division, Argonne National Laboratory

jms@mcs.anl.gov

Contributing Authors xix

Uwe Schwiegelshohn
Computer Engineering Institute, University Dortmund

uwe.schwiegelshohn@udo.edu

Ed Seidel
Max Planck Institute for Gravitational Physics

eseidel@aei-potsdam.mpg.de

Matthew Shields
Department of Computer Science and Physics and Astronomy, Cardiff University

matthew.shields@astro.cf.ac.uk

Arie Shoshani
Lawrence Berkeley National Laboratory

shoshani@lbl.gov

Otto Sievert
Department of Computer Science and Engineering, University of California, San Diego

otto@cs.ucsd.edu

Alexander Sim
Lawrence Berkeley National Laboratory

asim@lbl.gov

Chris Smith
Platform Computing Inc.

csmith@platform.com

Warren Smith
Computer Sciences Corporation
NASA Ames Research Center

wwsmith@nas.nasa.gov

Marvin Solomon
Department of Computer Science, University of Wisconsin-Madison

solomon@cs.wisc.edu

xx GRID RESOURCE MANAGEMENT

Joseph Stanley
Department of Computer Science, University of Wisconsin-Madison

jass@cs.wisc.edu

Martin Swany
Department of Computer Science, University of California, Santa Barbara

swany@cs.ucsb.edu

Ian Taylor
Department of Computer Science, Cardiff University

i.j.taylor@cs.cardiff.ac.uk

Mary R. Thompson
Lawrence Berkeley National Laboratory

mrthompson@lbl.gov

Steven Tuecke
Mathematics and Computer Science Division, Argonne National Laboratory

tuecke@mcs.anl.gov

Sathish Vadhiyar
Department of Computer Science, University of Tennessee

vss@cs.utk.edu

Venkateshwaran Venkataramani
Oracle

veeve@cs.wisc.edu

Jan Węglarz
Institute of Computing Science, Poznań University of Technology
Poznań Supercomputing and Networking Center

jan.weglarz@cs.put.poznan.pl

Grzegorz Waligóra
Institute of Computing Science, Poznań University of Technology

grzegorz.waligora@cs.put.poznan.pl

Contributing Authors xxi

Ian Wang
Department of Computer Science and Physics and Astronomy, Cardiff University

i.n.wang@cs.cardiff.ac.uk

Rich Wolski
Department of Computer Science, University of California, Santa Barbara

rich@cs.ucsb.edu

Ramin Yahyapour
Computer Engineering Institute, University Dortmund

ramin.yahyapour@uni-dortmund.de

Lingyun Yang
Department of Computer Science, The University of Chicago

lyang@cs.uchicago.edu

Asim YarKhan
Department of Computer Science, University of Tennessee

yarkhan@cs.utk.edu

I

INTRODUCTION TO GRIDS AND
RESOURCE MANAGEMENT

Chapter 1

THE GRID IN A NUTSHELL

Ian Foster
�

and Carl Kesselman
�

�
Mathematics and Computer Science Division, Argonne National Laboratory�
Information Sciences Institute, University of Southern California

Abstract The emergence and widespread adoption of Grid computing has been fueled by
continued growth in both our understanding of application requirements and the
sophistication of the technologies used to meet these requirements. We provide
an introduction to Grid applications and technologies and discuss the important
role that resource management will play in future developments.

1. INTRODUCTION

The term “the Grid” was coined in the mid-1990s to denote a (then) pro-
posed distributed computing infrastructure for advanced science and engineer-
ing. Much progress has since been made on the construction of such an in-
frastructure and on its extension and application to commercial computing
problems. And while the term “Grid” has also been on occasion applied to
everything from advanced networking and computing clusters to artificial in-
telligence, there has also emerged a good understanding of the problems that
Grid technologies address, as well as a first set of applications for which they
are suited.

Grid concepts and technologies were initially developed to enable resource
sharing within scientific collaborations, first within early Gigabit test-
beds [CS92, Cat92, Mes99] and then on increasingly larger scales [BCF

�
98,

GWWL94, BJB
�

00, SWDC97, JGN99, EH99]. At the root of these collab-
orations was the need for participations to share not only datasets but also
software, computational resources, and even specialized instruments such as
telescopes and microscopes. Consequently, a wide range of application types
emerged that included distributed computing for computationally demanding

4 GRID RESOURCE MANAGEMENT

data analysis (pooling of compute power and storage), the federation of diverse
distributed datasets, collaborative visualization of large scientific datasets, and
coupling of scientific instruments such as electron microscopes, high-energy
x-ray sources, and experimental data acquisitions systems with remote users,
computers, and archives (increasing functionality as well as availabili-
ty) [BAJZ98, Joh99, HKL

�
00].

We have argued previously that underlying these different usage modalities
there exists a common set of requirements for coordinated resource sharing
and problem solving in dynamic, multi-institutional collaborations [FKT01].
The term virtual organization is often applied to these collaborations because
of their distributed and often ephemeral nature. This same requirement for
resource sharing across cross organizational collaborations arises within com-
mercial environments, including enterprise application integration, on-demand
service provisioning, data center federation, and business-to-business partner
collaboration over the Internet. Just as the World Wide Web began as a tech-
nology for scientific collaboration and was adopted for e-business, we see a
similar trajectory for Grid technologies.

The success of the Grid to date owes much to the relatively early emergence
of clean architectural principles, de facto standard software, aggressive early
adopters with challenging application problems, and a vibrant international
community of developers and users. This combination of factors led to a solid
base of experience that has more recently driven the definition of the service-
oriented Open Grid Services Architecture that today forms the basis for both
open source and commercial Grid products. In the sections that follow, we
expand on these various aspects of the Grid story and, in so doing, provide
context for material to be presented in later chapters.

2. VIRTUAL ORGANIZATIONS

We have defined Grids as being concerned with enabling coordinated re-
source sharing and problem solving in dynamic, multi-institutional virtual or-
ganizations. The sharing that we are concerned with is not primarily file ex-
change, as supported by the Web or peer-to-peer systems, but rather direct
access to computers, software, data, services, and other resources, as required
by a range of collaborative problem-solving and resource-brokering strategies
emerging in industry, science, and engineering. This sharing is, necessarily,
highly controlled, with resource providers and consumers defining clearly and
carefully just what is shared, who is allowed to share, and the conditions under
which sharing occurs. A set of individuals and/or institutions defined by such
sharing rules form what we call a virtual organization (VO) [FKT01].

The Grid in a Nutshell 5

VOs can vary greatly in terms of scope, size, duration, structure, distribu-
tion, and capabilities being shared, community being serviced, and sociology.
Examples of VOs might include

the application service providers, storage service providers, cycle
providers, and consultants engaged by a car manufacturer to perform
scenario evaluation during planning for a new factory;

members of an industrial consortium bidding on a new aircraft;

a crisis management team and the databases and simulation systems that
they use to plan a response to an emergency situation; and

members of a large international high-energy physics collaboration.

These examples only hint at the diversity of applications enabled by cross-
organizational sharing. In spite of these differences, however, study of under-
lying technology requirements leads us to identify a broad set of common con-
cerns and requirements. We see a need to establish and maintain highly flexi-
ble sharing relationships capable of expressing collaborative structures such as
client-server and peer-to-peer, along with more complex relationships such as
brokered or sharing via intermediaries. We also see requirements for complex
and high levels of control over how shared resources are used, including fine-
grained access control, delegation, and application of local and global policies.
We need basic mechanisms for discovering, provisioning, and managing of
varied resources, ranging from programs, files, and data to computers, sensors,
and networks, so as to enable time critical or performance-critical collabora-
tions, and for diverse usage modes, ranging from single user to multi-user and
from performance sensitive to cost sensitive and hence embracing issues of
quality of service, scheduling, co-allocation, and accounting.

3. GRID APPLICATIONS

Various Grid application scenarios have been explored within both science
and industry. We present here a representative sample of thirteen such ap-
plications that collectively introduce the broad spectrum of usage scenarios
that are driving Grid adoption and development. These applications include
compute-intensive, data-intensive, sensor-intensive, knowledge-intensive, and
collaboration-intensive scenarios and address problems ranging from multi-
player video gaming, fault diagnosis in jet engines, and earthquake engineer-
ing to bioinformatics, biomedical imaging, and astrophysics. Further details
on each application can be found in a set of case studies collected in a recent
book [FK04].

Distributed Aircraft Engine Diagnostics. The U.K. Distributed Aircraft
Maintenance Environment (DAME) project is applying Grid technologies to

6 GRID RESOURCE MANAGEMENT

the challenging and broadly important problem of computer-based fault di-
agnosis, an inherently distributed problem in many situations because of the
range of data sources and stakeholders involved [AJF

�
04]. In particular,

DAME is working to diagnose faults in Rolls Royce aircraft engines, based
on sensor data recorded at the rate of one gigabyte per engine per transatlantic
flight.

NEESgrid Earthquake Engineering Collaboratory. The U.S. Network for
Earthquake Engineering Simulation (NEES) is an ambitious project to enable
remote access to, and collaborative use of, the specialized equipment used to
study the behavior of structures, such as bridge columns when subjected to the
forces of an earthquake. NEESgrid uses Grid technology to provide remote
access to experimental access (i.e., teleobservation and telecontrol); to couple
physical experiments with numerical simulation; and to archive, discover, and
analyze simulation, experimental, and observational data [KPF04, PKF

�
01].

World Wide Telescope. Advances digital astronomy enable the systematic
survey of the heavens and the collection of vast amounts of data from tele-
scopes over the world. New scientific discoveries can be made not only by
analyzing data from an individual instruments but also by comparing and cor-
relating data from different sky surveys [SG04, SG01]. The emerging “World
Wide Telescope,” or virtual observatory, uses Grid technology to federate data
from hundreds of individual instruments, allowing a new generation of as-
tronomers to perform analysis of unprecedented scope and scale. While the
most immediate challenges relate to data formats and data management, the
need to manage the computation resources consumed by such data analysis
tasks is a looming issue.

Biomedical Informatics Research Network. (BIRN). The goal of this U.S.
project is to federate biomedical imaging data for the purpose of research and,
ultimately, improved clinical case [EP04]. To this end, BIRN is deploying
compute-storage clusters at research and clinical sites around the United States
and deploying Grid middleware to enable the integration of image data from
multiple locations.

In silico Experiments in Bioinformatics. The U.K. myGrid project is apply-
ing Grid technologies to the semantically rich problems of dynamic resource
discovery, workflow specification, and distributed query processing, as well as
provenance management, change notification, and personalization [GPS04].

story, a group of U.S. physicists and computer scientists completed a chal-
lenging data generation and analysis task for a high energy physics experiment,
harnessing computing and storage resources at six sites to generate 1.5 million
simulated events during a two-month run [GCC

�
04].

Virtual Screening on Desktop Computers. In this drug discovery applica-
tion, an intra-Grid composed of desktop PCs was used for virtual screening
of drug candidates [Chi04, CFG02, CCEB03]. An existing molecular dock-

The Grid in a Nutshell 7

ing application was integrated into a commercial Grid environment to achieve
a significant increase in processing power over what drug companies would
typically have dedicated to compound screening.

Enterprise Resource Management. GlobeXplorer, a provider of online satel-
lite imagery, is an example of an enterprise that uses advanced resource man-
agement techniques to improve the efficiency and flexibility of intra-Enterprise
resource usage [Gen04].

Infrastructure for Multiplayer Games. Butterfly.net, a service provider for
the multiplayer videogaming industry, is using Grid technologies to deliver
scalable hosting services to game developers [LW04, LWW03]. A potentially
huge number of game participants and a need for interactive response lead to
challenging performance requirements

Service Virtualization. As we discuss in greater detail below, virtualization
is playing an increasingly important role in enterprise IT infrastruc-
tures [XHLL04]. In a recent success story, the deployment of a resource and
service virtualization solution at a global investment bank resulted in signifi-
cant performance improvements.

Access Grid Collaboration System. High-end collaboration and conferenc-
ing environments represent an application domain for Grid technologies that is
rapidly growing in importance [CDO

�
00, Ste04]. The delivery of rich group

collaboration capabilities places heavy demands on Grid technologies.
Collaborative Astrophysics. An enthusiastic community of computational

astrophysicists has been working for some years to apply Grid technologies
to a range of problems in high-end collaborative science [ABH

�
99, ADF

�
01,

AS04].

4. GRID TECHNOLOGY

The development of Grids has been spurred and enabled by the staged devel-
opment of increasingly sophisticated and broadly used technologies. As illus-
trated in Figure 1.1, early experiments with “metacomputing” [CS92, Cat92,
EH99, GWWL94, Mes99] worked primarily with custom tools or specialized
middleware [GRBK98, FGN

�
96, FGT96, Sun90] that emphasized message-

oriented communication between computing nodes.
The transition from metacomputing to Grid computing occurred in the mid-

1990s with the introduction of middleware designed to function as wide-area
infrastructure to support diverse online processing and data-intensive appli-
cations. Systems such as the Storage Resource Broker [BMRW98], Globus
Toolkit R

�
[FK97], Condor [FTF

�
02, LLM88], and Legion [GW97, GFKH99]

were developed primarily for scientific applications and demonstrated at vari-
ous levels of scale on a range of applications. Other developers attempted to
leverage the middleware structure being developed for the World Wide Web by

8 GRID RESOURCE MANAGEMENT

using HTTP servers or Web browsers as Grid computing platforms [BKKW96,
BSST96, GBE

�
98]. These systems did not gain significant use, however,

partly because the middleware requirements for distributed information sys-
tems such as the Web are different from those for Grid applications.

Globus Toolkit. By 1998, the open source Globus Toolkit (GT2) [FK97]
had emerged as a de facto standard software infrastructure for Grid computing.
GT2 defined and implemented protocols, APIs, and services used in hundreds
of Grid deployments worldwide. By providing solutions to common problems
such as authentication, resource discovery, resource access, and data move-
ment, GT2 accelerated the construction of real Grid applications. And by
defining and implementing “standard” protocols and services, GT pioneered
the creation of interoperable Grid systems and enabled significant progress
on Grid programming tools. This standardization played a significant role
in spurring the subsequent explosion of interest, tools, applications, and de-
ployments, as did early success stories such as a record-setting 100,000-entity
distributed interactive simulation scenario in 1998 [BDG

�
98, BCF

�
98] and

the solution in June 2000 of nug30 [ABGL02], a previously open problem in
optimization theory.

The GT2 protocol suite leveraged heavily existing Internet standards for
security, resource discovery, and security. In addition, some elements of the
GT2 protocol suite were codified in formal technical specifications and re-
viewed within standards bodies: notably, the GridFTP data transfer protocol
(for which multiple implementations exist) [ABB

�
02b] and elements of the

Grid Security Infrastructure [FKTT98, TEF
�

02]. In general, however, GT2
“standards” were not formal, well documented, or subject to public review.
They were not in themselves a sufficient basis for the creation of a mature Grid
ecosystem. Similar comments apply to other important Grid technologies that
emerged during this period, such as the Condor high throughput computing
system.

This period also saw significant development of more user-oriented tools,
most building on the Globus Toolkit. For example, MPICH-G [KTF03], a
Grid-aware version of the public-domain Message Passing Interface
(MPI) [GLS94], provided a standards-based message-passing environment.
Tools such as NetSolve and Ninf [TNS

�
02] sought to deliver Grid-enabled

software to a nonexpert user community, while portal toolkits [AC02, Nov02,
PLL

�
03, RAD

�
02, TMB

�
01] allowed Grid-enabled applications to be de-

livered to end users via a standard Web browser. Workflow systems such as
DAGman [DAG] and Chimera [FVWZ02], and scripting languages such as
pyGlobus [Jac02], focus on coordination of components written in traditional
programming languages.

Open Grid Services Architecture. As interest in Grids continued to grow,
and in particular as industrial interest emerged, the importance of true stan-

The Grid in a Nutshell 9

In
c
re

a
s
e

d
 f

u
n

c
ti
o

n
a

lit
y
,

s
ta

n
d

a
rd

iz
a

ti
o

n

Custom

solutions

1990 1995 2000 2005

Open Grid

Services Arch

Real standards

Multiple implementations

Web services, etc.

Managed shared

virtual systems
Computer science research

Globus Toolkit

Defacto standard

Single implementation

Internet
standards

2010

Figure 1.1. The evolution of Grid technology.

dards increased. The Global Grid Forum, established in 1998 as an inter-
national community and standards organization, appeared to be the natural
place for such standards to be developed, and indeed multiple standardiza-
tion activities are now under way. In particular, 2002 saw the emergence of
the Open Grid Services Architecture (OGSA) [FKNT02], a true community
standard with multiple implementations–including the OGSA-based Globus
Toolkit 3.0 [WSF

�
03], released in 2003. Building on and significantly extend-

ing GT2 concepts and technologies, OGSA firmly aligns Grid computing with
broad industry initiatives in service-oriented architecture and Web services.

In addition to defining a core set of standard interfaces and behaviors that
address many of the technical challenges introduced above, OGSA provides a
framework within which can be defined a wide range of interoperable, portable
services. OGSA thus provides a foundation on which can be constructed a rich
Grid technology ecosystem comprising multiple technology providers. Thus,
we see, for example, major efforts under way within the U.K. eScience pro-
gramme to develop data access and integration services [ACK

�
04, PAD

�
02].

Concurrent with these developments we see a growing recognition that large-
scale development and deployment of Grid technologies is critical to future
success in a wide range of disciplines in science, engineering, and the human-
ities [ADF

�
03], and increasingly large investments within industry in related

10 GRID RESOURCE MANAGEMENT

areas. While research and commercial uses can have different concerns, they
also have much in common, and there are promising signs that the required
technologies can be developed in a strong academic-industrial partnership. The
current open source code base and emerging open standards provide a solid
foundation for the new open infrastructure that will result from this work.

Managed, Shared Virtual Systems. The definition of the initial OGSA
technical specifications is an important step forward, but much more remains
to be done before the full Grid vision is realized. Building on OGSA’s service-
oriented infrastructure, we will see an expanding set of interoperable services
and systems that address scaling to both larger numbers of entities and smaller
device footprints, increasing degrees of virtualization, richer forms of sharing,
and increased qualities of service via a variety of forms of active management.
This work will draw increasingly heavily on the results of advanced computer
science research in such areas as peer-to-peer [CMPT04, FI03], knowledge-
based [BLHL01, GDRSF04], and autonomic [Hor01] systems.

5. SERVICE ORIENTATION, INTEGRATION, AND
VIRTUALIZATION

Three related concepts are key to an understanding of the Grid and its con-
temporary technologies and applications: service orientation, integration, and
virtualization.

A service is an entity that provides some capability to its clients by ex-
changing messages. A service is defined by identifying sequences of specific
message exchanges that cause the service to perform some operation. By thus
defining these operations only in terms of message exchange, we achieve great
flexibility in how services are implemented and where they are located. A
service-oriented architecture is one in which all entities are services, and thus
any operation that is visible to the architecture is the result of message ex-
change.

By encapsulating service operations behind a common message-oriented
service interface, service orientation isolates users from details of service im-
plantation and location. For example, a storage service might present the
user with an interface that defines, among other things, a store file opera-
tion. A user should be able to invoke that operation on a particular instance
of that storage service without regard to how that instance implements the
storage service interface. Behind the scenes, different implementations may
store the file on the user’s local computer, in a distributed file system, on a
remote archival storage system, or in free space within a department desk-
top pool-or even to choose from among such alternatives depending on con-
text, load, amount paid, or other factors. Regardless of implementation ap-
proach, the user is aware only that the requested operation is executed-albeit

The Grid in a Nutshell 11

with varying cost and other qualities of service, factors that may be subject
to negotiation between the client and service. In other contexts, a distribu-
tion framework can be used to disseminate work across service instances, with
the number of instances of different services deployed varying according to
demand [AFF

�
01, GKTA02, XHLL04].

While a service implementation may directly perform a requested opera-
tion, services may be virtual, providing an interface to underlying, distributed
services, which in turn may be virtualized as well. Service virtualization also
introduces the challenge, and opportunity, of service integration. Once appli-
cations are encapsulated as services, application developers can treat different
services as building blocks that can be assembled and reassembled to adapt to
changing business needs. Different services can have different performance
characteristics; and, in a virtualized environment, even different instances of
the same service can have different characteristics. Thus new distributed sys-
tem integration techniques are needed to achieve end-to-end guarantees for
various qualities of service.

6. THE FUNDAMENTAL ROLE OF RESOURCE
MANAGEMENT

Fundamental to both service virtualization and integration is the ability to
discover, allocate, negotiate, monitor, and manage the use of network-acces-
sible capabilities in order to achieve various end-to-end or global qualities
of service. Within a service-oriented architecture, these capabilities may in-
clude both traditional resources (computational services offered by a computer,
network bandwidth, or space on a storage system) and virtualized services
(e.g., database, data transfer, simulation), which may differ in the function
they provide to users but are consistent in the manner in which they deliver that
function across the network. Nevertheless, for historical reasons, and without
loss of generality, the term resource management is commonly used to describe
all aspects of the process of locating various types of capability, arranging for
their use, utilizing them, and monitoring their state.

In traditional computing systems, resource management is a well-studied
problem. Resource managers such as batch schedulers, workflow engines, and
operating systems exist for many computing environments. These resource
management systems are designed and operate under the assumption that they
have complete control of a resource and thus can implement the mechanisms
and policies needed for effective use of that resource in isolation. Unfortu-
nately, this assumption does not apply to the Grid. We must develop methods
for managing Grid resources across separately administered domains, with the
resource heterogeneity, lose of absolute control, and inevitable differences in
policy that result. The underlying Grid resource set is typically heterogeneous

12 GRID RESOURCE MANAGEMENT

even within the same class and type of resource. For example, no two com-
pute clusters have the same software configuration, local resource management
software, administrative requirements, and so forth. For this reason, much of
the early work in Grid resource management focused on overcoming these ba-
sic issues of heterogeneity, for example through the definition of standard re-
source management protocols [CFK

�
98b, CFK

�
02] and standard mechanisms

for expressing resource and task requirements [RLS98].
More important than such issues of plumbing, however, is the fact that dif-

ferent organizations operate their resources under different policies; the goals
of the resource user and the resource provider may be inconsistent, or even in
conflict. The situation is further complicated by the fact that Grid applications
often require the concurrent allocation of multiple resources, necessitating a
structure in which resource use can be coordinated across administrative do-
mains [CFK99, FFR

�
02]. Much current research in Grid resource manage-

ment is focused on understanding and managing these diverse policies from
the perspective of both the resource provider and the consumer [BWF

�
96,

AC02, KNP01, CKKG99] with the goal of synthesizing end-to-end resource
management in spite of the fact that the resources are independently owned
and administered.

The emergence of service-oriented architecture, the increased interest in
supporting a broad range of commercial applications, and the natural evolu-
tion of functionality are collectively driving significant advances in resource
management capabilities. While today’s Grid environment is primarily ori-
ented toward best-effort service, we expect the situation to become substan-
tially different in the next several years, with end-to-end resource provisioning
and virtualized service behavior that is indistinguishable from nonvirtualized
services becoming the rule rather than the exception.

We possess a good understanding of the basic mechanisms required for a
provisioned Grid. Significant challenges remain, however, in understanding
how these mechanisms can be effectively combined to create seamless virtu-
alized views of underlying resources and services. Some of these challenges
lie strictly within the domain of resource management, for example, robust
distributed algorithms for negotiating simultaneous service level agreements
across a set of resources. Other issues, such as expression of resource policy
for purposes of discovery and enhanced security models that support flexible
delegation of resource management to intermediate brokers are closely tied to
advances in other aspects of Grid infrastructure. Hence, the key to progress
in the coming years is to create an extensible and open infrastructure that can
incorporate these advances as they become available.

The Grid in a Nutshell 13

7. SUMMARY

We have provided both a historical and a technological introduction to Grid
computing. As we have discussed, the dynamic and cross-organizational na-
ture of the Grid is at the root of both the opportunities and challenges that are
inherent in Grid infrastructure and applications. These same issues also have
a profound effect on resource management. While many of the resource man-
agement techniques developed over the past 40 years have applicability to the
Grid, these techniques must be reassessed in the context of an environment
in which both absolute knowledge of system state and absolute control over
resource policy and use are not possible.

The development of reasonably mature Grid technologies has allowed many
academic and industrial application groups to achieve significant successes.
Nevertheless, much further development is required before we can achieve the
ultimate goal of virtualized services that can be integrated in flexible ways to
deliver strong application-level performance guarantees. Advances in resource
management will be key to many of these developments.

Acknowledgments

This work was supported in part by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Advanced Sci-
entific Computing Research, U.S. Department of Energy, Office of Science,
under Contract W-31-109-Eng-38, and by the NSF Middleware Initiative.

Chapter 2

TEN ACTIONS WHEN GRID SCHEDULING

The User as a Grid Scheduler

Jennifer M. Schopf
Mathematics and Computer Science Division, Argonne National Laboratory

Abstract In this chapter we present a general architecture or plan for scheduling on a
Grid. A Grid scheduler (or broker) must make resource selection decisions in an
environment where it has no control over the local resources, the resources are
distributed, and information about the systems is often limited or dated. These
interactions are also closely tied to the functionality of the Grid Information
Services. This Grid scheduling approach has three phases: resource discovery,
system selection, and job execution. We detail the steps involved in each phase.

1. INTRODUCTION

More applications are turning to Grid computing to meet their computa-
tional and data storage needs. Single sites are simply no longer efficient for
meeting the resource needs of high-end applications, and using distributed re-
sources can give the application many benefits. Effective Grid computing is
possible, however, only if the resources are scheduled well.

Grid scheduling is defined as the process of making scheduling decisions
involving resources over multiple administrative domains. This process can
include searching multiple administrative domains to use a single machine or
scheduling a single job to use multiple resources at a single site or multiple
sites. We define a job to be anything that needs a resource – from a bandwidth
request, to an application, to a set of applications (for example, a parameter
sweep). We use the term resource to mean anything that can be scheduled:
a machine, disk space, a QoS network, and so forth. In general, for ease of
use, in this chapter we refer to resources in terms associated with compute
resources; however, nothing about the approach is limited in this way.

In general we can differentiate between a Grid scheduler and a local re-
source scheduler, that is, a scheduler that is responsible for scheduling and

16 GRID RESOURCE MANAGEMENT

managing resources at a single site, or perhaps only for a single cluster or
resource. These are the lowest-level of lower-level scheduling instances dis-
cussed in Chapter 4 One of the primary differences between a Grid scheduler
and a local resource scheduler is that the Grid scheduler does not “own” the
resources at a site (unlike the local resource scheduler) and therefore does not
have control over them. The Grid scheduler must make best-effort decisions
and then submit the job to the resources selected, generally as the user. Fur-
thermore, often the Grid scheduler does not have control over the full set of
jobs submitted to it, or even know about the jobs being sent to the resources it
is considering use of, so decisions that tradeoff one job’s access for another’s
may not be able to be made in the global sense. This lack of ownership and
control is the source of many of the problems to be solved in this area.

In this chapter we do not address the situation of speculative execution -
submitting a job to multiple resources and, when one begins to run, canceling
the other submissions. We do, however, discuss resource selection (sometimes
termed resource discovery [Ber99]), assignment of application tasks to those
resources (mapping [Ber99]), and data staging or distribution.

Historically, the most common Grid scheduler is the user, and that is the
point of view presented in this chapter. Many efforts are under way, however,
to change this situation [Nab99, Zho92, IBM01, GP01, BWF

�
96] and work

detailed in Chapters 11, 13, and 9 among others. Many of these are discussed
later in this book, but it can be argued that no single system addresses all the
needed features yet. In Section 2 we briefly discuss the related Grid Informa-
tion System interactions expected by a Grid-level scheduler. In Section 3 we
describe the three phases a user goes through when scheduling a job over re-
sources on multiple administrative domains–resource discovery, selection, and
job execution. Most implemented systems follow a similar pattern of execu-
tion. For each step we define the work involved and distinguish it from the
work of a common parallel scheduler.

2. GRID INFORMATION SERVICE

The decisions a scheduler makes are only as good as the information pro-
vided to it. Many theoretical schedulers assume one has 100 percent of the
information needed, at an extremely fine level of detail, and that the informa-
tion is always correct. In Grid scheduling, this is far from our experience. In
general we have only the highest level of information. For example, it may
be known that an application needs to run on Linux, will produce output files
somewhere between 20 MB and 30 MB, and should take less than three hours
but might take as long as five. Or, it may be known that a machine is running
Linux and has a file system located at a certain address that ten minutes ago

Ten Actions When Grid Scheduling 17

had 500 MB free, but there is no information about what will be free when
one’s application runs there.

In general, Grid schedulers get information from a general Grid Information
System (GIS) that in turn gathers information from individual local resources.
Examples of these systems are the Globus Monitoring and Discovery Service
(MDS2) [CFFK01, MDS] and the Grid Monitoring Architecture (GMA), de-
veloped by the Global Grid Forum performance working group [TAG

�
03],

which has several reference implementations under development [pyG, Smi01,
CDF

�
01, GLM], and is being deployed as part of the European Data Grid

project. These two approaches emphasize different pieces of the monitoring
problem although both address it as a whole: MDS2 concentrates on the re-
source discovery portion, while GMA concentrates on the provision of data,
especially streaming data.

While different in architecture, all Grid monitoring systems have common
features [ZFS03]. Each deals with organizing sets of sensors (information
providers in MDS2 or producers in GMA) in such a way that an outside system
can have easy access to the data. They recognize that some data is more stati-
cally oriented, such as type of operating system or which file systems are acces-
sible; and this static data is often cached or made more rapidly available. They
serve dynamic data in very different ways (streaming versus time-out caches,
for example) but recognize the need for a heavier-weight interaction for dealing
with data that changes more often. All of these systems are extensible to allow
additional monitoring of quantities, as well as higher-level services such as
better predictions or quality-of-information metrics [VS03, WSH99a, SB99].

Typically, Grid monitoring systems must have an agreed-upon schema, or
way to describe the attributes of the systems, in order for different systems
to understand what the values mean. This is an area of on-going work and
research [GLU, DAM, CGS] with considerable debate about how to represent
a schema (using LDAP, XML, SQL, CIM, etc.) and what structure should be
inherent to the descriptions.

3. STAGES OF GRID SCHEDULING

Grid scheduling involves three main phases: resource discovery, which gen-
erates a list of potential resources; information gathering about those resources
and selection of a best set; and job execution, which includes file staging and
cleanup. These phases, and the steps that make them up, are shown in Fig-
ure 2.1.

3.1 Phase 1: Resource Discovery

The first stage in any scheduling interaction involves determining which re-
sources are available to a given user. The resource discovery phase involves

18 GRID RESOURCE MANAGEMENT

1 . A u tho riza tion F ilte ring

3 . M in . R equ irem ent F ilte ring

2 . A pp lica tion D efin ition

P hase O ne-R esource D iscovery

5 . S ystem S elec tion

4 . In fo rm ation G athering

P hase T w o - S ystem S elec tion

7 . Job S ubm ission

6 . A dvance R eservation

9 . M on ito ring P rogress

8 . P repara tion T asks

11 . C lean -up T asks

10 Job C om pletion

P hase T hree- Job E xecu tion

Figure 2.1. Three-phase plan for Grid scheduling.

selecting a set of resources to be investigated in more detail in Phase 2, infor-
mation gathering. i At the beginning of Phase 1, the potential set of resources
is the empty set; at the end of this phase, the potential of resources is some
set that has passed a minimal feasibility requirements. The resource discovery
phase is done in three steps: authorization filtering, job requirement definition,
and filtering to meet the minimal job requirements.

3.1.1 Step 1: Authorization Filtering

The first step of resource discovery for Grid scheduling is to determine the
set of resources that the user submitting the job has access to. In this regard,
computing over the Grid is no different from remotely submitting a job to a
single site: without authorization to run on a resource, the job will not run. At
the end of this step the user will have a list of machines or resources to which
he or she has access. The main difference that Grid computing lends to this
problem is sheer numbers. It is now easier to get access to more resources,
although equally difficult to keep track of them. Also, with current GIS imple-
mentations, a user can often find out the status of many more machines than
where he or she has accounts on. As the number of resources grows, it simply
does not make sense to examine those resources that are not authorized for use.

A number of recent efforts have helped users with security once they have
accounts, but very little has been done to address the issues of accounting and
account management [SN02]. When a user is performing scheduling at the

Ten Actions When Grid Scheduling 19

Grid level, the most common solution to this problem is to simply have a list
of account names, machines, and passwords written down somewhere and kept
secure. While the information is generally available when needed, this method
has problems with fault tolerance and scalability.

3.1.2 Step 2: Application Requirement Definition

To proceed in resource discovery, the user must be able to specify some
minimal set of job requirements in order to further filter the set of feasible
resources (see Step 3).

The set of possible job requirements can be very broad and will vary sig-
nificantly between jobs. It may include static details (the operating system or
hardware for which a binary of the code is available, or the specific architecture
for which the code is best suited) as well as dynamic details (for example, a
minimum RAM requirement, connectivity needed, or /tmp space needed). The
more details that are included, the better the matching effort can be.

Currently, the user specifies job requirement information as part of the com-
mand line or submission script (in PBS [PBS] or LSF [Xu01], for example),
or as part of the submitted ClassAd (in approaches using Condor’s matchmak-
ing, as detailed in Chapter 23, such as the Cactus work [ADF

�
01] or the EDG

broker [GP01]). Many projects have emphasized the need for job requirement
information as well, for example with AppLeS [COBW00, BWC

�
03] and the

Network Weather Service [Wol98]. It is generally assumed in most system
work that the information is simply available.

On a Grid system this situation is complicated by the fact that application
requirements will change with respect to the systems they are matched to. For
example, depending on the architecture and the algorithm, memory require-
ments may change, as may libraries needed, or assumptions on available disk
space.

Very little work has been done to automatically gather this data, or to store it
for future use. This is in part because the information may be hard to discover.
Attempts to have users supply this information on the fly has generally resulted
in data that has dubious accuracy - for example, notice how almost every par-
allel scheduler requires an expected execution time, but almost every system
administration working with these schedulers compensates for the error in the
data, by as much as 50% in some cases.

3.1.3 Step 3: Minimal Requirement Filtering

Given a set of resources to which a user has access and at least a small set of
job requirements, the third step in the resource discovery phase is to filter out
the resources that do not meet the minimal job requirements. At the end of this

20 GRID RESOURCE MANAGEMENT

step, the user acting as a Grid scheduler will have a reduced set of resources to
investigate in more detail.

Current Grid Information Services are set up to contain both static and dy-
namic data, described in Section 2. Many of them cache data with an associated
time-to-live value to allow quicker response times of long-lived data, includ-
ing basic resource information such as operating system, available software,
and hardware configuration. Since resources are distributed and getting data to
make scheduling decisions can be slow, this step uses basic, mostly static, data
to evaluate whether a resource meets some basic requirements. This is similar
to the discovery stage in a monitoring and discovery service.

A user doing his or her own scheduling will simply go through the list of
resources and eliminating the ones that do not meet the job requirements (as
much as they are known), for example, ruling out all the non-AFS-accessible
resources for applications requiring AFS.

Because the line between static and dynamic data is often one drawn for
convenience and not for science, most automatic systems incorporate this fea-
sibility searching into Step 4, where full-fledged queries are made on the sys-
tem. We maintain that as systems grow, this stage will be an important one for
continued scalability of other Grid-level schedulers.

3.2 Phase 2: System Selection

Given a group of possible resources (or a group of possible resource sets),
all of which meet the minimum requirements for the job, a single resource (or
single resource set) must be selected on which to schedule the job. This selec-
tion is generally done in two steps: gathering detailed information and making
a decision. We discuss these two steps separately, but they are inherently inter-
twined, as the decision process depends on the available information.

3.2.1 Step 4: Dynamic Information Gathering

In order to make the best possible job/resource match, detailed dynamic in-
formation about the resources is needed. Since this information may vary with
respect to the application being scheduled and the resources being examined,
no single solution will work in all, or even most, settings. The dynamic in-
formation gathering step has two components: what information is available
and how the user can get access to it. The information available will vary from
site to site, and users currently have two man sources–a GIS, as described in
Section 2, and the local resource scheduler. Details on the kind of information
a local resource scheduler can supply are given in Chapter 4.

A more recent issue when interacting with multiple administrative domains
is the one of local site policies, and the enforcement of these policies. It is
becoming common for a site to specify a percentage of the resources (in terms

Ten Actions When Grid Scheduling 21

of capacity, rime, or some other metric) to be allocated specifically for Grid
use. These details must also be considered as part of the dynamic collection of
data.

In general, on the Grid, scalability issues as well as consistency concerns
significantly complicate the situation. Not only must more queries be made,
but also if resources are inaccessible for a period of time, the system must
evaluate what to do about the data needed for those sites. Currently, this sit-
uation is generally avoided by assuming that if dynamic data is not available,
the resources should be ignored; however, in larger systems, another approach
should be considered.

A large body of predictive work exists in this area (for example Chap-
ters 14, 15, and 16) but most of it requires additional information not available
on current systems. And even the more applied work [Wol98, GTJ

�
02, SFT98,

Dow97] has not been deployed on most current systems.

3.2.2 Step 5: System Selection

With the detailed information gathered in Step 4, the next step is to decide
which resource (or set of resources) to use. Various approaches are possible,
and we give examples of three in this book, Condor matchmaking in Chap-
ter 17, multi-criteria in Chapter 18, and meta-heuristics in Chapter 19.

3.3 Phase 3: Job Execution

The third phase of Grid scheduling is running a job. This involves a number
of steps, few of which have been defined in a uniform way between resources.

3.3.1 Step 6: Advance Reservation (Optional)

In order to make the best use of a given system, part or all of the resources
may have to be reserved in advance. Depending on the resource, an advance
reservation can be easy or hard to do and may be done with mechanical means
or human means. Moreover, the reservations may or may not expire with or
without cost.

One issue in having advance reservations become more common is the need
for the lower-level resource to support the fundamental services on the native
resources. Currently, such support is not implemented for many resources,
although as service level agreements become more common (see Chapter 8),
this is likely to change.

3.3.2 Step 7: Job Submission

Once resources are chosen, the application can be submitted to the resources.
Job submission may be as easy as running a single command or as complicated

22 GRID RESOURCE MANAGEMENT

as running a series of scripts and may or may not include setup or staging (see
Step 8).

In a Grid system, the simple act of submitting a job can be made very com-
plicated by the lack of any standards for job submission. Some systems, such
as the Globus GRAM approach [CFK

�
98b, GRAc], wrap local scheduling

submissions but rely heavily on local-parameter fields. Ongoing efforts in the
Global Grid Forum [GGF, SRM] address the need for common APIs [DRM],
languages [SD03], and protocols [GRAa], but much work is still to be done.

3.3.3 Step 8: Preparation Tasks

The preparation stage may involve setup, staging, claiming a reservation, or
other actions needed to prepare the resource to run the application. One of the
first attempts at writing a scheduler to run over multiple machines at NASA
was considered unsuccessful because it did not address the need to stage files
automatically.

Most often, a user will run scp, ftp or a large file transfer protocol such
as GridFTP [ABB

�
02a] to ensure that the data files needed are in place. In

a Grid setting, authorization issues, such as having different user names at
different sites or storage locations, as well as scalability issues, can complicate
this process.

3.3.4 Step 9: Monitoring Progress

Depending on the application and its running time, users may monitor the
progress of their application and possibly change their mind about where or
how it is executing.

Historically, such monitoring is typically done by repetitively querying the
resource for status information, but this is changing over time to allow easier
access to the data. If a job is not making sufficient progress, it may be resched-
uled (i.e., returning to Step 4). Such rescheduling is significantly harder on a
Grid system than on a single parallel machine because of the lack of control
involved - other jobs may be scheduled and the one of concern pre-empted,
possibly without warning or notification. In general, a Grid scheduler may not
be able to address this situation. It may be possible to develop additional prim-
itives for interactions between local systems and Grid schedulers to make this
behavior more straight-forward.

3.3.5 Step 10: Job Completion

When the job is finished, the user needs to be notified. Often, submission
scripts for parallel machines will include an e-mail notification parameter.

For fault-tolerant reasons, however, such notification can prove surprisingly
difficult. Moreover, with so many interacting systems one can easily envi-

Ten Actions When Grid Scheduling 23

sion situations in which a completion state cannot be reached. And of course,
end-to-end performance monitoring to ensure job completion is a very open
research question.

3.3.6 Step 11: Cleanup Tasks

After a job is run, the user may need to retrieve files from that resource
in order to do data analysis on the results, remove temporary settings, and so
forth. Any of the current systems that do staging (Step 8) also handle cleanup.
Users generally do this by hand after a job is run, or by including clean-up
information in their job submission scripts.

4. CONCLUSION

This chapter defines the steps a user currently follows to make a scheduling
decision across multiple administrative domains. This approach to scheduling
on a Grid comprises three main phases: (1) resource discovery, which gener-
ates a list of potential resources; (2) information gathering and choosing a best
set of resources; and (3) job execution, which includes file staging and cleanup.

While many schedulers have begun to address the needs of a true Grid-level
scheduler, none of them currently supports the full range of actions required.
Throughout this chapter we have directed attention to complicating factors that
must be addressed for the next generation of schedulers to be more successful
in a complicated Grid setting.

Acknowledgments

Thanks to the Grid Forum Scheduling Area participants for initial discus-
sions, especially the co-chair, Bill Nitzberg (PBS, Altair Engineering). Many
thanks also to Alan Su (UCSD, AppLeS), Dave Jackson (Maui/Silver), Alain
Roy (University of Wisconsin, Condor), Dave Angulo (University of Chicago,
Cactus), and Jarek Nabrzyski (Poznan, GridLab). This work was supported
in part by the Mathematical Information and Computational Sciences Division
Subprogram of the Office of Advanced Scientific Computing Research, Office
of Science, U.S. Department of Energy, under contract W-31-109-Eng-38.

Chapter 3

APPLICATION REQUIREMENTS FOR
RESOURCE BROKERING IN A GRID
ENVIRONMENT

Michael Russell,
�

Gabrielle Allen,
�

Tom Goodale,
�

Jarek Nabrzyski,
�

and Ed
Seidel

�
�
Max Planck Institute for Gravitational Physics�
Poznan Supercomputing and Networking Center

Abstract We discuss the problem of resource brokering in a Grid environment from the
perspective of general application needs. Starting from a illustrative scenario,
these requirements are broken down into the general areas of computation, data,
network, security and accounting. Immediate needs for applications to profitably
start using the Grid are discussed, along with case studies for applications from
astrophysics and particle physics.

1. INTRODUCTION

In this chapter we identify some of the key application resource brokering
requirements that Grids must be able to satisfy, based on our experiences in
working with teams of distributed researchers studying complex physics phe-
nomena. In our research we are confronted daily with the need for a global
computing infrastructure and with our own dreams of building more power-
ful applications. To better illustrate our point, we begin the next section with
a scenario that details one of the many ways we envision using Grids in the
future. In Section 3, we detail the general requirements highlighted by this
scenario and others. Section 4 discusses some of the key challenge problems
that remain to be solved before such a scenario can be realized. Section 5 de-
scribes some of our own work in developing Grid solutions for the astrophysics
community and a second use case illustrating some of the general requirements
of high-energy physics applications. Finally, we conclude our chapter with a
brief look at important issues related to the resource brokering requirements.

26 GRID RESOURCE MANAGEMENT

2. MOTIVATING SCENARIO

Now consider the following scenario, illustrated in Figure 3.1, motivated
by the very real and pressing needs of the gravitational physics community
spurred by the imminent arrival of data from a world wide network of laser
interferometric gravitational wave detectors [Gib02].

The gravitational wave detector network collects a TByte of data each day
that must be searched using different algorithms for possible events such as
black hole and neutron star collisions, pulsar signals or other astronomical
phenomena. Routine real-time analysis of gravitational wave data from the
detector identifies a burst event, but this standard analysis reveals no informa-
tion about the burst source or location. To obtain this location, desperately
required by astrophysicists for turning their telescopes to view the event before
its visual signal fades, a large series of pre-computed possible gravitational
wave signals, called templates, must be cross-correlated against the detector
data.

Gwen, an Italian astrophysicist monitoring the real-time analysis, accesses
the detector’s Portal, where the performance tool reports that 3 TFlops/s will be
needed to analyze the 100GB of raw data within an hour and that the data will
need to be transfered to the machines before analysis can begin. Local Italian
resources are insufficient, so using the brokering tool, she locates the fastest
available machines around the world that have networks to the gravitational
wave data repository that are fast and stable enough for the transfer of the nec-
essary data in a matter of minutes. She selects five machines that together are
able to perform the data analysis in the required hour, and with scheduling and
data management tools, data is moved, executables created, and the analysis
begins.

The analysis proceeds smoothly until it is determined that a custom template
is required that must be created from a full scale numerical black hole simula-
tion. The portal, aware that Gwen is still online and working, informs her of
this development by instant message. Gwen is immediately able to use the bro-
kering tool to search for large resources capable of running such a simulation.
No single machine is available, but two machines are located that together form
a large virtual machine connected by sufficient bandwidth and as a unit they
will be able to complete the distributed simulation in an additional hour. Gwen
then uses the application tools on the portal to assemble the correct executable
for this run and stages it to run immediately across the two machines. Before
leaving for lunch she uses the broker to extend the reservations on the original
resources required for the data analysis to allow for this set back.

An hour later, the simulation finishes and the needed template is automati-
cally delivered to the template repository. The original data analysis can now
continue.

Application Requirements for Resource Brokering in a Grid Environment 27

Astrophysicist uses
GEO600 Portal from her
workstation to analysis

data from Hannover
Gravitational Wave

Detector

Select
appropriate

compute
resources

Stage detector
data and

executables

Notify when
human

intervention
required

Simulations
started on large
supercomputers

Contract violation
prompts migration

to new resource

Output templates
assembled and

delivered

Templates provide
accurate wave from
gravitational wave

detector data used to
position

observational
telescopes

GEO600 Portal

GEO600 Portal

Community notified

Figure 3.1. A Grid scenario showing the potential use of resource brokering in a gravitational
wave data analysis.

28 GRID RESOURCE MANAGEMENT

In an cafe twenty minutes later, an urgent text message on her mobile phone
from the Portal’s notification tool informs her that one machine is now over-
loaded, breaking its runtime contract. The Portal confirmation to make use
of a different, more expensive, machine in order to fulfill the contract. She
judges that time is of the essence, connects with her PDA to the Portal, and
instructs the migration tool to move this part of the analysis to the indicated
machine. Within the specified hour, a second text message tells her and her
collaborators that the analysis is finished, and provides the location of the re-
sulting data, which is available for all to view. Using this data, observatories
are now correctly instructed to position their telescopes, and astrophysicists are
able to find and view an exceptionally strong gamma-ray burst, characteristic
of a supernovae.

This scenario illustrates how, given the appropriate resource brokering mech-
anisms, a researcher need not be concerned with where and how computing
resources are acquired and used. It may be, that the researcher wishes to make
a final call as to which resources are used, as was in the case in our example.
Even then this decision process should be relatively straightforward given a
user’s preferences and application resource requirements. Indeed, Grids are
motivated by these requirements.

While the complete scenario is still futuristic, many elements of the re-
quired infrastructure are already in place, and research projects such as appli-
cation-focused GridLab [GL, ADD

�
03], GrADS [BCC

�
01], and

GriPhyN [DKM
�

02] are all working to provide missing components and to
provide working environments and tools to make such scenarios a reality. How-
ever, many challenges, both technical and sociological, remain in developing
both the Grid infrastructure and the applications that will successfully run in
such environments. Resource brokering is the fundamental component that
will move us much closer to making this a reality.

3. GENERAL REQUIREMENTS

The gravitational wave detection scenario above provides a useful back-
drop in which to discuss the basic resource brokering needs many applications
exhibit, but by no means are the requirements discussed here limited to that
example. There are at least three major requirements areas that have direct
bearing on the performance needs of applications and we address them here –
compute-related, data-related, and network-related requirements.

3.1 Compute-Related Requirements

Computationally-intensive applications drive the need for brokering ser-
vices that can quickly and effectively locate high-performance computational
resources given the particular requirements of those applications and end-users.

Application Requirements for Resource Brokering in a Grid Environment 29

In locating resources, brokering services need to take into account not only the
computational needs of an application (available CPU, memory, disk space,
etc.), but also key factors such as the time at which the application is required
to run, the financial cost of the resource, and the efficiency of application on
that particular resource. There are many other factors that may also be taken
into account, such as the machine failure rate, the network characteristics for
transferring results to mass storage or the firewall security policy that could
prevent the use of remote interactions. In our example scenario, results were
urgently needed, and the throughput was the overriding consideration in choos-
ing resources.

Grids present a challenge for applications in that they are heterogeneous,
so may consist of many different types of computing platforms and operat-
ing systems (and versions of operating systems). Resources also have varying
software installations and environments, such as shells, compilers, libraries.
A given application may be compatible with only a limited set of comput-
ing architectures and software. Even when an application is portable across
many platforms its particular characteristics may dictate that it will run more
efficiently on a given architecture. These needs must not only be taken into
account by the brokering services, but also dictate the need for applications to
be able to sufficiently describe their requirements.

3.2 Data-Related Requirements

Most applications have at least some basic file management needs that place
constraints on how the computational resources are brokered in a Grid environ-
ment. Consider, for example, a simulation or data transformation application
that operates on a set of input files and produces output files to be analyzed or
processed by a second application to visualize the resulting data. The size of
the input and output files and the amount of overall storage space allotted to a
user necessarily has some bearing on the scheduling of such applications. If
the input files must be retrieved from a remote location, then the time required
to transfer the files must be taken into consideration when scheduling compute
resources for the given application. Moreover, many computing sites require
users to archive their data files in some mass secondary storage or tertiary stor-
age immediately after the termination of a computing job. Ideally, an end-user
should not be concerned where their files are, so long as file operations are
taken care of efficiently and with minimal trouble to the end-user.

As we saw in our gravitational wave detection scenario, the need for ac-
cess to distributed datasets is a powerful motivation for building and using
Grids. Some applications must perform analysis on datasets geographically-
distributed among many files, and this requires an efficient means to locate and
access datasets irrespective of their location and file organization. In order to

30 GRID RESOURCE MANAGEMENT

provide this level of data access at least two mechanisms are required. First,
it must be possible to associate meta-data with files that describes their con-
tent in as much detail as is required for their given applications. Second, it
must be possible to access the contents of files efficiently according to the data
model. By combining dataset access capabilities with the file replica manage-
ment capabilities (described in detail in Chapter 22, application programmers
can develop more powerful and useful applications for visualizing and analyz-
ing datasets.

Alternatively, datasets may be distributed among several relational database
management systems (RDBMs), as is the case for many bio-informatics appli-
cations that perform extensive database queries for discovering particular gene
patterns in proteins. In a Grid environment, where applications may be run
on any given set of resources, the means for how databases are advertised, lo-
cated, and accessed becomes an important, and complicated, issue. Addition-
ally, the need for co-allocation mechanisms across computational and database
resources becomes more critical in a Grid environments.

In order to begin addressing these problems the OGSA Distributed Access
and Integration (OGSA-DAI) project [OGSb] is currently designing and build-
ing front-end services to relational databases and XML repositories that con-
form to OGSA [FKNT02]. These front-end services can then be employed to
develop higher-level, federated databases across the Grid that offer a virtual
database system to application developers.

3.3 Network-Related Requirements

In Grid environments the communication requirements of an application are
subject to numerous network constraints. These considerations have a direct
bearing on the performance of the application, and hence on how resources
need to be brokered for it. As in our scenario, it is typical for an application
to require access to significant amounts of input data from remote locations.
Applications may also need to write data to a remote file, provide analysis data
for remote visualization or provide a remote steering interface. Distributed ap-
plications, including tightly coupled simulations as in our scenario, may need
to regularly exchange data between distant machines.

While communication-intensive applications may require high-speed net-
works for transferring large amounts of data, some applications simply require
dependable networks. At minimum, it must be possible to discover the con-
ditions of networks on which applications are to be run. This prescribes the
need for network monitoring and prediction services that can provide appli-
cations, resource brokering services, and users alike with the ability to query
the characteristics of networks associated with the target computing resources.
For an end user, such characteristics may include transfer times and reliability,

Application Requirements for Resource Brokering in a Grid Environment 31

whereas developers designing communication patterns for applications may
also require bandwidth and latency information. Such services may also pro-
vide applications with details about how to best use the network, for example
the optimal packet size to use for sending data.

Some applications, especially communication intensive and real-time appli-
cations, require certain minimum guarantees on the network bandwidth or net-
work speed of communication links between network nodes, hence must rely
on some type of Quality-of-Service (QoS) brokering services providing guar-
anteed reservation of network capacity along with computational resources.
This approach is discussed in more detail in Chapters 23 and 24.

External networks may also place constraints on the communication pat-
terns of an application. Firewalls can prevent communication between any two
machines, system administrators may close down services if they misinterpret
remote accesses, and machines or internal processors of clusters without exter-
nal IP address present fundamental problems.

4. CHALLENGE PROBLEMS

There remain many issues to resolve to meet basic resource brokering re-
quirements in today’s supercomputing and Grid environments. This section
describes the main challenge problems to be addressed to make out earlier ex-
ample scenario a reality, including issues of application deployment, support
for metacomputing, performance prediction and adaptive brokering.

4.1 Application Deployment

One challenge problem that we touched upon earlier is how to broker the
appropriate resources for an application given that some applications can only
run on a limited set of computing architectures, operating systems, and in some
cases specific machines. It makes sense to associate metadata with an applica-
tion to describe the computing platforms on which it can execute. In addition
to the machine architectures and operating systems with which it is compat-
ible, this metadata can be used to specify the libraries, tools, or services it
requires on target resources. Such metadata could then be used by a resource
brokering service to allocate computational resources that are appropriate for
an application.

There is a need for a Grid application deployment descriptor standard that
all Grid resource brokering services could utilize to broker resources for ap-
plications. This would simplify the use of Grids from the perspective of ap-
plication developers and increase the portability of their applications across
different Grids. In the general case, a resource brokering service needs to be
able to find information that describes how to obtain and deploy an applica-

32 GRID RESOURCE MANAGEMENT

tion’s executable onto target resources, as well as information about how these
activities will affect the resource requirements.

For example, an application may exist in an repository of executables or
as source code in concurrent-version-service (CVS) repositories from where
it can be checked-out onto target resources and compiled into executables on
demand, or it may already be installed on the target machine. It can take a
significant amount of time to fetch and build an executable, and this process
is also machine dependent. For example, the Cactus binary used to create
Figure 3.2 takes several hours to compile on some machines, but only minutes
on others. This can be addressed by a version tracking service that stages
an application onto potential resources of interest when new versions of the
application become available.

The resource brokering service may need to fetch input data files before
executing the application. Depending on the size of the input files and the
network characteristics, this process may also last long enough to become a
factor in negotiating what resources are best for running the application. This
data should be included in the application meta-data.

4.2 Metacomputing

There are various motivations and methods for metacomputing, that is, dis-
tributing tightly coupled applications across multiple resources. Simulations,
such as the black hole simulations in our example scenario, are limited by the
size of the machine they can run on. First, by harnessing multiple machines si-
multaneously, much larger—and hence more accurate or detailed—simulations
can be run. Second, as in the scenario, if more processors are needed for a job,
but no single machine can provide them right away, a resource broker can
find several machines that can each provide some of the processors, thereby
increasing throughput dramatically.

If applications are distributed across multiple machines, the issue of network
latency must be taken into account. Computationally intensive applications,
such as black holes simulations, are often programmed using a parallel pro-
gramming model, for example domain decomposition with message-passing
using MPI [SOHL

�
98]. MPICH-G2 [KTF03], from the Globus Project, pro-

vides a communication layer for MPI codes to run across multiple machines
connected by a WAN. The efficiency for applications in such an environment
has always been limited by the latency in the connections between sites. De-
pending on the nature of the problem and its communication needs, adaptive
techniques can be applied to compensate for that latency [ADF

�
01].

If the potential of metacomputing is realized, the job of a Grid scheduler
increases dramatically. A scheduler will have to be able to coordinate the ex-
ecution of a job between the different job schedulers and job queues that exist

Application Requirements for Resource Brokering in a Grid Environment 33

at each computing site. An evaluation of feasible resources must take place, as
some job queues may have a long delay in job execution while others may not
provide the minimum amount of processors or memory to make a distributed
job worth considering. Finding the best configuration given these limitations
may result in costly searches. Worse, without some means of coordinating job
submissions at the Grid level, the problem is likely to be intractable.

4.3 Predicting Performance

The ability to predict an application’s performance across different comput-
ing platforms and use-case scenarios can better enable brokering services to
negotiate appropriate resources for that application, given its deployment de-
scriptor and the user’s preferences for that application. There are three ways
to approach this problem: theoretical prediction, or making a prediction based
on an analysis of an application’s programming model and problem domain,
history-based predication, or making a prediction based on previous runs, and
testcase-based prediction, where the application itself is tested for a limited set
of cases on representative machines.

In the case of theoretical predictions, the solution for any application de-
pends in part on how well understood the computing model is for that ap-
plication and whether it makes sense to predict performance based on that
model. Still, there are many applications for which the programming model
is sufficiently well known and the application problem domain lends itself to
predictability.

History-based predictions make the most sense for applications that are not
likely to change over time, are dedicated to solving well known problems,
or are typically executed on a given set of resources where past performance
is a strong indicator of future performance of the application on those same
resources.

Testcase-based prediction may be the only method for dealing with applica-
tions that have unknown characteristics or applications that change over time,
for example due to ongoing development. Such an approach is most suitable
for the black hole simulation code in our example since the computational char-
acteristics depend dynamically on the initial data used and it may not be possi-
ble to determine a priori whether computational and communication intensive
elliptic solvers will be needed at each iteration of the simulation. Prediction
techniques in Grid environments are described in more detail in Chapter 14,
Chapter 15, and Chapter 16.

4.4 Adaptive Brokering

Given the complexities encountered in brokering resources in a Grid envi-
ronment where it may not be possible to reliably predict the future performance

34 GRID RESOURCE MANAGEMENT

of computational resources and the networks on which they reside, especially
under heavy usage, then the need for adaptive brokering services becomes
more apparent. Adaptive brokering allows for the selection of resources to
change over time if they stop meeting the needs of an application when it is
executing. The CACTUS group, as part of the GrADS project [BCC

�
01], has

developed one approach to this problem that allows for the migration of tasks.
This is discussed in detail in Chapter 6.

5. CASE STUDIES

We now take a look at two case studies that put the above requirements
discussion into a real-world context. Our first study details our experience in
supporting the computing needs of numerical physics applications in Grid en-
vironments. Here we investigate resource brokering requirements of massively
parallel, high-performance programs such as those developed with the Cactus
Toolkit. In our second case study, we describe the Compact Muon Solenoid
(CMS) Collaboration, a worldwide virtual organization of researchers and sci-
entists preparing for the upcoming CMS experiment to take place at CERN.
This overview sheds light on the some of the complex computational, data
management, and network problems that must be solved for many high-energy
physics applications.

5.1 Numerical Relativity

Numerical relativists make daily use of supercomputers to run large-scale
simulations that model black holes, neutron stars, gravitational waves, and
other objects in the universe with Einstein’s General Theory of Relativity.
Their results, as in our initial scenario, are crucial to the success of gravita-
tional wave astronomers that use the new generation of laser interferometric
detectors.

These simulations (see Figure 3.2), as for many other fields of science, are
limited in the accuracy they can model nature by the size of the computational
resources available to them. The rate at which the relativists can study physics
is restricted by the amount of resources available as well as by the throughput
of simulations that can be obtained. The daily working environment of the
relativists is greatly impacted by the ease with which they can (1) find infor-
mation about the state of the resources, data, and simulations, (2) access and
stage jobs, and (3) interact with the resulting distributed data.

Collaborative issues are also very important. The numerical relativity com-
munity consists of diverse and geographically distributed researchers mak-
ing use of multiple resources from many different centers and funding agen-
cies, spanning different countries, certificate authorities, and Grid information

Application Requirements for Resource Brokering in a Grid Environment 35

servers. The researchers need to be able to efficiently share and coordinate
their codes, results, expertise, and resources.

The field of numerical relativity can thus highlight many requirements for
Grid technologies. In particular, resource brokering is a fundamental service
that can aid their work by simplifying their day-to-day working practices,
where today they need to master many different operating systems, file sys-
tems and job submission procedures.

Core requirements from this community include that Grid technologies be
stable, robust and usable on all their important resources, that there be ac-
cessible information about the status and location of the running simulations
and result data, and that the end-user can easily control when and where their
simulations are deployed, if so desired.

Figure 3.2. Two orbiting black holes, at center, are about to collide in this visualization of one
the largest simulations to date of this process. The emitted gravitational waves, hoped to be
detected this decade, are shown as swirls.

5.1.1 Cactus Code

Several numerical relativity groups, including researchers at the University
of Texas (USA) [UT], RIKEN (Japan) [RIK], and National Autonomous Uni-
versity of Mexico (Mexico) [UNA], now use the Cactus Code [GAL

�
03] as an

application programming framework. Cactus, developed at the Max Planck In-

36 GRID RESOURCE MANAGEMENT

stitute for Gravitational Physics, consists of a core flesh, which coordinates the
activities of modules, and the modules, which are referred to as thorns. Thorns
contain both computational infrastructure (e.g. parallel drivers, I/O, coordi-
nates) and application components. For convenience, thorns are packaged into
toolkits. The Cactus Computational Toolkit provides core computational in-
frastructure, and the Cactus Einstein Toolkit provides the basic infrastructure
and functionality for numerical relativity simulations. Other disciplines can
construct their own toolkits.

Cactus thorns interoperate with the flesh and each other via standard in-
terfaces. This makes the development and use of thorns independent of one
another, which in turn eases the coordination of geographically dispersed re-
search groups. It also allows each group to concentrate on its own area of
expertise. For example, physicists may focus on the development of physics
thorns, while computer scientists may develop Grid-enabling thorns that sup-
port interoperability with Grid services (e.g. GRAM-based job schedulers,
MDS-based information services).

The modularity, flexibility and computational infrastructure of Cactus, cou-
pled with the urgent needs of the numerical relativity community, has made it
a good application for prototyping Grid scenarios. In particular, it is a prime
application for the GridLab Project that is developing application-oriented en-
vironments to provide Grid infrastructure, including a Grid Application Tool-
kit [AAG

�
02] and a collaborative Grid portal framework called Grid-

Sphere [NRW03].
Several prototype approaches have been shown to greatly increase the us-

ability of Grid environments for numerical relativity simulations for real black
hole simulations in Cactus. First, job migration [AAF

�
01] can move a sim-

ulation between resources, either when a job has exhausted its queue alloca-
tion at one machine, if a broker determines that a different resource is more
appropriate (e.g. cheaper, faster or larger), or if a runtime contract has been
violated. Automatic and intelligent task farming of independent or loosely
coupled simulations greatly eases the burden of parameter surveys. As any
simulation runs, independent tasks can be automatically spawned to alterna-
tive resources, allowing the main simulation to run faster and making use of
possibly cheaper resources. Simulations too big for any individual machine
can be staged on large virtual machines constructed from a set of distributed
resources [ADF

�
01].

5.2 High-Energy Physics

Applications that perform data-analysis on high-energy physics (HEP) ex-
periments provide excellent case-studies of requirements for Grid environ-
ments. Consider, for example, the Compact Muon Solenoid (CMS) data-

Application Requirements for Resource Brokering in a Grid Environment 37

analysis application. The CMS Collaboration [Hol01] consists of over 2300
people from 159 institutes in 36 countries, and is part of several large-scale
Grid projects, including GriPhyN [GRIb], PPDG [PPD], and EU Data
Grid [EDGa] in order to tackle its complex computational, data management,
and network resource needs.

The CERN CMS detector is one of two general purpose detectors of the
Large Hadron Collider (LHC) accelerator and will begin taking data in 2006.
The LHC accelerator circulates a large number of particle bunches, containing��� ���

protons, at a rate of 40,000,000 times per second, allowing two bunches
of particles coming from opposite directions to cross through each other inside
the CMS detector. CMS has a high event rate because physicists are looking
for phenomena that have extremely low probability of occurring in any single
event. Of the 40,000,000 events per second detected, some 100 are selected for
storage and later analysis, where the size of one CMS event is approximately
1MB.

One of the prime objectives of CMS is to confirm the existence of the Higgs
boson, a particle that cannot be observed directly but rather will be inferred
through the existence of four instances of another type of particle, a positively-
charged lepton. There are a number of events that produce charged leptons,
of which only a small number can be used to study properties of the Higgs
boson particle. The data reduction requirements for this type of analysis are
quite extreme. Only a few hundred events selected from 4 x

��� �	�
events may

be selected in the first year of the CMS detector going online. Some of the data
reduction will happen before any data is stored, but the rest must be conducted
on the data both offline and collaboratively via Grid resources.

5.2.1 Key Requirements

CMS analysis illustrates Grid requirements for HEP applications quite well.
Researchers distributed around the globe will be analyzing CMS experiment
data within a year after it becomes available. Typically, the data for each
event is small, 1KB-1MB. However, CMS analysis is a continuous data re-
duction process. Moreover many kinds of CMS applications will need to
analyze terabyte-to-petabyte samples drawn from multi-petabyte data stores,
requiring large-scale transfers that correspond to very high throughput require-
ments. This requires not just rapid advances in existing network infrastructures
but services for brokering network and data resources to the many HEP and
other large-scale data-oriented applications that will be competing for those
resources.

On the other hand, CMS analysis can be done in a step-wise fashion, by
successively applying algorithms for event selection and data processing and
scheduling a workflow of jobs corresponding to each stage in the analysis. This
also means that theoretical and historical predictive techniques can be applied

38 GRID RESOURCE MANAGEMENT

to improve resource allocation. Furthermore, since the computational work-
loads of data analysis applications tend to be read-oriented, the replication and
caching requirements are simpler than for some other applications. Neverthe-
less, effective replication and caching strategies are integral parts of the overall
resource brokering solutions for HEP applications.

One attempt to demonstrate the potential value of a Grid-enabled R&D sys-
tem for Monte Carlo analysis of the CMS experiment was developed by re-
searchers in the US CMS Collaboration [USC]. The CMS Monte Carlo Pro-
duction (MOP) system [MOP], demonstrated at SuperComputing 2001, uses
Condor-G [FTF

�
02], to distribute production jobs and the Grid Data Mirror-

ing Package (GDMP) [GDM] to replicate files in a Data Grid environment.
MOP scripts, developed at FermiLab, define a series of jobs to be scheduled
for submission by Condor-G, while GDMP relies upon the Globus Replica
Catalog and GridFTP to securely replicate files as required for later analysis.
GDMP is part of the EU DataGrid software package. Condor-G is described
in more detail in Chapter 9.

6. RELATED ISSUES

Although the new functionality described here will provide tremendous ad-
vantages for applications over the current use of Grid resources, the future that
we envision holds far greater promises. Reaching further will require funda-
mental changes in today’s technologies and policies, and in the way in which
applications and the resources on which they run are viewed.

6.1 Application Frameworks

In order to make the most effective use of Grid environments, applications
need to be able to take advantage of any brokered resources, so they need to be
able to be highly portable, self-configuring and self-optimizing. This suggests
the need for application frameworks that support multiple computing architec-
tures and configurations. Beyond portability, however, application frameworks
should provide developers with higher-level operations. For example, a frame-
work could include checkpointing or migration operations to allow an appli-
cation to be easily moved between resources should its resource requirements
change over time. This suggests that applications should be self-describing in
order to be able to provide information about their requirements and capabili-
ties to resource brokers.

Indeed, these ideas are what help drive the development of the Cactus Tool-
kit. Its portability means that users are able to develop and test applications
on their laptops, and then easily stage and run them on the worlds largest and
newest supercomputers. Cactus includes many features that make it particu-
larly suitable for exploiting Grid environments and Grid paradigms — support

Application Requirements for Resource Brokering in a Grid Environment 39

for remote parameter steering, platform independent I/O, a switchable parallel
layer, robust checkpointing and restart, portability, a flexible make system, and
the ability to monitor and control interactions through any web browser. These
are the kinds of features that will make the scenarios like the gravitational wave
detection example truly possible.

6.2 Virtual Organizations

Perhaps most importantly, providing better support for virtual organizations
(VOs) at all levels will enable collaborative groups to better control and lever-
age their collective resources. Today, VOs simply can’t exist without a great
of deal of effort from administrators and project managers. This is because by
definition VOs may consist of multiple administrative domains, each of which
may have a unique set of security requirements and accounting policies.

6.3 Security Requirements

Security is an increasingly important consideration as applications begin
to routinely make use of networks. In our motivating scenario, the physicist
needed to authenticate to a portal, access and move protected community data,
provide the resource broker with credentials to use compute resources, and so
on. The user also needed to be able to trust that the services she was using
would not compromise her own credentials. A persistent current problem for
applications attempting to interact with, and provide, remote services is the
existence of firewalls around resources. Such security requirements are often
the last thing on a user’s mind, and viewed as a hindrance imposed on their
working. But addressing security, as discussed in Chapter 5, is one of most
difficult problems engineers have to face when building Grid solutions.

6.4 Accounting Policies

The cost of resources is generally an important factor for end-users in decid-
ing where to run their applications. In general, a limited number of computing
units at various computing centers are generally provided by funding agencies,
where a computing unit is usually associated with some unit cost for each pro-
cessor per hour. In addition, there are often file system quotas on the amount
of data a user can store at any given time in different file systems. At any one
site there may be queues with different associated costs, so that an application
may be completed faster if more units are paid during each processor hour.

40 GRID RESOURCE MANAGEMENT

6.5 User Preferences

No matter how intelligent applications and resource brokering services be-
come, we can never fully anticipate what a user’s needs will be. This means
enabling users to balance their application requirements with other require-
ments for cost, throughput time and efficiency. In order to build more robust
solutions, we can try to incorporate user preferences by studying their behav-
ior and usage patterns. For example, currently large computer centers frown
upon individuals who submit too many jobs, or who take advantage of existing
scheduler logic to jump up a queue and gain faster throughput. However, as
applications become more dynamic, we can expect that they will begin to find
new ways to exploit scheduler logic and such. Therefore, we must find new to
support dynamic behavior so brokers can quickly and efficiently allocate extra
resources or deallocate unused resources.

7. SUMMARY

This chapter provides an introduction to some of the major problems that
Grid resource brokering services must solve in order to make Grids viable and
practical to users. Additionally, we have discussed some of the key challenge
problems and issues that if overcome will pave the way for new and more pow-
erful applications scenarios. Finally, the case studies provided here emphasize
the very real needs of scientists and research communities today and in the
near future.

Acknowledgments

The work and ideas described in this paper were contributed to by many
colleagues, and we thank in particular the physicists in the numerical rela-
tivity group at Max Planck Institute in Potsdam, Germany, who have con-
tributed many requirements for their real needs for large scale computing. We
are pleased to acknowledge support from the EU GridLab project (IST-2001-
32133).

Chapter 4

ATTRIBUTES FOR COMMUNICATION
BETWEEN GRID SCHEDULING
INSTANCES

Uwe Schwiegelshohn and Ramin Yahyapour
Computer Engineering Institute, University Dortmund

Abstract
Typically, Grid resources are subject to individual access and usage poli-

cies because they are provided by different owners. These policies are usually
enforced by local management systems that maintain control of the resources.
However, few Grid users are willing to deal with those management systems
directly in order to coordinate the resource allocation for their jobs. This leads
to a Grid scheduling architecture with several layers. In such an architecture,
a higher-level Grid scheduling layer and the lower-level layer of local schedul-
ing systems must efficiently cooperate in order to make the best use of Grid
resources. In this chapter we describe attributes characterizing those features of
local management systems that can be exploited by a Grid scheduler.

1. INTRODUCTION

Some computational Grids are based on compute and network resources of
a single owner, for example in the case of Enterprise systems. But many com-
putational Grids consist of resources with different owners in order to provide a
high degree of flexibility and to allow efficient sharing of resources. However,
in these cases, most owners are not willing to devote their resources exclu-
sively for Grid use. For instance, a computer may temporarily be removed
from a Grid to work solely on a local problem. In order to react immediately
in such situations, owners typically insist on local control over their resources,
which is achieved by implementing a local management system.

On the other hand, it can be a cumbersome and tedious for a potential Grid
user to manually find, reserve and allocate all the resources needed to run an
application. To automate this process, a specific Grid management system is
needed. Ideally, such a Grid management system includes a separate schedul-

42 GRID RESOURCE MANAGEMENT

ing layer that collects the Grid resources specified in a job request, checks
the considerations of all requirements, and interacts with the local scheduling
systems of the individual Grid resources. Hence, the scheduling paradigm of
such a Grid management system will significantly deviate from that of local
or centralized schedulers that typically have immediate access to all system
information. Although it seems obvious that a Grid scheduler may consist of
more than a single scheduling layer, many details of an appropriate scheduling
architecture have not yet been established.

Nevertheless, it is clear that some layers are closer to the user (higher-
level scheduling instance) while others are closer to the resource (lower-level
scheduling instance). And of course those different layers must exchange in-
formation.

The information that passes between the scheduling layers of a Grid man-
agement system is subject of this chapter. Clearly, the flow of information
between the layers is not symmetric: A query flows from a higher-level to a
lower-level scheduling instance, while a confirmation takes the opposite direc-
tion. However, this observation does not necessarily indicate a fixed or static
hierarchy of schedulers. Also the concept of scheduling layers is not restricted
to two levels of scheduling instances in general. For instance, consider a large
computational Grid consisting of several Virtual Organizations (VOs). Each
of those VOs may have a separate Grid management system. A user request
needs not to be executed in the VO in which the request was issued. Therefore,
the Grid scheduler of one VO passes the request to the Grid scheduler of the
second VO. Then this second Grid scheduler interacts with the local schedul-
ing systems of the resources in the VO it works for. Clearly, three scheduling
instances are involved in this situation. The Grid scheduler of the second VO
is a lower-level scheduling instance with respect to the Grid scheduler of the
first VO, while it is a higher-level scheduling instance in the communication
process with the local scheduling systems of the second VO. Of course the
scheduling instance in the lowest layer is always a local scheduling system.

Nowadays, a variety of different local scheduling systems, for example
PBS [PBS], LoadLeveler [IBM01], LSF [Xu01], or Condor [LLM88], are
installed on the individual computer systems. Some of these local schedul-
ing systems are presented in this book. See Chapter 11 for information on
Maui/Silver, Chapter 12 for information on LSF, and Chapter 13 for informa-
tion on PBS.

A Grid scheduling layer must exploit the capabilities of these local schedul-
ing systems to make efficient use of the corresponding Grid resources. How-
ever, those capabilities are not the same for all local scheduling systems due to
system heterogeneity. Therefore, we introduce attributes to describe, in gen-
eral, the features of a lower-level scheduling instance that can be used by a
higher-level scheduling instance. The attributes are also the first step towards a

Attributes for Communication Between Grid Scheduling Instances 43

classification of Grid-relevant properties of local schedulers. Further, they can
be used to indicate what future enhancements of local scheduling systems may
improve their Grid-readiness.

Note that attributes can be combined: if more than two levels of scheduling
instances are used as described above, then a scheduling instance in the middle
collects attributes from possibly several lower-level scheduling instances, com-
bines them, and provides those combined attributes to a higher-level schedul-
ing instance. As the combination of attributes is not subject of this chapter, we
restrict ourselves to two scheduling instances in the following sections.

Although we have stated above that the attributes can be used to evaluate
Grid-readiness of a scheduling system, we want to strongly emphasize that the
features described by the attributes are neither an obligation nor a limitation
for the design of a lower-level scheduling system. For instance, some features
are not relevant for certain resource types and need not to be considered in the
corresponding local schedulers. The presence of an attribute simply indicates
that the specified feature is provided by the lower-level scheduling instance
and can be used by a higher-level scheduling instance. On the other hand, if
such an attribute is not present for a lower-level scheduling instance then the
higher-level scheduling instance cannot use the specified feature.

Also note that it is not the purpose of this chapter to address mechanisms
for the communication between scheduling layers. Similarly, we do not de-
fine the structure and syntax for the description of resources. This kind of
information can be accessed through other Grid information services which
are currently subject to a standardization process in the Information Systems
and Performance area [ISP] and the Architecture area [ARC] of the Global
Grid Forum [GGF]. Consequently, there are no attributes in this description to
determine, for instance, the set of resources for which a lower-level scheduler
is responsible.

In the next section we present an example a Grid application. This example
is used to illustrate the meaning of some of the attributes which are listed in
the following sections. These are classified into 4 groups:

1 Attributes used when accessing the available scheduling information
(Section 3),

2 Attributes used when requesting the resources (Section 4),

3 Attributes used when querying for allocation properties (Section 5), and

4 Attributes used when manipulating the allocation execution (Section 6).

The concepts described in this chapter are a result of the work done by the
Scheduling Attributes Working Group of the Global Grid Forum, and they have
been published as a Grid Forum Document [SY01]. The Working Group stated
however, that this list of attributes while sufficient may not yet be complete.

44 GRID RESOURCE MANAGEMENT

2. TYPICAL USE OF A GRID

For a purpose of illustrating some of the attributes we consider a simple exam-
ple where a job is executed on a computational Grid that includes the following
resources with different owners:

Several clusters of workstations,

A visualization cave [LJD
�

99],

A database, and

A bandwidth broker for the network that connects other resources.

Our example job is a workflow job consisting of three stages:

1 Data transfer from the database to a workstation cluster,

2 Preprocessing of the basic data on the workstation cluster in batch mode
and generation of some temporary data, and

3 Processing of the temporary data on the workstation cluster and, in par-
allel, online visualization of the results in the visualization cave.

A user generates a request and submits it to the Grid scheduler that tries to
find a suitable allocation of resources. As not all of the requested resources
are available at a single site, the job requires multi-site processing in Stage 3.
To this end the Grid scheduler requires information about the properties of
the involved local scheduling systems. Scheduling attributes described in this
chapter provide this information.

Before addressing the task of the Grid scheduler in detail we define an allo-
cation to be an assignment of resources to a request. An allocation is tentative
until it is executed, that is, until resources are actually consumed. A schedule
gives information about planned or guaranteed allocations. Such a guarantee
of an allocation means that there is a guaranteed assignment of resources. This
does not necessarily guarantee the completion of a job, as the actual job pro-
cessing time may exceed the requested allocation time.

Note that there is a strict dependence between the stages in the example
above. In Stage 1 the database, the workstation cluster and sufficient band-
width in the network must be available at the same time. The length of this
stage is mainly determined by the network bandwidth. However, this step is
not necessary if the database is deployed on the same cluster that is used in
Stages 2 and 3. The efficient execution of Stage 3 requires concurrent access
to the workstation cluster, the visualization cave, and the network. For Stage 3,
the visualization cave and the network require concurrent access to the work-
station cluster. Moreover, the network must provide the bandwidth required by
the job.

Attributes for Communication Between Grid Scheduling Instances 45

The Grid scheduler used in the example tries to obtain an allocation with a
guaranteed completion time for Stage 2 in order to make an advance reserva-
tion for the visualization cave and the network in the next stage. In Stage 3,
the Grid scheduler requests an exclusive allocation that will run-to-completion
on the processing resources to prevent any negative influence of other indepen-
dent jobs on the visualization. Finally, the Grid scheduler asks for a tentative
schedule of the visualization cave and the network in order to find a sufficiently
large time slot during which all the resources required for Stage 3 are available.

This example shows how a Grid scheduler can use certain features of local
scheduling systems to generate an efficient schedule. The availability of those
features is described by attributes. To this end, a Grid scheduler needs to know
which features are available for a local scheduling system.

3. ACCESS TO AVAILABLE SCHEDULING
INFORMATION

The first set of attributes addresses local schedule information that is made
accessible to a higher-level scheduling instance.

3.1 Access to a Tentative Schedule

Some local management systems are able to return on request the complete
schedule of current and future allocations. This information allows a Grid
scheduler to efficiently determine suitable timeslots for co-allocation of re-
sources in multi-site computing, as needed for Stage 3 of our example. Note
that a local management system may not return the complete schedule due to
architectural limitations or due to system policy restrictions.

Even if the complete schedule of a local resource cannot be made available,
the local management system may return some information that can be used
by a higher-level scheduler. The type and the amount of this information can
be specified with additional options of this attribute. As an example, a local
management system may provide an authorized higher-level scheduling system
with the projected start time of a specified allocation.

In other systems, the returned schedule information is subject to change as
there may be a different access to those local resources that is not controlled
by the lower-level scheduling instance.Then this information has a limited re-
liability, which can also be described by an option of this attribute.

3.2 Exclusive Control

The local scheduler has exclusive control over its resources, that is, no al-
locations can be scheduled on those resources without using this scheduler
instance. In this case, the reliability of schedule information from the local

46 GRID RESOURCE MANAGEMENT

scheduler is very high as there can be little outside interference. Then, a Grid
scheduler can better exploit the knowledge about a local schedule to generate
efficient allocations for complex job requests.

3.3 Event Notification

Some unforeseeable events may influence a local schedule, for example a
sudden failure of a resource or the early termination of a job. A local scheduler
may pass information on to a higher-level scheduling instance if this schedul-
ing instance has subscribed to the appropriate event notification. If so, the
higher-level scheduling instance can quickly react and reschedule some allo-
cations. Those events may also include notification of an allocation change, for
example cancellation or changed execution time, as well as information about
modified resource conditions. This attribute states that the local scheduling
system supports event notification. However, note that it does not specify any
event types nor define interfaces to query supported event types.

4. REQUESTING RESOURCES

Local scheduling systems do not only differ in the type of functionality they
provide but also in the type of information they need when resources are re-
quested. This information is characterized by the second set of attributes.

4.1 Allocation Offers

Local management systems may support the generation of potential resource
allocations on request. In our example, several workstation clusters with dif-
ferent characteristics may be available for Stage 1. A Grid scheduler can de-
termine the best suited cluster to use by considering different offers returned
from the corresponding local schedulers, especially with regards to the location
of the database and the available bandwidth on the network. To this end, the
local scheduling instance may offer different resource allocations to the Grid
scheduler.

Local management systems can further be classified according to the num-
ber of offers they generate for a request. For instance, local management sys-
tems may provide several offers for a request with possibly overlapping allo-
cations. It is then up to the higher-level scheduler to select a suitable offer
from them. In our example, the local scheduling system may generate dif-
ferent offers that differ in price or execution time. The Grid scheduler may
use this feature for the multi-site allocation in our example in Stage 3 where
corresponding allocations must be found for different resources. If several al-
location offers are provided, the Grid scheduler has more flexibility to select a
suitable offer to allow for an efficient and concurrent execution of a job.

Attributes for Communication Between Grid Scheduling Instances 47

4.2 Allocation Cost or Objective Information

The local management system returns cost or objective information for an
allocation. In case of several allocation offers, a Grid scheduler can, for in-
stance, use this information for the evaluation of different offers. The cost
for a specified allocation usually relates to the policy that is applied by the
lower-level scheduling instance. This represents the scheduling objective of
the owner of the resource. It is obvious that costs for an allocation will be an
important criterion for a Grid scheduler in selecting a suitable allocation for a
job.

4.3 Advance Reservation

This feature is of great help for any Grid scheduler that must schedule multi-
stage or multi-site jobs. The Grid scheduler in the example can ensure that
the network connection between visualization cave and workstation cluster is
sufficient in Stage 3 of our example by obtaining a reservation for appropriate
bandwidth.

An Advance Reservation API is already subject of a document from the
Global Grid Forum [RS02]. With such an interface a higher-level scheduling
instance is able to access the Quality of Service features of Grid resources.

4.4 Requirement for Providing Maximum Allocation
Length in Advance

As already mentioned, some local management systems require that a max-
imum allocation length is provided together with the resource request. In our
example, the application in Stage 2 does not require any user interaction and is
therefore a batch job. For this type of job, an efficient scheduler needs informa-
tion about the maximum execution length. Historically, resource requests have
often been submitted without additional information about the amount of time
that the resources would be used. These jobs are started and run until comple-
tion. However, current scheduling algorithms, for example backfilling [Lif96],
require additional information on the maximum allocation length in order to
generate an efficient schedule.

4.5 Deallocation Policy

A deallocation policy for pending allocations applies to some local man-
agement systems. Such systems establish requirements that must be met by
the user or the higher-level scheduling instance to keep the allocation valid.
The requirement that an allocation must be repeatedly confirmed until the start
of its execution is an example of such a policy. For instance, in our exam-
ple the visualization cave might require complying to such a policy to ensure

48 GRID RESOURCE MANAGEMENT

a high degree of utilization of the cave itself. Of course, these policies must
be further specified to allow the higher-level scheduler to keep its allocations.
Attribute 5.1: Revocation of an Allocation, in comparison, describes the relia-
bility of an allocation as given by the local management system.

4.6 Remote Co-Scheduling

A local management system may allow for co-scheduling where the actual
resource allocation and the schedule are generated by a higher-level scheduling
instance. In this scenario, the local management system provides interfaces to
the higher-level scheduling instance to delegate certain modifications to the
local schedule. This includes the generation and cancellation of allocations
on the local schedule by the higher-level scheduler. In our example, the Grid
scheduler can use this property to quickly co-allocate resources for the multi-
site allocation in Stage 3. In this case, some part of the authority of a lower-
level scheduling instance is delegated to the higher-level scheduling instance.

4.7 Consideration of Job Dependencies

A local scheduler may take dependencies between allocations into account
if they are provided by the higher-level scheduling instance. For instance, in
case of a complex job request, the lower-level scheduler will not start an al-
location if the completion of another allocation is required and still pending.
These dependencies are sometimes also referred to as the workflow of a job.
For Grid jobs, different steps often depend on each other. In our example,
the dependencies of Stage 1 and 2 may be considered by a local management
system as precedence relations.

Note that the complete workflow graph of the job may not be initially avail-
able to the Grid scheduler since the results of some job steps may influence
the following steps. In this case, some of the tasks of a higher-level scheduling
instance are delegated and managed by local management systems.

5. ALLOCATION PROPERTIES

Allocations of resources may differ with respect to timing and reliability.
For instance, a reliable allocation is important for multi-stage and multi-site
jobs. Therefore, we use a third set of attributes to describe allocation proper-
ties.

5.1 Revocation of an Allocation

Some resource owners may assign a low priority for Grid use. In such a case
local management systems may reserve the right to revoke an existing alloca-
tion until the resources are actually being used. Here we address only a revo-

Attributes for Communication Between Grid Scheduling Instances 49

cation of an allocation that cannot be prevented by actions of the higher-level
scheduling instance. Therefore, the revocation is independent of any process
that must be executed by the user system or a higher-level scheduling instance
to prevent deallocation according to the deallocation policy of a local schedul-
ing system, see Attribute 4.5: Deallocation Policy. For our example, the cluster
in Stage 3 may be withdrawn from Grid use or may be used to execute another
job with a higher priority. In this case, the allocation was not guaranteed. Note
that a local management system may support both revocable and irrevocable
allocations.

5.2 Guaranteed Completion Time of Allocations

Some local management systems guarantee the completion time of an al-
location. While the system reserves the right to individually determine the
actual start and end time of an allocation within a given time frame, it guar-
antees that the requested resource allocation will be executed before a given
deadline. For instance, scheduling systems that are based on the backfilling
strategy [Lif96, FW98] can provide information on the maximum completion
time of a newly submitted resource request while not being able to predict the
actual starting time. In those cases it is necessary for the user to provide in-
formation in advance on the maximum job run-time, see also Attribute 4.4:
Maximum Allocation Length. With this information, an upper bound for the
completion time of the jobs can be calculated by the local scheduling system.
In our example, the completion time of Stage 2 is available to the Grid sched-
uler and used to coordinate the start of Stage 3.

5.3 Guaranteed Number of Attempts to Complete a Job

Some tasks, for instance, the transfer of data over a network link, cannot
always be completed on the first try. In those situations it is useful if the
local management system guarantees a minimum number of attempts before
informing the user of the failure or requiring a re-scheduling from the higher-
level scheduling system. This reduces the work of the higher-level scheduling
instance. In our example, this feature can be used in Stage 1 to ensure that data
has been successfully transferred to the workstations cluster.

5.4 Allocations Run-to-Completion

The local management system will not preempt, stop, or halt a job after it
has been started. In particular, once started, the allocation will stay active on
the given resources until the end of the requested allocation time frame or the
completion of the job. This information about the way a job is executed helps
a higher-level scheduling instance to more reliably predict the completion time
of a running job, and is therefore useful for the coordination of concurrent

50 GRID RESOURCE MANAGEMENT

allocations on different resources. In our example, the Grid scheduler selects
a workstation cluster with this property for Stage 3 to ensure the uninterrupted
execution of the job concurrently with the allocation of the visualization cave.

5.5 Exclusive Allocations

The allocation runs exclusively on the provided set of resources, that is, the
resources are not time-shared, and this allocation is not affected by the exe-
cution and resource consumption of another allocation running concurrently.
Similar to the previous attributes, this information may be helpful to estimate
the required run-time of a job on a specific resource. In a time-shared scenario,
the run-time of a job may significantly deviate from an estimate due to the in-
terference of other jobs on the same resource. In our example, the efficient use
of the visualization device depends on the reliable performance of the work-
station cluster in Stage 3. Therefore, the Grid scheduler can require that the
workstation cluster is exclusively available during the allocation in this stage.

5.6 Malleable Allocations

Some local management systems support the addition or removal of re-
sources to/from applications during run time [FRS

�
97]. In this case, the size

of an allocation can change during the execution of a job. If such a modifica-
tion of the allocation is not controlled by the higher-level scheduling instance
it has a similar impact on the reliability of the estimated run-time of a job as
time-sharing of resources. In addition not all applications may be able to han-
dle a reduced allocation size. Therefore, those resources are not suitable for all
job requests.

This problem is less severe if the local management can only increase the
resource set of an allocation during run time, that is, if resources are not taken
from a job. Feitelson et al. [FRS

�
97] describe such an allocation by the term

moldable.

6. MANIPULATING THE ALLOCATION EXECUTION

For multi-stage or multi-site Grid jobs, unexpected changes of an alloca-
tion may influence other allocations and require quick re-scheduling. In this
case it may be beneficial if the higher-level scheduling instance can directly
modify other running allocations in order to better coordinate the execution
of the jobs. The fourth set of attributes describes actions that a higher-level
scheduling instance may directly initiate on resources without involving the
local management system.

Attributes for Communication Between Grid Scheduling Instances 51

6.1 Preemption

Some local management systems allow for temporary preemption of an al-
location by a higher-level scheduling instance. In this case, the corresponding
application is stopped but remains resident on the allocated resources and can
be resumed at a later time [WFP

�
96]. Such preemption is not synonymous

with the preemption in a multitasking system that typically happens in the time
range of milliseconds. It indicates only that the local management system of-
fers the ability to remotely initiate a preemption of an allocation, for example
to temporarily free resources for other use or to synchronize two allocations
on different resources. Moreover, this kind of preemption does not necessarily
require checkpointing. For instance, if machines of the allocated resource set
go down, it is not guaranteed that the preempted allocation can be resumed on
other resources.

6.2 Checkpointing

Other local management systems support the checkpointing of a job. In this
case, a checkpoint file of the job is generated to allow for a later continuation
of the job from the checkpoint. The generation of the checkpoint file can be
independent of any actual preemption of the job. The checkpoint file may also
be migratable to other resources, but this feature is not mandatory. Note that
different types of checkpointing paradigms exist, and on some systems not all
kinds of jobs can be checkpointed. Here, the application must cooperate and
support the checkpointing feature.

6.3 Migration

Some local management systems support the migration of an application or
part of an application from one resource set to another set. Hence, an applica-
tion can be stopped at one location and the corresponding data is packed such
that the application can be moved to another location and be restarted there.
This migration process is only of relevance to a higher-level scheduling in-
stance if it can initialize and control this process. Therefore, the attribute does
not include any migration of allocations within the domain of the lower-level
scheduling instances that is not influenced by the higher-level scheduling in-
stance, see Attribute 5.6: Malleable Allocations. Also, the migration attribute
does not necessarily require the presence of the Attribute 6.2: Checkpointing.
However, similar to the remark on checkpointing, explicit support for migra-
tion by the application may be required to use this feature.

52 GRID RESOURCE MANAGEMENT

6.4 Restart

Here, the local management system supports the receiving and the restart of
a stopped and packaged application from another resource set.

On some systems, the continuation of a job may be supported as so called
Checkpoint Restart. Then, a restart is only possible from a checkpoint file, see
Attribute 6.2: Checkpointing. That is, the system does not support migration
on the fly.

7. CONCLUSION

Ideally, computational Grids consist of many different resources but look
like a single system from a user’s point of view. A similar structure can also be
found in a Grid scheduler, an important component of any computational Grid.
This has led to the concept of a layered scheduler consisting of higher-level
scheduling instances that are close to the user and lower-level scheduling in-
stances that are close to the resources. Due to the heterogeneity of available lo-
cal scheduling systems that form the lowest layer of a Grid scheduler, informa-
tion about the properties of those systems must be provided to the higher-level
scheduling instances. This is done with the help of attributes which are pre-
sented in this chapter. Those attributes may also be helpful for the future devel-
opment of local scheduling systems for Grid resources. Ideally, the existence
of an attribute should not be determined by the features of a local scheduling
system but by properties of the resource or by system policies.

Some chapters in the book address actual implementations of resource man-
agement systems with Grid support. More specifically, the MAUI/Silver sched-
uler is described in Chapter 11, Platform’s LSF is presented in Chapter 12, and
the Portable Batch System (PBS) can be found in Chapter 13. These systems
represent the current state of the art for resource management systems that can
be found in today’s computational Grids.

Acknowledgments

To a large degree this chapter describes the results of discussions in the
Scheduling Attributes Working Group of the Global Grid Forum, see
also [SY01]. The authors would like to thank all contributors to this effort.

Chapter 5

SECURITY ISSUES OF GRID RESOURCE
MANAGEMENT

Mary R. Thompson and Keith R. Jackson
Lawrence Berkeley National Laboratory

Abstract Secure management of Grid resources presents many challenges. This chapter
will examine the security requirements that are essential to Grids and some of the
software that is available to meet them. We will discuss how well these security
tools have been utilized and review some of the existing and proposed security
standards that may be the foundations of the next generation of Grid security
tools.

1. INTRODUCTION

Resource management in Computational and Data Grid environments offers
many security challenges. Some of these challenges exist in many computing
environments, but others are unique to Grid systems. The goal of this chapter
is to highlight the security issues of providing and using resources on a Grid;
to itemize the current state of the art for handling Grid security and to suggest
future directions for Grid security middleware.

We will begin by offering a brief overview of the main security requirements
for resource management on the Grid. Most of these arise from the geographi-
cally and organizationally distributed nature of Grids and the types of resources
that are being referenced. This will be followed by a brief introduction to the
basic concepts of cryptography as they are applied in a Grid environment.

We will then look in detail at the differing requirements and solutions for
authentication, authorization and trust relationships. Enforcement of autho-
rization policies and auditing of resource use will be covered more briefly. We
will conclude the chapter by examining some of the open issues in Grid secu-
rity.

54 GRID RESOURCE MANAGEMENT

2. BACKGROUND

2.1 Unique Grid Requirements

Many of the unique problems in Grid security arise because of the dis-
tributed nature of Grid systems. A Grid offers uniform access to resources
that may be widely distributed geographically and organizationally. These dif-
ferent organizations may have radically different security policies that must be
reconciled to allow for the coordinated usage of resources across these sites.

A Grid will contain a variety of resources each of which may have different
security requirements. The most common types of resources on the Grid are
computational and storage resources. High-end computational resources re-
quire a high-level of investment, and their usage is tightly controlled. Admin-
istrators may wish to control the use of CPU cycles on the machine, disk space
usage, load factors, network bandwidth to and from the machine, etc. (see
Chapter 18). There are also issues about who can access or control a job af-
ter it has started running. Any security system must allow for the propagation
of identity information for use in accounting and auditing. Storage resources
may simply be disks attached to a compute host or may be stand-alone storage
repositories that are remotely accessible from many hosts. Controlling storage
devices involves the control of the raw storage space as well as the data stored
in it.

Another type of Grid resource is a scientific instrument. Today, more and
more scientific instruments are being shared over the network. A high-energy
light source such as the Advanced Light Source at LBNL, or a high-end elec-
tron microscope, is a very expensive and unique instrument. Most universities
and research facilities are unable to own such resources on their own. In the
past, researchers would travel to the location of the instrument to perform their
experiments, and then return to their home institutions for data analysis. Today
this cycle is accelerated by providing remote access to these one-of-a-kind in-
struments. A sample may be sent to the instrument location for preparation by
a local technician. From that point, it can be controlled on the instrument by
the investigator from his or her home institution. Clearly for these expensive
instruments it is important to be able to enforce fine-grained control over the
actions that a user might perform. In particular, it should not be possible for a
remote user to damage the instrument.

The Grid also differs from other environments, in that most applications re-
quire the coordinated usage of multiple resources at multiple sites. Even the
simplest Grid usage scenarios require several resources. For example, a simple
climate modeling simulation will require at least the usage of storage resources
for input and output data sets, network resources to transfer the data, and com-
pute resources to run the simulation. These resources must be coordinated in
order to allow the job to complete. It is not sufficient to have time on the su-

Security Issues of Grid Resource Management 55

per computer if the researcher cannot move needed data from the mass storage
system to the computer. This kind of tight coupling of resources may also
require the ability to make advanced reservations for these resources so as to
ensure their availability. This is especially true for uses that involve a high-end
scientific instrument, which are typically scheduled months in advance. See
Chapter 3 for a more elaborate scientific use case which illustrates the need for
reserved resources and treating executing jobs as resource to which controlled
access is needed.

Grid users as well as resources come from many different real and Virtual
Organizations (VO) [FKT01]. A Grid user may be part of more than one VO,
and have different access rights depending on the role they are performing.

2.2 Cryptography Overview

There are several important concepts from cryptography that are necessary
to understand before attempting to understand the current solutions for dis-
tributed security. The first concept is a message digest. A message digest is
also known as a hash function or message authentication code and is used to
create a unique fingerprint of arbitrary bit streams. Another concept is encryp-
tion. An encryption algorithm takes some data and transforms it so that the
original data cannot be discovered by anyone looking at the encrypted data.
Any encryption algorithm must use some type of key so that only the intended
recipient can decrypt the data. There are two main types of encryption keys:
symmetric and asymmetric.

A message digest is a one-way function that takes an arbitrary length input
and produces a fixed length output with certain properties. The fact that this
is a one-way function means it is nearly impossible to take the output from a
message digest and calculate what the input was. Another important property
of hash functions is collision resistance. This means that for a given input to
a cryptographic hash it should be computationally hard to find another input
that will hash to the same output. Common examples of message digests are
MD5 [Riv92] or SHA1 [EJ01].

In symmetric encryption a single key is used to both encrypt and decrypt
the data. Symmetric encryption algorithms take as input a key and an arbitrary
length bit stream and produce an arbitrary length bit stream as output. A good
encryption algorithm should produce output that makes it very hard to calcu-
late what the original input was. For example, an algorithm like AES [Sta01]
used properly with sufficient keying material would take longer then the known
lifetime of the universe to break with all of the computing power on the planet
today. One obvious problem with symmetric key encryption is that both parties
must have the same keying material. This presents the problem of how both
parties securely acquire this keying material.

56 GRID RESOURCE MANAGEMENT

Asymmetric cryptography offers one solution to this problem. In asymmet-
ric cryptography a pair of keys are used. One key is called the public key and
can be publicly available. The other is the private key and must be kept se-
cret by its owner. This key pair has the important property that information
encrypted with one key can only be decrypted with the other key. Thus, the
sender of a message can find the public key for the person they wish to com-
municate with from a public source like a web server or directory server. The
sender then uses the recipient’s public key to encrypt a message that only the
recipient can decrypt using the corresponding private key. One important prob-
lem arises when doing this. How do you know the key you found on the web
server belongs to the intended recipient? Different types of Public Key Infras-
tructures or PKI’s have solved this problem in a variety of ways. One common
solution is to have a trusted third party attest to the fact that this key belongs
to the intended recipient. Typically, this third party is called a Certification
Authority or CA. Several other solutions to this problem will be discussed later
in the chapter.

3. AUTHENTICATION

Cryptographic primitives are of interest to Grid resource management be-
cause they can be used to enable two important operations: authentication and
authorization. These operations allow a Grid resource to identify who is re-
questing access to the resource and if they are allowed to use the resource.

Authenticating a request is the usually first step in getting access to a Grid
resource. Authentication mechanisms in Grids tend to differ from single sys-
tem authentication because of the need to support both Grid-wide and local
identities, the need to authenticate a user of delegated credentials and the rela-
tively recent development of public key cryptography. This section will exam-
ine the distinctive needs of a Grid and the technology to satisfy them.

3.1 What is Authentication and Why Do It?

Authentication is the process of proving your identity to someone. In the
real world this is most commonly done through the possession of a photo-
graphic ID issued by a government body, e.g., a passport or drivers license.
Similarly in the computer world, proof of possession of some cryptographic
key can be used to prove your identity to a remote resource.

Authentication in a computer environment is the process of associating a
real-world identity with a request to a machine. An underlying assumption
of authentication is that a unique machine-readable unique-id will always be
assigned to the same unique real world person or computer. Authentication
takes place when the connecting entity provides a credential containing such
a unique-id and the authenticating agent can verify that the credential legiti-

Security Issues of Grid Resource Management 57

mately represents the connecting entity. This is normally done by requiring
the connecting entity to prove knowledge of a secret that only the owner of the
credential knows. In the case of a remote connection the authentication agent
needs to secure the communication channel once the remote entity has been
verified so that no one but the authenticated entity can use it. This is usually
done by creating a symmetric session key that is known by both ends of the
authenticated connection and used in all subsequent communications. At this
point there may be a local user id and/or running job associated with the chan-
nel. From then on, all actions performed as a result of requests coming from
that channel are assumed to be done by the authenticated entity. In a Grid en-
vironment there are several types of entities that need to be authenticated. The
most common are individual persons consuming resources, usually referred
to as a user or client, and hosts providing resource and services. Sometimes
roles, such a system administrator, or organization or accounts are thought of
as entities in their own right and can be the acting entity.

There are two important Grid security functions enabled by authentication.
One is authorization, which is the checking of what actions are allowed for this
user id. The second is accountability, which is accomplished by auditing the
actions taken on a host by jobs running under each user id. Authorization is
the most common reason for needing authenticated connections. If individual
auditing is not required group or role based authentication may be sufficient.

This rest of this section covers the types of credentials commonly used in
distributed computing environments, the challenges in using these credentials
and some new approaches to credential management that may alleviate some
of the existing problems.

3.2 Types of Credentials

The common underlying bases for cryptographically useful credentials are
either a user name and shared secret such as a password, or a user name and
public/private key pair. Shared secrets must be known by the target resource in
advance of a user’s attempt to authenticate. When public/private keys are used
for authentication, the resource only needs to know the public key of the user.
Only the user has possession of the private key. With group or role credentials
the private key is shared among all the members of the group, contributing to
the belief that such credentials are less trustworthy.

The Kerberos [MNSS87] authentication server was an early development to
facilitate authentication in a network of hosts based on symmetric key encryp-
tion. It defined a new type of credential and a distribution scheme for them. It
is based on Roger Needham and Michael Schroeder’s authentication and key
exchange protocol published in 1978 [NS78]. Each entity (host or user) in a
Kerberos domain has a shared secret with the Kerberos server. There is then

58 GRID RESOURCE MANAGEMENT

a three-way protocol between the user, the resource and the Key Distribution
Server (KDC) which proves to the target host that the user is who she claims to
be. The Kerberos tokens that are passed across the network can be viewed as a
new sort of credential, but they are based on the user and target passwords.

Public/private key cryptography, introduced by Whitfield Diffie and Martin
Hellman in 1976 [DH77], offers an alternative to shared secret keys. In au-
thentication protocols based on public/private keys, each entity’s public key is
shared with the resource targets to which it is authenticating. In the authen-
tication protocol, the target host challenges the connecting entity to decrypt a
one-time phrase with the user’s private key, thus proving that it possesses the
private key and is in fact the user that it claims to be.

The most common credentials used in Grids are X.509 certificates. These
certificates bind a multi-component meaningful name, called a Distinguished
Name (DN), to a public key and are signed by a CA. X.509 certificates
were introduced in 1989 as part of the ISO Directory-Authenticating
Framework [CCI88]. Since then they have been adopted as an IETF stan-
dard [HFPS02]. Most production CAs will guarantee that the DN legitimately
represents the individual who requested the certificate and will issue certifi-
cates containing the same public key and DN to only one individual. Thus an
X.509 certificate used with a challenge protocol, such as Secure Socket Layer
(SSL) [FKK96], [DR99], can prove that the parties on both ends of a commu-
nication channel are uniquely identified by a public key, and the names in the
certificates legitimately describe the entities.

Grids based on Globus [FK97, GLO] middleware use X.509 certificates to
identify users and a slightly extended version of SSL, called the Grid Security
Infrastructure (GSI) [FKTT98], to authenticate connections.

There was considerable discussion in the Grid Forum’s Certificate Policy
working group [GCP] as to the recommended content of a DN. While strictly
random unique names would satisfy the cryptographic needs, it was decided
that meaningful, unique names assigned to unique individuals would be useful
in audit logs and cross site authorization policies.

So far all the Grid CAs have rejected the idea of issuing certificates that
would be shared between groups of users or for services that run on more than
one host. The rationale behind this policy is that strict accountability outweighs
the convenience of shared credentials.

One of the essential requirements of Grid computing is the ability of a user
to delegate some or all of his rights to programs running on his behalf. The
level of risk involved of handing a long-term password or private key to a
program tends to invalidate that credential. Thus, it is necessary to create a
delegated credential with some substantial restrictions to hand off to programs.
Grid authentication and authorization mechanisms must be able to recognize a

Security Issues of Grid Resource Management 59

delegated certificate, authenticate the presenter of that certificate and trace its
privileges back to the original delegator.

So far only simple delegation mechanisms have been widely used. The Ker-
beros TGT (Ticket Granting Ticket) is a short lived (
 24hrs) credential to grant
access to the holder. The GSI proxy certificate is a short-lived (
 12hrs) X.509
certificate with its own unencrypted private key signed by the delegator. These
proxies can be used to perform any operation the delegator is allowed to per-
form. Currently the GSI originators have proposed a new delegated credential
format that uses an extension to restrict the rights of the credential [TEF

�
02].

3.3 Key Distribution

Both secret and public key authentication requires an infrastructure for dis-
tributing keys. In distributing public keys the only security issue is to ensure
that the resource target has the correct public key for a user. In the case of se-
cret keys, such as passwords, it is essential that no one other than trusted parties
learn the key. Passwords were originally distributed on a one to one basis be-
tween the owner and a resource, where they needed to be stored securely. If
the same password is used for many resources, a password compromise on one
could compromise all resources. Neither having different passwords for each
resource, nor sharing the same passwords with many resources, scales well.
The Kerberos authentication system was developed to solve this problem.

A variety of schemes exist to distribute public keys and to associate them
with user names. Typically, there is some sort of object that contains a user
name and a public key that is distributed as a public credential. An X.509
certificate is such a credential signed by a CA. Thus if a relying party has the
public key of the CA which it has retrieved and stored in a secure manner, it
can verify an X.509 certificate that it gets through an untrusted channel, for
example from the user who is trying to be authenticated. This reduces the
secure distribution of public keys to just distributing the trusted CAs’ public
keys.

One of the major advantages of PKI is that it does not require an on-line au-
thentication server to distribute keys in real time. In a Grid environment where
the users and resource servers are more transitory and widely dispersed than
within a single Enterprise, it is problematical to keep up a network of secure
connections between the users, the resources and a key distribution server. This
is one of the reasons that PKI is used more frequently than Kerberos in Grid
environments. One of the major steps in building production Grids has been
the establishment of high quality CAs dedicated to supporting one or more sci-
entific Grids. These are currently run by organizations contracted to support
the Grid [EDGb, DOEa].

60 GRID RESOURCE MANAGEMENT

3.4 Credential Management

An issue that has surfaced with the wider use of public/private key cre-
dentials is how private keys can both be safely stored and conveniently used.
Creation of a short-term proxy is part of the solution as it allows a user to
sign-on once per day using a passphrase to unlock the long-term credential
and then allows agent programs to use the short-term unencrypted key for each
subsequent authentication operation. There still remains the problem of users
choosing a strong credential passphrase. Since these keys will be stored on
local workstations, which are often very insecure, there is a reasonable risk
that the private key file could be stolen, at which point the passphrase could be
subject to a dictionary attack.

Another problem that arises with private keys is that a user may want to
make a Grid access from a machine on which the private key is not stored.
There are some solutions to these problems such as keeping a private key on a
pin-protected smart card or storing proxy or real certificates on a secure server.
Another possible solution is to use the Kerberos CA [KHDC01] server to issue
a short lived PKI credential based on your Kerberos credential.

3.5 Other Distributed Authentication Solutions

There are several recent distributed service infrastructures that have intro-
duced on-line authentication servers to facilitate single-sign with a single pass-
word to many hosts. One is the .NET Web Services infrastructure from Mi-
crosoft that uses the Passport [PAS] server, another is Liberty Alliance’s [LAP]
specification for federated authentication servers, and a third is the Internet2
middleware Shibboleth server [CE]. Each of these on-line trusted authentica-
tion servers supply a set of attributes about a user to a recognized resource.
These attributes may or may not include an official name for the user. The
user authenticates to the authentication server and then passes an authentica-
tion handle to the resource. That resource can then use the handle to query the
authentication server to discover if the user has the attributes required to grant
access. These models allow for single-sign on to a group of co-operating hosts
using a password and allow the users to determine what information to give to
a target host. They do require an on-line trusted authentication server.

In the evolving Open Grid Services Architecture [FKNT02, WSF
�

03], the
intent is to support more than one type of identity credential. The pieces of
the middleware that are responsible for the higher level uses of authentication
such as trusted connections and resource access authorization should be able to
authenticate users with either X.509 certificates, Kerberos tickets or possibly
some handle to a trusted authentication server.

Security Issues of Grid Resource Management 61

4. AUTHORIZATION

Authorization is the process of deciding if a person is allowed to perform
some operation. For example, at my bank I would first use my drivers license
to prove my identity and then the bank would match that identity to the given
account number to ensure that I am allowed to remove the money. Similarly
a Grid resource such as a supercomputer will have policy that says who is
allowed to run what jobs on the machine.

This section will describe Grid authorization requirements; review some of
the authorization mechanisms currently in use by Grid middleware and point
to emerging standards for authorization.

4.1 Requirements

Grid applications that require access to many resources, which may be in a
different organizational domains, and may have different stakeholders, present
several authorization challenges. The resource provider may need to enforce
access defined by policy from multiple stakeholders. The stakeholder needs to
identify the people (in different domains) that are allowed to use the resource.
The policy for a resource may be set by multiple stakeholders, for example,
the owner of an application, and the administrator for the host on which it
is running. A resource scheduler needs to determine the user’s access to the
resources that the job will use, but the exact resources may not be known in
advance. As the job progresses, a process running in one domain may need
to make a controlled access to resources in a different domain. Some of the
requirements these scenarios impose on an authorization framework are:

Multiple stakeholders need to see and set access policy for resources
provided by remote servers.

Access policy at various resources needs to have a common way to iden-
tify users, roles and other attributes.

Grid resource providers and stakeholders would like to be able to group
individual users by their access rights, so that access policies can be
simpler and less subject to change.

Various agents (e.g., schedulers, policy enforcement points) need to be
able to determine a user’s rights to a resource.

In addition to authorization requirements there are also some policy tensions
that are specific to Grids. The one that has had a severe impact on current Grid
implementations is between complete local control over compute resources
and Grid-wide authorization policies to allow users seamless use of Grid re-
sources. In experimental and developing Grids there is conflict between actu-
ally getting work done on the Grid and securely protecting all of the resources.

62 GRID RESOURCE MANAGEMENT

As long as a Grid is used by a small number of trusted and authenticated users,
fine-grained access to resources can be self-policed. Finally there is always
tension in access control systems between policies that allow fine grained ac-
cess control based on a rich set of user and system attributes, and an efficient
and understandable access control mechanism.

4.2 State of the Art

This section will examine some of the current Grid middleware tools to dis-
cover what authorization mechanisms are supported today. First, we introduce
some terminology common to authorization models that will be used in this
section and the next. A client requests access to a resource through a Pol-
icy Enforcement Point (PEP), which may call out to a Policy Decision Point
(PDP) sometimes called an authorization service. Policy statements describe
the access policies for resources and are defined by the resource stakeholders
or a Source of Authority (SOA) for the resource domain. Attributes describe
characteristics of users that can be used as the basis for granting actions on a
resource. They are attested to by Attribute Authorities (AA). A credential is
a token that can be used to prove an identity or possession of an attribute. A
certificate is a digitally signed and dated document that can be verified by a
relying party.

4.2.1 Grid Middleware

The Globus [FK97, GLO], Condor [CON] and Legion [FKH
�

99] projects
provide much of the Grid middleware used by the scientific community. Each
of these systems has been introduced in previous chapters in this book. In
this section we summarize and compare the authorization mechanisms used by
these systems.

The resources in a Condor pool are the workstation cycles and the stake-
holders are the “owners” of the workstation. The stakeholder decides when
and to whom the workstation will be available as part of a Condor pool, e.g,.
certain times of day, when system is idle, and limited to certain sets of users.
These policies are included in the ClassAd that a workstation owner provides
when the workstation is added to the pool. The Condor scheduler daemon will
enforce the policy before allowing a job to start running on a workstation. The
job on the workstation is run in a sandboxed environment where critical system
calls are trapped and redirected back to the job owner’s home machine, thus
protecting the filesystem on the pool machine and providing the user job with
a consistent environment across all the pool machines.

The original Condor implementation took advantage of the fact that the ma-
chines in a Condor pool were all Unix systems running within the same institu-
tion. Thus they could use the local user ids to identify people, could often share

Security Issues of Grid Resource Management 63

a common AFS or NFS file system, or perform remote system calls that were
needed in sandboxing a job. However, since then, Condor has implemented
flocking by mapping user ids across organization boundaries and integrating
with Globus to leverage off its global ids and secure connections. One of the
strengths of the Condor system is to provide the local workstation owner with
strong control over when the workstation could be used and how quickly it
could be reclaimed.

In the Globus Toolkit 2 (GT2) implementation the emphasis is also on local
control by the sites that are providing the resources. A gridmap-file maps all
the authorized users’ Grid Ids (an X.509 distinguished name) to a local user id.
Since the current implementation of the Gatekeeper allows an authorized user
to run any binary on the system or upload a binary to run, being a Globus user
is the equivalent of having a login account on the host. Currently, Globus jobs
are not sandboxed in any manner other than running under the userid that was
found in the gridmap-file for the authorized user. Thus in most systems the site
administrator requires each Globus user to have his own account.

There have been several experimental modifications to allow either the gate-
keeper [CCO

�
03] or job-manager [KW02] to have finer-grained access control

over what the user can do. It is only when the Globus user can be strictly lim-
ited, that system administrators are likely to relax the requirement that each
user have his own login id and Globus can hope to provide the desired “run-
anywhere” goal of Grid computing.

Legion represents all entities: users, processing resources, storage, as Le-
gion objects. The names of each Legion object (its LOID) contains its public
key, so that two objects can authenticate to each other by connecting and en-
crypting a session key with the target public key and the client’s private key.
The target party can get the other entity’s public key from its name and use it
and it’s own private key to decrypt the key. Getting access in a Legion system
is done by calling a method on an object. Each Legion object goes through
a “mayI” level to check if the requested access is allowed before executing
the method. MayI can be implemented in multiple ways. The default imple-
mentation that comes as part of the Legion runtime library implements access
control lists and credential checking. Access control lists can be inherited from
the user on whose behalf the objects are created or can be added by the Class
Manager for the particular kinds of objects that it manages. Legion allows for
very powerful per object, per method access control based on a user’s Grid cre-
dentials. This level of access control is also supported by CORBA and Java,
but it often proves hard to group the access policies in ways to make them both
meaningful and manageable.

64 GRID RESOURCE MANAGEMENT

4.2.2 Grid Authorization Services

The Community Authorization Server [PWF
�

02] is a recent addition to
Globus Toolkit 2. It is based on the premise that Grid users are often mem-
bers of a Virtual Organization and that those organizations may be the most
logical place to set Grid access use policy. The underlying premise is that a
resource provider would grant blocks of resources to a VO, and then the VO
would redistribute access among its own members. When a user wants to use
a resource, he will first go to the CAS server and request to be granted the
rights that are needed to use the resource. If the CAS has been granted those
rights by the resource, and if the CAS policy states that this user may have
these rights, the CAS will sign an assertion that the user has these rights. The
user then includes this rights assertion in the proxy certificate used to connect
to the resource server. The resource gatekeeper can verify that the certificate
belongs to the user, and that the CAS server has authorized his use of the re-
source. The resource server may also need to locally confirm that the CAS
server was granted these rights. Currently the CAS server has been used to
control GridFTP access [ABB

�
02b] and may be used in the future by the gate-

keeper to verify the rights of a user to run particular executables. Akenti is
an authorization server/library under development by Lawrence Berkeley Na-
tional Laboratory since 1997 [TMEC02]. It implements policy based access
control where the policy can be written by multiple stakeholders and stored in
distributed digitally signed XML documents. Akenti (a Policy Decision Point)
provides a simple interface to a resource server (a Policy Enforcement Point)
that takes a user identity (DN or X.509 certificate), the name of a resource,
and the actions that are requested and returns accept, deny or a conditional re-
sponse. The response is in the form of a signed capability certificate (a signed
authorization assertion) that may include a list of runtime conditions (such as
disk availability or load factor) that the resource server must evaluate. Akenti
has been used in several collaboratories [Fus, PRY99] to control access to Web
pages, job execution in a CORBA derived job framework, and with the Globus
job-manager to do fine-grained access of job execution and control.

VOMS is a Virtual Organization Management Server that provides an au-
thorization service similar to the CAS model [VOM]. It is currently under de-
velopment within the European DataGrid. The policy information is stored in
a database accessible to the VOMS server that issues Globus proxy certificates
that include attribute information. The policy enforcement points must be able
to interpret this access information.

4.3 Authorization Related Standards

Most of the more sophisticated Grid authorization schemes are not widely
used. Instead, Grid resource providers have chosen to use the Globus gridmap-

Security Issues of Grid Resource Management 65

file mechanism, some other local map file, or to write some ad-hoc scheme
tailored to their specific site. Also, unlike the authentication standards where
X.509 certificates have been accepted as a standard, none of the proposed au-
thorization standards, such as the IETF PKIX [pki] Policy Management In-
frastructure (PMI) and the related X.509 Attribute Certificates [FH02], Simple
Public Key Infrastructure [Ell99], Policy Maker and Keynote, [BFIK99] or
GAA [RN99] have had wide acceptance. One of the reasons for this lack of
accepted standards is that a general solution to authorization is a very compli-
cated problem, while a local authorization mechanism at a single resource site
can be quite simple. While this may initially satisfy the resource provider, it
usually does not scale well to many transient remote users. It also does not
scale well for users that are trying to use a variety of Grid sites.

The Grid community is currently addressing this challenge by defining a
framework and language to express authorization policy, queries and decisions
along with the supporting elements of such as attribute assertions, trust policy
and management. One of the assumptions of this effort is that Grid middleware
will be evolving to the Grid services model based on developing industry Web
Services standards [FKNT02].

The Web Services [W3C, IM02] community is currently developing stan-
dards for expressing the entire range of security issues in distributed systems.
As part of this effort, various groups are developing standard XML vocabular-
ies for expressing authorization decisions, policy and queries. SAML, Security
Assertion Markup Language [HBM02], and XACML, eXtensible Access Con-
trol Markup Language [Ope02], are two related XML schemas proposed as
standards by the OASIS consortium [OAS]. SAML focuses on queries and
replies about security related assertions. XACML is designed to express au-
thorization policy.

When robust, open source Grid middleware is using a standard authoriza-
tion and trust vocabulary and authorization servers have been implemented that
can interpret this vocabulary, authorization will be at the point that authentica-
tion was when the first open source implementation of SSL and then GSI was
released. This is the point when we are likely to see standard Grid resource
authorization mechanisms developed.

66 GRID RESOURCE MANAGEMENT

5. TRUST RELATIONSHIPS

Trust relationships define what entities may be trusted to set policy or au-
thorize actions. In traditional single host or single enterprise systems, trust is
often implicitly granted on the basis of where the information is found. For
example, the /etc/passwd and /etc/shadow files are the trusted source of user
identification on Unix systems. A slightly more sophisticated trust document is
the ypservers file that defines the host which runs the trusted NIS server, which
defines all the authorized users. File access policy is held in the access con-
trol lists associated with the files. Access to such files and meta-data is tightly
controlled, so the practice is to trust whatever information is found there.

On the other hand, in the real world, organizations usually have many policy
documents that explicitly state what departments, positions or individuals have
responsibility for what actions. These policies may include who is allowed
to delegate responsibilities and limits on the people to whom rights can be
delegated.

A cross-organizational Grid has the same need to explicitly state what en-
tities have the rights to perform actions. It is often preferable to make such
declarations in terms of VOs and roles rather than individuals in order to scale
to many users and privileges.

Some of the common trust statements used in distributed systems are: list
of trusted CAs; list of AAs who may issue certificates attesting to possession
of specified attributes; list of stakeholders for a resource who may issue access
policy for the resource; identification of authorization servers who are trusted
to make authorization decisions; and identification of VO servers which define
which users are a members of a VO. In a PKI these trusted entities are usually
identified by their public keys, so that any signatures generated by them can be
cryptographically verified.

The first step that a resource provider must take in putting resources on the
Grid is to designate the trusted parties for authentication and authorization. If
he chooses a system where all policy and authorization information must reside
on files at his site, it will not scale well. Currently Grids specify the CAs who
will be trusted to sign public key certificates and possibly VO servers who can
define roles or privileges for its users. Systems such as Akenti also explicitly
state who can sign Attribute Certificates and use policies. XACML policy
statements also include who can sign for attributes.

6. POLICY ENFORCEMENT

Policy enforcement is an area where practice is well short of what is desired.
Many of the more sophisticated distributed authorization systems have been
used mainly by application resource servers that directly control all access to
a resource, for example, GridFTP servers or Web servers. In these examples

Security Issues of Grid Resource Management 67

all actions on a resource can be mediated by the resource server, which in turn
may call out to an authorization server.

The common Grid scenario of running code on a remote host is harder to
effectively police. Enforcing the name (or even the hash code) of the code to
be executed is easy enough, but once binary code is executing only the op-
erating system has control of its actions. Most operating systems have very
limited control over executing code, based solely on user and/or group id. If
the code is written in Java a finer-grain level of control is possible. It is also
possible to trap system calls as Condor does and enforce policy at the level
of system calls. While there have been a variety of experimental operating
systems and extensions to Unix systems that allow more control over execut-
ing jobs, most operating systems today do not implement these. Since Grid
middleware strives to connect many heterogeneous systems, it is disinclined to
take advantage of system specific policy enforcement mechanisms.

This does not mean that authorization policy cannot be written that specifies
fine-grain control, but only that the policy must be cognizant of what the target
systems can enforce.

7. AUDITING REQUIREMENTS

Auditing the use of Grid resources is required by both the resource provider
and the users of the resource. The resource provider needs a record of who
is using its resources both for charging purposes and to discover any misuse.
Thus, there must be accurate records of the amount and dates of usage linked
to the person (or at least account number) who used it.

In a Grid environment where there are service commitments by resource
providers to projects or VOs, the accounting record may also be important to
prove to the various projects that each one got its fair share of the resource.
This level of auditing may be accomplished by simply keeping a log of the
time jobs were started, the Grid id of the person starting the job, how much
CPU was used and the time they ended. File storage typically keeps the userid
of the user that created a file along with the file sizes. In a Grid it may be
necessary to map the local userids back to Grid ids for auditing purposes. The
information in these logs should be available to the user whose information it
is, but will usually need to be protected from other users.

More detailed logging of long-running job execution is desired to allow re-
mote users to monitor the progress of their jobs. This data needs to be available
in real-time and on a controlled basis to the remote user or people that he has
designated. There should be enough information in these logs to allow a remote
user to know what has happened if his job failed to complete successfully.

68 GRID RESOURCE MANAGEMENT

Finally, some users will have the need for intermediate results from long
running jobs, perhaps in order to steer the computation or to abort a computa-
tion that is going in the wrong direction.

The Grid middleware for job-management needs to be responsible for log-
ging job control information, but only the application program can log inter-
mediate results. In the case of Globus, both the gatekeeper and job-manager
log a level of information determined by configuration files. The queuing job-
manager keeps some information about the state of the job that the remote user
can query via the job handle. Other log information is mostly only available
by logging into the server machine and reading log files.

The method of obtaining intermediate results in real-time is up to the appli-
cation. Various event management systems have be designed to help with this
task. One of the future challenges of Grid middleware is make implementa-
tions of such tools easily usable by Grid applications.

8. CONCLUSION

In this chapter we have looked at some of the most common security issues
arising in Grid resource management. We have attempted to identify those is-
sues that are unique to a Grid environment, and examine the current state of
the art in solving them. We have seen the need for emerging security standards
for middleware that controls access to Grid resources. Although working solu-
tions exist to many of the security issues examined, others still require research.
We do not yet have adequate ways to support multiple levels of authentication
where the usage of X.509 certificates is too heavyweight. Nor are we able to
easily integrate different methods of authentication.

The larger open issues are related to authorization. There is a tension be-
tween the ease of use of an authorization system and the level of granularity at
which authorization decisions can be made. It is also an open question as to
what level of authorization is best done by the VOs and what should be done
by the resource providers. Simple forms of authorization exist in the Grid to-
day, but are not sufficient to capture complex resource policy. Current efforts
at solving this problem often end up creating systems that are too complex to
be widely accepted.

Current research in Grid security is focusing on defining common ways of
expressing such diverse items as message security (without tying it to a par-
ticular transport protocol), authentication (while supporting multiple types of
authentication schemes), trust policies, authorization policies and assertions
about these items. Once these standards have been established, standards com-
pliant tools need to be written to implement required functionality. At that
point, writers of new Grid applications should be able to choose security pol-
icy and authorization components as easily as they can choose tools like SSL

Security Issues of Grid Resource Management 69

secure messaging or Kerberos authentication today. Meanwhile, writers of
Grid applications should try to localize actions on resources that require au-
thorization and whenever possible provide callout hooks at these sites. If the
current efforts at standardization succeed, the whole landscape of Grid security
functionality will change.

Acknowledgments

This work was supported in part by U.S. Department of Energy, Office of
Science, Office of Advanced Science, Mathematical, Information and Compu-
tation Sciences under contract DE-AC03-76SF00098.

II

RESOURCE MANAGEMENT
IN SUPPORT OF COLLABORATIONS

Chapter 6

SCHEDULING IN THE GRID
APPLICATION DEVELOPMENT
SOFTWARE PROJECT

Holly Dail,
�

Otto Sievert,
�

Fran Berman,
��� �

Henri Casanova,
��� �

Asim
YarKhan, � Sathish Vadhiyar, � Jack Dongarra, � Chuang Liu,

�
Lingyun Yang,

�
Dave Angulo,

�
and Ian Foster

�� �
�
San Diego Supercomputer Center, University of California, San Diego�
Department of Computer Science and Engineering, University of California, San Diego� Department of Computer Science, University of Tennessee�
Department of Computer Science, The University of Chicago�
Mathematics and Computer Science Division, Argonne National Laboratory

Abstract
Developing Grid applications is a challenging endeavor that at the moment

requires both extensive labor and expertise. The Grid Application Development
Software Project (GrADS) provides a system to simplify Grid application devel-
opment. This system incorporates tools at all stages of the application develop-
ment and execution cycle. In this chapter we focus on application scheduling,
and present the three scheduling approaches developed in GrADS: development
of an initial application schedule (launch-time scheduling), modification of the
execution platform during execution (rescheduling), and negotiation between
multiple applications in the system (metascheduling). These approaches have
been developed and evaluated for platforms that consist of distributed networks
of shared workstations, and applied to real-world parallel applications.

1. INTRODUCTION

Computational Grids can only succeed as attractive everyday computing
platforms if users can run applications in a straightforward manner. In these
collections of disparate and dispersed resources, the sum (the Grid) must be
greater than the parts (the machines and networks). Since Grids are typically

74 GRID RESOURCE MANAGEMENT

built on top of existing resources in an ad-hoc manner, software layers between
the user and the operating system provide useful abstraction and aggregation.

In the past decade, many useful software products have been developed that
simplify usage of the Grid; these are usually categorized as middleware. Suc-
cessful middleware efforts have included, for example, tools for collecting and
disseminating information about Grid resources (e.g., Network Weather Ser-
vice [WSH99a]), all-encompassing meta operating systems that provide a uni-
fied view of the Grid (e.g., Legion [GFKH99]), and collections of relatively
independent Grid tools (e.g., the Globus Toolkit [FK98a]). Middleware has
simplified Grid access and usage, allowing the Grid to be useful to a wider
range of scientists and engineers.

In order to build application-generic services, middleware developers have
generally not incorporated application-specific considerations in decisions. In-
stead, application developers are expected to make any decisions that require
application knowledge; examples include data staging, scheduling, launching
the application, and monitoring application progress for failures. In this en-
vironment Grid application development remains a time-consuming process
requiring significant expertise.

The Grid Application Development Software Project (GrADS) [BCC
�

01,
KMMC

�
02] is developing an ambitious alternative: replace the discrete, user-

controlled stages of preparing and executing a Grid application with an end-
to-end software-controlled process. The project seeks to provide tools that
enable the user to focus only on high-level application design without sac-
rificing application performance. This is achieved by incorporating applica-
tion characteristics and requirements in decisions about the application’s Grid
execution. The GrADS architecture incorporates user problem solving en-
vironments, Grid compilers, schedulers, performance contracts, performance
monitors, and reschedulers into a seamless tool for application development.
GrADS builds on existing middleware and tools to provide a higher-level of
service oriented to the needs of the application.

Scheduling, the matching of application requirements and available re-
sources, is a key aspect of GrADS. This chapter focuses on scheduling needs
identified for the GrADS framework. Specifically, we discuss the following
distinct scheduling phases.

Launch-time scheduling is the pre-execution determination of an initial
matching of application requirements and available resources.

Rescheduling involves making modifications to that initial matching in
response to dynamic system or application changes.

Meta-scheduling involves the coordination of schedules for multiple ap-
plications running on the same Grid at once.

GrADS Scheduling 75

Initial prototype development in GrADS revealed that existing application
scheduling solutions were inadequate for direct application in the GrADS sys-
tem. System-level schedulers (e.g., LoadLeveler [IBM01] and Maui Sched-
uler [Mau]) focus on throughput and generally do not consider application re-
quirements in scheduling decisions. Application-specific schedulers [Ber99]
have been very successful for individual applications, but are not easily ap-
plied to new applications. Other projects have focused on easy-to-charact-
erize classes of applications, particularly master-worker applica-
tions [AGK00, COBW00]; these solutions are often difficult to use with new
classes of applications.

Consequently, we worked to develop scheduling strategies appropriate to
the needs of GrADS. We began by studying specific applications or applica-
tion classes and developing scheduling approaches appropriate to those ap-
plications or application classes [PBD

�
01, AAF

�
01, DBC03, SC03, VD03b,

VD02]. Concurrently, the GrADS team has been developing GrADSoft, a
shared implementation of GrADS. Proven research results in all areas of the
GrADS project are incorporated in GrADSoft with appropriate modifications
to allow integration with other components. The resulting system provides an
end-to-end validation of the GrADS research efforts. Many of the schedul-
ing approaches discussed in this chapter have been incorporated in GrAD-
Soft [MMCS

�
01].

This chapter is organized as follows. Section 2 describes the GrADS project
in greater detail and provides an overview of key Grid technologies we draw
upon for our scheduling work. Section 3 describes the applications we have
used to validate our designs. Section 4 presents our launch-time scheduling
approach, Section 5 presents our rescheduling approach, and Section 6 presents
our metascheduling approach. Section 7 concludes the chapter.

2. GRADS

Figure 6.1 provides a high-level view of the GrADS system architec-
ture [KMMC

�
02]. This architecture provides the framework for our schedul-

ing approaches. The following is a conceptual view of the function of each
component in the architecture. Note that the view given in Figure 6.1 and
in the following discussion is an idealized view of how GrADS components
should function and interact with one another. In reality, the system is under
development and does not yet function exactly as described. This chapter will
describe the current state of the scheduling components, but we will not have
space to describe the current status of all GrADS components.

The Program Preparation System (PPS) handles application development,
composition, and compilation. To begin the development process, the user in-
teracts with a high-level interface called a problem solving environment (PSE)

76 GRID RESOURCE MANAGEMENT

to assemble their Grid application source code and integrate it with software
libraries. The resulting application is passed to a specialized GrADS com-
piler. The compiler performs application analysis and partial compilation into
intermediate representation code and generates a configurable object program
(COP). This work may be performed off-line as the COP is a long-lived object
that may be re-used for multiple runs of the application. The COP must en-
capsulate all results of the PPS phase for later usager, for example, application
performance models and partially compiled code, also konwn as intermediate
representation code.

The Program Execution System (PES) provides on-line resource discovery,
scheduling, binding, application performance monitoring, and rescheduling.
To execute an application, the user submits parameters of the problem (such as
problem size) to the GrADS system. The application COP is retrieved and the
PES is invoked. At this stage the scheduler interacts with the Grid run-time sys-
tem to determine which resources are available and what performance can be
expected of those resources. The scheduler then uses application requirements
specified in the COP to select an application-appropriate schedule (resource
subset and a mapping of the problem data or tasks onto those resources).

The binder is then invoked to perform a final, resource-specific compilation
of the intermediate representation code. Next, the executable is launched on
the selected Grid resources and a real-time performance monitor is used to
track program performance and detect violation of performance guarantees.
Performance guarantees are formalized in a performance contract [VAMR01].
In the case of a performance contract violation, the rescheduler is invoked to
evaluate alternative schedules.

C
onfigurable

object
program

Whole
program
compiler

A

pplication

Libraries

Software
components

Program Preparation
System (PPS)

Realtime
performance

monitor

Binder

Grid

runtime
system

Scheduler

Program Execution
System (PES)

P
roblem

 solving
environm

ent

Negotiation

Performance
feedback

Figure 6.1. Grid Application Development Software Architecture.

GrADS Scheduling 77

2.1 Grid Technology

The previous section outlined the GrADS vision; as components of that
vision are prototyped and validated, they are incorporated in a shared proto-
type implementation of GrADS called GrADSoft. Many of the scheduling
approaches described in this chapter have been integrated into this prototype.
We utilize the following Grid technologies to support our research efforts.

The Globus Toolkit Monitoring and Discovery Service (MDS2) [CFFK01]
and the Network Weather Service (NWS) [WSH99a] are two on-line services
that collect and store Grid information that may be of interest to tools such
as schedulers. The MDS2 is a Grid information management system that is
used to collect and publish system configuration, capability, and status infor-
mation. Examples of the information that can typically be retrieved from an
MDS server include operating system, processor type and speed, and number
of CPUs available. The NWS is a distributed monitoring system designed to
track and forecast dynamic resource conditions; Chapter 14 describes this sys-
tem in detail. Examples of the information that can typically be retrieved from
an NWS server include the fraction of CPU available to a newly started pro-
cess, the amount of memory that is currently unused, and the bandwidth with
which data can be sent to a remote host. Our scheduling approaches draw on
both the MDS and NWS to discover properties of the Grid environment.

The ClassAds/Matchmaking approach to scheduling [RLS99] was pioneered
in the Condor high-throughput computing system [LLM88]. Refer to Chap-
ter 9 for a discussion of Condor and Chapter 17 for a discussion of ClassAds.
ClassAds (i.e., Classified Advertisements) are records specified in text files
that allow resource owners to describe the resources they own and resource
consumers to describe the resources they need. The ClassAds/Matchmaking
formalism includes three parts: The ClassAds language defines the syntax for
participants to create ClassAds. The advertising protocol defines basic con-
ventions regarding how ClassAds and matches must be communicated among
participants. The matchmaker finds matching requests and resource descrip-
tions, and notifies the advertiser of the result. Unfortunately, at the time of our
research efforts the ClassAds/Matchmaker framework only considered a single
resource request at a time. As will be described in Section 4.3.1, our work has
extended the ClassAds/Matchmaker framework to allow scheduling of parallel
applications on multiple resources.

To provide focus and congruency among different GrADS research efforts
we restricted our initial efforts to particular execution scenarios. Specifically,
we focus on applications parallelized in the Message Passing Interface
(MPI) [For94]. This choice was based on both (1) the popularity and ease
of use of MPI for the implementation of parallel scientific applications and (2)
the recent availability of MPICH-G2 [KTF03] for execution of MPI applica-

78 GRID RESOURCE MANAGEMENT

tions in the wide-area. We use the Globus Toolkit [FK98a] for authentication
and job launching and GridFTP [ABB

�
02a] for data transfers.

3. FOCUS APPLICATIONS

The GrADS vision to build a general Grid application development system
is an ambitious one. To provide context for our initial research efforts, we se-
lected a number of real applications as initial focus points. Our three primary
selections were ScaLAPACK, Cactus, and FASTA; each of these applications
is of significant interest to a scientific research community and has non-trivial
characteristics from a scheduling perspective. Additionally, we selected three
iterative applications (Jacobi, Game of Life, and Fish) for use in rapid devel-
opment and testing of new scheduling techniques. These applications were
incorporated into GrADS by the following efforts: ScaLAPACK [PBD

�
01],

Cactus [AAF
�

01], Jacobi [DBC03], Game of Life [DBC03], and Fish [SC03].
The FASTA effort has not been described in a publication, but was led by Asim
YarKhan and Jack Dongarra. Our focus applications include implementations
in Fortran, C, and C++.

3.1 ScaLAPACK

ScaLAPACK [BCC
�

97] is a popular software package for parallel linear
algebra, including the solution of linear systems based on LU and QR factor-
izations and the determination of eigenvalues. It is written in a single program
multiple data (SPMD) style and is portable to any computer that supports MPI
or PVM. Linear solvers such as those provided in ScaLAPACK are ubiquitous
components of scientific applications across diverse disciplines.

As a focus application for GrADS, we chose the ScaLAPACK right-looking
LU factorization code based on 1-D block cyclic data distribution; the appli-
cation is implemented in Fortran with a C wrapper. Performance prediction
for this code is challenging because of data-dependent and iteration-dependent
computational requirements.

3.2 Cactus

Cactus [ABH
�

99] was originally developed as a framework for finding nu-
merical solutions to Einstein’s equations and has since evolved into a general-
purpose, open source, problem solving environment that provides a unified,
modular, and parallel computational framework for scientists and engineers.
The name Cactus comes from the design of central core (or “flesh”) which
connects to application modules (or “thorns”) through an extensible interface.
Thorns can implement custom applications, as well as computational capa-
bilities (e.g. parallel I/O or checkpointing). See Chapter 3 for an extended
discussion of Cactus.

GrADS Scheduling 79

We focus on a Cactus code for the simulation of the 3D scalar field pro-
duced by two orbiting sources; this application is implemented in C. The so-
lution is found by finite differencing a hyperbolic partial differential equation
for the scalar field. This application decomposes the 3D scalar field over pro-
cessors and places an overlap region on each processor. In each iteration, each
processor updates its local grid points and then shares boundary values with
neighbors. Scheduling for Cactus presents challenging workload decomposi-
tion issues to accommodate heterogeneous networks.

3.3 FASTA

In bio-informatics, the search for similarity between protein or nucleic acid
sequences is a basic and important operation. The most exacting search meth-
ods are based on dynamic programming techniques and tend to be very com-
putationally expensive. FASTA [PL88] is a sequence alignment technique that
uses heuristics for fast searches. Despite these optimizations, due to the cur-
rent size of the sequence databases and the rate at which they are growing
(e.g. human genome database), searching remains a time consuming process.
Given the size of the sequence databases, it is often undesirable to transport
and replicate all databases at all compute sites in a distributed Grid.

The GrADS project has adapted a FASTA sequence alignment implemen-
tation [FAS] to use remote, distributed databases that are partially replicated
on some of the Grid nodes. When databases are located at more than one
worker, workers may be assigned only a portion of a database. The application
is structured as a master-worker and is implemented in C. FASTA provides an
interesting scheduling challenge due to the database locality requirements and
large computational requirements.

3.4 Iterative Applications

We selected three simple iterative applications to support rapid development
and testing of new scheduling approaches. We chose these applications be-
cause they are representative of many important science and engineering codes
and they are significant test cases for a scheduler because they include various
and significant computation, communication, and memory usages. All three
applications are implemented in C and support non-uniform data distribution.

The Jacobi method is a simple linear system solver. A portion of the un-
known vector � is assigned to each processor; during each iteration, every pro-
cessor computes new results for its portion of � and then broadcasts its updated
portion of � to every other processor.

80 GRID RESOURCE MANAGEMENT

Conway’s Game of Life is a well-known binary cellular automaton [Fla98].
A two-dimensional mesh of pixels is used to represent the environment, and
each pixel of the mesh represents a cell. In each iteration, the state of every
cell is updated with a 9-point stencil and then processors send data from their
edges (ghost cells) to their neighbors in the mesh.

The Fish application models the behavior and interactions of fish and is in-
dicative of many particle physics applications. calculates Van der Waals forces
between particles in a two-dimensional field. Each computing process is re-
sponsible for a number of particles, which move about the field. Because the
amount of computation depends on the location and proximity of particles, this
application exhibits a dynamic amount of work per processor.

4. LAUNCH-TIME SCHEDULING

The launch-time scheduler is called just before application launch to de-
termine how the current application execution should be mapped to available
Grid resources. The resulting schedule specifies the list of target machines, the
mapping of virtual application processes to those machines, and the mapping
of application data to processes. Launch-time scheduling is a central compo-
nent in GrADSoft and is key to achieving application performance; for this
reason, we have experimented with a variety of launch-time scheduling ap-
proaches including those described in [LYFA02, DBC03, PBD

�
01]. Through

this evolution we have identified an application-generic launch-time schedul-
ing architecture; in this section we describe that architecture and key contribu-
tions we have made to each component of the design. Many of the approaches
described here have been incorporated in GrADSoft; the resulting unified sys-
tem has been tested with all of the applications described in Section 3.

4.1 Architecture

Figure 6.2 shows our launch-time scheduling architecture. This architecture
is designed to work in concert with many other GrADS components as part of
the general GrADS architecture described in Section 2. Launch-time schedul-
ing proceeds as follows; we describe each component in detail in the next
section. A user submits a list of machines to be considered for this applica-
tion execution (the machine list). The list is passed to the GrADS information
services client; this component contacts the MDS2 and the NWS to retrieve
information about Grid resources. The resulting Grid information is passed to
the filter resources component. This component retrieves the application re-
quirements and filters out resources that can not be used for the application.
The remaining Grid information is then passed to the search procedure. This

GrADS Scheduling 81

Figure 6.2. GrADS launch-time scheduling architecture.

procedure searches through available resources to find application-appropriate
subsets; this process is aided by the application performance model and map-
per. The search procedure eventually selects a final schedule, which is then
used to launch the application on the selected Grid resources.

4.2 GrADS Information Services Client

To enable adaptation to the dynamic behavior of Grid environments, Grid
resource information must be collected in real time and automatically incorpo-
rated in scheduling decisions. The MDS2 and NWS, described in Section 2.1,
collect and store a variety of Grid resource information. The GrADS informa-
tion services client retrieves resource information of interest to the scheduler
and stores that information in a useful format for the scheduler.

4.3 Configurable Object Program

As described in Section 2, the output of the GrADS program preparation
system is a configurable object program, or COP. The scheduler obtains the
application requirements specification, the performance model, and the map-
per from the COP. As the GrADS program preparation system matures, the
COP will be automatically generated via specialized compilers. In the mean-
time, we use various approaches, described below, to develop hand-built COP
components for our focus applications. These hand-built components have
been useful in studying scheduling techniques and have provided guidance as
to what sorts of models and information should be automatically generated by
the PPS in the future.

82 GRID RESOURCE MANAGEMENT

4.3.1 Application Requirements Specification

A reasonable schedule must satisfy application resource requirements. For
example, schedules typically must include sufficient local memory to store the
entire local data set. See Chapter 3 for an additional discussion of specifica-
tions of application resources requirements.

We have explored two ways to specify application resource requirements.
The first is a primarily internal software object called an abstract application
resource and topology (AART) model [KMMC

�
02]. Ultimately, the GrADS

compiler will automatically generate the AART; however, we do not yet have
an automated GrADS compiler in GrADSoft. Currently, application develop-
ers must provide a specification of the application requirements before utilizing
GrADSoft for a new application. For this purpose, we have developed a sec-
ond approach based on ClassAds (see Section 2.1). With ClassAds, resource
requirements can be easily specified in a human-readable text file. Further-
more, some developers are already familiar with ClassAds semantics.

The original ClassAds language is not sufficient for parallel applications. To
support parallel application description, we developed a number of extensions
to ClassAds.

A Type specifier is supplied for identifying set-extended ClassAds. The
expression Type=“Set” identifies a set-extended ClassAd.

Three aggregation functions, Max, Min, and Sum, are provided to specify
aggregate properties of resource sets. For example,������������������ !�"���#���%$'&)(+*-,/.

(6.1)

specifies that the total memory of the set of resources selected should be
greater than 5 Gb.

A boolean function suffix(V, L) returns True if a member of list L is the
suffix of scalar value V.

A function SetSize returns the number of elements within the current
resource ClassAd set.

Our extensions, called Set-extended ClassAds, are described in full in [LYFA02].
Our usage of ClassAds in GrADSoft is illustrated by the resource request for

the Cactus application shown in Figure 6.3. The parameters of this resource
request are based on performance models developed for Cactus in [RIF01b].
In this example, we use�0�������1�����2�1 435���#���%$6�0798:��&;(=<>� � @?%* �;AB� �C�C�C�'�2DCEGF 8 F � F $6& (6.2)

to express an aggregate memory requirement, and
H �JIKIJ7 � ������������ !�#LNM��67	OP�CQSRN�1�#LN7	O H & (6.3)

GrADS Scheduling 83

[
type = “Set”;
service = “SynService”;
iter = “100”; T = 100; � = 100;

$
= 100;

8
= 100;

domains = {“cs.utk.edu”, “ucsd.edu”};
requirements =

�0�������������2�1 435���#���%$'��798:�1&VU
� � @?%*-? AW� �C�C�C�'�2DCEYX � X $ X 8N& &&H �ZIKIJ7 � ���������2�1 !�#L[M��'7	OP�-QSR:���#L:79O H & ;

computetime = � X $ X T0\ ����������]M_^�� H ^J�1�2R X"D ? � ;
comtime =

�������2�1]`/abL:����OcMd$ A � X $ X"e *�f \ �������2�1]ag.hLNOcR-i=79R-��� ;
exectime =

��M�1�j^��������k7	�"� A Md���l�k7	�"�1& X 7	����� A H �kLN�%�_�:^ ;
mapper = [type = “dll”; libraryname = “cactus”;

function = “mapper”];
rank =

3m7	On� � \ � � �2Md�k7	�"�1& ;
]

Figure 6.3. Example of a set-extended ClassAds resource requirements specification.

to constrain the resources considered to those within domain cs.utk.edu or
ucsd.edu. The execution progress of the Cactus application is generally con-
strained by the subtask on the slowest processor; we therefore specify

�CL:OPop<
3m7	On� � \ � � �2Md�k7	�"�1& so that the rank of a resource set is decided by the longest
subtask execution time. The

� � �qMh�k7	�"� , M���j^��������k7	�"� , and
M���l�_7	�"�

entries
define the performance model for Cactus.

To better express the requirements of a variety of Grid applications, we re-
cently developed a new description language, called Redline [LF03], based
on Set-extended ClassAds. This language is able to describe resource re-
quirements of SPMD applications, such as Cactus, as well as MIMD appli-
cations where different application components may require different types of
resources. For example, with Redline one can specify unique requirements
for a storage resource, computation resources, and for the network connecting
storage and computation resources. We use this added expressiveness to better
satisfy application requirements in the scheduling process.

4.3.2 Performance Modeling

The performance model is used by the launch-time scheduler to predict
some metric of application performance for a given schedule. For ease of dis-
cussion we assume the metric of interest is application execution time, but one
could easily consider turnaround time or throughput instead. The performance

84 GRID RESOURCE MANAGEMENT

model object takes as input a proposed schedule and the relevant Grid infor-
mation and returns the predicted execution time for that schedule.

Other GrADS researchers are developing approaches for automatically gen-
erating performance models in the GrADS compiler [Grab]. In lieu of such
technologies, we have experimented with several methods for developing and
specifying performance models in GrADS. We generally used the following
approach: (i) develop an analytic model for well-understood aspects of appli-
cation or system performance (e.g. computation time prediction is relatively
straightforward), (ii) test the analytic model against achieved application per-
formance in real-world experiments, and (iii) develop empirical models for
poorly-understood aspects of application or system behavior (e.g. middleware
overheads for authentication and startup may be difficult to predict). We used
this approach for the iterative focus applications [DBC03], Cactus [RIF01b],
and FASTA [PL88].

For the ScaLAPACK application, we pursued a different ap-
proach [PBD

�
01]. The ScaLAPACK LU factorization application is an iter-

ative application consisting of three important phases: the factorization phase
involves computation, the broadcast phase involves communication, and the
update phase consists of both computation and communication. As the ap-
plication progresses, the amount of computation and communication in each
phase and in the iteration as a whole varies. Analytical models based on simple
mathematical formulas can not provide accurate predictions of the cost of the
ScaLAPACK application on heterogeneous systems. Instead, we developed a
simulation model of the application that simulates the different phases of the
application for a given set of resources. The resulting application simulation
functions as an effective performance model.

We implemented most of our performance models as shared libraries; GrAD-
Soft dynamically loads the application-appropriate model as needed. This ap-
proach allows application-specific performance model code to be used by our
application-generic software infrastructure. Using ClassAds, GrADSoft also
supports an easier to build alternative: the performance model can be specified
as an equation within the ClassAd (see Figure 6.3). While some performance
dependencies can not be described in this ClassAds format, we believe this
approach will be very attractive to users due to its ease-of-use.

4.4 Mapper

The mapper is used to find an appropriate mapping of application data
and/or tasks to a particular set of resources. Specifically, the mapper takes
as input a proposed list of machines and relevant Grid information and out-
puts a mapping of virtual application processes to processors (ordering) and a
mapping of application data to processes (data allocation).

GrADS Scheduling 85

Some applications allow the user to specify machine ordering and data allo-
cation; examples include FASTA, Cactus, and our three iterative applications.
For these applications, a well-designed mapper can leverage this flexibility to
improve application performance. Other applications define ordering and data
allocation internally, such as ScaLAPACK. For these applications, a mapper is
unnecessary.

4.4.1 Equal Allocation

The most straightforward mapping strategy takes the target machine list and
allocates data evenly to those machines without reordering. This is the default
GrADSoft mapper and can easily be applied to new applications for which a
more sophisticated strategy has not been developed.

4.4.2 Time Balancing

The Game of Life and Jacobi are representative of applications whose over-
all performance is constrained by the performance of the slowest processor;
this behavior is common in many applications with synchronous inter-processor
communication. In [DBC03] we describe our time balance mapper design for
the Game of Life and Jacobi in detail; we briefly describe this design here.

The goal of the ordering process is to reduce communication costs. We re-
order machines such that machines from the same site are adjacent in the topol-
ogy. Since the Game of Life is decomposed in strips and involves neighbor-
based communication, this ordering minimizes wide-area communications and
reduces communication costs. For Jacobi there is no clear effect since its com-
munication pattern is all-to-all.

The goal of the data allocation process is to properly load the machines
such that all machines complete their work in each iteration at the same time;
this minimizes idle processor time and improves application performance. To
achieve this goal we frame application memory requirements and execution
time balance considerations as a series of constraints; these constraints form
a constrained optimization problem that we solve with a linear programming
solver [LP]. To use a real-valued solver we had to approximate work allocation
as a real-valued problem. Given that maintaining a low scheduling overhead
is key, we believe that the improved efficiency obtained with a real-valued
solution method justifies the error incurred in making such an approximation.

4.4.3 Data Locality

FASTA is representative of applications with data locality constraints: ref-
erence sequence databases are large enough that it may be more desirable to
co-locate computation with the existing databases than to move the databases
from machine to machine. The mapper must therefore ensure that all reference

86 GRID RESOURCE MANAGEMENT

databases are searched completely and balance load on machines to reduce
execution time.

As with the time balance mapper, a linear approximation was made to the
more complicated nonlinear FASTA performance model; we again used [LP],
but here the result is an allocation of portions of reference databases to com-
pute nodes. Constraints were specified to ensure that all the databases were
fully handled, that each compute node could hold its local data in memory, and
that execution time was as balanced as possible. The load balancing is com-
plicated by the fact that the databases are not fully distributed. For example, a
given database may only be available at one compute node, requiring that it be
computed there regardless of the execution time across the rest of the compute
nodes.

4.5 Search Procedure

The function of the search procedure is to identify which subset of avail-
able resources should be used for the application. To be applicable to a variety
of applications, the search procedure must not contain application-specific as-
sumptions. Without such assumptions, it is difficult to predict a priori which
resource set will provide the best performance for the application. We have ex-
perimented with a variety of approaches and in each case the search involves
the following general steps: (i) identify a large number of sets of resources
that may be good platforms for the application, (ii) use the application-specific
mapper and performance model to generate a data map and predicted execu-
tion time for those resource sets, and (iii) select the resource set that results in
the lowest predicted execution time.

This minimum execution-time multiprocessor scheduling problem is known
to be NP-hard in its general form and in most restricted forms. Since launch-
time scheduling delays execution of the application, maintaining low overhead
is a key goal. We have developed two general search approaches that maintain
reasonable overheads while providing reasonable search coverage: a resource-
aware search and a simulated annealing search.

4.5.1 Resource-Aware Search

Many Grid applications share a general affinity for certain resource set char-
acteristics. For example, most Grid applications will perform better with higher
bandwidth networks and faster processing speeds. For our resource-aware
search approach, we broadly characterize these general application affinities
for particular resource characteristics; we then focus the search process on re-
source sets with these broad characteristics.

Over the evolution of the project we have experimented with three search
approaches that fall in this category: one developed for the ScaLAPACK appli-

GrADS Scheduling 87

ResourceAware Search:
sites r FindSites(machList)
siteCollections r ComputeSiteCollections(sites)
foreach (collection s siteCollections)

foreach (machineMetric s (computation, memory, dual))
for (r r 1:size(collection))

list r SortDescending(collection, machineMetric)
CMG r GetFirstN(list, r)
currSched r GenerateSchedule(CMG,

Mapper, PerfModel)
if (currSched.predTime t bestSched.predTime)

bestSched r currSched
return (bestSched)

Figure 6.4. A search procedure that utilizes general application resource affinities to focus the
search.

cation [PBD
�

01], one developed as part of the set-extended ClassAds frame-
work [LYFA02], and one developed for the GrADSoft framework [DBC03].
We describe the last search procedure as a representative of this search type.

The goal of the search process is to identify groups of machines that contain
desirable individual machines (i.e., fast CPUs and large local memories) and
have desirable characteristics as an aggregate (i.e., low-delay networks); we
term these groups of machines candidate machine groups (CMGs). Pseudo-
code for the search procedure is given in Figure 6.4. In the first step, machines
are divided into disjoint subsets, or sites. Currently, we group machines in
the same site if they share the same domain name; we plan to improve this
approach so that sites define collections of machines connected by low-delay
networks. The ComputeSiteCollections method computes the power set of the
set of sites. Next, in each for loop the search focus is refined based on a differ-
ent characteristic: connectivity in the outer-most loop, computational and/or
memory capacity of individual machines in the second loop, and selection of
an appropriate resource set size in the inner-most loop. The SortDescend-
ing function sorts the current collection by machineMetric. For example, if
machineMetric is dual, the sortDescending function will favor machines with
large local memories and fast CPUs. GetFirstN simply returns the first r ma-
chines from the sorted list. Next, to evaluate each CMG, the GenerateSchedule
method (i) uses the Mapper to develop a data mapping for the input CMG, (ii)
uses the Performance model to predict the execution time for the given sched-
ule (predtime), and (iii) returns a schedule structure which contains the CMG,
the map, and the predicted time. Finally, predicted execution time is used to
select the best schedule, which is then returned.

88 GRID RESOURCE MANAGEMENT

The complexity of an exhaustive search is
e1u

, where
^

is the number of
processors. The complexity of the above search is

D ^ ewv
where H is the number

of sites. As long as H txt ^ , this search reduces the search space as compared
to an exhaustive search. We have performed in-depth evaluation of this search
procedure for Jacobi and Game of Life [DBC03], and validated it for Cactus,
FASTA, and ScaLAPACK.

4.5.2 Simulated Annealing

Our resource-aware search assumes general application resource affinities.
For applications which do not share those affinities, the resource-aware search
may not identify good schedules. For example, FASTA does not involve signif-
icant inter-process communication and so does not benefit from the resource-
aware procedure’s focus on connectivity. Instead, for FASTA it is important
that computation be co-scheduled with existing databases. For this type of ap-
plication, we have developed a simulated annealing search approach that does
not make assumptions about the application, but is a costlier search approach.

Simulated annealing [KGJV83] is a popular method for statistically finding
the global optimum for multivariate functions. The concept originates from
the way in which crystalline structures are brought to more ordered states by
an annealing process of repeated heating and slowly cooling the structures.
Figure 6.5 shows our adaptation of the standard simulated annealing algorithm
to support scheduling. For clarity we have omitted various simple heuristics
used to avoid unnecessary searches.

In our procedure, we perform a simulated annealing search for each possible
resource subset size, from 1 to the full resource set size. This allows us to
decrease the search space by including only machines that meet the memory
requirements of the application, and to avoid some of the discontinuities that
may occur in the search space. For example, when two local minima consist of
different machine sizes, the search space between them is often far worse than
either (or may not even be an eligible solution).

For each possible machine size
�

we create a filtered list of machines that
can meet resource requirements. The initial CMG (candidate machine group)
is created by randomly selecting

�
machines out of this list. A schedule is

created from the CMG using the GenerateSchedule method, which provides
the predicted execution time of the schedule.

At each temperature y , we sample the search space repeatedly to ensure
good coverage of the space. To generate a new CMG, the current CMG is
perturbed by adding one machine, removing one machine, and swapping their
ordering. The new CMG is evaluated using GenerateSchedule and the dif-
ference between the predicted execution time and that of the current CMG is
calculated as

R:z
. If the predicted execution time is smaller (

R:z t �
), then

the new CMG becomes the current CMG. If
RNz{(�

then we check if the new

GrADS Scheduling 89

SimulatedAnnealing Search:
for r r 1:size(machList)

filteredList r check local memory
if size(filteredList) t r, continue
currCMG r pick r machines randomly from filteredList
currSched r GenerateSchedule(currCMG, Mapper, PerfModel)
foreach temperature r max:min

while energy has not stabilized
% remove machine, add machine and swap

order
newCMG r randomly perturb currCMG
newSched r GenerateSchedule(newCMG,

Mapper, PerfModel)
if newSched.predTime t currSched.predTime

currCMG r newCMG
else if random number t exp(-dE/kT)
% Probabilistically allow increases in

energy
currCMG r newCMG

if currSched.predTime t bestSched.predTime
bestSched r currSched

return bestSched

Figure 6.5. A search procedure that uses simulated annealing to find a good schedule without
making application assumptions.

CMG should be probabilistically accepted. If a random number is less than
the Boltzmann factor

� � ^0��|)RNz \qy & , then accept the new CMG, else reject the
new CMG. Using this distribution causes many upward moves to be accepted
when the temperature is high, but few upward moves to be accepted when the
temperature is low. After the space has been sampled at one temperature, the
temperature is lowered by a constant factor T (y}r~TKy Q T�t �

). This search
procedure allows the system to move to lower energy states while still escaping
local minima. The schedule with the best predicted execution time is returned.
We have performed a validation and evaluation of this search procedure for the
ScaLAPACK application in [YD02].

5. RESCHEDULING

Launch-time scheduling can at best start the application with a good sched-
ule. Over time, other applications may introduce load in the system or ap-
plication requirements may change. To sustain good performance for longer

90 GRID RESOURCE MANAGEMENT

running applications, the schedule may need to be modified during applica-
tion execution. This process, called rescheduling, can include changing the
machines on which the application is executing (migration) or changing the
mapping of data and/or processes to those machines (dynamic load balanc-
ing).

Rescheduling involves a number of complexities not seen in launch-time
scheduling. First, while nearly all parallel applications support some form
of launch-time scheduling (selection of machines at a minimum), very few
applications have built-in mechanisms to support migration or dynamic load
balancing. Second, for resource monitoring we have to differentiate between
processors on which the application is running and processors on which the ap-
plication is not running. Measurements from resource monitors such as NWS
CPU sensors can not be directly compared between active and inactive pro-
cessors. Third, the overheads of rescheduling can be high: monitoring for the
need to reschedule is an ongoing process and, when a rescheduling event is
initiated, migration of application processes or reallocation of data can be very
expensive operations. Without careful design, rescheduling can in fact hurt
application performance.

We have experimented with a variety of rescheduling approaches to ad-
dress these issues, including an approach developed for the Cactus applica-
tion [AAF

�
01], an approach called application migration that has been vali-

dated for the ScaLAPACK application [VD03b], and an approach called pro-
cess swapping that has been validated for the Fish application [SC03]. Through
this evolution we have identified a rescheduling architecture. Note that our re-
scheduling efforts were all conducted for iterative applications, allowing us to
perform rescheduling decisions at each iteration. In the following sections we
describe this architecture and key contributions we have made to each compo-
nent of the design.

5.1 Architecture

Figure 6.6 shows our rescheduling architecture and we depict an applica-
tion already executing on � processors. We also assume that a performance
contract [VAMR01] has been provided by earlier stages of GrADS; this con-
tract specifies the performance expected for the current application execution.
While the application is executing, application sensors are co-located with ap-
plication processes to monitor application progress. Progress can be measured,
for example, by generic metrics such as flop rate or by application-intrinsic
measures such as number of iterations completed. In order that these sensors
have access to internal application state, we embed them in the application it-
self. We work to minimize the impact of these sensors on the application’s
footprint and execution progress. Meanwhile, resource sensors are located on

GrADS Scheduling 91

Figure 6.6. GrADS rescheduling architecture.

the machines on which the application is executing, as well as the other ma-
chines available to the user for rescheduling. For evaluating schedules, it is
important that measurements taken on the application’s current execution ma-
chines can be compared against measurements taken on unused machines in
the testbed.

Application sensor data and the performance contract are passed to the con-
tract monitor, which compares achieved application performance against ex-
pectations. When performance falls below expectations, the contract monitor
signals a violation and contacts the rescheduler. An important aspect of a well-
designed contract monitor is the ability to differentiate transient performance
problems from longer-term issues that warrant modification of the application’s
execution. Upon a contract violation, the rescheduler must determine whether
rescheduling is profitable, and if so, what new schedule should be used. Data
from the resource sensors can be used to evaluate various schedules, but the
rescheduler must also consider the cost of moving the application to a new ex-
ecution schedule and the amount of work remaining in the application that can
benefit from a new schedule.

To initiate schedule modifications, the rescheduler contacts the rescheduling
actuators located on each processor. These actuators use some mechanism to
initiate the actual migration or load balancing. Application support for migra-
tion or load balancing is the most important part of the rescheduling system.
The most transparent migration solution would involve an external migrator
that, without application knowledge, freezes execution, records important state
such as register values and message queues, and restarts the execution on a new

92 GRID RESOURCE MANAGEMENT

processor. Unfortunately, this is not yet feasible as a general solution in het-
erogeneous environments. We have chosen application-level approaches as a
feasible first step. Specifically, the application developer simply adds a few
lines to their source code and then links their application against our MPI re-
scheduling libraries in addition to their regular MPI libraries.

5.2 Contract Monitoring

GrADS researchers have tried a variety of approaches for application sen-
sors and contract monitoring. The application sensors are based on Autopilot
sensor technology [RVSR98] and run in a separate thread within the applica-
tion’s process space. To use these sensors, a few calls must be inserted into the
application code. The sensors can be configured to read and report the value of
any application variable; a common metric is iteration number. Alternatively,
the sensors can use PAPI [LDM

�
01] to access measurements from the proces-

sor’s hardware performance counters (i.e., flop rate) and the MPICH profiling
library for communication metrics (i.e., bytes sent per second).

The performance contracts specify predicted metric values and tolerance
limits on the difference between actual and predicted metric values. For ex-
ample, contracts can specify predicted execution times and tolerance limits on
the ratio of actual execution times to predicted execution times. The contract
monitor receives application sensor data and records the ratio of achieved to
predicted execution times. When a given ratio is larger than the upper toler-
ance limit, the contract monitor calculates an average of recently computed
ratios. If the average is also greater than the upper tolerance limit, the per-
formance monitor signals a contract violation to the rescheduler. Use of an
average reduces unnecessary reactions to transitory violations.

In the following two sections, we present two approaches to rescheduling
for which contract monitoring provides a fundamental underpinning.

5.3 Rescheduling Via Application Migration

Application rescheduling can be implemented with application migration,
based on a stop/restart approach. When a running application is signaled to
migrate, all application processes checkpoint important data and shutdown.
The rescheduled execution is launched by restarting the application, which
then reads in the checkpointed data and continues mid-execution.

GrADS Scheduling 93

To provide application support for this scenario we have implemented a
user-level checkpointing library called Stop Restart Software (SRS) [VD03a].
To use SRS, the following application changes are required.

SRS_Init() is placed after MPI_Init() and SRS_Finish() is
placed before MPI_Finalize().

The user may define conditional statements to differentiate code exe-
cuted in the initial startup (i.e., initialization of an array with zeros) and
code executed on restart (i.e., initialization of array with values from
checkpoint). SRS Restart Value() returns 0 on start and 1 on restart and
should be used for these conditionals.

The user should insert calls to SRS_Check_Stop() at reasonable
stopping places in the application; this call checks whether an external
component has requested a migration event since the last
SRS_Check_Stop().

The user uses SRS_Register() in the application to register the vari-
ables that will be checkpointed by the SRS library. When an external
component stops the application, the SRS library checkpoints only those
variables that were registered through SRS_Register().
SRS_Read() is used on startup to read checkpointed data.

SRS_Read() also supports storage of data distribution and number of
processors used in the checkpoint. On restart, the SRS library can be
provided with a new distribution and/or a different number of processors;
the data redistribution is handled automatically by SRS.

The user must include the SRS header file and link against the SRS li-
brary in addition to the standard MPI library.

At run-time, a daemon called Runtime Support System (RSS) is started on
the user’s machine. RSS exists for the entire duration of the application, re-
gardless of migration events. The application interacts with the RSS during ini-
tialization, to check if the application needs to be stopped during
SRS_Check_Stop(), to store and retrieve pointers to the checkpointed data,
and to store the processor configuration and data distribution used by the ap-
plication.

We use a modified version of the contract monitor presented in Section 5.2.
Specifically, we added (i) support for contacting the migration rescheduler in
case of a contract violation, (ii) interfaces to allow queries to the contract mon-
itor for remaining application execution time, and (iii) support for modifying

94 GRID RESOURCE MANAGEMENT

the performance contract dynamically. For the third issue, when the resched-
uler refuses to migrate the application, the contract monitor lowers expecta-
tions in the contract. Dynamically adjusting expectations reduces communica-
tion with the contract monitor.

The migration rescheduler operates in two modes: migration on request oc-
curs when the contract monitor signals a violation, while in opportunistic mi-
gration the rescheduler checks for recently completed applications
(see [VD03b] for details) and if one exists, the rescheduler checks if perfor-
mance benefits can be obtained by migrating the application to the newly freed
resources. In either case, the rescheduler contacts the NWS to obtain infor-
mation about the Grid; our application migration approach does not involve
special-purpose resource sensors. Next, the rescheduler predicts remaining
execution time on the new resources, remaining execution time on the cur-
rent resources, and the overhead for migration and determines if a migration
is desirable. We have evaluated rescheduling based on application migration
in [VD03b] for the ScaLAPACK application.

5.4 Rescheduling Via Process Swapping

Although very general-purpose and flexible, the stop/migrate/restart ap-
proach to rescheduling can be expensive: each migration event can involve
large data transfers and restarting the application can incur expensive startup
costs. Our process swapping approach [SC03] provides an alternative trade-
off: it is light-weight and easy to use, but less flexible than our migration
approach.

To enable swapping, the MPI application is launched with more machines
than will actually be used for the computation; some of these machines become
part of the computation (the active set) while some do nothing initially (the
inactive set). The user’s application sees only the active processes in the main
communicator (MPI_Comm_World); communication calls are hijacked and
work is performed behind the scenes to convert the user’s communication calls
in terms of the active set to real communication calls in terms of the full process
set. During execution, the system periodically checks the performance of the
machines and swaps loaded machines in the active set with faster machines in
the inactive set. This approach is very practical: it requires little application
modification and provides an inexpensive fix for many performance problems.
On the other hand, the approach is less flexible than migration: the processor
pool is limited to the original set of machines and we have not incorporated
support for modifying the data allocation.

To provide application support for process swapping we have implemented
a user-level swapping library. To use swapping, the following application
changes are required.

GrADS Scheduling 95

The iteration variable must be registered using the swap_register()
call.

Other memory may be registered using mpi_register() if it is im-
portant that their contents be transferred when swapping processors.

The user must insert a call to MPI_Swap() inside the iteration loop to
exercise the swapping test and actuation routines.

The user must include mpi_swap.h instead of mpi.h and must link
against the swapping library in addition to the standard MPI library.

In addition to the swap library, swapping depends on a number of run-time
services designed to minimize the overheads of rescheduling and the impact
on the user. The swap handler fulfills the role of application sensor, resource
sensor, and rescheduling actuator in Figure 6.6. The swap handler measures
the amount of computation, communication, and barrier wait time of the appli-
cation. The swap handler also measures passive machine information like the
CPU load of the machine and active information requiring active probing like
current flop rate.

The swap manager performs the function of the rescheduler in Figure 6.6. A
swap manager is started for each application and is dedicated to the interests of
that application only. Application and resource information is sent by the swap
handlers to the swap manager. Acting in an opportunistic migration mode, the
swap manager analyzes performance information and determines when and
where to swap processes according to a swap policy. When a swap is necessary,
the swap manager triggers the swap through the swap handlers.

When a swap request is received, the swap handler stores the informa-
tion. The next time the application checks if swapping is necessary by calling
MPI_Swap(), the swap is executed. From the application’s perspective, the
delay of checking for a swap request is minimal: the information is located on
the same processor and was retrieved asynchronously.

We have evaluated our process swapping implementation with the Fish ap-
plication and experimental results are available in [SC03].

6. METASCHEDULING

Our launch-time scheduling architecture (Figure 6.2) schedules one appli-
cation at a time and, except for the usage of dynamic NWS data on resource
availability, does not consider the presence of other applications in the sys-
tem. There are a number of problems with this application-centric view. First,
when two applications are submitted to GrADS at the same time, scheduling
decisions will be made for each application ignoring the presence of the other.
Second, if the launch-time scheduler determines there are not enough resources

96 GRID RESOURCE MANAGEMENT

for the application, it can not make further progress. Third, a long running job
in the system can severely impact the performance of numerous new jobs en-
tering the system. The root cause of these and other problems is the absence
of a metascheduler that possesses global knowledge of all applications in the
system and tries to balance the needs of the applications.

The goal of our metascheduling work [VD02] is to investigate schedul-
ing policies that take into account both the needs of the application and the
overall performance of the system. To investigate the best-case benefits of
metascheduling we assume an idealized metascheduling scenario. We assume
the metascheduler maintains control over all applications running on the speci-
fied resources and has the power to reschedule any of those applications at any
time. Our metascheduling architecture is shown in Figure 6.7. The metasched-
uler is implemented by the addition of four components, namely database man-
ager, permission service, contract negotiator and rescheduler to the GrADS
architecture.

Figure 6.7. GrADS metascheduler architecture.

The database manager acts as a repository for information about all appli-
cations in the system. The information includes, for example, the status of
applications, application-level schedules determined at application launch, and
the predicted execution costs for the end applications. As shown in Figure 6.7,
the application stores information in the database manager at different stages
of execution. Other metascheduling components query the database manager
for information to make scheduling decisions.

In metascheduling, after the filter resources component generates a list of re-
sources suitable for problem solving, this list is passed, along with the problem
parameters, to the permission service. The permission service determines if the

GrADS Scheduling 97

filtered resources have adequate capacities for problem solving and grants or
rejects permission to the application for proceeding with the other stages of ex-
ecution. If the capacities of the resources are not adequate for problem solving,
the permission service tries to proactively stop a large resource consuming ap-
plication to accommodate the new application. Thus, the primary objective of
the permission service is to accommodate as many applications in the system
as possible while respecting the constraints of the resource capacities.

In the launch-time scheduling architecture, shown in Figure 6.2, after the
search procedure determines the final schedule, the application is launched on
the final set of resources. In the metascheduling architecture shown in Fig-
ure 6.7, before launching the application, the final schedule along with perfor-
mance estimates are passed as a performance contract to the contract devel-
oper, which in turn passes the information to the metascheduling component,
contract negotiator. The contract negotiator is the primary component that
balances the needs of different applications. It can reject a contract if it deter-
mines that the application has made a scheduling decision based on outdated
resource information. The contract negotiator also rejects the contract if it de-
termines that the approval of the contract can severely impact the performance
of an executing application. Finally, the contract negotiator can also preempt
an executing application to improve the performance contract of a new appli-
cation. Thus the major objectives of the contract negotiator is to provide high
performance to the individual applications and to increase the throughput of
the system.

More details about our metascheduling approach and an initial validation
for the ScaLAPACK application are available in [VD02].

7. STATUS AND FUTURE WORK

In this chapter we have described approaches developed in GrADS for
launch-time scheduling, rescheduling, and metascheduling in a Grid applica-
tion development system. In developing these approaches we have focused
on a Grid environment consisting of distributed clusters of shared worksta-
tions; unpredictable and rapidly changing resource availabilities make this a
challenging and interesting Grid environment. Previous Grid scheduling ef-
forts have been very successful in developing general scheduling solutions for
embarrassingly parallel applications (e.g. [COBW00]) or serial task-based ap-
plications (e.g. [RLS99]). We focus instead on data-parallel applications with
non-trivial inter-processor communications. This application class is challeng-
ing and interesting because to obtain reasonable performance, schedulers must

98 GRID RESOURCE MANAGEMENT

incorporate application requirements and resource characteristics in schedul-
ing decisions.

We have incorporated many of our launch-time scheduling approaches in
GrADSoft and the resulting system has been tested for all of the focus appli-
cations described in Section 3. Currently, we are working to generalize our
rescheduling results and incorporate them in GrADSoft. Similarly, researchers
at UIUC are integrating more sophisticated contract development technologies
and researchers at Rice University are working to integrate initial GrADS com-
piler technologies for automated generation of performance models and map-
pers. GrADSoft will be used as a framework for testing these new approaches
together and extending our scheduling approaches as needed for these new
technologies.

In collaboration with other GrADS researchers we plan to extend our ap-
proaches to support more Grid environments and other types of applications.
Rich Wolski and Wahid Chrabakh, GrADS researchers at the University of
California, Santa Barbara, have recently developed a reactive scheduling ap-
proach for a Satisfiability application. This application’s resource requirements
dynamically grow and shrink as the application progresses and the reactive
scheduling approach dynamically grows and shrinks the resource base accord-
ingly. As this work evolves, their results can be used to extend our rescheduling
approaches to consider changing application requirements. Anirban Mandal
and Ken Kennedy, GrADS researchers at Rice University, are working to de-
velop compiler technologies for work-flow applications; we plan to extend our
scheduling approaches for this application type.

Acknowledgments

The authors would like to thank the entire GrADS team for many contribu-
tions to this work. This material is based upon work supported by the National
Science Foundation under Grant 9975020.

Chapter 7

WORKFLOW MANAGEMENT IN
GRIPHYN

Ewa Deelman, James Blythe, Yolanda Gil, and Carl Kesselman
Information Sciences Institute, University of Southern California

Abstract This chapter describes the work done within the NSF-funded GriPhyN project
in the area of workflow management. The targeted workflows are large both
in terms of the number of tasks in a given workflow and in terms of the total
execution time of the workflow, which can sometimes be on the order of days.
The workflows represent the computation that needs to be performed to analyze
large scientific datasets produced in high-energy physics, gravitational physics,
and astronomy. This chapter discusses issues associated with workflow man-
agement in the Grid in general and also provides a description of the Pegasus
system, which can generate executable workflows.

1. INTRODUCTION

As the complexity of Grid applications increases, it becomes ever more im-
portant to provide a means to manage application composition and the gen-
eration of executable application workflows. This chapter describes the Gri-
PhyN project, which explores, among others, issues of workflow management
in Grids in support of large-scale scientific experiments.

GriPhyN (Grid Physics Network [GRIb]) is an NSF-funded project that
aims to support large-scale data management in physics experiments such as
high-energy physics, astronomy, and gravitational wave physics in the wide
area. GriPhyN puts data both raw and derived under the umbrella of Virtual
Data. A user or application can ask for a virtual data product using application-
specific metadata without needing to know whether the data is available on
some storage system or if it must to be computed. To enable the computa-
tion, the system needs to have a recipe (possibly in a form of a workflow) that
describes the data products.

100 GRID RESOURCE MANAGEMENT

To satisfy the user’s request, GriPhyN will schedule the necessary data
movements and computations to produce the requested results. To perform
the scheduling, resources need to be discovered, data needs to be located and
staged, and the computation needs to be scheduled. The choice of particular
computational resources and data storage systems will depend on the overall
performance and reliability of entire computation. GriPhyN uses the Globus
Toolkit [FK97, GLO] as the basic Grid infrastructure and builds on top of it
high-level services that can support virtual data requests. These services in-
clude request planning, request execution, replica selection, workflow genera-
tion, and others.

The following section describes the workflow generation process in general,
starting from the application level, which contains application component de-
scriptions, down to the execution level, where the refined workflow is ready
for execution. Section 3 provides a brief overview of the issues involved in
workflow management in the Grid in general. Particular aspects of the prob-
lem such as workflow performance and workflow fault tolerance are addressed.
Section 4 describes the Pegasus (Planning for Execution in Grids) [DBG

�
03b]

framework that was developed to provide an experimental platform for work-
flow management research. Two specific configurations of Pegasus are dis-
cussed. The first takes a description of the workflow in terms of logical file-
names and logical application component names and produces an executable
workflow. The second builds an executable workflow based on metadata that
describes the workflow at the application level, allowing scientists to request
data in terms that are scientifically meaningful. The chapter concludes with
related work on the topic and future research directions.

2. GENERATING APPLICATION WORKFLOWS

Scientists often seek specific data products that can be obtained by config-
uring available application components and executing them on the Grid. As an
example, suppose that the user’s goal is to obtain a frequency spectrum of a
signal

�
from instrument � and time frame � , placing the results in locationa

. In addition, the user would like the results of any intermediate filtering steps
performed to be available in location � , perhaps to check the filter results for
unusual phenomena or perhaps to extract some salient features to the metadata
of the final results. The process of mapping this type of user request onto jobs
to be executed in a Grid environment can be decomposed into two steps, as
shown in Figure 7.1.

1 Generating an abstract workflow: Selecting and configuring applica-
tion components to form an abstract workflow. The application com-
ponents are selected by examining the specification of their capabilities
and checking to see if they can generate the desired data products. They

Workflow Management in GriPhyN 101

are configured by assigning input files that exist or that can be generated
by other application components. The abstract workflow specifies the
order in which the components must be executed. More specifically, the
following steps need to be performed:

(a) Find which application components generate the desired data prod-
ucts, which in our example is a frequency spectrum of the desired
characteristics. Let one such component be �)� . Find which inputs
that component needs, check if any inputs are available and if so
let the corresponding files be � � � � �S� . If any input is required in
formats that are not already available, then find application compo-
nents that can produce that input, and let one such component be�b�N� � . This process is iterated until the desired result can be gener-
ated from a composition of available components that can operate
over available input data, namely � � � � �b� and � � � � �� respec-
tively.

(b) Formulate the workflow that specifies the order of execution of the
components � � � � �b� . This is what we call an abstract workflow.
Please note that at this level the components and files are referred
to by their logical names, which uniquely identify the components
in terms of their functionality and the data files in terms of their
content. A single logical name can correspond to many actual exe-
cutables and physical data files in different locations.

2 Generating a concrete workflow: Selecting specific resources, files,
and additional jobs required to form a concrete workflow that can be exe-
cuted in the Grid environment. In order to generate a concrete workflow,
each component in the abstract workflow is turned into an executable
job by specifying the locations of the physical files of the component
and data, as well as the resources assigned to the component in the ex-
ecution environment. Additional jobs may be included in the concrete
workflow, for example, jobs that transfer files to the appropriate loca-
tions where resources are available to execute the application compo-
nents. Specifically, the following steps need to be performed:

(a) Find the physical locations (i.e., physical files) of each component
� � � � �b� : � � -̂JI0 � � �g� -̂

JI
.

(b) Check the computational requirements of � � -̂JI0 � � �b� -̂
JI

and spec-
ify locations

a � � � �a � to execute them according to the required
and available resources.

(c) Determine the physical locations of the input data files � � -̂ZI0 � � � � -^JI
, and select locations are more appropriate given

a � � � �a � .

102 GRID RESOURCE MANAGEMENT

Figure 7.1. The process of developing data intensive applications for Grid environments.

(d) Augment the workflow description to include jobs � � � � � � � �
to move component and input data files (� � -̂JI0 � � �b� -̂

JI
and � � -^JI0 � � �� -̂

JI
) to the appropriate target locations

a � � � ha � .

Although Grid middleware allows for discovery of the available resources and
of the locations of the replicated data, users are currently responsible for car-
rying out all of these steps manually. There are several important reasons that
automating this process not only desirable but necessary:

Usability: Users are required to have extensive knowledge of the Grid
computing environment and its middleware functions. For example, the
user needs to understand how to query an information service such as
the Monitoring and Discovery Service (MDS2) [CFFK01], to find the
available and appropriate computational resources for the computational
requirements of a component (step 2b). The user also needs to query the
Replica Location Service (RLS) [CDF

�
02] to find the physical locations

of the data (step2c).

Workflow Management in GriPhyN 103

Complexity: In addition to requiring scientists to become Grid-enabled
users, the process of workflow generation may be complex and time con-
suming. Note that in each step the user makes choices when alternative
application components, files, or locations are available. The user may
reach a dead end where no solution can be found, which would require
backtracking to undo some previous choice. Many different interdepen-
dencies may occur among components, and as a result it may be difficult
to determine which choice of component and or resource to change and
what would be a better option that leads to a feasible solution.

Solution cost: Lower cost solutions are highly desirable in light of the
high cost of some of the computations and the user’s limitations in terms
of resource access. Because finding any feasible solution is already time
consuming, users are unlikely to explore alternative workflows that may
reduce execution cost.

Global cost: Because many users are competing for resources, minimiz-
ing cost within a community or a virtual organization (VO) [FKT01] is
desirable. This requires reasoning about individual user choices in light
of all other user choices. It may be desirable to find possible common
jobs that can be included across user workflows and executed only once.

While addressing the first three points above would enable wider accessibil-
ity of the Grid to users, the last point, minimizing global cost, simply cannot
be handled by individual users and will likely need to be addressed at the ar-
chitecture level. In addition, there are many policies that limit user access to
resources, and that needs to be taken into account to accommodate as many
users as possible as they contend for limited resources.

An additional issue is the reliability of execution. When the execution of
the job fails, in today’s Grid framework the recovery consists of resubmitting
that job for execution on the same resources. (In Figure 7.1 this is shown as
retry.) However, it is also desirable to be able to choose a different set of
resources when tasks fail. This choice needs to be performed at the abstract
workflow level. Currently, there is no mechanism for opportunistically re-
running the remaining tasks in the workflow to adapt to the dynamic situation
of the environment. Moreover, if any job fails repeatedly it would be desirable
for the system to assign an alternative component to achieve the same overall
user goals. This approach would need to be performed at the application level
where there is an understanding of how different application components relate
to each other.

104 GRID RESOURCE MANAGEMENT

3. WORKFLOW MANAGEMENT ISSUES IN GRIDS

Grid computing has taken great strides in the last few years. The basic
mechanisms for accessing remote resources have been developed as part of the
Globus Toolkit and are now widely deployed and used. Among such mech-
anisms are: Information services, which can be used to find the available re-
sources and select the resources which are the most appropriate for a task;
Security services, which allow users and resources to mutually authenticate
and allow the resources to authorize users based on local policies; Resource
management, which allows for the scheduling of jobs on particular resources;
and Data management services, which enable users and applications to manage
large, distributed, and replicated data sets.

With the use of the above mechanisms, one can manually find out about the
resources and schedule the desired computations and data movements. How-
ever, this process is time consuming and can potentially be complex. As a
result, it is becoming increasingly necessary to develop higher-level services
that can automate the process and provide an adequate level of performance
and reliability. Among such services are workflow generators, which can con-
struct concrete or abstract workflows or both, and executors, which given a
concrete workflow execute it on the specified Grid resources.

When generating workflows, one can take into account metrics such as the
overall runtime of the workflow, and the probability that the workflow will be
executed successfully. An important aspect of obtaining desired results from
workflow execution is the relationship between workflow generator and work-
flow executor. In the following section we explore this interaction.

3.1 Planning for Optimal Performance

In this section, we focus on the behavior of a workflow generator (here
referred to as the planner) and its interaction with an executor, such as Condor-
G/DAGMan [FTF

�
02]. The relationship and interfaces between the planner

and the executor are important both from the standpoint of planning and fault
tolerance. For this discussion, we assume that multiple requests to the system
are handled independently.

We first describe two ways that the process of workflow generation and exe-
cution can vary, and use them to characterize the different interactions between
the planner and executor. Decisions about the workflow, such as the resource
on which to run a particular task, can be made with reference to information
about the whole workflow or just the task at hand. The former we refer to as
a global decision and the latter as a local decision. Typically, executors make
local decisions about tasks, while some planners make global decisions. Deci-
sions can be made as soon as possible (early) or just before the task is executed
(in-time). Typically, an executor makes any decisions just before task execu-

Workflow Management in GriPhyN 105

tion. To reason globally, a planner needs to make decisions before any tasks
are executed, but they may be revisited nearer the execution time.

One can imagine two extremes for how work is divided between the planner
and executor: on one hand, the planner can make a fully detailed workflow
based on the current information about the system that includes where the tasks
need to execute, the exact location from where the data needs to be accessed
for the computation, etc., leaving very few decisions to the executor. We call
this approach full-plan-ahead, and it can be seen to result in an early, global
decision-maker. At the other extreme, the planner can leave many decisions
up to the executor. It can, for example, give the executor a choice of compute
platforms to use, a choice of replicas to access, etc. At the time the executor is
ready to perform the computation or data movements, the executor can consult
the information services and make local decisions (here called in-time local
scheduling).

The benefit of the full-plan-ahead approach is that the planner can aim to
optimize the plan based on the entire structure of the workflow. However, be-
cause the execution environment can be very dynamic, by the time the tasks in
the workflow are ready to execute, the environment may have changed so much
that the execution is now far from the expected performance. Additionally, the
data may no longer be available at the location assumed by the planner, leading
to an execution-time error. Clearly, if the planner constructs fully instantiated
plans, it must be able to adapt to the changing conditions and be able to quickly
re-plan.

Faults due to the changing environment are far less likely to occur when the
executor is given the freedom to make decisions as it processes the abstract
workflow, as in the in-time-scheduling approach. At the time a task is to be
scheduled, the executor can use the information services to find out about the
state of the resources and the location of the data and make a locally optimal
decision. However, because the executor does not use global information about
the request, it can make potentially expensive decisions.

Another approach is in-time global scheduling. Here, the planner provides
an abstract workflow description to the executor, which in turn contacts the
planner when it is ready to schedule a task and asks for the execution location
for the task. The planner can at that time make a decision that uses global
information about the workflow. In the meantime, the planner can continu-
ally plan ahead, updating its views of the state of the Grid. If the resources
available to the planner itself are not able to support continuous planning, the
planner can run periodically or at a time when a new decision needs to be made.
Because the planner can make decisions each time a task is scheduled, it can
take many factors into consideration and use the most up-to-date information.
The drawback, however, is that the control may be too fine, and may result

106 GRID RESOURCE MANAGEMENT

in high communication overheads and a large amount of computation due to
re-planning.

Clearly, there is no single best solution for all applications, since these ap-
proaches can have very different characteristics. For example, consider a data-
intensive application, where the overall runtime is driven by data movement
costs, in which some task � requires file �/� as input and produces output file� � that is input for task

�
. If

�
can only run in a few locations, and

� � is large
relative to ��� , then a local decision-maker such as the in-time local scheduler
is likely to create a very poor plan, because it will first choose a location to run
� that is close to its required input �/� , without regard to the requirement to
then move the output

� � to a location where
�

can run. Global reasoning is
required to find the best workflow.

To decide on the best strategy, however, we also need to talk about how
quickly the Grid environment changes. If the availability of the needed re-
sources changes quickly enough that an early decision for where to execute

�
may be poor or invalid by the time � completes, and if

�
can run at many lo-

cations or
� � is relatively small, then in-time local scheduling would be better

than full-ahead-planning. If the domain changes quickly and requires global
scheduling, then in-time global scheduling is probably the best strategy. How-
ever, it is also possible that global scheduling itself will take significant time
to complete compared with the savings it produces. So if the planning time
is large compared with the execution savings, in-time local scheduling or full-
ahead-planning may still be preferred. Similar arguments can be made for
compute-intensive applications.

Another factor in workflow management is the use of reservations for vari-
ous resources such as compute hosts, storage systems, and networks. As these
technologies advance, we believe that the role of full-plan-ahead and in-time
global scheduling systems will increase.

Up to now, we have considered only the case where the workflow manage-
ment system handles only one request at a time. The problem becomes more
complex when the system is required to find efficient workflows for multiple
requests and to accommodate various usage policies and community and user
priorities. In this case, full-plan-ahead planners have the the advantage of be-
ing able to compare and in some cases optimize end-to-end workflows (through
exhaustive search.) However, full-plan-ahead planners still face the challenge
of needing to be able to react to the changing system state.

The nature of this problem seems to indicate that the workflow management
system needs to be flexible and adaptable in order to accommodate various
applications behavior and system conditions. Because an understanding of
the application’s behavior is crucial to planning and scheduling the execution,
application performance models are becoming ever more necessary.

Workflow Management in GriPhyN 107

3.2 Planning for Fault Tolerance

Performance is not the sole criterion for workflow generation. Fault toler-
ance of the workflow execution also needs to be considered. The abstract work-
flow generator can construct a few different workflows, allowing the lower lev-
els to decide which abstract workflow to implement. For example one work-
flow can rely on data that is available only from very unreliable resources,
whereas another can use resources that are expected to be reliable. In that case,
the concrete workflow generator may decide to instantiate the second abstract
workflow.

The concrete workflow generator itself may provide multiple concrete work-
flows, leaving it up to the executor to choose between them, or allowing it
to execute alternative workflows in cases of a failure of a particular concrete
workflow. The generator may also include “what if” scenarios in the con-
crete workflows. The executor would then execute the dependent nodes in
the workflow based on the success or failure (or possibly some other metric)
of the execution of the parent nodes. The generator can also instantiate the
abstract workflow based on the information it has about the reliability of the
system components. To achieve this, monitoring of the behavior of various
system components needs to be performed. This information can also be used
by the executor, which can replicate tasks if it is scheduling jobs on compute
resources viewed as unreliable or on compute resources connected by a poorly
performing network. The execution environment itself can incorporate fault
tolerance measures, by checkpointing the state and providing restart capabil-
ities. The executor may also want to adapt the checkpointing interval for the
jobs based on which resources the job is running.

So far we have discussed the general issues in workflow management in
GriPhyN. In the following sections we focus on the first implementation of a
workflow generation system.

4. PEGASUS-PLANNING FOR EXECUTION ON
GRIDS

Pegasus, which stands for Planning for Execution in Grids, was developed
at ISI as part of the GriPhyN project. Pegasus is a configurable system that can
map and execute complex workflows on the Grid. Currently, Pegasus relies on
a full-ahead-planning to map the workflows. As the system evolves, we will
incorporate in-time local scheduling and in-time global scheduling as well.

Pegasus and its concrete workflow generator has been integrated with the
GriPhyN Chimera system [FVWZ02]. Chimera provides a catalog that can be
used to describe a set of application components and then track all the data files
produced by executing those applications. Chimera contains the mechanism to
locate the recipe to produce a given logical file in the form of an abstract work-

108 GRID RESOURCE MANAGEMENT
F.a

F.b2
F.b1

F.c2F.c1

F.d

Extract

DecimateResample

Concat

Figure 7.2. An example abstract workflow.

flow. In the Chimera-driven configuration, Pegasus receives an abstract work-
flow (AW) description from Chimera, produces a concrete workflow (CW),
and submits the CW to Condor-G/DAGMan for execution. The workflows are
represented as Directed Acyclic Graphs (DAGs). The AW describes the trans-
formations and data in terms of their logical names; it has information about
all the jobs that need to be performed to materialize the required data.

The Pegasus Request Manager sends this workflow to the Concrete Work-
flow Generator (CWG.) The latter queries the Globus Replica Location Ser-
vice (RLS) to find the location of the input files, as specified by their logical
filenames in the DAG. The RLS returns a list of physical locations for the files.

The information about the available data is then used to optimize the con-
crete workflow from the point of view of Virtual Data. The optimization is
performed by the Abstract DAG Reduction component of Pegasus. If data
products described within the AW are found to be already materialized, Pe-
gasus reuses them and thus reduces the complexity of the CW.

The following is an illustration of the reduction algorithm. Figure 7.2 shows
a simple abstract workflow in which the logical component Extract is applied
to an input file with a logical filename �]L . The resulting files, with logical
filenames � 4. � and � 4. e , are used as inputs to the components identified by
logical filenames Resample and Decimate, respectively. Finally, the results are
Concatenated.

If we assume that �]M e is already available on some storage system (as in-
dicated by the RLS), the CWG reduces the workflow to three components,
namely Extract, Resample, and Concat. It then adds the transfer nodes for
transferring �]M e and �]L from their current locations. It also adds transfer
nodes between jobs that will run on different locations. For example, if the
executables for Resample and Concat are available at two different locations,
Fc.1 will have to be transferred. Finally, the CWG adds output transfer nodes
to stage data out and registration nodes if the user requested that the resulting
data be published and made available at a particular location. The concrete

Workflow Management in GriPhyN 109

Gridftp host://f.a ….lumpy.isi.edu/
nfs/temp/f.a

F.c2

F.c1

Register /F.d at home/malcolm/f2

lumpy.isi.edu://usr/local/
bin/extract

Jet.caltech.edu://home/malcom/
resample -I /home/malcolm/F.b1

Concat

Data Transfer
Nodes

Replica
Catalog

Registration
Nodes

Figure 7.3. An example reduced, concrete workflow.

workflow for this scenario is shown in Figure 7.3. Once the workflow is in-
stantiated in the form of a DAG, software such as DAGMan and Condor-G is
used to schedule the jobs described in the nodes of the DAG onto the specified
resources in their specified order.

In general, the reduction component of Pegasus assumes that it is more
costly to execute a component (a job) than to access the results of the com-
ponent if that data is available. For example, some other user in the VO may
have already materialized part of the entire required data set. If this informa-
tion is published into the RLS, then Pegasus can utilize this knowledge and
obtain the data thus avoiding possible costly computations. As a result, some
components that appear in the abstract workflow do not appear in the concrete
workflow.

During the reduction, the output files of the jobs that do not need to be
executed are identified. Any antecedents of the redundant jobs that do not
have any unmaterialized descendants are removed. The reduction algorithm is
performed until no further nodes can be reduced.

The CWG component of Pegasus maps the remaining abstract workflow
onto the available resources. Currently the information about the available
resources is statically configured. However, at this time, we are incorporating
the dynamic information provided by the Globus Monitoring and Discovery
Service (MDS2) into the decision-making process.

The CWG also checks for the feasibility of the abstract workflow. It de-
termines the root nodes for the abstract workflow and queries the RLS for the
existence of the input files for these components. The workflow can only be

110 GRID RESOURCE MANAGEMENT

executed if the input files for these components can be found to exist some-
where in the Grid and are accessible via a data transport protocol, such as
GridFTP [ABB

�
02b]. The Transformation Catalog [DKM01] is queried to

determine if the components are available in the execution environment and
to identify their locations. The Transformation Catalog performs the mapping
between a logical component name and the location of the corresponding exe-
cutables on specific compute resources. The Transformation Catalog can also
be used to annotate the components with the creation information as well as
component performance characteristics. Currently the CWG picks a random
location to execute from among the possible locations identified by the catalog.

Transfer nodes are added for any of these files that need to be staged in, so
that each component and its input files are at the same physical location. If
the input files are replicated at several locations, the CWG currently picks the
source location at random.

Finally transfer nodes and registration nodes, which publish the resulting
data products in the RLS, are added if the user requested that all the data be
published and sent to a particular storage location.

In order to be able to execute the workflow, Pegasus’ Submit File Generator
generates submit files which are subsequently sent to DAGMan for execution.
Their execution status is then monitored within Pegasus.

In the abstract-workflow-driven configuration, Pegasus has been shown to
be successful in mapping workflows for very complex applications such as the
Sloan Digital Sky Survey [AZV

�
02] and the Compact Muon

Source [DBG
�

03a]. Pegasus took the abstract workflow with hundreds of
nodes, instantiated it, and oversaw its successful execution on the Grid.

4.1 Planning at the Level of Metadata

Pegasus can also be configured to generate a workflow from a metadata de-
scription of the desired data product. This description is application-specific
and is meaningful to the domain expert. This configuration of Pegasus was
applied to one of the physics projects that are part of GriPhyN, the Laser Inter-
ferometer Gravitational-Wave Observatory, (LIGO [LIG, AAD

�
92, BW99]).

LIGO is a distributed network of interferometers whose mission is to detect
and measure gravitational waves predicted by general relativity, Einstein’s the-
ory of gravity. One well-studied source of gravitational waves is the motion
of dense, massive astrophysical objects such as neutron stars or black holes.
Other signals may come from supernova explosions, quakes in neutron stars,
and pulsars.

LIGO scientists have developed applications that look for gravitational
waves possibly emitted by pulsars. The characteristics of the search are the
position in the sky, frequency range of the expected signal, and time interval

Workflow Management in GriPhyN 111

Extract
Short Fourier

Transform
Frequency

Extracted SFT

Pulsar Search
Register Events in

DBExtract
Short Fourier

Transform
Frequency

Extracted SFT

Extract
Short Fourier

Transform
Frequency

Extracted SFT

…
 ..

…
 ..

…
 ..

Figure 7.4. The stages in the LIGO pulsar search.

over which to conduct the search. LIGO scientists would like to make requests
for data using just such metadata.

To support this type of request, the pulsar application is decomposed into
several stages (each an application in itself). Some of these stages may con-
tain thousands of independent applications. The first stage (Figure 7.4) con-
sists of extracting the gravitational wave channel from the raw data. Some
processing geared towards the removal (cleaning) of certain instrumental sig-
natures also needs to be done at that time. The pulsar search is conducted in
the frequency domain; thus, Fourier Transforms, in particular Short Fourier
Transforms (SFTs), are performed on the long duration time frames (second
stage). Since the pulsars are expected to be found in a small frequency range,
the frequency interval of interest is extracted from the STFs (third stage). The
resulting power spectra are used to build the time-frequency image, which is
analyzed for the presence of pulsar signatures (fourth stage). If a candidate
signal with a good signal-to-noise ratio is found, it is placed in LIGO’s event
database (final stage). Each of the stages in this analysis can be described
uniquely by LIGO-specific metadata, as seen in Table 7.1. For example, the
SFT is described by the channel name and the time interval of interest. These
descriptions need to made available to the workflow generation system, here
Pegasus, which translates them into abstract and/or concrete workflows.

Table 7.1. Metadata describing the LIGO pulsar search stages.

Stage Metadata

Extract Channel name, time interval
SFT Channel name, time interval
Frequency Extracted SFT Channel name, time interval, frequency band
Pulsar Search Channel name, time interval, frequency band, location in sky

112 GRID RESOURCE MANAGEMENT

Condor-G/
DAGMan

Transformation
Catalog

RLS

MCS

(1) Metadata Attributes

(3) Metadata Attributes

(4) List of Existing Virtual
Data Products Matching

the Request (LFNs)

(5) Logical File Names
(LFNs)

(6) Physical File Names
(PFNs)

(8)Metadata Attributes,
Current State

Chimera
(10b) VDLx

Request Manager

(18) Results

 (9b) Derivations

VDL Generator
Submit File

Generator for
Condor-G

Abstract and
Concrete Workflow

Generator

(9) Concrete DAG
MDS

Current Sate
Generator

(2) Metadata
Attributes

User’s VO information

Available Resources

(7) Current
State

(10) concrete
DAG

(13) DAGMan files

DAGMan
Submission and

Monitoring

(14) DAGMan files

(17) Monitoring

(11) Physical
Transformations

(12) Execution
Environment Information

(15) DAG (16) Log FIles

Figure 7.5. Pegasus configured to perform the LIGO pulsar search, based on application-
specific metadata.

4.2 Metadata-driven Pegasus

Given attributes such as time interval, frequency of interest, location in the
sky, etc., Pegasus was configured to support the LIGO pulsar search. Details
about the search can be found in [DKM

�
02]. Pegasus is currently able to

produce any virtual data products present in the LIGO pulsar search. Figure 7.5
shows Pegasus configured for such a search.

Pegasus receives the metadata description from the user. The Current State
Generator queries the Metadata Catalog Service (MCS) [CDK

�
02], to per-

form the mapping between application-specific attributes and logical file names
of existing data products (step 3 in Figure 7.5). The MCS, developed at ISI,
provides a mechanism for storing and accessing metadata, which is informa-
tion that describes data files or data items. The MCS allows users to query
based on attributes of data rather than names of files containing the data. In
addition to managing information about individual logical files, the MCS pro-
vides management of logical collections of files and containers that consist of
small files that are stored, moved, and replicated together.

The MCS can keep track of metadata describing the logical files such as:

Information about how data files were created or modified, including the
creator or modifier, the creation or modification time, what experimental

Workflow Management in GriPhyN 113

apparatus and input conditions produced the file, or what simulation or
analysis software was run on which computational engine with which
input parameters, etc.

A description of what the data stored in a file represent, for example,
time series data collected at a particular instrument.

Once the metadata for a product is specified, MCS determines the corre-
sponding logical file and determines the metadata and logical filenames for all
other sub-products that can be used to generate the data product, and returns
them to the Current State Generator as shown in Figure 7.5. The Current State
Generator then queries the RLS to find the physical locations of the logical
files (step 5). We are also interfacing the Current State Generator to MDS2
to find the available Grid resources. Currently, this information is statically
configured. The metadata and the current state information are then passed to
the Abstract and Concrete Workflow Generator (ACWG).

AI-based planning technologies are used to construct both the abstract and
concrete workflows [BDG

�
03, BDGK03]. The AI-based planner models the

application components along with data transfer and data registration as oper-
ators. The parameters of the planner operators include the location where the
component can be run. Some of the effects and preconditions of the opera-
tors can capture the data produced by components and their input data depen-
dencies. State information used by the planner includes a description of the
available resources and the files already registered in the RLS. The input goal
description can include (1) a metadata specification of the information the user
requires and the desired location for the output file, (2) specific components to
be run, or (3) intermediate data products. The planner generates the concrete
workflow (in the form of a DAG) necessary to satisfy the user’s request. The
planner takes into account the state of the network to come up with an efficient
plan, and in some domains finds an optimal plan using an exhaustive search
that is made feasible by careful pruning. This planner also reuses existing data
products when applicable.

The plan generated specifies the sites at which the job should be executed
and refers to the data products in terms of metadata. This plan is then passed
to the submit file generator for Condor-G (step 10). The submit file generator
determines first the logical names for the data products by querying the MCS
and then the physical names by querying the RLS. In addition, it queries the
Transformation Catalog to get the complete paths for the transformations at the
execution locations described in the concrete DAG.

Pegasus also contains a Virtual Data Language generator that can populate
the Chimera catalog with newly constructed derivations (step 9b). This infor-
mation can be used later to obtain provenance information about the derived
data products.

114 GRID RESOURCE MANAGEMENT

In this configuration, Pegasus similarly generates the necessary submit files
and sends the concrete workflow to DAGMan for execution (step 15).

As a result of execution of the workflow, the newly derived data products are
registered both in the MCS and RLS and thus are made available to subsequent
requests.

The metadata-driven Pegasus configuration that supported the LIGO pulsar
search was first demonstrated at the SC 2002 conference held in November in
Baltimore, MD. For this demonstration the following resources were used:

Caltech (Pasadena, CA): Data Storage Systems and the LIGO Data
Analysis System (LDAS), which performed some of the stages of the
LIGO analysis shown in Figure 7.4.

ISI (Marina del Rey, CA): Condor Compute Pools, Data Storage Sys-
tems, Replica Location Services and Metadata Catalog Services.

University of Wisconsin (Milwaukee, WI): Condor Compute Pools and
Data Storage Systems.

The requests for pulsar searches were obtained using an automatic generator
that produced requests both for approximately 1300 known pulsars as well as
for random point-searches in the sky. A user was also able to request a specific
pulsar search by specifying the metadata of the required data product through
a web-based system. Both the submission interfaces as well as all the compute
and data management resources were Globus GSI (Grid Security Infrastruc-
ture) [WSF

�
03] enabled. Department of Energy Science Grid [DOEb] issued

X509 certificates were used to authenticate to all the resources.
During the demonstration period and during a subsequent run of the system,

approximately 200 pulsar searches were conducted (both known as well as
random), generating approximately 1000 data products involving around 1500
data transfers. The data used for this demonstration was obtained from the
first scientific run of the LIGO instrument. The total compute time taken to do
these searches was approximately 100 CPU hrs. All the generated results were
transferred to the user and registered in the RLS; the metadata for the products
placed in the MCS as well as into LIGO’s own metadata catalog. Pegasus also
generated the corresponding provenance information using the Virtual Data
Language and used it to populate in the Chimera Virtual Data Catalog.

The job execution was monitored by two means. For each DAG, a start and
end job was added, which logged the start time and the end time for the DAG
into a MySQL database. This information was then published via a web inter-
face. Another script-based monitor parsed the Condor log files at the submit
host to determine the state of the execution and published this information onto
the web.

Workflow Management in GriPhyN 115

5. RELATED WORK

In the area of AI planning techniques, the focus is on choosing a set of
actions to achieve given goals, and on scheduling techniques that focus on as-
signing resources for an already chosen set of actions. Some recent approaches
in scheduling have had success using iterative refinement techniques [SL94] in
which a feasible assignment is gradually improved through successive modifi-
cations. The same approach has been applied in planning and is well suited to
ACWG, where plan quality is important [AK97]. Some work has been done on
integrating planning and scheduling techniques to solve the joint
task [MSH

�
01].

Central to scheduling large complex workflows is the issue of data place-
ment, especially when the data sets involved are very large. In CWG, we give
preference to the resources where the input data set is already present. Ran-
ganathan and Foster, in [RF02, RF01] and Chapter 22, study the data in the
Grid as a tiered system and use dynamic replication strategies to improve data
access, and achieve significant performance improvement when scheduling is
performed according to data availability while also using a dynamic replication
strategy.

While running a workflow on the Grid makes it possible to perform large
computations that would not be possible on a single system, it leads to a cer-
tain loss of control over the execution of the jobs, as they may be executed in
different administrative domains. To counter this, there are other systems try
to provide Quality of Service guarantees required by the user while submitting
the workflow to the Grid. Nimrod-G [ABG02, BAG00] uses the information
from the MDS to determine the resource that is selected to meet the budget
constraints specified by the user, while Keyani et al. [KSW02] monitors a job
progress over time to ensure that guarantees are being met. If a guarantee is
not being met, schedules are recalculated.

Each of the systems mentioned above are rigid because they use a fixed
set of optimization criteria. In GriPhyN we are developing a framework for
a flexible system that can map from the abstract workflow description to its
concrete form and can dynamically change the optimization criteria.

6. FUTURE DIRECTIONS

The efforts in workflow planning presented in this chapter lay the foundation
for many interesting research avenues.

As mentioned in Section 3.2, fault tolerance is an important issue in the Grid
environment, where runtime failures may result in the need to repair the plan
during its execution. The future work within Pegasus may include planning
strategies that will design plans to either reduce the risk of execution failure or
to be salvageable when failures take place. Current AI-based planners can ex-

116 GRID RESOURCE MANAGEMENT

plicitly reason about the risks during planning and searching for reliable plans,
possibly including conditional branches in their execution. Some planners de-
lay building parts of the plan until execution, in order to maintain a lower
commitment to certain actions until key information becomes available.

Another area of future research is the exploration of the use of ontologies to
provide rich descriptions of Grid resources and application components. These
can then be used by the workflow generator to better match the application
components to the available resources.

Acknowledgments

We would like to thank Gaurang Mehta, Gurmeet Singh, and Karan Vahi
for the development of the Pegasus system. We also gratefully acknowledge
many helpful and stimulating discussions on these topics with our colleagues
Ian Foster, Michael Wilde, and Jens Voeckler. The Chimera system mentioned
in this paper has been jointly developed by the University of Southern Cali-
fornia Information Sciences Institute, the University of Chicago, and Argonne
National Laboratory. Finally, we would like to thank the following LIGO sci-
entists for their contribution to the development of the Grid-enabled LIGO
software: Kent Blackburn, Phil Ehrens, Scott Koranda, Albert Lazzarini, Mary
Lei, Ed Maros, Greg Mendell, Isaac Salzman, and Peter Shawhan. This re-
search was supported in part by the National Science Foundation under grants
ITR-0086044(GriPhyN) and EAR-0122464 (SCEC/ITR).

III

STATE OF THE ART
GRID RESOURCE MANAGEMENT

Chapter 8

GRID SERVICE LEVEL AGREEMENTS

Grid Resource Management with Intermediaries

Karl Czajkowski,
�

Ian Foster,
�d� � Carl Kesselman,

�
and Steven Tuecke

�
�
Information Science Institute, University of Southern California�
Mathematics and Computer Science Division, Argonne National Laboratory� Department of Computer Science, The University of Chicago

Abstract We present a reformulation of the well-known GRAM architecture based on the
Service-Level Agreement (SLA) negotiation protocols defined within the Ser-
vice Negotiation and Access Protocol (SNAP) framework. We illustrate how a
range of local, distributed, and workflow scheduling mechanisms can be viewed
as part of a cohesive yet open system, in which new scheduling strategies and
management policies can evolve without disrupting the infrastructure. This ar-
chitecture remains neutral to, and in fact strives to mediate, the potentially con-
flicting resource, community, and user policies.

1. INTRODUCTION

A common requirement in distributed computing systems such as
Grids [FK99b, FKT01] is to coordinate access to resources located within
different administrative domains than the requesting application. The coor-
dination of Grid resources is complicated by the frequently competing needs
of the resource consumer (or application) and the resource owner. The ap-
plication needs to understand and affect resource behavior and often demands
assurances as to the level and type of service being provided by the resource.
Conversely, the resource owner may want to maintain local control and discre-
tion over how their resource(s) are used.

A common means of reconciling these two competing demands is to estab-
lish a procedure by which the parties can negotiate a service-level agreement
(SLA) that expresses a resource provider contract with a client to provide some
measurable capability or to perform a specified task. An SLA allows a client

120 GRID RESOURCE MANAGEMENT

to understand what to expect from resources without requiring detailed knowl-
edge of competing workloads nor of resource owners’ policies.

The Globus resource management architecture that we present here is based
on the notion of negotiation of SLAs between a client and a resource provider.
A resource provider can be directly associated with a resource, or alternatively
may be a service that virtualizes multiple resources, i.e., a broker or super-
scheduler in which case negotiation proceeds hierarchically. The SLAs are
defined such that it is meaningful to construct hierarchies of negotiating entities
acting as both providers and clients.

We have previously explored Grid resource management methods in our
work with the Grid Resource Allocation and Management (GRAM)
[CFK

�
98b] component of the Globus Toolkit, which supports remote access

to job-submission systems; DUROC [CFK99], a co-allocation system that uses
GRAM functions to compose jobs that use more than one resource; and the
General-purpose Architecture for Reservation and Allocation (GARA) [FRS00,
FFR

�
02], which extends GRAM to support immediate and advance reserva-

tion. Building on these experiences, and in particular on the decoupling of
reservation and task creation introduced in GARA, we defined the Service Ne-
gotiation and Access Protocol (SNAP) framework [CFK

�
02], an abstract ar-

chitecture that defines operations for establishing and manipulating three dis-
tinct types of SLA, as follows:

1 Resource service level agreements (RSLAs) that represent a commit-
ment to provide a resource when claimed by a subsequent SLA.

2 Task service level agreements (TSLAs) that represent a commitment to
perform an activity or task with embedded resource requirements.

3 Binding service level agreements (BSLAs) that represent a commitment
to apply a resource to an existing task, i.e. to extend the requirements of
a task after submission or during execution.

As illustrated in Figure 8.1, these three kinds of SLA support an interactive
resource management model in which one can independently submit tasks to
be performed, obtain promises of capability, and bind a task and a capability.
These three types of agreement can be combined in different ways to represent
a variety of resource management approaches including batch submission, re-
source brokering, adaptation, co-allocation, and co-scheduling.

Our presentation here first reviews the SNAP design and then describes a
concrete realization of the framework in the GRAM-2 next-generation Globus
resource management architecture. The GRAM-2 design addresses various
technical issues that arise when the SNAP protocol building blocks are incor-

Grid Service Level Agreements 121

RSLA 1 RSLA 2 TSLA BSLA 1&
t0 t1

t2 t4Resource state

SLAs

t3

t5

Figure 8.1. Three types of SLA—RSLA, TSLA, and BSLA—allow a client to schedule re-
sources as time progresses from ��� to �	� . In this case, the client acquires two resource promises
(RSLAs) for future times; a complex task is submitted as the sole TSLA, utilizing RSLA 1 to
get initial portions of the job provisioned; later, the client applies RSLA 2 to accelerate execu-
tion of another component of the job via BSLA 1; finally, the last piece of the job is provisioned
by the manager according to the original TSLA.

porated into an operational resource management system. It provides a com-
plete solution to the problem of hierarchical negotiation of SLAs between a re-
source consumer and a resource provider. (A resource provider can be directly
associated with a resource, or alternatively may be a service that virtualizes
multiple resources, e.g., a broker or scheduler.)

2. MOTIVATING SCENARIOS

The SNAP SLA model is designed to address a broad range of applications
through the aggregation of simple SLAs. We motivate its design by examin-
ing three scenarios: a Grid in which community schedulers mediate access to
shared resources on behalf of different client groups; a file-transfer service that
uses advance reservations to perform data staging under deadline conditions;
and a job-staging system that uses co-allocation to coordinate functions across
multiple resource managers.

The schedulers in our scenarios are all examples of a class of resource man-
agement intermediaries that are variously referred to as brokers,
agents, distributed schedulers, meta-schedulers, or super-schedulers
[FRS00, MBHJ98]. What distinguishes each kind of intermediary are the poli-
cies that are supported between users, intermediaries, and underlying resource
schedulers. For example, an intermediary may support a large community of
users (e.g., a typical resource broker), or act on behalf of a single user (an
agent). A similarly wide range of policies can exist between the intermedi-
ary and its resource(s)—some intermediaries may have exclusive access to
resources while others may have no more rights than a typical user. The in-
termediary may not even be a distinguished entity for policy but instead may
simply act via rights delegated from the client.

122 GRID RESOURCE MANAGEMENT

�)��)��)��)��)��)��)��)�
R2 R3 R4 R5 R6R1

S1 S2

J1 J2 J3 J4 J5 J6 J7

TSLA

RSLA

�)�)��)�)��)�)��)�)��)�)�
�)�)��)�)��)�)��)�)��)�)�

(a) Community scheduler scenario. Com-
munity schedulers (S1–S2) mediate access to
the resources (R1–R6) by their users (J2–J6)
through resale of SLAs suitable to community
criteria.

R1 R3R2

J1

S1

J3J2

T/BSLA

RSLA

(b) File transfer scenario. Transfer sched-
uler coordinates disk reservation before co-
scheduling transfer endpoint jobs to perform
transfer jobs for clients.

Figure 8.2. SLA architecture scenarios. Persistent intermediate scheduling services form
SLAs with users and underlying resources to help coordinate user activity in the Grid. This
supports scalable negotiation and also identifies points where mapping from one request or pol-
icy language to another is likely to occur.

2.1 Community Scheduler Scenario

A community scheduler is an entity that acts as a policy-enforcing interme-
diary between a community of users and a set of resources. Activities are sub-
mitted to the community scheduler rather than to end resources. The scheduler
then works to schedule those activities onto community resources so as to meet
community policies regarding use of the resource set: for example, to optimize
response time or throughput, or to enforce allocations. We are thus faced with
a two-tiered SLA negotiation process, from client to scheduler and then from
scheduler to client. The strictness of the policy environment in enforcing this
multi-tier SLA negotiation will affect the predictability and efficiency of the
resulting schedules. Even in an open resource environment in which the com-
munity scheduler is easily bypassed by aggressive clients, lightweight clients
may benefit from the sharing of resource discovery processes performed by the
scheduler.

As depicted in Figure 8.2(a), a Grid environment may contain many re-
sources (R1–R6), all presenting both an RSLA and a TSLA interface. First,
the scheduler negotiates capacity guarantees (via RSLAs) with its underlying
resources. With these capacity guarantees in hand, it can then negotiate RSLAs
or TSLAs with its clients, fulfilling its commitments by negotiating further

Grid Service Level Agreements 123

SLAs with resources to map the requested user activities to the previously ne-
gotiated capacity. Depending on the community, workload, and other factors,
the scheduler may variously negotiate capacity before receiving user requests
(as suggested in the preceding discussion), or alternatively, may do so only af-
ter receiving requests. In either case, the ability to negotiate agreements with
underlying resources abstracts away the impact of other community schedulers
as well as any non-Grid local workloads, assuming the resource managers will
enforce SLA guarantees at the individual resources.

Community scheduler services (S1 and S2 in Figure 8.2(a)) present a TSLA
interface to users. Users in this environment interact with community and
resource-level schedulers as appropriate for their goals and privileges. The
privileged client with job J7 in Figure 8.2(a) may not need RSLAs nor the
help of a community scheduler, because the goals are expressed directly in the
TSLA with resource R6. The client with job J1 acquires an RSLA from R2 in
anticipation of its requirements and utilizes that reservation in a TSLA.

Jobs J2 to J6 are submitted to community schedulers S1 and S2 which might
utilize special privileges or domain-specific knowledge to efficiently imple-
ment their community jobs across the shared resources. Note that R2 is running
job J1 while guaranteeing future availability to S1 (which is in turn guarantee-
ing J2 a place to run based on that reservation). Similarly, R4 is running job
J4 from S1 while guaranteeing a future slot to J6 by way of S2. Scheduler
S1 also maintains a speculative RSLA with R1 to more rapidly serve future
high-priority job requests.

2.2 File Transfer Service Scenario

We next consider a scenario in which the user activities of interest are con-
cerned with the transfer of a file from one storage system to another. A transfer
requires multiple resources—storage space on the destination resource, plus
network and endpoint I/O bandwidth during the transfer—and thus the sched-
uler needs to manage multiple resource types and perform co-scheduling of
these resources through their respective managers.

As depicted in Figure 8.2(b), the file transfer scheduler S1 presents a TSLA
interface, storage systems provide TSLA/RSLA interfaces, and a network re-
source manager R2 presents an RSLA/BSLA interface. A user submitting a
transfer job (J1) to the scheduler negotiates a TSLA that includes a deadline.
The scheduler works to meet this deadline by: (1) obtaining a storage reserva-
tion on the destination resource R3 to ensure that there will be space for the
data; (2) obtaining bandwidth reservations from the network and the storage
devices, giving the scheduler confidence that the transfer can be completed
within the user-specified deadline; (3) submitting transfer endpoint jobs J2 and
J3 to implement the transfer using the previously negotiated space and band-

124 GRID RESOURCE MANAGEMENT

TSLA1

RSLA1

BSLA1

TSLA2

TSLA3

S
ta

ge
 o

ut

S
ta

ge
 in

time

BSLA2

RSLA2

TSLA4

Net

30 GB for /scratch/tmpuser1/foo/* files

Complex job

50 GB in /scratch filesystem

account tmpuser1

Figure 8.3. Dependent SLAs for file transfers associated with input and output of a job with
a large temporary data space. BSLA2 is dependent on TSLA4 and RSLA2, and has a lifetime
bound by those two. All job components depend on an outermost account sandbox assigned
temporarily for the purpose of securely hosting this job.

width promises; and finally, establishing a BSLA with R2 to utilize the network
reservation for the sockets created between J1 and J2.

2.3 Job Staging with Transfer Service Scenario

SLAs can be linked to address more complex resource co-allocation situ-
ations. We illustrate the use of linking by considering a job that consists of
a sequence of three activities: data is transferred from a storage system to an
intermediate location; some computation is performed using the data; and the
result is transferred to a final destination. Such a sequence would typically
be treated monolithically by the job system, but this approach is inappropriate
when data transfers involve significant resource utilization that spans resource
domains, as in the previous data transfer scenario, in which source and desti-
nation storage are under separate control.

As in the other examples, the computation in question is to be performed on
resources allocated to a community of users. However, for security reasons, the
computation is not performed using a group account, but rather, a temporary
account is dynamically created for the computation. The SLA model facilitates
the decomposition of staging and computation activities that is required for
these functions to be integrated with dynamic account management functions.

In Figure 8.3, TSLA1 results from a negotiation with the resource to estab-
lish a temporary user account, such as might be established by a resource for a
client who is authorized through a Community Authorization
Service [PWF

�
02]. All job interactions performed by that client on the re-

source become linked to this long-lived TSLA, as in order for the account to be
reclaimed safely, all dependent SLAs must be destroyed. The figure illustrates
how the individual SLAs associated with resources and tasks can be combined

Grid Service Level Agreements 125

to address the end-to-end resource and task management requirements of the
entire job. Of interest in this example are:

TSLA1 is the TSLA negotiated to establish the above-mentioned temporary
user account.

RSLA1 promises the client 50 GB of storage in a particular file-system on the
resource.

BSLA1 binds part of the promised storage space to a particular set of files
within the file-system.

TSLA2 runs a complex job that will subsequently spawn subjobs for staging
input and output data.

TSLA3 is the TSLA negotiated for the first file transfer task, which stages the
input to the job site (without requiring any additional QoS guarantees in
this case).

TSLA4 is the TSLA negotiated for the second file transfer task, to stage the
large output from the job site, under a deadline, before the local file-
system space is lost.

RSLA2 and BSLA2 are used by the file transfer service to achieve the ad-
ditional bandwidth required to complete the (large) transfer before the
deadline.

The job for which TSLA2 is negotiated might have built-in logic to establish
the staging jobs TSLA3 and TSLA4, or this logic might be incorporated within
the entity that performs task TSLA2 on behalf of the client. In Figure 8.3,
the nesting of SLA “boxes” is meant to illustrate how the lifetime of these
management abstractions is linked in practice. Such linkage can be forced by
a dependency between the subjects of the SLAs, e.g., BSLA2 is meaningless
beyond the lifetime of TSLA4 and RSLA2, or alternatively can be added as a
management convenience, e.g., by triggering recursive destruction of all SLAs
from the root to hasten reclamation of application-grouped resources.

3. RESOURCE VIRTUALIZATION THROUGH
INTERMEDIARIES

The Community Scheduler introduced above can be viewed as virtualizing
a set of resources for the benefit of its user community. Resource virtualiza-

126 GRID RESOURCE MANAGEMENT

Scheduler
CommunityClient

Application
Resource
Manager

Resource

User Policy Resource PolicyCommunity Policy

control

request

respond

request

respond

advertise advertise

Figure 8.4. SLA negotiation with intermediaries. A negotiation pipeline between a user, com-
munity scheduler, and resource manager permits policies to be introduced at each stage which
affect the outcome and are illustrated using color mixing. User policy affects what requests are
initiated, community policy affects how user requests are mapped to resource-level requests,
and resource policy affects how resources may be utilized. Thus policy from each source mixes
into the stream of requests going to the right, and into the streams of advertisements and request-
responses going to the left.

tion can serve to abstract details of the underlying resources or to map between
different resource description domains. In our initial community scheduler ex-
ample, the scheduler provides the same sort of resource and task description
as the underlying resources, only insulating the user community from task-
placement decisions. However, with the file transfer scenario, the scheduler
accepts requests in a more application-level file transfer description language.
In this case, the scheduler insulates the user community from the more compli-
cated resource interactions necessary to implement a file transfer with deadline
guarantees in a distributed environment.

Each such intermediary scheduler delineates a boundary between resource
domains and may map from more abstract user terminology to underlying re-
source mechanisms, as well as bridging policy domains. Such mappings can
complicate the Grid resource management problem, as important scheduling
information can be lost. However, we believe that there is also the opportunity
to introduce intuitively-framed policies at each such boundary.

Figure 3 illustrates how policies from different domains mix into SLA nego-
tiation with intermediaries, each of which can potentially contribute to resource
management decisions. Community policies may affect relative priority of dif-
ferent user tasks with a community scheduler. At the resource, owner policies
may affect relative priority of different communities. In order to implement the
community policy, the community scheduler must negotiate dynamic policies
(SLAs) to differentiate tasks on the same physical resources.

Grid Service Level Agreements 127

4. UNDERSTANDING SERVICE LEVEL
AGREEMENTS

The preceding sections describe the role of automated intermediaries in ne-
gotiating SLAs for complex Grid scenarios. Automated SLA negotiation re-
quires that we be able to represent, in machine-processable terms, what is of-
fered by a service and what is desired or requested by a client. Following
discovery and negotiation, our three kinds of SLA represent what is to be per-
formed by the resources.

This leads to several questions. If all three agreements capture what is to
be performed, what distinguishes the three kinds of agreement? How are the
SLAs represented? What does it mean for a scheduler to agree or “promise” to
do something? In the remainder of this section, we answer these questions.

4.1 Different Kinds of Agreement

There are three promises we can capture in our SLAs. Resource managers
can promise that a resource will be available for future use, promise that a
resource will be consumed in a certain manner, and promise that a certain
task will be performed. The three kinds of agreement introduced in Section 1
capture important combinations of these promises. What makes these com-
binations important is how they provide for the multiple negotiation phases
exploited in our scenarios.

All three kinds of SLA provide a promise of future resource availability.
What distinguishes RSLAs from the others is that RSLAs only promise re-
source availability without any associated plan for utilization. As illustrated
in Figure 8.5, the remaining two kinds of SLA are formulated by the intro-
duction of the other promises. Our BSLAs add a plan for resource utilization,
without performing any new tasks, and TSLAs capture all three promises at
once. There is not a fourth kind of SLA capturing a task promise without uti-
lization. Such an agreement would not be meaningful, because performing a
task requires resource utilization.

In the simplest case, these SLAs are negotiated in sequential order, as spec-
ified above. More generally, there is a partial order based on references made
in the resulting SLAs. For example, an RSLA may be referenced in a TSLA,
or it may only be referenced in a subsequent BSLA that augments the task. In
the latter case, the TSLA and RSLA can be negotiated in any order. General
many-to-many references are meaningful, though the range of possible scenar-
ios may be limited by policy in a given negotiation.

RSLAs correspond to (immediate or advance) reservations, i.e. they repre-
sent a promise that can be employed in future SLA negotiation. No RSLA
has any effect unless it is claimed through a follow-up TSLA or BSLA nego-
tiation. This split-phase negotiation is useful when attempting to synchronize

128 GRID RESOURCE MANAGEMENT

interactions with multiple resource providers, because it allows a client to ob-
tain commitments for future availability of capability before details of the use
of that capability have been decided [DKPS97, FGV97, HvBD98, FRS00].

By binding a resource reservation to a task, a BSLA allows for control of
the allocation of resources to tasks (provisioning), independent of task creation.
Negotiation of a BSLA does not initiate any task: the task must be created sep-
arately (either before or after the BSLA, depending on the task naming mech-
anisms employed in BSLA). This decoupled provisioning can be used to pro-
vision a task created outside the SLA negotiation framework, e.g., a network
socket or local UNIX process created through interactive mechanisms. BSLA
negotiation can also be used to separate the provisioning decisions from basic
task management with TSLAs; if the task has variable requirements, these can
be expressed by shorter duration BSLAs associated with a long-lived TSLA
that only represents the baseline requirements of the task. A BSLA can add to,
but not diminish, the resource allocation requirements expressed during task
creation.

Finally, the negotiation of an TSLA represents a commitment by a resource
manager (task scheduler) to perform the described task with the described lev-
els of resource provisioning. In all cases, there is a need for complex SLA
meta-data to denote whether or how implied requirements are addressed.

No

Yes

No

Yes

RSLA BSLA

Promise Resource Consumption

TSLA

P
ro

m
is

e
T

as
k

P
er

fo
rm

an
ce

(not
meaningful)

Figure 8.5. Three kinds of SLA. All three SLAs promise resource availability, but TSLAs and
BSLAs add additional promises of task completion and/or resource utilization.

4.2 Representing SLAs

To build a system using these three kinds of SLA, we need to represent them
in some machine-processable form. For integration with XML-based systems
such as Web Services [CCMW01] or Grid Services [TCF

�
03], we would want

XML schema definitions for the SLA content. However, these definitions are
cumbersome to present and should be developed in a community standards
body.

We can describe the content of the SLAs, both to help envision the scope of
the terms and for input into standards processes. Our descriptions make use of
the following elemental descriptions:

Grid Service Level Agreements 129

SLA references, which allow the newly negotiated SLA to be associated
with pre-existing SLAs;

Resource descriptions, which are the main subject of RSLA negotiations
and may also appear within a TSLA or BSLA (potentially accompanied
by RSLA references);

Resource metadata, which qualify the capability with time of availabil-
ity, reliability, etc.;

Task descriptions, which are the main subject of TSLA negotiations and
may also appear within a BSLA;

SLA metadata, which qualify the SLA content with degree of commit-
ment (see Section 4.2), revocation policies, SLA lifetime, etc.

The content of an RSLA includes resource descriptions and metadata, as
well as SLA metadata. The description captures resource capabilities such as
storage space, nodes in a multicomputer, or processing throughput during a
certain interval of time. The SLA metadata might capture the level of commit-
ment promised by the resource manager to the client.

The content of a BSLA includes TSLA references or task descriptions, re-
source descriptions, optional RSLA references, and SLA metadata. The TSLA
references or task descriptions identify tasks which will consume resources.
The resource descriptions describe what resources will be provided to the tasks
and the RSLA references identify existing resource promises to be exploited.
Example tasks might be job processes, network flows, or filesystem accesses.

The content of a TSLA includes a task description, resource descriptions,
optional RSLA references, and SLA metadata. The task description describes
what task will be completed. The resource description describes requirements
of the task and the RSLA references identify existing resource promises to be
exploited.

The ability to negotiate SLAs can be beneficial regardless of how much
credence one is able to put in the agreements. At one extreme, an SLA may
represent simply a guess as to what may be possible; at another, it may be
accompanied by a strict contractual agreement with defined financial penalties
for noncompliance. Even if this degree of commitment is formalized in SLA
meta-data, it is always possible for a manager to be error-prone or untrust-
worthy. Licensing mechanisms might be used to allow users to judge which
managers are to be trusted [LMN94].

5. SLA CONSTRAINT-SATISFACTION MODEL

The SNAP model is concerned primarily with the protocols used to nego-
tiate SLAs. However, it is also useful to provide some informal discussion

130 GRID RESOURCE MANAGEMENT

TSLA

BSLA

Audit

State

Resource

Provision

Task

RSLA

solves

Description
Behavior

Figure 8.6. Constraint domain. Lower items in the figure conservatively approximate higher
items. The solution spaces on the right are ordered as subsets, e.g., Provisioning � Reserves
because provisioning constrains a resource promise to a particular task. Solution ordering maps
to the model relation for constraints, e.g., BSLA � RSLA on the left.

of the semantics associated with SLA negotiation. Given a particular task de-
scription and resource description language, the purpose of a resource provider
(whether resource owner or scheduler) is to attempt to satisfy SLAs speci-
fied in requests. An SLA is satisfied if the resource provider can produce a
non-empty solution set of possible resource and task schedules that delivers
the capabilities and performs the directives encoded in the SLA content. A
self-contradictory or unsatisfiable SLA has an empty solution set. We have
previously explained [CFK

�
02] how satisfaction of SLA terms by resource

behavior is related to the notion of problem solving by refinement of plans. As
application goals are translated through a sequence of intermediaries, the terms
are refined until a concrete resource schedule is reached and application goals
satisfied.

A TSLA says that a manager will run a job according to its self-expressed
performance goals and provisioning requirements. A RSLA says that a man-
ager will provide a resource capability when asked by the client. A correspond-
ing BSLA encompasses both of these agreements and says the manager will
apply a resource to help satisfy requirements while performing a job.

5.1 Descriptive and Behavioral Concept Domains

Figure 8.6 illustrates this ordering of SNAP concepts in terms of refinement
and satisfaction. Descriptive or behavioral elements at the bottom of the fig-
ure are more concrete realizations of the concepts connected above them in the
figure. This domain diagram partially orders abstract concepts by vertical posi-
tion, with more abstract concepts on top. Concepts are only ordered if there is
a connecting path of lines representing a transitive ordering relationship. The
thick lines between the right-hand behavioral concepts represent the subset re-
lationship, e.g., actual resource states are a subset of possible states fitting a
provisioning plan (State � Provision) and a concrete provisioning solutions are
a subset of task solutions.

Grid Service Level Agreements 131

The left-hand SLA terms in Figure 8.6 are ordered by the satisfaction rela-
tionship that we introduced previously [CFK

�
02], in which, for example, the

more specific BSLA terms can be thought to satisfy the more general TSLA
or RSLA terms while also introducing new details absent from the more gen-
eral SLAs. Note the interesting parallel between the two halves of the figure,
shown by thin arrows that link behavioral concepts to descriptive terms. The
behavioral concept solves a constraint specified with the descriptive terms. For
a particular BSLA

.
and TSLA

�
, there are corresponding provisioning and

task solution sets
�c����.�&

and
�K�����S&

, respectively, such that
.��W�

if and only if� � ��.�& � � � ���S& .
6. APPROACHES TO IMPLEMENTATION

The SNAP architectural model serves to frame our understanding of existing
resource management mechanisms and how they fit together in a Grid environ-
ment. Adoption of the abstract model does not require much change to existing
systems, though it does help identify limitations and policy-biased features of
existing systems. Just as GRAM [CFK

�
98b] adapts localized schedulers to

a Grid-wide protocol, we believe that the SLA-based SNAP architecture can
be deployed as GRAM-2 with adapters to local schedulers. However, the best
implementation approach would be for vendors to natively support new inter-
operable negotiation protocols in the local schedulers.

6.1 Toward Standards for Interoperability

Within the Global Grid Forum, the GRAAP working group is chartered to
standardize negotiation protocols in the form of Open Grid Service Architec-
ture portTypes (interfaces). Further work needs to be chartered to produce SLA
content standards.

GRAM-2 implementation is underway using similar but proprietary port-
Types in anticipation of this work; we will migrate to use standard interfaces
when they are available. Multiple commercial scheduler vendors are interested
in implementing GRAAP interfaces—and interim Globus GRAM-2 interfaces
while GRAAP standardization progresses.

Multiple products, including Globus Toolkit 3 (GT3), will provide OGSA
infrastructure implementation within which a scheduler implementation can be
hosted.

6.2 SLA Implementation Through Policy Mapping

A TSLA transfers specific task-completion responsibilities from the user
to a manager. The scheduler then becomes responsible for reliably planning
and enacting the requested activity, tracking the status of the request, and per-
haps notifying the user of progress or terminal conditions. A RSLA similarly

132 GRID RESOURCE MANAGEMENT

delegates specific resource capacity from a manager to a user. The manager
might implement this delegation via hidden operational policy statements that
enforce the conditions necessary to deliver on the guarantee. For example, a
CPU reservation might prevent further reservations from being made, or an
internal scheduling priority might be adjusted to steal resources from a best-
effort pool when necessary.

Tasks may make resource requests dynamically during their execution: for
example, I/O requests or low-level memory allocation requests. Thus, we can
configure the task-resource binding expressed by a BSLA so that task resource
requests are interpreted as claims against the RSLA promise. In the general
case, a BSLA binding may include capability descriptions to restrict what
claims can be made, as well as more fine-grained resource-to-task mapping
information. When such restriction and mapping information is expressible,
it is possible to create complex many-to-many binding relationships between
RSLAs and TSLAs without ambiguity or over-subscription to capabilities.

In the face of ambiguous or over-committed binding, fall-back policies must
still resolve conflicts at runtime. Traditional first-come, first-serve or fair-share
job schedulers can be seen as implementing such fall-back policies in an en-
vironment where every TSLA is bound to the same machine-wide RSLA. The
addition of fine-grained binding information simply partitions these conflicts
into smaller logical resource domains, thus allowing the scheduler to be guided
with application and administrator goals.

6.3 Security Considerations

Whether SLA guarantees are enforced via such policy-mapping or not, the
negotiation of SLAs is easily seen as a form of distributed policy management.
As such, work needs to be started to get SLA proponents involved with existing
security standards activities.

With the Global Grid Forum, the OGSA working group is chartered to guide
narrowly-targeted groups providing OGSA-relevant standards. The OGSA-
SEC working group is specifically chartered to develop approaches comple-
mentary of basic Web Service standards coming from other communities such
as W3C and OASIS.

7. RELATED WORK

Resource management in networks and wide area computing systems is re-
ceiving increased attention (for overviews, see [Ber99, GS99]). However, there
has been little work on the specific problems addressed here, namely general-
purpose architectural constructs for reservation and co-allocation of heteroge-
neous collections of resources. Here we review briefly some relevant work;
space constraints prevent a complete survey.

Grid Service Level Agreements 133

Various proposals have been made for advance reservations in the Inter-
net [WS97, FGV97, DKPS97, HvBD98, BL98]. These capabilities are typi-
cally encapsulated into the function of the network, in the form of cooperat-
ing sets of servers that coordinate advance reservations along an end-to-end
path. Such efforts have proposed solutions for various network reservation
challenges, but do not address problems that arise when an application requires
co-allocation of multiple resource types.

The theory of co-allocation is well understood, and sophisticated techniques
exist for determining resource requirements (e.g., identifying the CPU and net-
work resources required to meet application QoS requirement [MIS96, NS96,
NCN98]) and for scheduling scarce resources in the face of competing de-
mands. However, the mechanics of co-allocation in a distributed computing en-
vironment have received less attention. RSVP [BZB

�
97] and

Beagle [CFK
�

98a] can be used to signal resource QoS requirements through
a network, but they focus on networks and do not address directly how to
discover and select (perhaps under application control) appropriate resources
from potentially large populations.

Multimedia applications have motivated techniques for allocating both mem-
ory and CPU for channel handlers [MIS96] and CPU, bandwidth, and other
resources for video streams [NS96, NCN98]. However, these specialized ap-
proaches do not extend easily to other resource types. Many approaches deal
with collection of network resources only [FGV97, DKPS97, WG98]. Other
related work presents generic methods which could be used for heterogeneous
resource types [HvBD98, SP98].

The policy issue is investigated within admission control [WG98] and re-
source sharing [SP98]. For example, in [WG98] effective admission control
policy is proposed for booking ahead network services. Admission control is
based on a novel application of effective bandwidth theory to the time domain.

In decentralized, wide area systems, a lack of exclusive control of resources,
reduced resource reliability, and a larger resource base from which to select
candidate resources introduces the problem of co-allocating multiple resources
while individual allocation requests may fail. We believe that effective strate-
gies for discovering alternative resources subject to policy variation and reser-
vation failure will be highly application specific, and any solution that embeds
this strategy into the basic infrastructure will fail to meet QoS requirements.

The Darwin project at CMU has built a system with some similarities to
SNAP [CFK

�
98a]. However, Darwin deals with network resources only. It

assumes that the network is controlled via Darwin-specific protocols (i.e., Bea-
gle) and hence does not accommodate independently administered resources.

In summary, previous work has not focused on the integration of heteroge-
neous collections of locally administered resources. Furthermore, much of the

134 GRID RESOURCE MANAGEMENT

effort has been to support network-centric applications, such as multimedia,
rather than the more general applications that we seek to support here.

8. CONCLUSIONS

We have presented a new model and protocol for managing the process of
negotiating access to, and use of, resources in a distributed system. In contrast
to other architectures that focus on managing particular types of resources (e.g.,
CPUs or networks), our Service Negotiation and Acquisition Protocol (SNAP)
defines a general framework within which reservation, acquisition, task sub-
mission, and binding of tasks to resources can be expressed for any resource in
a uniform fashion.

Our SLA-based model, with hierarchies of intermediaries, emphasizes multi-
phase negotiation across the policy domain boundaries that structure the Grid.
By identifying three important types of SLA needed for multi-phase negotia-
tion, we show how generic brokering patterns can be deployed and extended
with details of new resource types. The use of generic negotiation patterns
and the allowance for resource virtualization—by which intermediaries trans-
late from one set of negotiable terms to another—allows for evolution in a
resource management architecture. Evolution is an important step toward re-
alizing a permanent global Grid, in which new resource capabilities and appli-
cation modes must be incorporated into a running distributed system.

Acknowledgments

We are grateful to many colleagues for discussions on the topics discussed
here, in particular Larry Flon, Jeff Frey, Steve Graham, Bill Johnston, Miron
Livny, Jeff Nick, Alain Roy and Volker Sander. This work was supported in
part by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38; by the National Sci-
ence Foundation; by the NASA Information Power Grid program; and by IBM.

Chapter 9

CONDOR AND
PREEMPTIVE RESUME SCHEDULING

Alain Roy and Miron Livny
Department of Computer Science, University of Wisconsin-Madison

Abstract Condor is a batch job system that, unlike many other scheduling systems, allows
users to access both dedicated computers and computers that are not always
available, perhaps because they are used as desktop computers or are not under
local control. This introduces a number of problems, some of which are solved
by Condor’s preemptive resume scheduling, which is the focus of this paper. Pre-
emptive resume scheduling allows jobs to be interrupted while running, and then
restarted later. Condor uses preemption in several ways in order to implement
the policies supplied by users, computer owners, and system administrators.

1. INTRODUCTION

Condor is a batch job system that allows users to take advantage of both
dedicated and non-dedicated computers. Traditionally, batch job systems have
allowed users to submit jobs only to dedicated local computers, such as multi-
processor supercomputers and clusters of computers. In addition to such ded-
icated computers, Condor allows users to submit jobs to computers that are
only occasionally available for Condor to access, such as desktop computers
belonging to other users or distant computers under someone else’s control.
We see such computers not as a problem, but as an opportunity, so we call
them opportunistic resources.

The ability to use these non-dedicated computers provides users with extra
computing power, but also adds complexity to Condor in two ways. The first
is the need to remove jobs, called preemption, before they are have completed
executing in order to meet the needs of owners, users, and administrators and to
deal with unplanned outages. The second is the need to deal with the inevitable
heterogeneity of computers available to Condor.

136 GRID RESOURCE MANAGEMENT

1.1 Preemption

In our experience [LL90], computer owners will only allow their comput-
ers to run Condor jobs if Condor does not negatively impact their activities.
Therefore, Condor will checkpoint and preempt jobs when an owner needs
their computer. This could either be when an owner returns to a computer af-
ter an absence, or when the computer is busy with some other activity, or for
another reason based on the owner’s policies. When another computer is avail-
able to run the job, Condor will resume the job on that computer. Note that the
job can be resumed without loss of work because checkpointing saves the state
of the job. This is preemptive resume scheduling, and the focus of this paper.

In order for preemption to be most useful, Condor needs to be able to check-
point jobs so that work is not lost when the jobs are preempted. Condor can
checkpoint most jobs without requiring the jobs to be modified if they can be
relinked with libraries provided by Condor [LS92]. There are some restrictions
on jobs that can use Condor’s checkpointing, particularly jobs that spawn new
processes or use kernel threads. In practice, many jobs can be relinked to use
Condor’s checkpointing, and thereby gain the benefits of preemptive resume
scheduling.

Preemptive resume scheduling has been instrumental in Condor’s success.
Jobs can be preempted in order to meet the needs of any of the three types
of stakeholders in a Condor system: users who submit jobs, owners of com-
puters, and system administrators. Condor can preempt jobs on the behalf of
users when better resources become available. Condor can preempt jobs on
the behalf of computer owners to ensure that the owner’s policy on sharing
the computers is met. Finally, Condor can preempt jobs to meet the policy of
the system administrators, who are concerned about the efficiency of the en-
tire Condor pool of computers. In the remainder of this paper, we will discuss
how Condor uses preemption in order to meet the goals of these three types of
stakeholders.

1.2 Heterogeneity

While it is relatively easy to build a cluster of dedicated computers using
identical or very similar types of computers, it is generally not possible to build
homogeneous Condor pools which include non-dedicated computers. Com-
puters within a department are often bought at different times and for different
purposes, and it is common for them to be a variety of architectures and to have
a variety of characteristics. Condor needs to be able to cope with this variety
in order to provide the maximum amount of computational power to its users.

In order to deal effectively with this heterogeneity, Condor uses matchmak-
ing to match user’s jobs with appropriate computers. Both jobs and computers
are described with the ClassAd (short for classified advertisements) language.

Condor and Preemptive Resume Scheduling 137

ClassAds provide schema-free descriptions of jobs and resources that is easy
to use effectively, yet powerful enough to allow for sophisticated policies and
constraints to be expressed by users, owners, and administrators. ClassAds and
matchmaking are described in Section 3.

2. THE ADVANTAGES OF PREEMPTIVE RESUME
SCHEDULING

Preemptive resume scheduling has several important properties.

Preemptive resume scheduling allows the scheduler to take advantage of
resources that may only be available occasionally. Because jobs can be
checkpointed, preempted, and run elsewhere, work done on such a non-
dedicated computer is not lost. Instead, this computer has provided an
opportunity to accomplish extra work.

Preemptive resume scheduling relieves the need to do backfilling, which
is commonly done in schedulers. Backfilling allows a scheduler to take
advantage of holes in the schedule to run more jobs and thereby increase
its efficiency. With a preemptive resume scheduler, backfilling becomes
much simpler, or even unimportant. It is not critical to schedule certain
tasks during specific time-slices. Instead, any task can fill a time-slice,
and it can be preempted later. Note that Condor does not use backfilling
at all, since it does not expect users to specify time limits for their jobs,
nor does it enforce any time limits.

Preemptive resume scheduling helps to fairly share computers between
users. For instance, as we show below, jobs can be preempted when a
user that has a higher priority needs access to a computer. When com-
bined with a system that provides dynamic calculation of user priorities,
this can ensure that users are treated fairly.

Preemptive resume scheduling allows high priority jobs to run when a
high-priority user demands it by suspending lower priority jobs tem-
porarily while the high priority jobs run. Because of the ability to re-
sume preempted jobs, they can be easily resumed when the high priority
job finishes. This is referred to as computing on demand.

3. SCHEDULING IN CONDOR

3.1 The Triumvirate

When users submit jobs to Condor, they do not submit to global queues,
as they would in many other batch systems [BHKL00]. Instead, Condor has
a decentralized model where users submit to a local queue on their computer,

138 GRID RESOURCE MANAGEMENT

and Condor processes on that computer interact with the Condor matchmaker
and the computers that run the job. Interaction with the matchmaker is called
matchmaking, and interaction with other computers is called claiming. Both
of these interactions are essential steps to run a job.

Note that each computer in a Condor pool runs only a single job at a time,
not multiple jobs. Computers with multiple CPUs may run one job per CPU.

Three distinct entities are involved in running a job: the owner of the job,
the owner of the computer or computers that run the job, and the administrator
of the entire Condor pool. Because each of these entities may have complex
policies about running jobs, we can consider them a sort of triumvirate that
controls how jobs are run. (The word “triumvirate” comes from the groups of
three people that used to rule the Roman empire, such as Caesar, Pompey, and
Crassus.) These individual triumvirates arise and fall as jobs are submitted and
run.

To understand how matchmaking and claiming work, it is necessary to un-
derstand what ClassAds are. Please refer to Chapter 17 or [RLS98] for more in-
formation about ClassAds. From those descriptions, recall two important fea-
tures of ClassAds: ClassAds are schema-free associations between names and
expressions. Expressions can be evaluated in the context of another ClassAd,
and this is the basis of matchmaking. For instance, a job ClassAd that contains
an expression:

Requirements = other.Type == "Machine"
&& other.RAM > 500

says that the job must be matched with something that is a machine with at
least 500 units of RAM. ClassAds do not define the units.

3.2 Matchmaking and Claiming

In order to run a job submitted to Condor, there are interactions between
three components, as shown in Figure 9.1: the user agent, the owner agent,
and the matchmaker. These components represent the triumvirate and ensure
that their wishes are followed.

Note that in other Condor literature, you may find the user agent referred to
as the schedd, the owner agent referred to as the startd, and the matchmaker
referred to as two programs, the collector and the negotiator. These are not
obvious names, but they persist for historical reasons.

Condor and Preemptive Resume Scheduling 139

Owner
Agent

User Agent

Advertise Jobs

Provide Match

Advertise Machines

Claim Computer

Matchmaker

Figure 9.1. The Condor triumvirate which governs where jobs are run and when they are
preempted.

3.2.1 Participants in Matchmaking and Claiming

There are three components to the triumvirate, and they are responsible for
representing the needs of the people or groups they represent.

User Agent When a user submits a job, it is the user agent’s responsibility
to make sure that the job runs to completion, assuming no errors in the
user’s code. It maintains a persistent queue of jobs and a history of past
jobs. If other components in Condor fail, it is responsible for retrying
the job and informing users of problems that occur.

Owner Agent When a owner decides to add a computer to the Condor
pool, the owner agent ensures the owner’s policy for how the computer
can be used is enforced. It is also responsible for starting jobs that are
submitted to the computer.

Matchmaker The matchmaker is responsible for finding matches be-
tween user and owner agents, and is also responsible for implementing
pool-wide policies that affect the overall performance and stability of the
entire pool.

3.2.2 The Process of Matchmaking and Claiming

When a user submits a job to the user agent, it is immediately stored in a
persistent queue. This persistent queue allows the user agent to recover should
the agent or the computer on which it is running fail. The job is uniquely
identified by the name of the user agent, which is unique within the pool, plus
a number unique to the user agent. The user agent then sends a ClassAd that
informs the matchmaker that it has jobs to run. As long there are jobs that are
not running, the ClassAd is sent to the matchmaker every five minutes. The
user agent does not rely on stability or persistence in the matchmaker.

Similarly, every five minutes each owner agent in a Condor pool submits a
ClassAd that describes the computer it is responsible for. ClassAds are also

140 GRID RESOURCE MANAGEMENT

sent whenever the state of a computer changes significantly. For instance, the
state of a computer can be “idle”, meaning that it is available to run jobs, or
“owner”, meaning that the owner of the computer is using it; when the state
changes from idle to owner or vice-versa, the owner agent will inform the
matchmaker.

The matchmaker accepts ClassAds from user and owner agents, but does
not store them persistently. Instead, the matchmaker discards ClassAds if the
job or computer ClassAds are not resubmitted for a while—they are presumed
to be unavailable for running jobs if they do not regularly report themselves as
available. Should the matchmaker ever crash, it will simply relearn the state
of the Condor pool within five minutes. This soft-state mechanism enables
reliable operation without complicated persistence mechanisms.

Whenever a job is submitted, or every five minutes, the matchmaker at-
tempts to find matches between jobs and computers. This is called the nego-
tiation cycle. It contacts each user agent that has jobs to run, and obtains the
ClassAds that represent the job. It then matches the jobs against each machine
ClassAd in the pool to see if it can run the jobs. In order to match, each job’s
requirements (as given in the job’s ClassAd) are evaluated in the context of
the machine and the machine’s requirements are evaluated in the context of the
job. These both must evaluate to true in order for the job to match.

When a match is found, the matchmaker informs both the user agent and
the owner agent of the match, then continues matchmaking. It is up to the user
and owner agents to claim the match independently of the matchmaker. To do
this, the user agent contacts the owner agent. Because the matchmaker was
operating on information that may have been out of date, the owner checks
to make sure that the job and machine ClassAds still match. This is useful
because, for instance, the machine’s owner may have reclaimed the machine
for his own use since the matchmaker performed that match, and therefore no
jobs are able to run on the machine.

If the match can still be made, then the user agent sends the job directly to
the owner agent and it begins executing. The user agent monitors the progress
of the job, and should any problems outside of the program scope [TL02] oc-
cur, such as failure of the owner agent, the user agent will go through the
matchmaking process again. If the job fails on its own accord, such as a seg-
mentation fault due to a pointer problem, the user agent records the error and
informs the user.

When a job begins running on a computer, a new process on the same com-
puter as the user agent begins running. This process is known as a shadow,
and it is responsible for implementing Condor’s remote I/O capabilities. If a
job has been relinked with the Condor libraries in order to be able to be check-
pointed, as described above, the shadow will perform two functions. First, it
will assist in checkpointing if necessary, either saving checkpoints directly on

Condor and Preemptive Resume Scheduling 141

the computer the job was submitted from or redirecting them to a specialized
checkpoint server. Second, it will redirect I/O on behalf of the application.
That is, all I/O performed by the remote application will be performed on the
computer that the job was submitted from. This allows jobs to have access to
their files no matter where they execute, and also makes them less dependent
on free disk space from the remote computer.

Note that running jobs continue even if the matchmaker fails for any rea-
son because all communication is between the computers that submitted the
jobs and the computers that are running the jobs. While the matchmaker is
unavailable no new jobs can be matched, but all old jobs continue on with no
difficulty. When the matchmaker becomes available, jobs will continue run-
ning within five minutes.

This is just a sketch of the matchmaking process, and there are several com-
plicating factors. In particular, there are several ways in which jobs can be
preempted while running. These are described below.

4. PREEMPTION IN THE TRIUMVIRATE

As described above, running a job in a Condor pool is a cooperative process
between three agents that represent the concerns of three people, or groups
of people. The user agent represents the person who wishes to run a job, the
owner agent represents the person who owns a machine, and the matchmaker
represents the maintainer of the Condor pool. The interests of all the people
involved must be respected. In part this happens by allowing users and owners
to specify requirements for a successful match. Another important aspect is
preemption: each of these three parties is allowed to preempt a running job in
order to satisfy their requirements.

In order for preemption to be the most effective, checkpointing should be
used to allow the state of the program to be saved. When programs meet cer-
tain requirements (such as not using long-lived network communication) and
can be relinked with Condor libraries, they can be checkpointed so that they
can be restarted after they are preempted. Condor can checkpoint jobs when
they are preempted from a machine, users can manually request that check-
points be made, and Condor can periodically checkpoint jobs to ensure against
future failures. Not all jobs can be checkpointed, so preemption must be used
cautiously. But from a user’s perspective, preemption is an inevitable fact of
life: even in a dedicated cluster of computers, there may be crashes and disrup-
tions that cause jobs to fail during execution. Note that in a Grid environment,
this may happen even more frequently. Being able to checkpoint and react to
preemption, for whatever reason it might occur, is an essential part of Condor’s
approach to reliability.

142 GRID RESOURCE MANAGEMENT

4.1 User Preemption

There are three ways that a user can preempt a job.
The first way is manually: a user can always remove a job that is either wait-

ing to run or running by executing a command. The job can be checkpointed
then rerun, or it can be forcefully terminated, which does not allow the job to
be checkpointed and restarted from where it was terminated.

The second way is an automation of the above process. If the user knows
some conditions under which the job should be removed—perhaps the user
knows that when the job has run for more than 12 hours it must be doing some-
thing incorrectly—these conditions can be specified when the job is submitted.
Condor’s user agent will monitor this condition, and should it ever become
true, it will stop the job on behalf of the user. As of Condor version 6.4, the
job is not checkpointed, though this is likely to change in future versions.

The last, and most interesting way, is that Condor could periodically re-
match the job in order to see if could run on a better machine. If a better
machine would be found, Condor could preempt the job on the machine on
which it is running, then restart it on the better machine. This is not currently
implemented, but Condor is structured to make this easy to implement. Most
of the changes would take place within the owner agent which would continue
to advertise a job while it was running, but would change the Requirements
expression in the ClassAd to add the requirement that “Rank > CurrentRank”
to state that it will only run better machines. The ease of this implementation
shows the usefulness of the structure of Condor—the owner agent can easily
implement a user’s policies for jobs. We expect this feature to be implemented
in the near future.

Note that, although adding the mechanisms to do this is not difficult, it needs
to be done carefully in order to avoid problems. For instance, it is important
to ensure that jobs do not “thrash” between computers, always looking for
greener grass elsewhere. To do this, a job’s requirements either need to specify
features that are not affected by running on a machine, such as total memory
instead of system load, or a job’s requirements need to be updated to restrict a
job from running on machines it has already run on.

4.2 Owner Preemption

If an owner wants to remove a Condor job running on his machine, there are
two ways for it to happen.

First, Condor can automatically preempt jobs. Owners can write flexible
policies that state when jobs should be preempted. For example, an owner
could write a policy that when he begins typing at the keyboard, jobs with a
small image size are suspended and other jobs are preempted. (Condor cal-
culates the image size for each job and puts it into the job ClassAd, so this

Condor and Preemptive Resume Scheduling 143

information is available.) If a job is suspended for more than ten minutes (the
owner has continued typing on the keyboard), the job must be preempted. The
owner can choose to allow or disallow checkpointing before the job is pre-
empted. Of course, various alternative strategies can be used: all jobs could
be suspended, all jobs could be preempted, other criteria can be used to decide
when it should occur and so on. The owner gets to decide how Condor jobs are
allowed to use his resource and Condor enforces his desires.

Second, a user can always request that Condor preempt jobs running on
his machine by running a command. This is not usually necessary because of
Condor’s mechanisms for automatically preempting jobs.

4.3 The Matchmaker: Preemption for Everyone

When the matchmaker is looking for locations to run a job, it can enforce
the desires of the pool administrator by attempting to place jobs in order to
increase the efficiency of the pool or to favor some users instead of others. The
matchmaker also helps owners run jobs that they prefer by preempting other
jobs already running. To understand how both of these work, we will describe
the matchmaking process in a bit more detail than we described it above.

When the matchmaker is looking for a match for a particular job, it examines
the ClassAd for each available computer one at a time, in order. Note, however,
that computers continue to advertise themselves while they are already running
a job, because they are willing to run “better jobs”. This advertising allows
currently running jobs to be preempted.

After checking that a particular job and machine match, the matchmaker
evaluates several expressions:

How does the job rank the machine? Job ClassAds specify a rank expres-
sion that, when evaluated, can differentiate between different machines.
For instance, a job might prefer a faster machine, a machine with more
memory, or a machine belonging to the research group that the job’s
owner is part of. This machine rank allows Condor to meet the user’s
needs.

Is there already a job running on the machine? If so, the matchmaker
evaluates the machine’s rank of the job and compares this rank to the
machine’s rank of the currently running job. If the new rank is higher,
the matchmaker may consider preempting the job. The relies on a rank
expression supplied by the machine’s owner in the machine’s ClassAd
to describe which jobs the owner prefers to be run on his machine. This
job rank allows Condor to meet the owner’s needs.

If there is a job running on the machine, but it does not have a higher
rank than the currently running job, does the owner of the job looking

144 GRID RESOURCE MANAGEMENT

for a match have a higher user priority than the owner of the currently
running job? If so, the matchmaker evaluates the pool administrator’s
requirements for preempting to see if they are true. The pool adminis-
trator may only allow preemption based on user priority when certain
conditions are met, such as not preempting jobs when they have not run
for very long, in order to avoid thrashing. This allows Condor to meet
the system administrator’s needs.

This machine will be a candidate for running a job if:

the job’s rank of the machine is better than any seen so far,

the job’s rank is the same as the previous candidate, but running the job
on this machine would do “less” preemption (either no preemption, or
preemption based on rank instead of preemption based on priority), or

the rank is the same as the previous candidate, and the same kind of
preemption would be performed, but the pool administrator ranks this as
a better preemption than the previous candidate. The pool administrator
may rank a job preemption as better for any reason, but common reasons
might be that a job is smaller (so there will be less network traffic caused
by the preemption) or that the job is being run by a more important user.

If this machine is the best candidate so far, it is used for future comparison
with machines as matching for a job continues.

As described above, this matchmaking algorithm helps enforce the policies
of the pool administrators, the owners of machines, and the users who submit
jobs. For owners of machines, if a machine is running a job but finds another
job that is better (perhaps it is a job submitted by a collaborator of the machine
owner), it can choose to run the new job. Also note that Condor will strongly
prefer not to preempt jobs at all, if it can run a job on an idle machine. For pool
administrators, Condor lets the administrator impose policies on when jobs can
be preempted, and which jobs should be preferentially preempted over other
jobs.

5. CONCLUSIONS

By using all of these different types of preemption together, Condor can
balance the desires of the users, machine owners, and pool administrators.
Preemption is supported throughout Condor by providing both checkpointing
mechanisms and opportunities for preemption. Because of this support, Con-
dor can both take advantage of sporadically available resources such as desktop
computers and can react to problems such as machines that fail while jobs are
running. This flexibility and robustness has been essential to Condor’s success.

Chapter 10

GRID RESOURCE MANAGEMENT IN LEGION

Anand Natrajan, Marty A. Humphrey, and Andrew S. Grimshaw
Department of Computer Science, University of Virginia

Abstract Grid resource management is not just about scheduling jobs on the fastest ma-
chines, but rather about scheduling all compute objects and all data objects on
machines whose capabilities match the requirements, while preserving site au-
tonomy, recognizing usage policies and respecting conditions for use. In this
chapter, we present the Grid resource management of Legion, an object-based
Grid infrastructure system. We argue that Grid resource management requires
not a one-size-fits-all scheduler but an architectural framework that can accom-
modate different schedulers for different classes of problems.

1. INTRODUCTION

The Legion Project began in late 1993 with the recognition of the dra-
matic increases in wide-area network bandwidth, truly low-cost processors,
and cheap disks looming on the horizon. Given the expected changes in the
physical infrastructure, we asked what sorts of applications would people want,
and what system software infrastructure would be needed to support those
applications. As a result of this analysis, we designed and implemented the
Legion Grid Computing system, which is reflective, object-based to facili-
tate encapsulation, extensible, and is in essence an operating system for Grids.
Whereas Globus is a collection of tools from a toolkit [FK99a], Legion pro-
vides standard operating system services–process creation and control, inter-
process communication, persistent storage, security and resource management–
on a Grid. By doing so, Legion abstracts the heterogeneity inherent in dis-
tributed resources and makes them look like part of one virtual machine. We
feel strongly that having a common underlying architecture and set of neces-
sary services built over it is critical for success in Grids, particularly as the line
between computational Grids and data Grids blurs [AVD01]. In this sense, the
Legion architecture anticipates the drive to Web Services and the Open Grid
Systems Architecture (OGSA) [FKNT02]. There are many papers describ-

146 GRID RESOURCE MANAGEMENT

ing Legion’s core architecture and use (e.g., [GW97, GFKH99, NCWD
�

01,
LFH

�
03]); in this chapter, we focus on the Legion resource management sys-

tem.

2. OBJECT PLACEMENT IN A GRID

The scheduling process in Legion broadly translates to placing objects on
processors. Scheduling is invoked not just for running users’ jobs but also
to create any object on a Grid, such as a Grid file, a Grid directory, a Grid
application or even a Grid scheduler. After an object is created on a processor,
it can perform its tasks, for example, respond to read/write calls if the object
is a Grid file, or respond to status requests if it is a Grid job. Therefore, object
placement is crucial to the design of the Legion run-time system because it
can influence an object’s run-time behavior greatly. An improper placement
decision may impede an object from performing its tasks, for example, because
it cannot start on any processor of a given architecture or because the processor
is no longer available. Even if a placement decision ensures that an object
starts correctly, it does not guarantee that the decision is beneficial to the user.
A good placement decision is certain to vary depending on the object being
placed and the user’s goals as well as resource usage policies.

Determining good object placements in a large distributed, heterogeneous
environment, such as a Grid, is difficult because the underlying system is com-
plex, and because object behavior can be influenced by many different fac-
tors, such as system status (number, type, and load of components), hardware
capabilities (processor, network, I/O, memory, etc.), interactions between ob-
jects and object-specific characteristics (size, location of persistent state, es-
timated performance, etc.). Factors such as security concerns, fault-tolerance
objectives and special resource requirements may place hard restrictions on
where an object can be placed. These factors are usually expressed as con-
straints on the placement decision. In general, finding an optimal placement is
prohibitively expensive. Several research efforts, such as Utopia [ZWZD93],
NOW [ACPtNt95], Condor [LL90, PL95], Zoom [WASB95], Prophet [Wei95]
and others [Cof76, FC90, GY93, WKN

�
92], have focused on algorithms and

systems for near-optimal solutions or optimal solutions to very restricted prob-
lem sub-types or user goals [Kar96].

In Legion, we designed a scheduling framework that can accommodate dif-
ferent placement strategies for different classes of applications. In addition to
the expected Grid goals of support for heterogeneity and multi-organizational
control, the goals included [Kar96]:

Support for multiple placement algorithms. The framework must be flex-
ible enough to be able to incorporate placement algorithms developed by
others.

Grid Resource Management in Legion 147

Support for user selection of placement. Users must be permitted to
choose the placement approach that best matches their goals.

Ease of use. It should be easy for developers to add new placement al-
gorithms as schedulers in the framework. Additionally, it should be easy
for end-users to access the schedulers for performing their tasks. Default
placement mechanisms ease the use of the framework for inexperienced
users.

Ability to cope with uncertain, outdated or partial information. We
expect that in Grids, information may be missing or inaccurate. The
scheduling framework in general and the schedulers that are part of it
must continue to perform acceptably even when the available system in-
formation is less than perfect.

Ability to resolve conflicts. In a system that supports shared objects and
resources, conflicts may arise over their use. The framework must have
a well-defined resolution behavior in the case of conflicts.

Scalability. The framework should not degrade significantly (or at least
degrade gracefully) when the number of processors becomes large or
when the requests for placement become more frequent.

Low overhead. The framework should not impose penalties on users
who choose not to use it. For users who do choose to use it, the overheads
involved in invoking the scheduling process should be small compared
to the duration of the task performed.

Integration with other Legion services. As a direct relation to the Legion
philosophy of providing an integrated Grid infrastructure, the scheduling
framework must cooperate and communicate with other frameworks in
Legion, such as those for security and fault-tolerance. The framework
must also take into account persistent storage associated with the shared
object space in Legion.

In the following sub-sections, we describe the main tasks of the Legion
scheduling framework. The goal of this description is not to advocate one
placement policy over another. Although we did select a particular placement
policy in order to validate (and populate) our framework, we did not and do
not claim that placement policy to be optimal or best-suited for all objects.

2.1 Initiating Placement

Placement decisions can be initiated in two ways. In the first case, an object
can request the underlying infrastructure explicitly to place (or schedule) other

148 GRID RESOURCE MANAGEMENT

objects with which it must interact. For example, a user (represented as an
object in Legion) may request Legion to run a particular job on a particular
machine. In this case, the placement initiation is explicit in two senses: the
request to place is a direct implication of issuing the run command, and the
placement location is provided by the user directly. Legion does not require
a user to initiate placement in the latter sense – an undirected run command
transfers the burden of finding a placement location from the user to Legion.

In the second case, placement initiation may be implicit, and therefore must
be automatic. In other words, an object, say a user, may access another ob-
ject without realizing that the latter is currently inactive. In this case, Legion
will re-activate the second object automatically, which in turn may require it
to be placed on an available processor. The processor chosen in this case may
or may not be the same processor on which that object was active previously.
Implicit or automatic placement initiation occurs frequently in Legion; in or-
der to conserve resources, Legion may deactivate infrequently-used objects.
When a subsequent action does require such objects to be available, Legion
will re-activate them. Seemingly mundane Grid operations such as logging in,
checking the contents of a Grid directory and issuing a run may cause several
objects to be re-activated.

2.2 Preparing for Placement

Regardless of how placement is initiated, preparing for placement involves
three tasks. The first task is selecting an appropriate scheduler from the frame-
work. To be most effective, the scheduler chosen must factor in criteria that are
important to the user [BW96, Ber99, LYFA02]. Since the scheduler itself may
require time and CPU cycles to make a decision, its performance and cost must
be weighed against its anticipated benefits. This selection may be made auto-
matically by Legion, or may be specified by sophisticated users who choose
to indicate which scheduler, or even which processor, must be used. When
placement is initiated automatically, there exists a mechanism for indicating
which scheduler to use. This mechanism is captured in attributes of class ob-
jects, which are managers or factories for creating instances of different kinds
of objects. For example, when users decide to port an application to Legion,
they use a tool that essentially creates an application class object in the Grid. A
class object may be associated with any of the schedulers available in the Grid.
When a user requests that this application be run, the class object consults its
attributes, determines the associated scheduler and invokes this scheduler to
perform a placement decision for an instance of the application, namely the
run desired by the user.

The second task in preparing for placement is sending the selected scheduler
a placement request. Each scheduler may implement a different algorithm and

Grid Resource Management in Legion 149

may require different system information for performing placement. Design-
ing a format for the placement request is a non-trivial task; some may argue
that if this problem can be solved the problem of designing a general-purpose
scheduler for all classes of applications is made much easier. One approach
for designing a placement request format is to design a general description
language that is flexible and extensible enough to express most placement re-
quests. The challenge with this approach is actually being able to design a
scheduler that takes all possible programs that can be written in this language
and do something useful. Another approach is to develop a standard interface
for all schedulers. Unfortunately, a standard interface often implies being able
to express only a small subset of functionality possible just so that the more
simplistic schedulers can be accommodated. In Legion, we incorporated both
approaches. The scheduling framework required conforming to a standard in-
terface, but we also provided a language for querying the database object that
collected information on all processors in a Grid so that other schedulers could
be written.

The third task is to specify object-specific placement constraints to the sched-
uler. In Legion, specific placement constraints are specified as attributes on the
associated class objects. Typically, these constraints permit specifying either
processors that are suited (or unsuited) for this class object or arbitrary at-
tributes that a processor is expected to possess as well in order to qualify as a
match. When a class object receives a request to create an instance, it passes
these constraints to the scheduler as part of the placement request. The default
scheduler we provided with the system takes these constraints into account
when making a decision; however, we do not require all schedulers that were
part of the framework to take those constraints into account.

2.3 Performing Placement

Placement is performed by the selected scheduler. The scheduler is clearly
the heart of the placement process; however, we recognized that others were
better at writing schedulers than we were. We provided a framework wherein
experts could write schedulers and plug them into our framework. Naturally, in
order to validate the framework as well as provide default placement, we wrote
our own scheduler. The main tasks of this scheduler are what we expected of
any scheduler:

Determine the application requirements. These are available as con-
straints passed in by the class object.

Determine the resources available. These are available from a database
object, called a collection, which can be accessed programmatically as
well as by using a query language.

150 GRID RESOURCE MANAGEMENT

Invoke a scheduling algorithm. Invoking the algorithm results in a sched-
ule. For our default scheduler, we employed a random algorithm. Given
that this scheduler was a default, we did not expect it to be used fre-
quently. Moreover, given that we could not predict which objects in a
Grid would end up using the default scheduler as opposed to a more
appropriate scheduler, we felt that random was as good or as bad an
algorithm as any.

Enforce the schedule. A schedule is of academic interest unless it results
in the object actually being created on some suitable processor. As part
of the placement process, the framework must ensure that the schedule
generated results in object creation, or if it does not, invoke the schedul-
ing algorithm again, perturbing it so that it generates a different schedule.
Alternatively, the framework must communicate its failure clearly back
to the class object or the user so that other actions can be taken.

2.4 Gathering System Information

A key component in making any placement decision is gathering the nec-
essary information, such as processor types, OS types and versions, attached
devices, available disk space, memory and swap size, CPU load, run queue
length, security and reservation policies, network bandwidth, network latency,
packet drop percentages, etc. Earlier, we alluded to this step, but assumed that
the information was already available when preparing for placement. How-
ever, when designing a scheduling framework, we had to design mechanisms
to ensure that this kind of information was available to the scheduler. We de-
signed a new object, called a collection (similar in spirit to MDS [CFFK01]),
which functioned as a database for this information. We felt a collection object
was necessary so that a scheduler could find reasonably-current information
about available processors in one place instead of contacting every processor
in a Grid. In turn, either the collection object polled every processor period-
ically for system information or processors themselves pushed this data into
the collection. Collections are generic repositories of object attributes; collec-
tions that specifically store information about processors are associated with
schedulers in order to aid placement.

2.5 Gathering Application Information

Accurate and detailed information about the behavioral characteristics of
different objects can aid scheduling. In Legion, application-specific informa-
tion can be specified in a class object, as we discussed earlier. The class object
can be given a set of placement constraints that essentially restricts the proces-
sors on which its instances can run. Also arbitrary attributes, typically called

Grid Resource Management in Legion 151

desired host properties, can be used to restrict the choice of processors; only
processors that possess those properties may be selected. Setting these con-
straints and attributes can be done at any time in the lifetime of the Grid. An
additional manner in which the choice of processors can be constrained is by
controlling the platforms on which instances of the class object can run. For
example, if a user provides only Solaris and Windows binaries for a particu-
lar class object, then instances of that class can never be scheduled on, say, a
Linux or SGI machine. Furthermore, the user can instruct a particular run –
which creates an instance of the class object – to run on any machine of a par-
ticular architecture. Thus, Legion provides users with mechanisms to control
the scheduling process with application-level information.

3. MECHANICS OF RESOURCE MANAGEMENT

Legion is both an infrastructure for Grids as well a collection of integrated
tools constructed on top of this infrastructure. The basic infrastructure en-
ables secure, dataflow-based, fault-tolerant communication between objects.
Communicating objects could be diverse resources, such as applications, jobs,
files, directories, schedulers, managers, authentication objects (representations
of users in a Grid), databases, tools, etc. The Legion scheduling framework
acts as a mediator to find a match between placement requests and processors.
The scheduling process in Legion is one of negotiation between resource con-
sumers, i.e., autonomous agents acting on behalf of applications or users or
objects, and resource providers, i.e., autonomous agents acting on behalf of
processors or machines or resources. By providing mechanisms for specifying
security and usage policies, resource providers can control who runs what and
when on their processors. Likewise, by specifying constraints and choosing
schedulers, users can control how their applications run.

The scheduling framework that exists between the providers and consumers
attempts to satisfy the expectations of both the providers and the consumers. In
the context of Grid resource management, the main contribution of the Legion
project is not the algorithm used by the default scheduler, but the surrounding
infrastructure that takes security, fault-tolerance, matching, etc. into account
for every single object created in a Grid. The infrastructure enables creating
objects, jobs included, on any appropriate processor in a Grid, whether across
a room or across the globe. The location transparency gained is a deep-rooted
part of the Legion philosophy of providing a single virtual machine abstraction
for the disparate resources in a Grid.

The components of the Legion resource management framework are: class
objects, resource objects (hosts and vaults), information database objects (col-
lections), scheduler objects, schedule implementor objects (enactors) and im-
plementation objects [CKKG99]. Before we examine each component in de-

152 GRID RESOURCE MANAGEMENT

tail, we will examine their interactions at a higher level (Figure 1). A typical
chain of events in a Grid could involve a user initiating a tool to start an instance
of an application on a machine. This chain results in a tool object contacting
an application class object (to create an instance of this application); which in
turn contacts a scheduler (to generate schedules for running this application
on a machine); which contacts a collection (to procure information about ma-
chines), an enactor (to reserve time on the target machine) and a host object
(to start the job on the machine). After the scheduler selects a host object,
it contacts the application class object with enough information to start a job
instance on the machine.

In the rest of this section, we describe the different objects that participate
in resource management. The implementation and interaction of these objects
echoes the philosophy we discussed above. However, we regard this set of
objects as only one of many possible implementations of that philosophy.

Figure 10.1. The scheduling process in Legion.

3.1 Class Objects

In Legion, class objects define the type of their instances, as in other object-
oriented systems, but in addition are also active entities, acting as managers
for their instances. A class is the final authority in controlling the behavior of
its instances, including object placement. When a Legion Grid is deployed, a
variety of class objects are pre-created already. These class objects can create
instances of commonly-used Grid objects such as directories, files, schedulers,
collections and even other class objects. Later, other class objects may be
added to the Grid. For example, a developer may add a new class object that
creates instances of an entirely new kind of object, such as a network object.

Grid Resource Management in Legion 153

Alternatively, a developer may refine an existing class object, such as the file
class object in order to create a new class object that can create specialized
instances, such as matrix or two-dimensional files. Finally, users who port
their applications to a Grid typically create, unbeknownst to them, application
class objects that are managers for every single run of that application.

All class objects define a create instance method, which is invoked during
placement initiation. This method may take parameters for an explicit place-
ment or may be called with minimum parameters for an implicit placement.
If the placement is explicit, Legion bypasses schedulers, enactors and collec-
tions and attempts to start objects on host-vault pairs directly. If the placement
is implicit, the scheduling framework is invoked with as much information as
available.

3.2 Scheduler and Enactor Objects

A scheduler objects maps requests to resources. As part of this process, the
scheduler is given information by the class object about how many instances to
create, as well as what constraints apply. Application-specific schedulers may
demand and may be supplied with more information about the resource re-
quirements of the individual objects to be created. In addition, a scheduler also
requires information about the platforms or architectures on which instances
of this class can run. All of this information is procured from the class object.

A scheduler obtains resource information by querying a collection, and then
computes a schedule for placing the requested objects. This schedule is passed
to an enactor that bears the responsibility of ensuring that the schedule is suc-
cessful. Each schedule has at least one master version and a list of variant
versions. Master and variant versions contain a list of mappings, with each
mapping indicating that an instance of the class should be started on the indi-
cated host/vault pair. The master version of a schedule contains the scheduler’s
best attempt to schedule the requested objects. A variant version differs from
a master schedule slightly in terms of the resources selected, representing a
poorer scheduling decision to which the enactor can resort if the master fails.

Upon receiving a schedule from a scheduler, the enactor attempts to deter-
mine whether the schedule will be successful. In order to do so, it extracts
the mappings from the master version, contacts each host/vault pair involved
and inquires whether the sub-request on it will be successful. A host/vault pair
may choose to reject this sub-request based on its current situation – such a
rejection is part and parcel of the negotiation philosophy. If the master version
cannot be satisfied because of such rejections, the enactor resorts to the vari-
ant versions to schedule successfully. If no version can be made successful,
the enactor reports an error and cancels the rest of the scheduling process. If
a successful version can be found, the enactor procures reservations from the

154 GRID RESOURCE MANAGEMENT

host/vault (if the host/vault support it) and reports back to the class object with
the successful version.

3.3 Collection Objects

A collection is an object that acts as a repository for information describing
the state of the resources in a Grid. Each record is stored as a set of Legion
object attributes. Collections provide methods to join them and update records.
Typically, host and vault objects join collections, although other objects may
also join. Members of a collection may supply their attributes in either a pull
model or a push model. In a pull model, the collection takes on the respon-
sibility of polling its members periodically for updates. In a push model, the
members periodically initiate updates to the collection (Legion authenticates
the member to ensure it is allowed to update the data in the collection). A push
model is more appropriate in a scenario in which the members of a collection
may lose and regain connectivity with the rest of the Grid. A pull model is
more appropriate in a scenario in which we wish to avoid the update implosion
of several members updating a single collection.

Users, or their agents such as schedulers, obtain information about resources
by issuing queries to a collection. A collection query is a string conforming
to some grammar. Currently, a collection is a passive database of static in-
formation, queried by schedulers. Collections can be extended to support the
ability for users to install code to compute new description information dy-
namically and integrate it with existing description information for a resource.
This capability is especially important to users of the Network Weather Ser-
vice [WSH99a], which predicts future resource availability based on statistical
analysis of past behavior.

Another use of collections is to structure resources within the Legion sys-
tem. Having a few, global collections can reduce scalability. Therefore, col-
lections may receive data from, and send data to, other collections. Making
collections be members of other collections gives us the flexibility to have a
collection for each administrative domain and thus achieve hierarchical struc-
turing of Grid resources.

3.4 Host and Vault Objects

Host and vault objects represent two basic resource types in Legion, pro-
cessors and disk space respectively. Typically, these objects are started on the
same machine, but they are not required to be co-located. A host object en-
capsulates processor capabilities (e.g., a processor and its associated memory)
and is responsible for instantiating objects on the processor. Thus, the host
object acts as an arbiter for the processor’s capabilities. A host object can rep-
resent single-machine systems as well as a queue management system such

Grid Resource Management in Legion 155

as LoadLeveler [IBM01], NQS [Kin92], PBS [BHL
�

99], or LSF [Zho92]. A
vault object encapsulates storage capabilities (e.g., available disk space) and is
responsible for storing the persistent state of objects running on that machine.
Every Legion object must have a vault to hold its Object Persistent Represen-
tation (OPR). The OPR holds the persistent state of the object, and is used
for migration and for shutdown/restart purposes. When requested by an en-
actor, a host object grants reservations for future service. The exact form of
the reservation may vary by implementation of the host object, but it must be
non-forgeable tokens; the host object must recognize these tokens when they
are passed in with subsequent requests from the class.

There are three broad groups of host/vault functions: reservation manage-
ment, object management, and information reporting. Reservation functions
are used by an enactor to obtain a reservation token for each sub-request in
a schedule. When asked for a reservation, a host is responsible for ensuring
that its vault is accessible, that sufficient resources are available, and that its
local placement policy permits instantiating the object. A host/vault pair is re-
sponsible for managing an object during its lifetime. Object management may
involve de-activation and re-activation if requested as well as migration. Mi-
grating an object involves collecting its OPR and transmitting it to some other
host/vault pair. Hosts and vaults repopulate their meta-data after reassessing
their local state periodically. This reassessment is done by invoking local re-
source management tools or calls on the underlying machine or queuing sys-
tem. The resultant meta-data, also called attributes, may be pushed into or
pulled by a collection object.

3.5 Implementation Objects

Implementation objects may be viewed as representations of the actual bi-
naries required to run objects on a processor. Every object, whether it be a
user’s job or a Legion object, requires a binary of the appropriate architec-
ture to run on a processor. Registering these binaries with a class object is
the porting process in Legion; the crux of Legion’s support for running legacy
applications as well as Legion-aware applications is registering binaries with
class objects. A class object tracks the implementation objects associated with
itself when initiating placement. Therefore, a class that has only Solaris and
Windows implementations will never request a schedule containing Linux or
SGI machines. When a class receives a viable schedule from an enactor, it
communicates with the host/vault objects in order to start objects. Host/vault
objects in turn receive the names of the implementation objects for that class,
and contact the implementation objects to download the associated binary for
running the instance.

156 GRID RESOURCE MANAGEMENT

Since implementations are objects themselves, they are created in much the
same way as any other object. Implementations for hosts and vaults, however,
are more basic than implementations of most other class objects. Therefore,
host/vault implementations are procured by looking in well-known directories
in the Legion installation. Once the host/vault pairs are running, implemen-
tations for any other object can be procured from anywhere in the Grid. A
minor but interesting point about implementations is that it is perfectly possi-
ble and reasonable that the Linux implementation of a particular application
class object may actually be started on a Solaris machine. The distinction to
remember is that the application’s Linux binary happens to be stored on a So-
laris machine; therefore the implementation runs on a Solaris machine, but the
application binary, when desired, will run only on a Linux machine.

3.6 Proxy Objects

Proxy objects are used to execute legacy application binaries on host and
vault pairs and do not play a role in scheduling. However, they are a resource
management component because they enable users to employ Legion tools to
monitor the progress of a job on a remote machine even though the original
job does not respond to Legion requests. Instead, the proxy responds to Le-
gion requests about the status of the job. Since the proxy is not the job itself,
it cannot give application-specific status of the job. However, the proxy can
provide information such as the name of the machine on which the job runs,
the current working directory of the job, the files present in that directory as
well as contents of those files at any time, etc.

4. LESSONS LEARNED FROM THE LEGION
RESOURCE MANAGEMENT SYSTEM

Several of the key lessons we learned about Grid resource management are
captured in the design decisions we incorporated in the scheduling frame-
work. First, in many ways, scheduling should be treated no differently than
the other parts of the Grid infrastructure. Although not shown in Figure 1,
every object-to-object communication in the scheduling sequence requires the
reliability, efficiency, and privacy/integrity of those object interactions not re-
lated to scheduling. We chose to implement the scheduling framework using
the same policies and mechanisms available to all object interactions – every
communication between any pair of objects must go through the Legion pro-
tocol stack (see Figure 2 for an example stack), which involves constructing
program graphs, making method invocations, checking authorization, assem-
bling or disassembling messages, encrypting messages, retransmitting mes-
sages, and so on. Since every communication goes through such a stack, Le-

Grid Resource Management in Legion 157

Figure 10.2. The protocol stack in Legion.

gion provides security and fault-tolerance as well as scheduling as part of an
integrated resource management framework.

Second, scheduling in Legion is a process of negotiation. Most schedulers
view CPU cycles as passive resources waiting to be utilized by the next avail-
able job. However, in a multi-organizational framework, a CPU is not necessar-
ily available simply because it is idle. The owner of the CPU – the organization
that controls the machine – may impose restrictions on its usage. Therefore,
when matching a job to an available CPU, Legion initiates a negotiation pro-
tocol which respects the requirements of the job as well as the restrictions
imposed by the CPU owner. In other words, we consider site autonomy an
important part of the scheduling, or more correctly, the resource management
process. Even if a scheduler selects a particular host for running a job, the host
may reject the job based on its current policies. Depending on the implemen-
tation, the scheduler may investigate variant schedules or may inform the user
of the failure to run the job.

Third, the scheduler can be replaced. Each and every component of a Le-
gion Grid is replaceable. Thus the scheduler in the figure can be replaced by
a new one that employs any algorithm of choice. Not just the scheduler, but
the toolset that uses the scheduler can be changed as well. For example, we
wrote a queue object that uses a similar chain of events to mimic the opera-
tion of a queuing system. Also, we wrote a parameter-space tool (similar in
spirit to Nimrod [ASGH95]) that can start jobs instantaneously or send them
to our queue. A Legion Grid can have multiple schedulers or even multiple
instances of a particular scheduler. Applications can be configured to use a
specific scheduler. Thus, the Legion Grid resource management framework
explicitly allows for different schedulers for different classes of applications.

158 GRID RESOURCE MANAGEMENT

Of course, users can bypass the entire scheduling mechanism, by specifying
machines directly or using some non-Legion tool for constructing a schedule
for their applications. Bypassing the scheduling mechanism does not mean by-
passing security and fault-tolerance, because those functions are at lower levels
in the stack. Naturally, if desired, lower levels can be replaced or eliminated as
well with the attendant implications.

Fourth, the scheduling infrastructure can be used as a meta-scheduling in-
frastructure as well. The host object shown in Figure 1 could be running on
the front-end of a queuing system or the master node of an MPI cluster. Thus,
Legion could be used to select such a host, but subsequent scheduling on the
queue or the cluster could be delegated to the queuing system or the MPI sys-
tem.

When designing the Legion Grid resource management framework, we had
a wider definition of resource management than most other distributed sys-
tems. We tried to construct a framework within which other parties could write
schedulers for different classes of applications. We consciously did not design
for only the classic applications – long-running, compute-intensive, parallel
applications, requiring high performance. Naturally, we did provide a single
reference implementation of a scheduler in order to perform resource manage-
ment on a Legion Grid immediately upon installation. However, we intended
this scheduler to be a default – a catch-all scheduler for users who wished to
use a Legion Grid as-is. We always intended permitting other schedulers to be
part of any Legion Grid.

We did make mistakes in the design of our Grid infrastructure; some of
those mistakes were in the scheduling framework. Some of these mistakes are
technical, whereas others are psychological. If we were to re-design Legion,
here are some lessons we would keep in mind:

People are reluctant to write schedulers. We could not rely on Grid schedul-
ing experts to write schedulers for Legion. Once we learned this lesson, we
wrote two new schedulers to complement the default scheduler that already
came with every Legion installation. One was a round-robin scheduler for cre-
ating instances of files, directories and other objects on a Grid. The round-robin
scheduler made quick decisions based on a machine file that was part of its
state, thus avoiding expensive scheduling decisions for simple object creation.
The second scheduler was a performance-based scheduler for parameter-space
studies. This scheduler took CPU speeds, number of CPUs and loads into
account for choosing machines on which to run parameter-space jobs.

Writing schedulers deep into a framework is difficult. While we did provide
a framework for writing schedulers, a mistake we made was requiring sched-
uler writers to know too much about Legion internals. Typically, in addition
to the scheduling algorithm of interest, a scheduler writer would have to know
about schedulers, enactors, hosts, classes and collections; their internal data

Grid Resource Management in Legion 159

structures; the data they packed on the wire for several method calls; and Le-
gion program graphs. The effort required to write such a deep scheduler was
too much. In essence, we had violated one of our own principles: ease of use.
Our mistake lay in making Legion easy-to-use for end-users, but not necessar-
ily so for developers. Once we recognized our error, we wrote a shallow sched-
uler, i.e., a scheduler that was about as complex as the default scheduler but
did not require knowing too much about Legion internals. The performance-
based scheduler for parameter-space studies mentioned earlier is an example
of a shallow scheduler. This scheduler is a self-contained Perl script that re-
quires knowing about the collection object (a database of attributes) and the
one command to access it. Not having to know Legion details was a significant
advantage in the design of this scheduler.

The lesson we learned from this experience was that a high cost of construct-
ing new schedulers is a deterrent to development. Another lesson we learned
was that a high cost of running a scheduler can hurt a Grid as well. Put differ-
ently, we learned that a quick and acceptable scheduler is much better than a
slow but thorough scheduler.

High scheduler costs can undermine the benefits. In Legion, a scheduler
is invoked every time an object must be placed on some machine on a Grid.
Given the Legion view of scheduling as a task for placing any object not just
a compute object, creating files and directories, implementations and queue
services, consoles and classes, all require an intermediate scheduling step. For
long, the scheduler that would be invoked for any creation was the default
scheduler. While we fully understood the need for different schedulers for
different kinds of objects, an artifact of our implementation was that we created
only one scheduler – the default one.

The default scheduler’s algorithm was complex in two respects. One, the ac-
tual processing time took long, especially as the number of machines in a Grid
grew. Moreover, the scheduler constructed variant versions for every request
just in case the master version did not meet with success. Two, the process
invoked methods on too many remote objects. Each method call (or outcall)
was a relatively expensive operation. Therefore, even a simple schedule would
take too long to generate. Accordingly, we built faster schedulers which per-
haps did not find near-optimal and variant schedules, but were far quicker than
the default. The round-robin scheduler made fewer outcalls and had a sim-
ple algorithm for choosing hosts, but was adequate for scheduling files and
directories. Likewise, the shallow scheduler we wrote for performance-based
scheduling scheduled parameter-space jobs quickly [NHG02]. It initially spent
a few seconds building a schedule, but re-used the schedule for the duration of
the application.

Over-complex schedulers are unnecessary. In Legion, we created a so-
phisticated scheduling framework, but we also implemented this framework

160 GRID RESOURCE MANAGEMENT

in a complicated manner. In particular, splitting the scheduling process from
the reservation process (the scheduler and enactor objects respectively), was
overkill. The added flexibility this split gave us was never used, and we be-
lieve that it will not be used for a while because complex scheduling tech-
niques, such as co-scheduling, that require reservations are useful for a small
subset of applications only [SFT02]. Too many objects were involved in the
scheduling process, making it feel like the process had too many moving parts.
The failure of any one object could derail the scheduling process, making it
hard to create new objects – files, directories, implementations, jobs, etc. – on
a Grid.

5. SUMMARY

In this chapter, we discussed the philosophy and mechanisms of the Legion
resource management framework. In Legion, resource management is invoked
not just for running jobs but also to place other Grid components, such as
files, directories, databases, etc. The key element in resource management is
placement, i.e., determining on which machine to start running an object. In
Legion, placement is a negotiation process between the requirements of users
and the policies of resource managers. This negotiation process is carried out
by a scheduler which also employs an algorithm to determine which resources
of the available ones is most suited for starting the requested object. Every
scheduler in Legion implements the negotiation process, although different
schedulers may employ different algorithms.

As Grids mature, diverse resources will be included in Grids and Grid re-
source management will be central to the working of a Grid. We hope that our
experience will serve to guide the design of resource managers. In particular,
we believe that the pressing challenges that face the Grid community are the
design of rich and flexible resource specification languages in order to match
resources with requests, and the design of a framework that can incorporate
different solutions for different aspects of Grid resource management.

Acknowledgments

We thank the members of the Legion Team at the University of Virginia
for their hard work over the years. In particular, we thank John Karpovich,
who developed much of the initial philosophy underlying resource manage-
ment in Legion. This work was partially supported by DARPA (Navy) contract
N66001-96-C-8527, DOE grant DE-FG02-96ER25290, DOE contract Sandia
LD-9391, Logicon (for the DoD HPCMOD/PET program) DAHC 94-96-C-
0008, DOE D459000-16-3C, DARPA (GA) SC H607305A, NSF-NGS EIA-
9974968, NSF-NGS ACI-0203960, NSF-NPACI ASC-96-10920, and a grant
from NASA-IPG.

Chapter 11

GRID SCHEDULING WITH MAUI/SILVER

David B. Jackson
Cluster Resources, Inc.

Abstract This chapter provides an overview of the interactions of and services provided
by the Maui/Silver Grid scheduling system. The Maui Scheduler provides high
performance scheduling for local clusters including resource reservation, avail-
ability estimation, and allocation management. Silver utilizes the underlying
capabilities of Maui to allow multiple independent clusters to be integrated and
intelligently scheduled.

1. INTRODUCTION

This chapter touches only briefly on the overall design and capabilities of
the Maui Scheduler [Jac03a] and the Silver Grid Scheduler [Jac03b]. It focuses
primarily on an item by item review of various Grid scheduling requirements
and the facilities provided by Maui to satisfy these needs. On occasion, refer-
ences to Silver are provided to demonstrate how these facilities may be used in
conjunction to provide production quality Grid scheduling. In this chapter we
describe our approach using the attributes detailed in Chapter 4. Further infor-
mation regarding philosophy, design, capabilities, and usage of either Maui or
Silver can be found at [Mau, Sil].

1.1 Overview of Maui

Maui is an advanced HPC scheduling system in use at a large percentage
of the world’s largest and most advanced computing centers. It provides a
comprehensive suite of job and resource management tools and policies that
reflect the needs of these sites.

Maui is an external scheduler, meaning that its use does not mandate use of a
specific resource manager. Rather it extends the capabilities of a site’s existing
resource manager, enhancing the resource manager’s capabilities and effec-
tiveness. Key areas of enhancement include job preemption, fairshare, prior-

162 GRID RESOURCE MANAGEMENT

ity management, scheduling optimization including backfill, quality of service
guarantees, resource utilization tracking and limit enforcement, and others.
Maui can operate with virtually all of the major HPC resource management
systems including OpenPBS [PBS], PBSPro [Jon03b], LoadLeveler [IBM01],
LSF [PG], SGE [Sun], SSS [SSS], and BProc [bpr]. End users can continue to
interact directly with the resource manager without needing to learn any new
concepts or commands. On the other hand, they may also take advantage of
various Maui features which either offer them greater information about their
jobs and available resources or provides them with greater control over their
jobs.

In the Grid scheduling arena, Maui is popular due to its capabilities in the
areas of advance reservations, extensive resource availability query support,
external job migration, resource charging and quality of service support.

1.2 Overview of Silver

Silver was designed to be a real-world enterprise level Grid scheduler meet-
ing key criteria of being highly efficient, non-intrusive, reliable, and transpar-
ent. It takes advantage of the rich capabilities found within the Maui Scheduler
to provide load balancing, co-allocation, data scheduling and quality of service
guarantees at the Grid level. It allows enterprises to organize geographically
distributed compute resources and share these resources in a well-managed
manner controlling how, when, and where Grid resources are to be made avail-
able to participating users.

Silver provides interfaces which allow end users to submit and track Grid
jobs using intuitive and familiar job scripting languages and commands. Sup-
port for PBS and LoadLeveler style interfaces are available and additional in-
terfaces are on the way. With these interfaces, users are able to immediately
utilize Grid resources without requiring additional training.

At a high level, Silver operates by receiving and queueing Grid level job
requests. Silver organizes these job requests and evaluates resource availability
by querying the Grid interface of the Maui Scheduler running at each feasible
participating cluster. Maui’s Grid interface incorporates workload, resource,
policy, and priority information to determine if and when a particular request
could be satisfied and reports the results back to Silver. Integrating information
from all feasible clusters, Silver makes an optimal selection, reserves local
resources through Maui, and stages the Grid job and Grid data as needed to the
destination clusters.

Grid Scheduling with Maui/Silver 163

2. ALLOCATION PROPERTIES

Maui uses the concept of a reservation to maintain resource allocations.
Support for future allocations, or advance reservations, is probably the single
cluster scheduler feature which has attracted the most attention in the realm of
Grid scheduling. In this regard, Maui possesses a very mature, optimized, and
flexible capability. In general, Maui advance reservations allow a site to set
aside a block of resources for various purposes such as cluster maintenance,
special user projects, guaranteed job start time, or as a means of enforcing
various policies. Internally, a reservation consists of three primary attributes, a
resource expression, an access control list, and a timeframe.

The resource expression indicates both resource quantity and type condi-
tions which must be met by resources to be considered for inclusion in the
reservation. The expressions may request particular compute nodes by name
or may specify a set of conditions which must be met by candidate resources.
In addition to identifying which resources to reserve, the resource expression
can also specify constraints indicating whether or not the scheduler is allowed
to optimize or otherwise modify that reservation’s placement in space.

The access control list (ACL) specifies which consumers (i.e., jobs, other
reservations, etc.) may actually utilize the reserved resources. This ACL al-
lows resource access based on the consumer’s credentials and attributes. For
example, an ACL may specify that reserved resources may only be utilized by
jobs which are owned by user john or user steve and are either submitted to
class lowpri, are preemptible, or request less than 20 minutes of walltime.

The reservation timeframe indicates the time period over which the reser-
vation should actually block the resources. It may also include optional time-
frame constraints which control whether or not the scheduler is allowed to
optimize the placement of the reservation in time. It is important to note that
all Maui reservations are time based. Thus, when a reservation is created, if an
allocation length is not explicitly specified, a default allocation length will be
selected and utilized in evaluating the feasibility of the reservation request.

2.1 Revocation of an Allocation

Maui reservations can be configured to support revocable or irrevocable
allocations depending upon need. In cases where there are strict time con-
straints on data availability or job completion (i.e. weather modeling for the
5:00 news), an absolute resource availability guarantee is required. With an
irrevocable reservation, the resources will be available at the requested time
regardless of existing or future workload. Only in the event of significant sys-
tem failures will the scheduler be unable to fulfill the request. However, in
most cases, allocation timeframes need not be absolute and can be supported
with a revocable reservation. If an allocation is made with a revocable reser-

164 GRID RESOURCE MANAGEMENT

vation, the reservation would only be released if it precludes a higher priority
request from being granted. Because Maui supports dynamic prioritization, it
is possible for a higher priority request to arrive after the initial allocation has
been granted. Reservation revocability can be configured on a system wide
or individual reservation basis and policies can be put in place to make the
likelihood of reservation revocation extremely small.

By default, reservations are irrevocable; they are created and maintained
until the reservation timeframe has expired or the reservation is explicitly re-
moved by the reservation owner. However, Maui can be configured to allow
the reservation to be preempted by higher priority local or remote needs. The
reservation can also be configured with a non-time based deallocation policy
so as to automatically terminate based on a number of triggers described later
in the Deallocation Policy portion of Section 4.5.

2.2 Guaranteed Completion Time of Allocations

Using reservation time constraints, an allocation can be locked to an exact
time, guaranteed to complete before a certain time, or guaranteed to start after
a given time. In each case, resources for the allocation are actually reserved
for a specific time and then the scheduler attempts to regularly optimize this
reservation according to the specified time constraints and current environmen-
tal conditions. Note that the degree of freedom on job execution time can be
controlled at the Grid scheduler level. Tight constraints provide predictable
results; loose constraints allow the scheduler additional freedom to optimize.

2.3 Guaranteed Number of Attempts to Complete a Job

Maui will not attempt to start a job until its prerequisites are satisfied. Silver,
as a Grid scheduler, will coordinate the staging of each job with its data needs
by intelligently prestaging input data and executables in a just in time manner.
These features minimize the number of job failures because a job will not
even be staged to a given cluster unless its prerequisite conditions are already
verified to have been met.

However, Maui also supports the concept of guaranteed job start retry. Using
Maui’s defer mechanism, sites can specify how many times Maui should try to
locate resources for and/or start a job before giving up and placing a hold on
the job. Sites can specify different limits for retries depending on whether it
is the scheduler which is unable to start the job or the job which is unable to
execute. Sites may also indicate the amount of time they would like to transpire
between subsequent retries.

Grid Scheduling with Maui/Silver 165

2.4 Allocations Run-to-Completion

Maui can be configured to disable all or a subset of job preemption actions
based on job attributes. Clearly, this can include disabling all forms of pre-
emption for all Grid-based workload thus guaranteeing that these jobs run to
completion without interference.

2.5 Exclusive Allocations

Jobs can request dedicated resources to guarantee exclusive access to re-
sources allocated. These resources will not be shared in any way with other
jobs. Dedicated resource access can be requested on a job by job basis or
configured to be applied to all jobs of a particular type.

2.6 Malleable Allocations

All aspects of Maui reservations can be dynamically modified including
changes to reserved resources in both the time and space dimensions. The
feature can be used to support MPI-2 dynamic jobs (where the underlying re-
source manager also supports this capability) or other forms of dynamic work-
load. When a request to add resources to an allocation is received, Maui will
determine resource availability both on and off of allocated nodes. If satisfac-
tory resources are found, Maui will grow the allocation as needed and return
the new resource information to the requestor. When a request to remove re-
sources is received, Maui will currently oblige in all cases, determining the
best resources to release, reducing the allocation, and returning the updated
resource information.

All allocation modifications are originated by the job, by administrators,
or by peer services such as a Grid scheduler. In no case will Maui mandate
that a job relinquish resources nor will it initiate a request that a job consume
additional resources.

If a job begins consuming resources which exceed its initial resource re-
quest, Maui may preempt or even cancel the job depending on the resource
utilization policy configured. This policy can specify different limits and ac-
tions depending on the exact resource limit violated. Alternatively, this policy
can be completely disabled allowing unlimited resource limit violations.

3. ACCESS TO AVAILABLE SCHEDULING
INFORMATION

Maui will not reveal information regarding existing workload, reservations,
policies, or total resources to the Grid scheduler. Instead, when a Grid sched-
uler considers a particular cluster for use, it formulates a context sensitive re-
source request incorporating account mapping, minimum duration, and per

166 GRID RESOURCE MANAGEMENT

cluster type and quantity requirement translations. Maui receives and evalu-
ates this request and incorporates resource, workload, reservation, policy, and
priority factors. The result returned to the Grid scheduler is a list of tuples with
each tuple including a feasible job start time, the total quantity of resources
available at this time slot, an availability duration, the cost of these resources,
and the quality of information of this report. These tuples reflect all possible
start times which can satisfy the job’s minimum duration constraint and re-
flect only those resources which are accessible by the job and guaranteed to be
available.

3.1 Access to the Tentative Schedule

The start time tuples returned by Maui provide information regarding all
possible availability times for the resources requested. As such, this tuple list
provides a complete tentative schedule and is very useful in reservation and
co-allocation based Grid scheduling.

As an alternative to this model, the Grid scheduler may also request a single
estimated start time for a given job. The approach incorporates all of the factors
listed above but also includes statistical modifications due to over the horizon
jobs (anticipated jobs yet to be submitted), wall clock limit inaccuracies, and
workload profiles. This query returns a time zone independent estimated job
start time and a quality of information factor. This query is more applicable
to Grid scheduling systems attempting to load balance a number of clusters
where time constraints do not mandate resource reservations.

3.2 Exclusive Control

Maui maintains exclusive control over the execution of the workload sub-
mitted through the local resource management system. Although the batch
workload is fully controlled, this control cannot address resource availability
issues resulting from system failures or processes launched outside of the scope
of the local resource management system such as distributed system mainte-
nance tasks, performance monitors, etc. These non-batch loads are generally
insignificant and only minimally affect the quality of the resource availability
information provided by Maui.

3.3 Event Notification

Maui supports a generalized event management interface that allows it to
both provide event notification and subscribe to external events which affect
its scheduling decisions. This interface supports both solitary and threshold
based events. Using this interface, Maui can respond immediately to changes
in environment allowing its scheduling to be highly responsive. Event notifi-

Grid Scheduling with Maui/Silver 167

cation is provided for all key events regarding changes to jobs and reservations
including creation, start, preemption, completion, and various types of failure.

4. REQUESTING RESOURCES

Maui supports a number of functions which allow a peer service to request
resources. These requests include a query and hold model, a two phase cour-
tesy reservation, and a direct resource reservation interface.

4.1 Allocation Offers

As described in the Available Resource Query Properties section, Maui sup-
ports resource allocation queries. In these queries, full contextual information
regarding the request can be provided and Maui will reply with information
indicating if and how it can satisfy this request. The response will include mul-
tiple offers of resource availability covering all potential allocation start times.

4.2 Allocation Cost or Objective Information

Maui interfaces with QBank [Jaca], Gold [Jacb], and other allocation man-
agement systems. These systems allow sites to assign costs to resource con-
sumption based on the resource type, time of day, level of service, request-
ing user and other factors. In responding to a remote resource availability
query, Maui responds with availability tuples which include resource availabil-
ity time, resource quantity, and cost information. Further, Maui also supports
features enabled in QBank and Gold which allow coordination of cost infor-
mation across multiple sites and even tracking and enforcement of resource
consumption balances between participating sites.

4.3 Advance Reservation

Previous sections provided an overview of Maui’s advance reservation ca-
pability. This feature is fully mature, highly optimized, and very flexible. It al-
lows peer services complete control over the scheduling of jobs through time.
Jobs can be coordinated to start at any chosen time within the time slots re-
ported by the allocation availability query. Only exactly the resources required
will be blocked and they will be blocked only for the exact time required.

Silver uses this capability to guarantee local resource availability, enable co-
allocation based Grid scheduling, and to coordinate compute resources with
input data availability.

168 GRID RESOURCE MANAGEMENT

4.4 Requirement for Providing Maximum Allocation
Length in Advance

Maui is a time based scheduler and as such requires some estimate of ex-
ecution walltime in order to operate. Credential based walltime limits can be
configured based on the queue being used, the user submitting the job, or other
factors. If no specified or default walltime limit can be obtained, Maui will
assume an adequately long allocation length.

If job execution exceeds its wall clock limit, Maui can be configured to
always cancel the job, conditionally cancel the job, or allow the job to run
indefinitely. If a job exceeds its reserved allocation time, Maui will, subject to
site specified policies and reservation priorities, attempt to shuffle reservations
as needed to allow extension of the allocation.

4.5 Deallocation Policy

Maui provides a single step resource allocation request. This step creates
a resource allocation which will be valid until job completion and requires no
further action on the part of the Grid scheduler. Additionally, Maui also sup-
ports the concept of a two phase courtesy reservation. A courtesy reservation
can be requested with a local scheduler or Grid scheduler specified time limit.
Once the courtesy reservation is created, a reservation commit request must be
received from the Grid scheduler within the time limit. If this commit request
is not received, the reservation will be automatically removed. The commit
request need only be received once to guarantee that the local scheduler main-
tains the reservation until job completion.

Additional deallocation policies are available for reservation which are cre-
ated with an ACL which does not map it to a particular job. These reservations
are collectively called user reservations and can be used by the Grid scheduler
to guarantee resource availability for a particular project or user over a given
timeframe. These user reservations can be configured to automatically termi-
nate if historical usage does not meet a specified threshold or if the reservation
is defined as a single-use reservation and the initial job has completed.

4.6 Remote Co-Scheduling

A Grid scheduler is able to stage remote jobs to a local cluster either di-
rectly to Maui through the Maui remote job migration facility or indirectly
through a Grid middleware system such as Globus. In each case, the job is
ultimately submitted to the underlying resource manager which is responsible
for managing the persistent job queue. The submitting Grid scheduler is given
administrative control over jobs and allocations it creates and is able to modify
or destroy any such object.

Grid Scheduling with Maui/Silver 169

The Silver Grid Scheduler takes advantage of both Globus and the direct
Maui job migration facility in conjunction with advance reservations to enable
multi-site resource co-allocation.

4.7 Consideration of Job Dependencies

Maui offers basic job dependency support allowing job steps to be blocked
until certain prerequisite conditions are met. These conditions may include
events such as step execution, step completion, or step failure for specified
prerequisite job steps.

5. MANIPULATING THE ALLOCATION EXECUTION

Maui terms any action which stops job execution prior to completion as pre-
emption. Based on the capabilities of the underlying resource manager, Maui
supports suspend/resume, checkpoint/restart, and requeue/restart based pre-
emption. As far as these capabilities are available, Maui will utilize them to
support QoS based service guarantees, handle resource utilization limit vio-
lations, and/or improve overall system utilization. Maui can be configured to
preempt existing low priority workload if additional resources are needed to
support specific Grid jobs.

Further, if desired, Grid jobs can also be marked such that they are guaran-
teed to run to completion without being preempted for optimization purposes.
These Grid jobs can also be marked such that they are immune to preemption
based on resource utilization violations such as using excessive memory or
walltime.

5.1 Preemption

Job suspend operations are supported as far as the capability is available
within the underlying resource manager. Most major resource managers in-
cluding PBS, LoadLeveler, and LSF support this feature. Jobs which are not
marked preemptible will not be suspended.

5.2 Checkpointing

Job checkpoint and terminate and checkpoint and continue operations are
supported as far as the capability is supported within the underlying resource
manager. Most major resource managers including PBS, LoadLeveler, and
LSF support this feature. Jobs which are not marked restartable and pre-
emptible will not be checkpointed. Maui supports the concept of both mi-
gratable and non-migratable checkpoint files.

170 GRID RESOURCE MANAGEMENT

5.3 Migration

Maui supports the concept of intra-domain job migration but does not auto-
matically utilize this capability for QoS services, load balancing, or other op-
timization purposes. While scheduling clusters with resource managers which
support this concept, job migration can be utilized by administrators or peer
services such as a Grid scheduler. Jobs that are not marked restartable will not
be migrated.

Maui also supports the ability to import jobs arriving via inter-domain job
migration, allowing systems such as Grid schedulers to directly stage remote
jobs or portions of remote jobs to the local cluster through Maui. Efforts are
currently underway to allow Maui to manage the exporting of local jobs to
extra-domain clusters but this functionality is not available as of this writing.

5.4 Restart

Job restart (or requeue) is supported and utilized by Maui for quality of ser-
vice and optimization purposes. Checkpoint files will be utilized if available.
Otherwise, the job will be restarted from the beginning. Jobs which are not
marked restartable will not be restarted.

6. CONCLUSION

The Maui Scheduler provides a powerful suite of scheduling tools, many of
which provide unique capabilities not found elsewhere. The Silver Grid Sched-
uler has been built on top of this feature set and utilizes it to enable effective
enterprise level Grid load-balancing, co-allocation, and general scheduling.

This chapter has introduced some of the key Grid scheduling features cur-
rently available. With hundreds of sites now using and contributing to this open
project, Maui/Silver continues to evolve and improve faster than ever. To learn
about the latest developments and to obtain more detailed information about
the capabilities described above, see the Maui homepage at
http://www.supercluster.org/maui or the Silver homepage at
http://www.supercluster.org/silver.

Chapter 12

SCHEDULING ATTRIBUTES AND
PLATFORM LSF

Ian Lumb and Chris Smith
Platform Computing Inc.

Abstract Scheduling is highly complex in the context of Grid Computing. To draw out
this complexity, it makes sense to isolate and investigate key areas of the prob-
lem. Here we report on communication attributes between higher- and lower-
level scheduling instances. Using Platform LSF as the lower-level scheduling
instance, we report on overall agreement and a few points of departure relative
to the de facto reference on scheduling attributes detailed in Chapter 4. The key
concerns involve access to tentative schedules and control exclusivity. While
understandable, we show how impractical such ideals prove in the case of pro-
duction Enterprise deployments; we also challenge the necessity of the schedule-
access attribute based on experiences with Platform MultiCluster. Furthermore,
experience with the Globus ToolkitTMallows us to expose a lowest-common-
denominator tendency in scheduling attributes. We encourage re-assessment of
communication attributes subject to these findings and broader comparisons. We
also urge for integration of isolated scheduling activities under the framework
provided by the Open Grid Services Architecture (OGSA).

1. INTRODUCTION

The de facto reference for scheduling attributes, detailed in Chapter 4, pro-
vides a tangible context for discussing attributes for communication between
scheduling instances - but not the mechanisms. Here we consider Platform
LSF R

�
as a lower-level scheduling instance in the context of those attributes.

Section 2 presents an attribute-by-attribute, objective assessment of Plat-
form LSF with respect to the set of attributes. Four major attribute areas receive
consideration. This assessment reveals misalignment between a few schedul-
ing attributes and Platform LSF; two examples receive consideration in Sec-
tion 3. Platform LSF integrates with higher-level Grid scheduling instances.
This allows us to provide insight on the attributes described in Chapter 4 with
the hindsight of practical experience. Thus Section 4 presents cases involving

172 GRID RESOURCE MANAGEMENT

Platform MultiCluster and the Globus Toolkit. We close (see Section 5) by
drawing conclusions based on the objective assessment and practical experi-
ence, and add recommendations for future progress.

2. OBJECTIVE ASSESSMENT OF SCHEDULING
ATTRIBUTES

Chapter 4 defines four areas of attributes for communication between sched-
uling instances, grouped into four categories: available-information attributes,
resource-requesting attributes, allocation-property attributes, and manipulating
allocation execution attributes.

In this chapter we provide an objective assessment of version 5.1 of Plat-
form LSF relative to these attributes, with the section number for Chapter 4 in
parenthesis for each attribute. Unless stated otherwise, the primary Platform
LSF reference for this Section is [LSF].

2.1 Available-Information Attributes

Section 3 of Chapter 4 identifies three available-information attributes. Here
we consider each of these.

Tentative-Schedule Access (3.1)

No practical provision for tentative-schedule access exists in Platform LSF.
We discuss this attribute in detail in Section 3.

Exclusive Control (3.2)

We appreciate the value of exclusive control to the higher-level scheduling
instance. However, exclusive control is a loaded statement that we expand on
in Section 3.

Event Notification (3.3)

Higher-level scheduling instances have the option to subscribe to an event-
notification service. In this case, an event program notifies an identified event
receiver regarding a number of predefined events. Although the existing list
of events conveys information on Platform LSF as a service, our customers
have extended the notification to incorporate other types of events. Platform
LSF also maintains a log of events in a designated file, lsb.events. An
agent can be crafted to monitor and notify regarding events trapped through
this mechanism.

Scheduling Attributes and Platform LSF 173

2.2 Resource-Requesting Attributes

Section 4 of Chapter 4 identifies seven resource-requesting attributes. Here
we consider each of these.

Offers (4.1)

With the notable exception of advance reservation, Platform LSF does not
expose potential resource allocations. We further discuss this attribute in Sec-
tion 3.

Allocation Cost or Objective Information (4.2)

Allocation choice based on competing costs is an unsupported attribute in
Platform LSF at this time. Of course, developing a customized scheduling
policy provides one solution. Based on experience with Enterprise Grids over
more than five years, customer requirements are twofold. First, customers seek
allocation entitlements commensurate with acquisition contributions. In other
words, if two groups share the capital cost at a 60:40 ratio, their allocation enti-
tlements are to the same proportion. Platform LSF provides several approaches
(e.g., fairshare policy, host partitions, etc.) for partitioning. Second, customers
seek allocation entitlements opposite an allocation bank [Qba]. This is also
available in Platform LSF. These requirements are not necessarily mutually
exclusive. Although the first may loose meaning in the broader Grid context,
the second remains relevant. As service or utility Grids evolve, the need for
economic scheduling increases.

Advance Reservation (4.3)

Platform LSF provides both a built-in and MAUI-integrated advance reser-
vation capability. Both approaches need to align with emerging stand-
ards [RS02] in this area.

Allocation Lengths in Advance (4.4)

Platform places this attribute in high regard, and practical experience under-
lines its value. Failure to specify such lengths renders scheduling policies like
backfill completely ineffective.

De-allocation Policy (4.5)

Platform LSF does not require explicit de-allocation; this is done automati-
cally.

174 GRID RESOURCE MANAGEMENT

Remote Co-scheduling (4.6)

Platform LSF supports co-scheduling by a higher-order scheduling instance.
For example, MPI jobs are co-scheduled via the resource leasing capability of
Platform MultiCluster. Platform MultiCluster receives attention in Section 4.

Job Dependencies (4.7)

Platform LSF has a built-in support for job dependencies. These dependen-
cies are logical expressions based on 15 dependency conditions. Logical op-
erators permit the combination of conditions into more-complex dependency
statements. Platform JobScheduler significantly enhances and extends the de-
pendencies present in Platform LSF. Targeting job flow automation, client-side
functionality includes GUIs and APIs for flow editing and management, calen-
dar management, plus a command-line interface. A Java API facilitates client-
server interaction via SOAP/XML. The server-side functionality includes a
job-scheduler service and tight integration with Platform LSF.

2.3 Allocation-Property Attributes

Section 5 of Chapter 4 identifies six allocation-property attributes. Here we
consider each of these.

Revocation (5.1)

Tentative allocations undergo revocation due to various situations including
executing a job with a higher priority, withdrawing resources from Grid use,
etc. By default in Platform LSF, allocation revocation is not a result of such sit-
uations. In fact, allocations remain tentative. It is possible to force revocation.
Pending-reason information permits identification of revocation situations.

Guaranteed Completion Time (5.2)

The advance reservation capability of Platform LSF guarantees resource al-
locations by a given deadline. The same holds for the integration of the Maui
scheduler [Mau] with Platform LSF.

Guaranteed Number of Attempts to Complete a Job (5.3)

Platform LSF distinguishes between completion attempts as an execution
pre-condition and execution condition. User and queue-level pre-conditioning
is facilitated via pre-execution scripts. Users and administrators have complete
flexibility in establishing the conditions, number of retries, etc. The queue-
level REQUEUE_EXIT_VALUES attribute applies retries to jobs that fail dur-
ing execution. This allows jobs to bypass transient effects, for example, a full

Scheduling Attributes and Platform LSF 175

process table on a certain execution host. Re-queued jobs can be associated
with specific exit codes, and acted on accordingly.

Run-to-Completion (5.4)

By default, Platform LSF allows allocations on given resources to remain
active until the job completes. There are several implicit assumptions. First,
allocations do not exceed process resource limits, including wall-clock time,
memory limits, etc., or resource limits are not in use. Second, it is possible to
eliminate competing scheduling policies. In the case of advance reservation,
allocations remain active until the end of the requested time window. Time
windows of un-expired advance reservations are extensible.

Exclusive (5.5)

Job dispatch, to hosts on which no other Platform LSF job is running, is a
supported attribute. Users specify this requirement on job submission. Addi-
tionally, the target queue requires the queue-level EXCLUSIVE attribute set
to Y for yes. This is effective when Platform LSF has complete control over
an entire host. Complete control is a loaded statement; we expand on this in
Section 3.

Malleable and Moldable (5.6)

Platform LSF applies a high-watermark approach for resource-usage alloca-
tions - i.e., the basis is expected consumption requirements. A built-in mech-
anism allows allocations to decay consumption over time on a per-resource
basis, and job-accounting data makes visible actual usage.

2.4 Manipulating the Allocation-Execution Attributes

Section 6 of Chapter 4 identifies four allocation-execution attributes for ma-
nipulation. Below we consider each of these.

Preemption (6.1)

Since March 1995, Platform LSF has provided a preemptive-scheduling pol-
icy. This allows resource re-allocation to higher-priority workloads at the ex-
pense of lower-priority workloads. In general, preempted workloads retain
resources (e.g., swap space, software licenses, etc.) even though they are in an
inactive state. Customer feedback suggests that hoarding resources, whilst in
a dormant state, is undesirable. A poignant case relates to software licenses.
In some industries, software licenses are the scarce commodity, with each in-
stance bearing a significant cost. To respond to this requirement, Platform

176 GRID RESOURCE MANAGEMENT

generalized its approach towards preemption. Recent versions of Platform LSF
allow preemption of any slot-based resource allocation.

Checkpointing (6.2)

Assuming the application can be checkpointed, Platform LSF provides an
interface to support checkpointing through one-or-more means, e.g., from ker-
nel to application level.

Migration (6.3)

Platform LSF provides a mechanism for migration that can be addressed by
a higher-level scheduling instance. This interaction has been demonstrated in
the case where Platform MultiCluster 4 is the higher-level scheduling instance.

Restart (6.4)

Platform LSF provides an interface to support restart through one-or-more
means. Depending on the mechanism used (e.g., kernel-level checkpointing),
restart may be limited to the same host or a host of the same architecture.

3. PRACTICAL CONSIDERATIONS FOR
SCHEDULING ATTRIBUTES

In Section 2 we provided an objective analysis of Platform LSF relative to
the scheduling attributes identified in Chapter 4. On balance, Platform LSF
aligns well with the identified attributes. Here we focus attention on two sig-
nificant points of departure.

3.1 Tentative-Schedule Access

An available-information attribute identifies the need for
tentative-schedule access. We will not argue the merit of such an attribute.
However, experience suggests that such access is often impractical in real-
world situations. Furthermore, experience with Platform MultiCluster illus-
trates that higher-level scheduling instances do not always require such sched-
ule access.

Scheduling in Platform LSF is event driven in real time. Every schedul-
ing cycle involves the arbitration of allocation requests opposite available re-
sources subject to one-or-more policies plus constraints. Some policies (e.g.,
fairshare) are highly dynamic in nature, with required calculations on each
scheduling cycle. In practice, scheduling cycles occur at 1-minute intervals, by
default. Customers use Platform LSF to manage workloads of half-a-million
jobs from thousands of users across thousands of servers. With scalability re-

Scheduling Attributes and Platform LSF 177

quirements like these, tentative-schedule access is of questionable value - even
though Platform LSF can provide this information.

Platform LSF is supportive of co-scheduling via the resource-leasing capa-
bility in Platform MultiCluster. Resource leasing proves that co-scheduling
does not require schedule access. The same applies to the job-forwarding
model of Platform MultiCluster. We discuss both resource leasing and job
forwarding in Section 4.

3.2 Exclusive Control

Logicians use the phrase necessary and sufficient in expressing conditions
for propositions. It is convenient to use this phrase for the proposition exclu-
sive control in the context of resource management. Platform LSF provides
necessary but not sufficient measures for exclusive control.

Platform LSF provides a level control over all resources it manages, that
is, it can limit the number of jobs it dispatches to a host. However, Platform
LSF executes in user space as a privileged user (Figure 12.1). This means its
control is not exclusive - only the kernel of the relevant operating system holds
the guarantee of exclusivity. In this sense, Platform LSF provides necessary
but not sufficient measures for exclusive control. The same applies to any
other lower-level scheduling instance that executes in user space, including
Altair PBSPro (detailed in Chapter 13), Condor (detailed in Chapter 9), IBM
LoadLeveler [IBM01], and Sun Grid Engine [SGE]. This user-versus-kernel-
space distinction is explored in detail in [Lum01].

Directly engaging the kernel offers the potential of necessary and sufficient
measures for exclusive control. Here we identify two use-case scenarios: slot
based and threshold-based.
3.2.1 Slot-Based Scenarios

Many vendors offer support for slot-based scenarios (Figure 12.1 and Ta-
ble 12.1 with Type=Slot). This applies to any slot-based resource, for example
CPUs. Thus hard (static) and soft (dynamic) partitioning technologies exist.
In all cases, this technology allows resource allocations to be bound to a set of
slot-based resources.

Figure 12.1. Scheduling-instance hierarchy.

178 GRID RESOURCE MANAGEMENT

3.2.2 Threshold-Based Scenarios

Many vendors offer support for threshold-based scenarios (Figure 12.1 and
Table 12.1 with Type=Threshold). This applies to many threshold-based re-
sources, including CPUs, RAM, etc. In all cases, this technology allows re-
source allocations to be bound to a percentage allotment of threshold-based
resources.

Platform LSF integrates with the technologies identified in Table 12.1; the
final column of this table identifies specific instances.

Table 12.1. Slot- and threshold-based use case scenarios by vendor.

Vendor Operating Product Type Nature Binds
Environment

Aurema Various ARMTech Threshold Dynamic CPU
HP HP-UX 11.x vPars ¡ Slot Dynamic CPUs

HP-UX PRM, WLM Threshold Dynamic CPU, RAM,
process count

Tru64 ARMTech Threshold Dynamic CPU
IBM AIX WLM Threshold Dynamic CPU, RAM, I/O
Quadrics QsNet RMS ¢ Slot Quasi-static Clustered,

low-CPU-count
SMPs

Scyld Linux Beowulf £ Slot Dynamic Clustered,
commodity systems

SGI IRIX 6.5.x Partitions Slot Static System boards
Linux ¤ Cpumemsets Slot Dynamic CPUs, RAM
IRIX 6.5.x ¥ Cpusets Slot Dynamic CPUs, RAM

Sun Solaris ¦ Dynamic Slot Quasi-static System boards
System
Domains

Solaris Psrset § Slot Dynamic CPUs
Solaris SRM d¨ © Threshold Dynamic CPU,

Virtual memory,
process count

VMWare Linux, VMWare Slot Quasi-static O/S instances
Windows

 Evolved from ShareII.¡ Requires a seed CPU per virtual partition on boot-up.¢ Integration in Platform HPC for HP AlphaServer SC.£ Applicable to MPI applications; integrated with Platform LSF [LSF].¤ As provided on the Altix platform.¥ Supports attach/detach; Works with topology-aware scheduling; Integration in Platform HPC for SGI.¦ Sun Enterprise xxK only.§ Integrated with Platform LSF [LSF].© Integration described in [DL03].

Scheduling Attributes and Platform LSF 179

4. REAL-WORLD EXPERIENCES WITH
SCHEDULING ATTRIBUTES

Platform LSF is used in conjunction with higher-order scheduling instances.
This provides an opportunity to reflect on Chapter 4 with the hindsight of
practical experience. We present two examples. In the first example, Plat-
form MultiCluster serves as the higher-level scheduling instance for Enterprise
Grids. The second example we base on experience with the Globus Toolkit R

�
for Partner Grids.

4.1 Platform MultiCluster

Platform MultiCluster provides the first example of a higher-level schedul-
ing instance that interoperates with Platform LSF. Platform MultiCluster
[LSF] allows virtualization of clusters based on Platform LSF into an Enter-
prise Grid. Enterprise Grids typically involve a single organization that spans
multiple geographic locations, with the organization’s firewall providing the
primary means of security. In place since late 1996, customers make use of
this solution in their production deployments across a variety of industries.
Platform LSF inventories all resources, e.g., desktops, servers, supercomput-
ers, software licenses, etc., on a per-cluster basis. Because the discovery aspect
is well-bounded, Grid-wide scheduling is a core competence of Platform Mul-
tiCluster. There are two models supported (1) job forwarding and (2) resource
leasing.

4.1.1 Job Forwarding

Send/receive queues allow workload exchange (forwarding) between coop-
erating clusters. Queues serve as cluster-wide entities for managing workload
against a rich array of scheduling policies. In this model, sites retain a very
high level of local autonomy - i.e., sites selectively identify resources avail-
able for Grid use. Typically used to ensure maximal utilization of all com-
pute resources across an entire enterprise, job forwarding applies to mixed
workloads, e.g., serial applications, parametric processing, plus shared and dis-
tributed memory parallel applications. Supported scheduling policies include
advance reservation, backfill, fairshare, memory and/or processor reservation,
preemption, etc.

4.1.2 Resource Leasing

Sites can earmark resources for on-demand use by other sites participating
in an Enterprise Grid. While under use, the demand-initiating site manages
these leased resources. With an affinity for Grid Computing, this mode of
aggregation can be used to support complex resource requirements, for exam-

180 GRID RESOURCE MANAGEMENT

ple, co-scheduling an MPI Interface distributed memory parallel application
across multiple sites in an Enterprise Grid. As in the case of job forward-
ing, resource leasing can apply other policies, and make use of the extensible
scheduler framework.

Version 4.x of Platform MultiCluster uses a Resource Reservation Proto-
col (RRP) [Xu01]. With Enterprise Grids, modularity, and extensibility all in
mind, Platform re-architected Platform LSF. This formed the basis of version
5.x of Platform LSF. By refactoring the internals, resource leasing became pos-
sible in addition to job forwarding. Whereas job forwarding passes resource-
allocation requests to remote clusters until is finds a match, a modified version
of the RRP applies to resource leasing. All of this is possible without access to
a tentative schedule. Not only is it possible, this approach has met the produc-
tion scalability requirements of Enterprise customers in several industries.

On balance, this Platform MultiCluster - Platform LSF combination pro-
vides a working example of Chapter 4’s interaction between lower and higher-
level scheduling instances. Again, the primary departures relate to tentative-
schedule access and exclusive control.

4.2 The Globus Toolkit

Multiple, virtual organizations cause a disruptive transition from Enterprise
to Partner Grids. In the Partner Grid case, the Enterprise firewall becomes
meaningless, and resource discovery emerges as a key challenge. The Globus
Toolkit R

�
addresses these extra-Enterprise tensions in security and discovery.

Our focus here is on attributes for communication between scheduling in-
stances. The toolkit facilitates interaction between scheduling instances
through its Globus Resource Allocation Manager (GRAM) [CFK

�
98b] com-

ponent; it does not, however, provide lower- or higher-level scheduling in-
stances. Based on experiences with Platform Globus, we share experiences
with GRAM in the context of scheduling attributes.

Platform Globus is a commercially supported distribution of version 2.2.4 of
the Globus Toolkit from the Globus Project. Platform adds value through en-
hancements - improved packaging and installation, improved interoperability
with Platform LSF, etc. - technical support, documentation, and the availability
of professional services for Grid planning, deployment and ongoing manage-
ment. Our primary observation is of a tendency towards the Lowest Common
Denominator (LCD). We observe this effect in three areas: the RSL Resource
Specification Language, job state information, and information services.

4.2.1 Resource Specification Language (RSL)

Out of necessity, the toolkit’s RSL supports only a subset of options avail-
able in Platform LSF [PG]. In the case of job submission, RSL supports queue

Scheduling Attributes and Platform LSF 181

and project names, CPU-time and memory limits, I/O redirection, processor
count, plus executable and argument specification. In version 2.0 of the toolkit,
all other specifications are out of scope and ignored. Subsequent versions im-
prove on this. Although the RSL-to-native conversions are extensible, the ten-
dency is always towards the LCD - and hence an issue of completeness.

4.2.2 Job State

Table 12.2 presents non-uniqueness and incompleteness in the case of job
state [PG]. The first column provides the state identifier used by the Globus
Toolkit while the second that used by Platform LSF. The Platform LSF state
terms are detailed in [LSF]. Again, a clear tendency towards the LCD.

Table 12.2. Job-state mapping between the Globus Toolkit and Platform LSF.

Globus Toolkit Platform LSF

Active RUN
Pending PEND
Suspended USUSP or PSUSP or SSUSP
Done DONE
Failed EXIT or UNKWN or ZOMBI
– WAIT

4.2.3 Information Services

The toolkit includes Monitoring and Discovery Service (MDS2) schemas
for lower-level scheduling instances like Platform LSF. Our experience was
that the default schema ignored valuable information routinely provided by
Platform LSF. In Platform Globus, we extended the MDS schema for Platform
LSF [PG], and made it available - thus avoiding the tendency towards the LCD.
This is also an issue of completeness.

The attributes in Chapter 4 acknowledges the issue of completeness, but
does not address uniqueness.

5. SUMMARY

We are supportive of Chapter 4’s intended purpose - i.e., defining the at-
tributes of a lower-level scheduling instance that can be exploited by a higher-
level scheduling instance. Major areas of concern remain:

Access to a tentative schedule

Platform LSF can provide visibility into its tentative schedule. However,
practical considerations based on Enterprise deployments illustrate the imprac-

182 GRID RESOURCE MANAGEMENT

ticality of such an attribute. Furthermore, Platform MultiCluster (higher-level)
- Platform LSF (lower-level) interaction proceeds without tentative-schedule
access. This applies to scheduling within a cluster (the job-forwarding model
of Platform MultiCluster) and to co-scheduling between clusters (the resource-
leasing model of Platform MultiCluster).

Exclusive control

We considered the exclusive-control attribute in some detail. In general,
such a notion is not realistic without deeper interactions. This amplifies the
presence of a hierarchy of scheduling instances through real-world examples
(e.g., Chapter 4 and [DL03]).

The lowest common denominator tendency

Based on experience with Platform Globus, we gave three examples of this
tendency. All three examples relate to completeness and one additionally to
uniqueness. Perpetually extending working documents (e.g., Chapter 4) and
implementations underlines this as an impediment to progress. Reconciliation
services [FG03] show promise as an alternative.

These conclusions suggest modest and major calls to action. The modest
call to action is to revisit Chapter 4 with the above conclusions in mind. As
others apply Chapter 4 against their own higher-level and lower-level schedul-
ing instances, as detailed in Chapters 13 and 11, such conclusions gain broader
exposure. Identification of missing attributes will also be possible. Grid Com-
puting demands such scrutiny for real progress. Recent efforts on a Service
Negotiation and Access Protocol (SNAP) [CFK

�
02] are also of benefit in this

iterative process. Chapter 4 is based on a significant deliverable of the Schedul-
ing Attributes Working Group, in the Scheduling and Resource Management
Area of the Global Grid Forum (GGF). There are many other GGF groups
working on scheduling and resource management - some formed recently, and
some yet to emerge. Even though this is a GGF focus area, the groups op-
erate independently. The Open Grid Services Architecture (OGSA) [OGSa]
provides the context for integrating these independent activities, and this is the
major call to action.

Chapter 13

PBS PRO: GRID COMPUTING AND
SCHEDULING ATTRIBUTES

Bill Nitzberg,
�

Jennifer M. Schopf,
�

and James Patton Jones
�

�
Altair Grid Technologies�
Mathematics and Computer Science Division, Argonne National Laboratory

Abstract The PBS Pro software is a full-featured workload management and job schedul-
ing system with capabilities that cover the entire Grid computing space: security,
information, compute, and data. The security infrastructure includes user au-
thentication, access control lists, X.509 certificate support, and cross-site user
mapping facilities. Detailed status and usage information is maintained and
available both programmatically and via a graphical interface. Compute Grids
can be built to support advance reservations, harvest idle desktop compute cy-
cles, and peer schedule work (automatically moving jobs across the room or
across the globe). Data management in PBS Pro is handled via automatic stage-
in and stage-out of files. The PBS Pro system has numerous site-tunable param-
eters and can provide access to available scheduling information, information
about requesting resources, allocation properties, and information about how an
allocation execution can be manipulated.

1. INTRODUCTION

The Portable Batch System, Professional Edition (PBS Pro), is a flexible
workload management and batch job scheduling system originally developed
to manage aerospace computing resources at NASA. PBS Pro addresses issues
of resource utilization in computing-intense industries and forms the basis of
many Grid computing projects.

The PBS Pro software includes capabilities that cover the entire Grid com-
puting space: security, information, compute, and data. We look at the Grid
capabilities of PBS Pro 5.3 circa March 2003, as well as how they relate to the
scheduling attributes detailed in Chapter 4.

184 GRID RESOURCE MANAGEMENT

2. HISTORY

PBS has been used in the areas of workload management and Grid com-
puting over the past decade. In the early 1990s NASA needed to replace its
outdated NQS batch system but found nothing suitable on the market. Hence
NASA led an international effort to generate a list of requirements for a next-
generation resource management system. The requirements and functional
specification were soon adopted as an IEEE POSIX standard [IEE94]. Next,
NASA funded (via the R&D contractor MRJ/Veridian) the design and devel-
opment of a new resource management system compliant with the standard.
Thus, in 1993 the Portable Batch System was born [Hen95]. PBS began to
be used on distributed parallel systems and replaced NQS on traditional su-
percomputers and server systems. Eventually the industry evolved toward dis-
tributed parallel systems, taking the form of both special-purpose and com-
modity clusters. The PBS story continued when Veridian released the profes-
sional edition of PBS (PBS Pro), an enterprise-quality workload management
solution. Most recently, in January 2003, the PBS technology and associated
engineering team were acquired by Altair Engineering, Inc., and set up as a
separate, subsidiary company (Altair Grid Technologies) focused on contin-
ued development of the PBS Pro product line and Grid computing.

In the mid-1990s PBS was selected as the enabling software for Grid com-
puting (then called metacomputing). Examples such as the NASA Metacen-
ter (1996-1997 [Jon96, Jon97a]), the Department of Defense Meta-queueing
Project (1997-1998 [Jon97b, Jon98]), and NASA’s Information Power Grid
(1998-2003+ [JGN99]) demonstrate this capability. As a founding participant
of the Global Grid Forum (GGF, see also [GGF]), and co-director of the GGF
Scheduling Area, the PBS Pro team has committed to furthering Grid comput-
ing technologies.

3. GRID CAPABILITIES

Workload management software such as PBS Pro is a key component of
Grid computing. It is middleware technology that sits between
compute-intensive or data-intensive applications and the network, hardware,
and operating system. The software aggregates all the computing and data re-
sources into a single virtual pool. It schedules and distributes all types of appli-
cation runs (serial, parallel, distributed memory, etc.) on all types of hardware
(desktops, clusters, and supercomputers and even across sites) with selectable
levels of security. An overview of the basic Grid capabilities (security, infor-
mation, compute, and data) is provided in this section. Details of features can
be found in the PBS Pro documentation [Jon03a, Jon03b].

PBS Pro: Grid Computing and Scheduling Attributes 185

3.1 Security

Perhaps the most fundamental capabilities of Grid infrastructure are se-
cure authentication (proving one’s identity) and authorization (granting per-
mission). The security capabilities of PBS Pro cover both user and host au-
thentication as well as authorization.

Internally, authentication and authorization are user name based (UNIX or
Windows login). Authentication uses standard UNIX and Windows security
(with additional access checks based on stringent hostname-IP address rules).
Authorization is handled by complex access control lists (ACLs), which permit
access restriction (or permission) via user, group, system, and network.

X.509 certificates, the de facto Grid standard for identification and authen-
tication, are also supported. PBS Pro can pick up the user’s certificate at job
submission and automatically create a proxy on the execution nodes assigned
to that user’s job. The distinguished name (DN) from the certificate is carried
with the job throughout its lifetime and is written to the PBS accounting logs
as part of the job accounting record. If a user’s certificate expires, PBS Pro
will place the job on hold and notify the user to renew the certificate.

Furthermore, user identity mapping between sites is handled by a mapping
function (and can be set up similarly to the gridmap file used as part of the
Globus Toolkit [FK97, GLO]).

3.2 Information

If security is the first fundamental capability of Grid infrastructure, then in-
formation management is a close second. Access to the state of the infrastruc-
ture itself (e.g., available systems, queue lengths, software license locations),
is required to support automatic aggregation of Grid components as well as
optimizing assignment of resources to Grid activities. PBS Pro monitors both
resource state and common workload management information.

The PBS Pro system monitor and job executor daemon processes (MOMs)
collect real-time data on the state of systems and executing jobs. This data,
combined with less dynamic information on queued jobs, accounting logs,
and static configuration information, gives a complete view of resources be-
ing managed. PBS protects this information with ACLs, which allow the PBS
manager to ensure that, for example, only the owner of a job can view its
current status. The node-utilization data collected by the PBS MOMs can be
viewed graphically by using the xpbsmon command. Specifically, current
node availability and status, node CPU and memory utilization, and assigned
jobs are displayed by default. Other indices may be selected by the user.

This data can easily be integrated with larger Grid infrastructure databases
(such as the information services within the Globus Toolkit). For example,
NASA’s Information Power Grid [JGN99] both pushes and pulls

186 GRID RESOURCE MANAGEMENT

data from PBS Pro into the Globus Toolkit Monitoring and Discovery
Service (MDS2) [CFFK01, MDS].

3.3 Compute

In addition to traditional workload management capabilities, specific fea-
tures of PBS Pro address the compute aspects of Grids. These include advance
reservation support, cycle harvesting, and peer scheduling.

An advance reservation is a set of resources with availability limited to a
specific user (or group of users), a specific start time, and a specified duration.
Advance reservations can be used to support co-scheduling, especially among
diverse types of Grid resources, for example, one can reserve all resources nec-
essary for tomorrow’s vehicle crash test experiment: computer cycles, network
bandwidth, crash test database access, visualization systems, and the crash test
facility itself.

Advance reservations are implemented in PBS Pro by a user (or a higher-
level Grid scheduler) submitting a reservation with the pbs_rsub command
(or API function). PBS Pro then checks to see whether the reservation conflicts
with currently running jobs, other confirmed reservations, and dedicated time.
A reservation request that fails this check is denied by the scheduler. Once
the scheduler has confirmed the reservation, a queue is created to represent
the reservation. The queue has a user-level access control list set to the user
who submitted the reservation (or as specified by the higher-level scheduler)
and any other users the owner specified. The queue then accepts jobs in the
same manner as normal queues. When the reservation start time is reached,
the queue is started. Once the reservation is complete, any jobs remaining in
the queue or still running are deleted, and the reservation is removed from the
server.

Cycle harvesting of idle workstations is a method of expanding the available
computing resources by automatically including unused workstations that oth-
erwise would be idle. This is particularly useful for sites that have a significant
number of workstations that are unused during nights and weekends (or even
during lunch). With this feature, when the owner of the workstation isn’t using
it, the machine can be configured to run PBS Pro jobs. If a system is config-
ured for cycle harvesting, it becomes available for batch usage by PBS Pro if
its keyboard and mouse remain unused or idle for a certain period of time, or if
the system load drops below a site-configurable threshold (i.e., the workstation
is shown to be in state free when the status of the node is queried). If the key-
board or mouse is used, the workstation becomes unavailable for batch work;
PBS Pro suspends any running jobs on that workstation and does not attempt
to schedule any additional work on it until the state changes.

PBS Pro: Grid Computing and Scheduling Attributes 187

Peer scheduling is a PBS Pro feature that enables a site (or multiple sites) to
have different PBS Pro installations automatically run jobs from each other’s
queues. This provides the ability to dynamically load-balance across multiple,
separate PBS Pro installations. These cooperating PBS Pro installations are
referred to as Peers, and the environment is a peer-to-peer computational Grid
environment. When peer scheduling is enabled and resources are available,
PBS Pro can pull jobs from one or more (remote) peer servers and run them
locally. No job will be moved if it cannot run immediately. When the scheduler
determines that a remote job can run locally, it will move the job to the speci-
fied queue on the local server and then run the job. Since the scheduler maps
the remote jobs to a local queue, any moved jobs are subject to the policies
of the queue they are moved into. If remote jobs are to be treated differently
from local jobs, this can be done on the queue level. A queue can be created
exclusively for remote jobs, and this will allow queue-level policy to be set
for remote jobs. For example, one can set a priority value on one’s queues and
enable sorting by priority to ensure that remotely queued jobs are always lower
(or higher) priority than locally queued jobs.

3.4 Data

PBS Pro has long supported the most basic capability for implementing a
data Grid: file staging. Users of PBS Pro can specify any number of input
and output files needed by their application at job submission time. The PBS
Pro system automatically handles copying files onto execution nodes (stage-in)
prior to running the job, and copying files off execution nodes (state-out) after
the job completes. PBS Pro will not run a job until all the files requested to be
staged-in have successfully been copied. Multiple transport mechanisms are
offered, including rcp, scp, and GridFTP [ABB

�
02a].

The file staging feature of PBS Pro also supports the Globus Toolkit’s Global
Access to Secondary Storage (GASS) software. Given a complete stage-in
directive, PBS Pro will take care of copying the specified input file over to the
executing Globus Toolkit machine. The same process is used for a stage-out
directive. Globus mechanisms are used for transferring files to hosts that run
Globus; otherwise, the normal PBS Pro file transport mechanism is used.

3.5 Other Grid-Related Capabilities

Other Grid-related capabilities of PBS Pro include interfaces to Grid com-
puting environments such as the Globus Toolkit [FK97, GLO]
and UNICORE [UNIa].

For example, PBS Pro can serve as a front end to Globus, permitting the
user to submit jobs requesting Globus resources using the normal PBS Pro
commands. When such a job is received, PBS Pro will translate the requests

188 GRID RESOURCE MANAGEMENT

into a Globus job, and then submit it to the requested site. In addition, PBS
Pro can serve as a back-end to Globus, receiving jobs from Globus and running
them according to local policy.

PBS Pro also acts as a back end system for the UNICORE Grid environment.
Thus computational Grids built on UNICORE (such as the European DataGrid
project [EUR]) can (and do) use PBS Pro as the underlying batch system.

4. ATTRIBUTE BY ATTRIBUTE ASSESSMENT

To help compare scheduling systems, in this section we detail PBS’s ap-
proach using the attributes defined in Chapter 4. These attributes were defined
to aid in characterizing the features of a local resource management system
that can be exploited by a Grid environment. They are grouped into four cat-
egories: access to available scheduling information, described in Section 4.1;
information about requesting resources, described in Section 4.2; allocation
properties, discussed in Section 4.3; and information about how an allocation
execution can be manipulated, described in Section 4.4.

4.1 Access to Available Scheduling Information

The most basic information a local resource management system can ex-
press is the status of the current resource usage, and the upcoming schedule of
the jobs.

In PBS Pro, any user can access basic information about the queues and their
status using the qstat command. This provides a straightforward interface
to basic data about the progress a job is making in the queue, and users can
extrapolate possible starting times from this data. In addition, administrators
of a PBS Pro installation have access to more detailed information about the
order in which jobs will be run according to the site-defined scheduling policy.

When jobs are submitted to PBS Pro, an email address is specified for event
notification. The user may specify that email be sent to this address when the
job starts, ends, or aborts (the default if not specified). Alternatively, the user
may request no email notification be performed at all.

4.2 Requesting Resources

Local scheduling systems differ not only in terms of the functionality they
provide but also in the type of data used to request resources. The attributes
in this category include data about allocation offers, cost information, advance
reservation data, de-allocation information, co-scheduling data, and job depen-
dencies allowed.

PBS generates a single resource solution to a run my job request, whether
it is a standard batch job request or a request for an advance reservation (see

PBS Pro: Grid Computing and Scheduling Attributes 189

Section 4.3). Once a job is submitted, it will run unless a user cancels it, the
system goes down, or it is preempted (see Section 4.4).

Whether a request to run a job includes an estimated completion time from
the requestor is configurable. If this data is not included, however, getting a
high utilization of the resources is extremely difficult. For example, the back-
filling feature needs this data. this functionality is not a requirement of the PBS
Pro infrastructure, and it can be configured differently for different queues.

PBS Pro allows the consideration of job dependencies as a part of the job
submission process in a variety of flavors. It is simple for a user to specify
a number of options, including: Run job Y after job X completes; If job X
succeeds, run Job Y, otherwise run job Z; Run Y after X whether X completes
or not; Run job Y only after a certain time; Run job X anytime after a specified
time.

PBS Pro allows co-scheduling by simply configuring the queues of the sys-
tem. Hence, a site can have the added benefit of co-scheduling not as a special
case but as the norm, so extensive debugging of a rarely used allocation process
isn’t needed.

4.3 Allocation Properties

Different local resource management systems allow different flexibility with
respect to how an allocation is handled. This includes whether an allocation
can be revoked, what guarantees are made with respect to completion times,
start attempts, and finish times, and whether allocations can change during a
run.

In PBS Pro, the user (i.e., the allocation requestor) or an administrator can
revoke any allocation (using the qdel and pbs_rdel commands), both while
the job is queued and while the job is running. Jobs can also be preempted by
the scheduler, as discussed in the next section, as a configurable option. De-
pending on the configuration, a preempted job can be suspended, checkpointed,
requeued to start over, or terminated. In all cases, preemption implies at least
a temporary revocation of the allocation.

In terms of a guaranteed completion time for an allocation, if a request is
made for two hours of resource and the job starts at 1 pm, it will finish by 3 pm.
The flip side to this situation (e.g., can a user specify that a two-hour job fin-
ishes by 3 pm?) can currently be done by using an advance reservation. Work
is under development to allow this capability under normal job submissions.

At setup time, one can configure how many job completion attempts should
be allowed. This information is needed because some tasks, such as data trans-
fers, may not succeed on the first try. One can also configure whether an alloca-
tion is exclusive or not, meaning whether the resource is space-shared or time-
shared. Advance reservations are allowed only on space-shared resources.

190 GRID RESOURCE MANAGEMENT

PBS Pro currently does not support a malleable allocation, that is, an allo-
cation that allows the addition or removal of resources during run time. When
this feature is supported by common MPI-2 implementations, it will be added
to PBS Pro.

4.4 Manipulating the Allocation Execution

It can be beneficial for a local resource management system to modify a run-
ning allocation in order to better coordinate the execution of a set of jobs. Such
modifications can be done by using preemption, checkpointing, migration, and
restart.

PBS Pro provides a number of options for manipulating allocation execu-
tions. Any job can be requeued or restarted. Preemption is a configurable
option for any resource, and a site can use a variety of algorithms to specify
which jobs should get preempted, how often, and for how long. When pre-
empted, a job can be checkpointed if the underlying operating system allows
this, for example SGI Irix and Cray UNICOS. If jobs are checkpointed by a
user, they can be requeued to start at the stage in that checkpoint file. Mi-
gration usually can be done on-the-fly, but not for MPI jobs as this feature is
currently not supported within MPI implementations.

5. SUMMARY AND FUTURE

The Grid computing field is quite young, and only the most basic promise
of Grid computing is available today. Although PBS Pro features cover the
Grid computing space (security, information, compute, and data), capabilities
are constantly being added and refined. PBS Pro development plans include
extending the support for X.509 certificates, expanding data Grid support to
actively manage network bandwidth, and continuing to drive Grid standards
via the Global Grid Forum. In particular, the PBS Pro team is actively in-
volved defining numerous Grid standards: DRMMA [DRM], OGSA [OGSa],
GRAAP [GRAa], and UR [UR].

Acknowledgments

We thank the many people who have been involved with the PBS software
throughout the years, especially Bob Henderson, who has led the core devel-
opment team from the very beginning. This work was supported in part by the
Mathematical, Information, and Computational Sciences Division subprogram
of the Office of Advanced Scientific Computing Research, U.S. Department of
Energy, Office of Science, under contract W-31-109-Eng-38.

IV

PREDICTION AND MATCHING
FOR GRID RESOURCE MANAGEMENT

Chapter 14

PERFORMANCE INFORMATION
SERVICES FOR COMPUTATIONAL GRIDS

Rich Wolski, Lawrence J. Miller, Graziano Obertelli, and Martin Swany
Department of Computer Science, University of California, Santa Barbara

Abstract
Grid schedulers or resource allocators (whether they be human or automatic

scheduling programs) must choose the right combination of resources from the
available resource pool while the performance and availability characteristics of
the individual resources within the pool change from moment to moment. More-
over, the scheduling decision for each application component must be made be-
fore the component is executed making scheduling a predictive activity. A Grid
scheduler, therefore, must be able to predict what the deliverable resource per-
formance will be for the time period in which a particular application component
will eventually use the resource.

In this chapter, we describe techniques for dynamically characterizing re-
sources according to their predicted performance response to enable Grid schedul-
ing and resource allocation. These techniques rely on three fundamental capa-
bilities: extensible and non-intrusive performance monitoring, fast prediction
models, and a flexible and high-performance reporting interface. We discuss
these challenges in the context of the Network Weather Service (NWS) – an on-
line performance monitoring and forecasting service developed for Grid environ-
ments. The NWS uses adaptive monitoring techniques to control intrusiveness,
and non-parametric forecasting methods that are lightweight enough to generate
forecasts in real-time. In addition, the service infrastructure used by the NWS
is portable among all currently available Grid resources and is compatible with
extant Grid middleware such as Globus, Legion, and Condor.

1. INTRODUCTION

The problem of scheduling and resource allocation is central to Grid per-
formance. Applications are typically composed of concurrently executing and
communicating components resulting in the traditional tension between the
performance benefits of parallelism and the communication overhead it intro-

194 GRID RESOURCE MANAGEMENT

duces. At the same time, Grid resources (the computers, networks, and storage
systems that make up a Grid) differ widely in the performance they can deliver
to any given application, and this deliverable performance fluctuates dynam-
ically due to contention, resource failure, etc. Thus an application scheduler
or resource allocator must choose the right combination of resources from the
available resource pool while the performance and availability characteristics
of the individual resources within the pool change from moment to moment.

To assign application components to resources so that application perfor-
mance is maximized requires some form of resource valuation or characteriza-
tion. A scheduler must be able to determine the relative worth of one resource
versus another to the application and choose the ones that are most valuable
in terms of the performance they deliver. If the scheduling decision is to be
made by an automatic scheduling or resource allocation program (e.g. Ap-
pLeS [BWF

�
96, SW98] or GrADSoft [BCC

�
01, PBD

�
01, RIF01a]) this val-

uation must be in terms of quantifiable metrics that can be composed into a
measure of application performance. Moreover, the scheduling decision for
each application component must be made before the component is executed
making scheduling a predictive activity. A Grid scheduler, therefore, must be
able to predict what the deliverable resource performance will be for the time
period in which a particular application component will eventually use the re-
source.

The performance characteristics associated with a resource can be roughly
categorized as either static characteristics or dynamic characteristics according
to the speed with which they change. While the delineation can be rather arbi-
trary, static characteristics are ones that change slowly with respect to program
execution lifetimes. For example, the clock-speed associated with a CPU is
a relatively static (and quantifiable) performance metric. It is not completely
invariant, however, as a given CPU may be replaced by one that is faster with-
out changing other measurable characteristics. From the perspective of a Grid
user, a CPU that has been upgraded to a faster clock-speed may look identi-
cal in terms of its other characteristics (memory size, operating system, etc.)
before and after the upgrade.

Conversely, dynamic performance characteristics change relatively quickly.
CPU loads and network throughput, for example, fluctuate with frequencies
measured in minutes or seconds. It is such dynamic fluctuations that make
Grid scheduling complex and difficult. Moreover, many studies have shown
that the statistical properties associated with these performance fluctuations are
difficult to model in a way that generates accurate predictions [HBD96, CB97,
GMR

�
98, HB99]. The chief difficulties are either that the distribution of per-

formance measurements can be modeled most effectively by a power law (i.e.
the distribution is said to be long-tailed) or that a time series of measurements
for a given resource characteristic displays a slowly-decaying autocorrelation

Performance Information Services for Computational Grids 195

structure (e.g. the series is self-similar). Despite these statistical properties,
however, users routinely make predictions of future performance levels based
on observed history. For example, students in a university computer laboratory
often use the advertised Unix load average as an indication of what the load
will be for some time into the future.

1.1 Grid Resource Performance Prediction

Reconciling the theoretical difficulty associated with dynamic performance
prediction with the practical observation that some kind of prediction is neces-
sary in any scheduling context requires a careful formulation of the prediction
problem. For Grid scheduling and resource allocation, two important charac-
teristics can be exploited by a scheduler to overcome the complexities intro-
duced by the dynamics of Grid performance response.

Observable Forecast Accuracy — Predictions of future performance
measurements can be evaluated dynamically by recording the prediction
accuracy once the predicted measurements are actually gathered.

Near-term Forecasting Epochs — Grid schedulers can make their deci-
sions dynamically, just before execution begins. Since forecast accuracy
is likely to degrade as a function of time into the future for the epoch
being forecast, making decisions at the last possible moment enhances
prediction accuracy.

If performance measurements are being gathered from which scheduling de-
cisions are to be made, predictions of future measurements can also be gener-
ated. By comparing these predictions to the measurements they predict when
those measurements are eventually gathered, the scheduler can consider the
quantitative accuracy of any given forecast as part of its scheduling decisions.
Applications with performance response that is sensitive to inaccuracy can be
scheduled using more stable resources by observing the degree to which those
resources have been predictable in the past.

Grid schedulers can often make decisions just before application execution
begins, and rescheduling decisions while an application is executing (either
to support migration or for still-uncomputed work). Thus the time frame for
which a prediction is necessary begins almost immediately after the scheduler
finishes its decision-making process.

To exploit these characteristics, the forecasting infrastructure must, itself, be
a high-performance, robust, long-running application. When scheduling deci-
sions are made at run time, the time required to make the necessary forecasts
and deliver them will be incurred as run time overhead. Hence, the forecasting
system must be fast with respect to the application and scheduler execution
times. If forecast information (even if it is only performance monitor data) that

196 GRID RESOURCE MANAGEMENT

is not available because the system serving it has failed, “blind” and potentially
performance-retarding decisions must be made. Finally, if forecast accuracy is
to be considered as part of the scheduling process, the forecasting system must
be constantly gathering historical measurement data and generating predictions
from it.

In this chapter, we describe the functionality that is necessary to support
resource allocation based on performance measurements taken from Grid re-
sources. We detail our experiences with implementing this functionality as
part of the Network Weather Service (NWS) [WSH99a] — a distributed mon-
itoring and forecasting service that is compatible with many different Grid in-
frastructures. We discuss the design and implementation decisions that are at
the core of the system and outline its monitoring and forecasting capabilities.
We conclude with a discussion of future research and development challenges
that must be overcome to make dynamic resource allocation more accessible
to Grid programmers.

2. GRID MONITORING AND FORECASTING
INFRASTRUCTURE

Any system that is designed to support resource allocation based on perfor-
mance data should provide three fundamental functionalities.

Monitoring: Data from a distributed set of performance monitors must
be gathered and managed so that it can be served.

Forecasting: Resource allocators require forecasts of future performance.
It is the forecast data (and not the monitor data) that ultimately must be
served.

Reporting: The information served by the system must be available
in a wide-range of formats so that different scheduling and allocation
implementations may be supported.

In Grid settings, these functionalities present some unique challenges.
Grid performance systems must be robust with respect to resource failure

and/or restart, and must be carefully implemented so that their intrusiveness
is minimized. Resource monitors, particularly those that probe resources by
loading them, must be able to withstand frequent resource failure. Often, it
is the faulty resources in a Grid that are of the most performance concern. If
a monitor process requires manual intervention at restart, for example, there
may be long periods of time for which no data is available precisely from the
resources that must be most carefully monitored.

Moreover, if implemented as middleware, system administrators may not
view performance monitoring and analysis systems as having the same level

Performance Information Services for Computational Grids 197

Figure 14.1. The logical architecture of the NWS.

of importance as native operating system functionality. If and when a per-
formance problem is reported by a user, the most frequent early response by
many system administrators is to terminate any non-operating system monitor-
ing processes for fear that they are cause of the observed difficulties. It is rare,
however, for a monitor that has been prophylactically killed to be restarted once
the true source of the performance problem is located. Therefore, middleware-
based performance monitors must be self-reinitializing and they must be able
to store the data that they produce in persistent storage that survives local in-
tervention or system failure.

Another problem that Grid performance monitors must face stems from their
use of the resources that they are monitoring. The intrusiveness of performance
monitors, in terms of their induced CPU load, memory footprint, and storage
footprint, constitutes system overhead and, thus, must be tightly controlled.

2.1 The Network Weather Service

The Network Weather Service (NWS) is a Grid monitoring and forecast-
ing tool that has been designed to support dynamic resource allocation and
scheduling. Figure 14.1 depicts its logical architecture in terms of independent
subsystems. Sensors (typically independent processes) generate time-stamp,
performance measurement pairs. For robustness and to limit intrusiveness, the
system supports a sensor control subsystem that is distributed and replicated.
Sensor processes can put control of their measurement cycle, sensor restart,
etc. under the control of the NWS by adopting either a socket-based API, or
an internal library API.

The NWS also assumes that performance sensors will be stateless, both to
improve robustness and as a way of minimizing memory and storage foot-
prints. To capture and preserve measurement data, the Persistent State sub-

198 GRID RESOURCE MANAGEMENT

system exports a simple socket-based API that allows sensors to store their
measurements remotely in time-series order. The number of Persistent State
repositories, as well as the location and storage footprint of each are specifi-
able as installation parameters. In addition, new repositories can be added to
the running system without reconfiguration.

Forecasts of future performance levels draw the historical data they require
from the Persistent State system (and not the sensors). Thus, any process that
can exercise the storage API exported by the Persistent State system, can inject
measurements into the system for forecasting.

The forecasting subsystem is extensible, allowing the inclusion of new fore-
casting models into a forecaster library through a configuration-time API. To
allow applications a way of trading off system complexity for performance,
the NWS forecasting library can either be compiled into a Forecaster process
and accessed remotely (thereby saving the local CPU and memory overhead)
or loaded directly with the application.

To allow compatibility with a variety of Grid computing infrastructures, the
NWS supports multiple reporting interfaces. These interfcaes communicate
with the other subsystems via socket-based remote APIs as well, improving
both flexibility and performance. New reporting formats can be added by pro-
viding a process or library that converts the NWS-internal API to the desired
format.

In addition, this organization provides a convenient methodology for imple-
menting replication and caching. Performance information (both measurement
data and statistical forecasts) flow from the sensors, through the persistent state
repositories and the forecasters to the reporting APIs, but not in the reverse di-
rection. As such, reporting caches can be located near where the reports are
consumed and can be replicated. Moreover by interrogating an internal Name
Service (see below) the reporting caches can determine the frequency with
which individual sensors are updating the various persistent state repositories.
By doing so, each cache can refresh itself only when new data is expected from
each sensor. When a scheduler or resource allocator queries a local cache, it
receives up-to-date information without having to directly query the individual
Persistent State repositories where the desired information is stored.

All components within an NWS installation register with an internal Name
Service. The Name Service keeps track of the type, location (IP address and
port number), and configuration parameters associated with each NWS pro-
cess. In addition, all registrations are time limited and must be refreshed by
their various components. Overall system status is determined by the active
registrations that are contained within a given Name Service instantiation.

Under the current architecture, each instance of the Name Service defines
a self-contained NWS installation. By using the name space to isolate sepa-
rate NWS instantiations, multiple installations can overlay the same set of re-

Performance Information Services for Computational Grids 199

sources. Debugging or experimentation with alternative configurations (while
a production version continues to run) is made easier by this design choice. At
the same time, all of the components, including the sensors that are part of the
distributed NWS release, run without privileged access. Thus, separate users
can run individual instantiations of the NWS, each with its own Name Service.

2.2 The NWS Implementation

The engineering of a Grid performance system, particularly one designed
to support resource allocation and scheduling, presents a unique challenge.
In addition to the performance goals (response time and scalability) which
are largely architectural issues, the implementation itself must be ubiquitous,
robust, and non-intrusive. Ubiquity stems from two critical requirements:
portability and the need to run with minimal privilege. Robustness and non-
intrusiveness come, in part, from careful implementation techniques and ex-
tensive testing.

Any performance monitoring and forecasting system must be able to execute
on all platforms available to the user. If a scheduler cannot “see” a system
because no performance information is available, the system is for all intents
and purposes not part of the Grid. This need is especially critical when a Grid
is to be used to couple cheap, commodity resources with a unique instrument
or machine. If the Grid infrastructure cannot execute on or monitor the unique
instrument, the instrument cannot become part of a Grid.

To meet this need for ubiquity, the NWS is written primarily in C. At the
time of this writing, it is the experience of the NWS implementation team that
C is the most portable programming language. Most rare or unusual architec-
tures support a C compiler and a subset of the Unix system calls. The NWS
(with the exception of some of the sensor code) has been carefully coded to
use only the most basic system services and generic ANSI C functionality. As
a result, the core services have been quick to port to new systems as they be-
come available. It is worth noting that the choice of C is not motivated, in this
case, by performance but rather portability. The Java language environment
is intended to provide the kind of portability the NWS requires. Many of the
systems that users wish to access via a Grid, however, are large-scale machines
with unique configurations. To date, the availability of a portable Java environ-
ment to machines of this class lags far behind the availability of C, if such a
Java environment becomes available at all. At the same time, systems that do
support a robust and standardized Java environment also support the baseline
C functionality that is required by the NWS. Figure 14.2 depicts the software
organization of the system.

The internal subsystems, the NWS-supplied sensors, the C and Unix com-
mand-line interface code are written in C. The HTML interface uses a combi-

200 GRID RESOURCE MANAGEMENT

Figure 14.2. The software organization of the NWS implementation.

nation of CGI and GNU tools (not distributed with the system) and the LDAP
and SOAP interfaces are derived from open source software for implementing
each protocol.

A second design decision alluded to earlier is that all NWS components
must be able to run without privileged access. If an individual site wishes
to configure a sensor that runs “as root,” the extensibility of the system will
permit it. Often, due to the security concerns associated with middleware,
the need for privileged access tends to delay the deployment of a particular
middleware component. Because the forecasting functionality is critical to
resource allocation and scheduling, the NWS is coded to run with only minimal
access privilege (e.g. a standard user login).

3. PERFORMANCE MONITORS

There are roughly two categories of performance monitor types: passive and
active. A passive monitor is one which reads a measurement gathered through
some other means (e.g. the local operating system). The best example of a
passive monitor that most Grid systems report is the Unix Load Average met-
ric. Almost all Unix and Linux systems (and their derivatives) record some
measure of the number of jobs in the run queues of each processor on the ma-
chine. The frequency with which the queue length is sampled is operating
system and operating system version specific. On most systems, however, a 1
minute, 5 minute, and 15 minute average of the run queue length are available
although the way in which the average is calculated (arithmetic, geometric, ex-
ponentially smoothed, etc.) is again operating-system specific. This smoothed
average of the run queue length defines the Load Average metric.

Performance Information Services for Computational Grids 201

Systems such as the Globus Meta Directory Service [CFFK01] report Unix
Load Average by periodically querying the load average value and posting the
result. Thus, the Globus load sensor passively reads and reports a performance
metric (Unix Load Average) that is gathered and maintained by the native op-
erating system.

3.1 Intrusiveness versus Accuracy

The main advantage of passive sensing is that it is non-intrusive. The Unix
Load Average is a measure that is already being generated. The sensor need
only format and transmit the measured values appropriately. The difficulty
with quantities such as Unix Load Average, however, is that they are sometimes
complex to understand from a resource allocation perspective. For example,
using load average as a measure of machine “busy-ness” allows machines of
equivalent processing power to be ranked in terms of their expected execution
speeds. The assertion that most Grid resource schedulers make is that in a pool
of identical machines, the one with the smallest load average value is the one
that will execute a sequential piece of code the fastest.

Using Unix Load Average to rank execution speeds implies that the presence
of other jobs in each run queue will affect the performance of the scheduled ap-
plication in the same way. Unix and Linux use an exponential aging algorithm
to determine execution priority. Furthermore, the aging factor on some systems
grows larger with occupancy time. The goal of this algorithm is to permit jobs
that have recently completed an I/O operation to get the CPU immediately as
an aid to response time. Consider interactive text editors as an example. After
each key stroke, the editor is scheduled at a very high priority so that it can
echo the character and then reblock waiting for the next key stroke. However,
the priority aging algorithm rapidly lowers a processes priority to its set level
if it does not immediately re-sleep after an I/O. Consider a system with a load
average value of 2.0 where the two jobs are rapidly sleeping and waking. A
CPU-bound Grid job sharing this system will get a different fraction of the
CPU than on a system in which both jobs in the run queue are, themselves,
CPU bound. In this latter case, the typical Unix scheduling algorithm degener-
ates into a round robin scheme. Thus, the load average implies a performance
impact on a scheduled job that depends on the qualities of the other jobs that
are running. This information, even it were published on a job-by-job basis, is
difficult to interpret because it is the way in which jobs of different priorities
interact that ultimately defines how load affects scheduling.

As an alternative method, a Grid performance monitor can periodically load
the resource it is monitoring and record the observed performance response.
This active approach has the advantage of disambiguating the relationship
between a monitored quantity and performance impact. Returning to the load

202 GRID RESOURCE MANAGEMENT

average example, if a CPU monitor were to simply run a CPU bound process
periodically, it could record the utilization that process enjoyed during each
run. The fraction of wall-clock time that the process occupied the CPU can be
used as the inverse of the slowdown caused by competing jobs on that system
(e.g. a process getting 20% utilization can be thought of as 5 times slower than
if it had received 100% utilization). The obvious difficulty with this approach
is that the monitor must completely load the resource in order to measure it
thereby leaving less resource available for actual computation.

There is an inherent tension between monitor accuracy and monitor intru-
siveness that must be considered when designing a Grid performance sensor.
The accuracy that active sensing makes possible must be balanced against the
amount of resource it consumes. If good passive sensing techniques are avail-
able, it is sometimes possible to combine the two methods through some form
of automatic regression technique.

As part of the NWS Grid monitoring infrastructure, we have implemented
a CPU sensor that combines Unix Load Average with active CPU probing.
The sensor reads the 1 minute Load Average value periodically, according to
a parameter set when the sensor is initialized. It also initiates a register-only
CPU bound process (called the CPU probe) with a much lower periodicity
and records the utilization that it experiences. The duration of the CPU probes
execution is also a parameter. Anecdotally, we have found that a probe duration
of 1.5 seconds is typically enough to yield accurate results.

Next, the sensor converts Unix Load Average to a utilization estimate. It
assumes that the run queue will be serviced round-robin and that all jobs are
CPU bound hence an equal fraction of time will be given to each. The sensor
combines both the probe utilization and the Load Average reading by auto-
matically calculating a bias value. If, for example, the utilization predicted by
Load Average is 10% less than observed, the bias is computed as

Aj���
. Should

the Load Average over-estimate utilization, the bias is negative.
The sensor reports as a measurement a utilization estimate that is generated

by biasing the load average with the last bias recorded. Since load average is
sampled much more frequently than the probe is run, the intrusiveness is less
than if only the probe were used. At the same time, the probe captures some
of the interaction between itself and other contending jobs in the run queue.

Finally, the NWS CPU sensor controls the periodicity with which the probe
is executed based on the changing size of the bias. If the bias value is fluctuat-
ing the sensor assumes that the load is highly fluctuating and the CPU should
be probed again in a relatively short period of time. If the bias is relatively
stable, the probe frequency is decreased. Both the maximum and minimum
frequencies as well as the stability threshold are configuration parameters to
the sensor.

Performance Information Services for Computational Grids 203

Figure 14.3. A comparison of available CPU cycles as measured with Unix load average to
actual observed occupancy percentage.

Figures 14.3 and 14.4 depict the effects of this sensing technique using a
workstation as an example. In Figure 14.3, the solid circles show the percent-
age of available CPU time slices (over a 10 second period) that are measured by
Unix Load Average. The

$x|ªL � 7 H values are measurements, and the � |ªL � 7 H
values show time of day. One measurement occurs at every 10 second interval,
and the total trace covers a 24-hour period. This particular workstation was
being used by a graduate student at the time to finish her Ph.D. thesis, making
the load variation (however non-synthetic) potentially atypical.

To convert a load average measurement to an available occupancy percent-
age, the NWS passive sensor uses the formula

« �%L[R L:¬: L:¬[L:7 « Lw. « � M_^��#< ���C� � \ � « �%LNR LN¬[���CL:[� A®� � & (14.1)

where the load average covers 1 minute. Again, based on the assumption that
all processes in the run queue have equal priority, the available fraction of
CPU time for a new process is 1 divided by the number of currently runnable
processes plus an additional process. Multiplying by 100 simply converts this
number into a percentage.

Diamond shapes (drawn in outline with a light-colored fill) show the occu-
pancy observed by a test program that occurs at less frequent intervals (every
10 minutes) in the trace. When executed, the test program spins in a tight loop
for 30 seconds, measured in wall-clock time, and records the user and system
occupancy time during the execution. The ratio of actual occupancy time to
wall-clock time is the observed availability fraction. Both the 10 minute in-
terval, and the 30 second execution duration allow the smoothed load average
value to “recover” from the load introduced by the test program. During the
measurement period, the test program and the load average sensor were co-
ordinated so that a load average measurement was taken immediately before
each test program run, and both were assigned the same time stamp. Thus the
vertical distance between each light colored diamond and corresponding solid

204 GRID RESOURCE MANAGEMENT

Figure 14.4. A comparison of available CPU cycles as measured with NWS CPU sensor to
actual observed occupancy percentage.

circle in the figure shows graphically the measurement error associated with
each measurement.

Figure 14.4 shows the same accuracy comparison for the NWS CPU sensor.
In it, each solid circle represents the biased NWS sensor value and, as in the

previous figure, each light-colored diamond shows the occupancy observed by
the test program. By learning and then applying a bias value, the NWS sensor
is better able to measure the true availability experienced by the test application
with little added intrusiveness.

More generally, however, this example illustrates the need for Grid resource
monitoring systems to capture measurement error. Many such systems report
the metrics that are available to users (e.g. Unix Load Average) but few provide
estimates of how those measurements translate into observable application per-
formance. For resource allocation and scheduling purposes, the measurement
error associated with passive measurements is a useful and often overlooked
quantity.

3.2 Intrusiveness versus Scalability

Another important design point concerns the trade-off between intrusiveness
and scalability. Consider the problem of gathering periodic end-to-end network
probe information. The naive implementation furnishes each sensor with a
list of other sensors to contact within a Grid, and a periodicity. Each sensor
operates on its own clock and with the specified periodicity probes all of the
other sensors.

In Figure 14.5 we show a network performance time series of the TCP/IP
performance observed between a pair of Unix hosts connected via 10 megabit-
per-second Ethernet. Each bandwidth reading is generated by timing a 64
kilobyte transfer using a TCP/IP socket with 32 kilobyte socket buffers. During
the first half of the trace (the left side of the figure) only one pair of hosts — a
sender and a receiver — was probing the network. Midway through the trace,

Performance Information Services for Computational Grids 205

Figure 14.5. TCP/IP sensor contention.

a second host pair began to probe the network simultaneously. The loss of
available bandwidth, which is visually apparent from the trace, results from
the interaction of colliding network probes.

To produce a complete end-to-end picture of network performance between
� hosts,

e¯F � � � | � & such measurements would be required (i.e. one in
each direction and hosts do not probe themselves). If each host uses its own
local clock to determine when to probe the network, the likelihood of probe
contention goes up at least quadratically as the Grid scales.

To prevent probe contention, the NWS end-to-end network sensor uses a
token-passing protocol to implement mutual exclusion between “cliques” of
hosts. Hosts within a specified clique pass the entire clique list in a token. The
NWS clique protocol implements a simplified leader election scheme that man-
ages token loss/recovery, and network partitioning. If a token is lost because
the host hold it fails, the other hosts in the clique will time out and attempt to
elect themselves leader by regenerating and sending out a new token. Time
stamps on the token are used to resolve the possibility of multiple simultane-
ous time outs. When a host encounters two different tokens (from two different
leaders) it will “kill” the older one. This scheme also manages network parti-
tioning. If the network partitions, the hosts that are separated from the current
leader will elect a new leader on their side of the partition. When the parti-
tion is resolved, the two tokens will once again circulate across the entire host
list, and one of them (the older one) will be annihilated. This form of active
replication makes the clique protocol robust to both host and network failure.

To permit extensibility and scalability, sensors can participate in multiple
cliques at the same time, and each clique can contain any number of hosts
greater than or equal to 2. Thus, the clique organization can capture a variety
of non-clique monitoring topologies if probe contention is not a concern. For
example, one common topology that many sites wish to monitor is a “star”
topology: one distinguished host connected to a set of satellite hosts, without
connectivity between the satellites. If probe contention is not an issue, one

206 GRID RESOURCE MANAGEMENT

Figure 14.6. Example NWS clique hierarchy.

clique consisting of a satellite node and the central node can be created for
each satellite node. Since the central node participates in multiple cliques si-
multaneously, this organization implements the desired measurement topology.
This, the NWS clique abstraction can be used to implement other monitoring
topologies according to the needs of each individual installation.

To gain scalability, cliques can be organized into a hierarchy. At the bottom
level of the hierarchy are cliques of hosts. Each clique “promotes” a distin-
guished representative to participate in a higher-level clique, forming a tree.
Consider the example shown in Figure 14.6. In it, five hosts (labeled A, B, C,
D, and E) are configured into “base” cliques at each of three sites: UCSB, ISI,
and UTK. One distinguished host from each site participates in a higher-level
clique that captures inter-site connectivity.

Notice that this organization can capture the full � � matrix of connectivity if
the inter-site connectivity performance is similar for all nodes communicating
between sites. For example, if UCSB is the University of California in Santa
Barbara, and UTK is the University of Tennessee, in Knoxville, any host in
the UCSB clique communicating with any host in the UTK clique will likely
observe the same network performance since much of the network between
the two will be shared. That is, since virtually all UCSB-to-UTK network
traffic will traverse common network elements, a single UCSB-UTK pair can
measure the inter-site connectivity. By using the inter-site measurements of
the distinguished pair in the higher-level clique in place of the missing mea-
surements, the NWS can construct a full � � picture without conducting � �
measurements. At the same time, measurements within each clique will not
contend.

Performance Information Services for Computational Grids 207

4. FORECASTING

The problem of determining a resource allocation or schedule that maxi-
mizes some objective function is inherently a predictive one. When a decision
is made about the resources to allocate, some assumption about the future be-
havior of the resources or application is either implicitly or explicitly included.
For example, if a large MPI program is to be assign to a parallel machine be-
cause of the processor speeds, memory capacity, and interconnect speed, the
scheduler or resource allocator making that decision is making an assumption
of what the processor speeds, memory availability, and interconnect speed will
be when the MPI program runs. Users of space-shared parallel machines often
assume that these predictions are easy to make statically. Interconnect speed,
however, may be influenced by parallel jobs running in other partitions, so even
in traditional parallel computing settings, predictions of dynamically changing
behavior may be required.

In Grid settings, however, where resources are federated and interconnected
by shared networks, the available resource performance can fluctuate dramat-
ically. The same scheduling decisions based on predictions of future resource
performance are necessary if applications are to obtain the performance levels
desired by their users. Therefore, some methodology is required to make fore-
casts of future performance levels that upon which scheduling decisions can be
based. Note that even though we have outlined the need for forecasting explic-
itly, all Grid users go through this activity either explicitly or implicitly. When
a user chooses a particular data repository, for example, because it is connected
to a “faster” network, he or she is making the prediction that the network will
be faster when it is used to access the user’s data. Most often this forecast
is based on past experience with the resource. The NWS includes statistical
methods that attempt to mechanize and automate the forecasting process for
the user based on similar historical experience.

4.1 The NWS Non-Parametric Forecasting Method

The principle behind the NWS forecasting technique is that the best fore-
casting technique amongst a number of available options can be determined
from past accuracy. Each forecasting method is configured into the system
with its own parameters. It must be able to generate, on demand, a prediction
based on a previous history of measurements and forecasts. That is, for each
forecasting method

I
at measurement time

�
,^��-�qR-79Md�k79��OP°'����&±< 3mz y=²´³/µ °'���'7 H ������$:°'���S&�& (14.2)

where^��C�qR-79Md�k79��OP°6���S&¶<
the predicted value made by method

I
for the mea-

surement value at
� A·�

,

208 GRID RESOURCE MANAGEMENT

�'7 H �k���%$:°'���S&¶<
a finite history of measurements, forecasts, and fore-
cast errors generated previously to time

�
using

method
I

, and3¸z y�²¹³xµ ° <
forecasting method

I
.

Each method is presented with a history of previous measurements (repre-
sented as a time series) and maintains its own history of previous predictions
and accuracy information. In particular,

�2�%�1°'����&n<�¬NL « �J�:���S&�|º^��C�qR-79Md�k79��OP°6����| � &
(14.3)

is the error residual associated with a measurement
¬[L « �Z�:���S&

taken at time
�

and a prediction of that measurement generated by method
I

generated at time��| �
.

The primary forecasters are able to produce a forecast based on time-series
data and some set of parameters. The forecaster interface is general enough to
accept a variety of forecasting techniques. Because the autocorrelation struc-
ture of many performance series is complex, and because series stationarity
is unlikely, a large set of fast, simple predictors that can be constantly re-
evaluated is the most effective configuration.

The primary techniques to produce forecasts include mean-based and median-
based methods for producing completely non-parametric forecasts. Based on
the observation that more recent data is often more indicative of current con-
ditions, the primary forecasters make use of varying amounts of history us-
ing “sliding window” techniques. In this same spirit exponential smooth-
ingtechniques, parameterized by the amount of gain, are used to produce fore-
casts as well. Each of these forecasting modules accepts data as a time-series
and computes a forecast from that data and any parameters that the module
accepts.

4.2 Secondary Forecasters: Dynamic Predictor Selection

The NWS operates all of the primary forecasters (and their various parame-
terizations) simultaneously at the time a forecast is requested through the API.
It then uses the error measure calculated in Equation 14.3 to produce an overall
fitness metric for each method. The method exhibiting the lowest cumulative

Performance Information Services for Computational Grids 209

error at time
�

is used to generate a forecast for the measurement at time
� A·�

and that forecast is recorded as the “winning” primary forecast. The NWS
conducts two such error tournaments for each forecast: one based on the mean
square errorand one based on the mean absolute error.

3}��z=°6���S&»< �
� A®�

¼½
�¿¾ZÀ

���2�%�1°6��7k&�& �
(14.4)

and the mean absolute prediction error

3¸Áxz�°6����&n< �
� A��

¼½
�¿¾ZÀ

Â �����%�1°6��7�& Â
(14.5)

We then define
3 �:� 3}��z�����&Ã<Ä^��-�2R-7_Mh�����1°6���S&

if
3}��z�°'����&

is the minimum over all
methods at time

�
(14.6)

and
3 �:� 3 � zY���S&n<Å^��-�qR-79Md���1��°'����& if

3 � z=°�����& is the minimum over all
methods at time

�
.

(14.7)
That is, at time

�
, the method yielding the lowest mean square prediction error

is recorded as a forecast of the next measurement by
3 �:� 3}��z

. Similarly,
the forecasting method at time

�
yielding the lowest overall mean absolute

prediction error becomes the
3 �N� 3 � z forecast of the next measurement.

Both of these error metrics use the cumulative error spanning the entire his-
tory available from the series. In an attempt to address the possibility that the
series is non-stationary, the system also maintains error-minimum predictors
where the error is recorded over a limited previous history. The goal of this ap-
proach is to prevent error recordings that span a change point in the series from
polluting the more recent error performance of each predictor. More formally
3 �:� 3}��z�ÆÇ���hQ�i/&n<Å^��C�qR-79Md�����1°'����&

if
35�»z=°'���S&

is the minimum over
all methods at time

�
for the

most recent w measurements
(14.8)

and
3 �:� 3 � z=ÆÇ���dQ�iÈ&b<Å^��-�2R:79Md�k���1°6���S& if

3 � z�°6���S& is the minimum over
all methods at time

�
for the

most recent w measurements
(14.9)

where
i

is a fixed window of previous measurements.

210 GRID RESOURCE MANAGEMENT

4.3 The NWS Forecast

Finally, the NWS forecast that is generated on demand is the one that “wins”
an error tournament at time

�
for the set of primary and secondary forecasters

described in this section. That is

�´É � 3}��z�����&Ã<Ä^��-�2R-7_Mh�����1°6���S&
if
3}��z=°�����&

is the minimum over all
primary and secondary methods at
time

�
(14.10)

and

�´É � 3 � z=ÆÇ���S&»<Å^��-�2R:79Md�k���1°�����& if
3 � z=°'���S& is the minimum over

all primary and secondary
methods at time

�
.

(14.11)
Table 14.1 summarizes the primary and secondary methods that are the

NWS uses for analysis. The NWS combines these methods to produce an
�´É � 3}��z

and �´É � 3 � z forecast for each value in each series pre-
sented to the forecasting subsystem. Because many of the primary forecasters
can be implemented using computationally efficient algorithms, the overall ex-
ecution cost of computing the final NWS forecasts is low. For example, on a
750 megahertz Pentium III laptop, each �¹É � 35��z

and �´É � 3 � z re-
quires 161 microseconds to compute.

Table 14.1 summarizes the primary and secondary methods that are the
NWS uses for analysis.

5. CONCLUSIONS, CURRENT STATUS, FUTURE
WORK

The heterogeneous and dynamic nature of Grid resource performance makes
effective resource allocation and scheduling critical to application performance.
The basis for these critical scheduling functionalities is is a predictive capa-
bility that captures future expected resource behavior. Typically, Grid users
and schedulers will use the immediate performance history (the last observed
value or a running average) to make an implicit prediction of future perfor-
mance. However, there are several important ways in which such an ad hoc
methodology can be improved.

To be truly effective, the performance gathering system must be robust,
portable, and non-intrusive. Simply relying on available resource performance
measurements, or building naive probing mechanisms can result in additional
resource contention and a substantial loss of application performance. More-
over, by carefully considering measurement error, it is possible to automati-
cally and adaptively balance the accuracy of explicit resource probing with the
non-intrusiveness of passive measurement. Similarly, overhead introduced by

Performance Information Services for Computational Grids 211

Table 14.1. Summary of forecasting methods.

Predictor Description Parameters

LAST last measurement
RUN AVG running averageÊ»Ë/Ì'Í2Î

exponential smoothing ÏbÐlÑ2Ò ÑdÓÊ»Ë/Ì'Í2Î
exponential smoothing ÏbÐlÑ2Ò4Ô�ÑÊ»Ë/Ì'Í2Î
exponential smoothing ÏbÐlÑ2Ò4Ô�ÓÊ»Ë/Ì'Í2Î
exponential smoothing ÏbÐlÑ2Ò Õ�ÑÊ»Ë/Ì'Í2Î
exponential smoothing ÏbÐlÑ2Ò ÖhÑÊ»Ë/Ì Í2Î
exponential smoothing ÏbÐlÑ2Ò ×dÑÊ»Ë/Ì Í2Î
exponential smoothing ÏbÐlÑ2Ò Ó�ÑÊ»Ë/Ì Í2Î
exponential smoothing ÏbÐlÑ2Ò ØhÓÊ»Ë/Ì Í2Î
exponential smoothing ÏbÐlÑ2Ò ÙhÑÊ»Ë/Ì Í2ÎnÚ
exponential smooth+trend ÏbÐ#Ñ2Ò ÑÓ2Û	�ÜÏbÐ"Ñ2Ò ÑhÑqÔÊ»Ë/Ì'Í2ÎnÚ
exponential smooth+trend ÏbÐ#Ñ2Ò]Ô�ÑqÛ	�ÜÏbÐ"Ñ2Ò ÑhÑqÔÊ»Ë/Ì'Í2ÎnÚ
exponential smooth+trend ÏbÐ#Ñ2Ò]ÔSÓ2Û	�ÜÏbÐ"Ñ2Ò ÑhÑqÔÊ»Ë/Ì'Í2ÎnÚ
exponential smooth+trend ÏbÐ#Ñ2Ò ÕhÑqÛ	�ÜÏbÐ"Ñ2Ò ÑhÑqÔ

MEDIAN median filter ÝÞÐlÖ2Ô
MEDIAN median filter ÝÞÐ#Ó
SW AVG sliding window avg. ÝÞÐlÖ2Ô
SW AVG sliding window avg. ÝÞÐ#Ó
TRIM MEAN ß -trimmed mean Ý+Ð#Ö2ÔdÛ	ßàÐlÑqÒ Ö
TRIM MEAN ß -trimmed mean Ý+Ð"Ó�ÔdÛ	ßàÐlÑqÒ Ö
ADAPT MED adaptive window median á�â2ã)Ð#Õ�Ô , á=ä¿å/Ð#Ó
ADAPT MED adaptive window median á�â2ã)Ð#Ó�Ô , á=ä¿å/Ð#Õ2Ô
MIN MSE adaptive minimum MSE
MIN MAE adaptive minimum MAEælç2è æªé'Êëê

windowed adaptive minimum MSE ìlÐíÔælç2è æ"îëÊ ê
windowed adaptive minimum MAE ìlÐíÔælç2è æªé'Ê ê
windowed adaptive minimum MSE ìlÐ#Óælç2è æ"îëÊ ê
windowed adaptive minimum MAE ìlÐ#Óælç2è æªé'Ê ê
windowed adaptive minimum MSE ìlÐíÔ�Ñælç2è æ"îëÊ ê
windowed adaptive minimum MAE ìlÐíÔ�Ñælç2è æªé'Ê ê
windowed adaptive minimum MSE ìlÐlÖdÑælç2è æ"îëÊ ê
windowed adaptive minimum MAE ìlÐlÖdÑælç2è æªé'Ê ê
windowed adaptive minimum MSE ìlÐ#ÓhÑælç2è æ"îëÊ ê
windowed adaptive minimum MAE ìlÐ#ÓhÑælç2è æªé'Êëê
windowed adaptive minimum MSE ìlÐíÔ�ÑhÑælç2è æ"îëÊ0ê
windowed adaptive minimum MAE ìlÐíÔ�ÑhÑ

212 GRID RESOURCE MANAGEMENT

the performance gathering system must be explicitly controlled, particularly
if probes can contend for resources. The ability to implement this control in
a way that scales with the number of resources requires an effective system
architecture for the performance monitoring system.

By using fast, robust time-series techniques, and running tabulations of fore-
cast error, it is possible to improve the accuracy of performance predictions
with minimal computational complexity. In addition to point-valued predic-
tions, these same adaptive techniques can generate empirical confidence inter-
vals and automatic resource classifications thereby improving scheduler design
and scalability.

Thus, effective support for dynamic resource allocation and scheduling re-
quires an architecture, a set of analysis techniques, and an implementation
strategy that combine to meet the demands of the Grid paradigm. The NWS
has been developed with these realizations in mind. It is a robust, portable, and
adaptive distributed system for gathering historical performance data, making
on-line forecasts from the data it gathers, and disseminating the values it col-
lects.

5.1 Status

Currently, the NWS is available as a released and supported Grid middle-
ware system from the National partnership for Advanced Computational In-
frastructure (NPACI) and from the National Science Foundation’s Middleware
Initiative (NMI) public distribution. These distributions include portable CPU,
TCP/IP socket sensors, a non-paged memory sensor for Linux systems, and
support for C, Unix, HTML, and LDAP interfaces (the latter via a caching
proxy). In addition, the NWS team distributes a non-supported version with
additional prototype functionalities that have yet to make it into public release.
At the time of this writing, the working prototypes include an NFS probing file
system sensor, a portable non-paged memory sensor, an I/O sensor, and a senor
that monitors system availability. There is also a prototype Open Grid Systems
Architecture [FKNT02] interface and a Microsoft .NET/C# implementation as
well.

5.2 Future Work

NWS development will expand the system’s utility in three ways. First, we
are investigating new statistical techniques that enable more accurate predic-
tions than the system currently generates. While the NWS forecasts are able to
generate useful predictions from difficult series, the optimal postcast measures
indicate that more accurate forecasts are still possible. We are also studying
ways to predict performance characteristics that do not conform well to the
time series model. Periodic measurement is difficult to ensure in all settings

Performance Information Services for Computational Grids 213

and a key feature of the NWS is its ability to cover the space of Grid forecast-
ing needs. Secondly, we are exploring new reporting and data management
strategies such as caching OGSA proxies and relational data archives. These
new data delivery systems are needed to support an expanding user commu-
nity, some of whom wish to use the NWS for statistical modeling as well as
resource allocation. Finally, we are considering new architectural features that
will enable the system to serve work in peer-to-peer settings where resource
availability and dynamism are even more prevalent than in a Grid context.

For Grid resource allocation and scheduling, however, the NWS implements
the functionalities that are necessary to achieve tenets of the Grid computing
paradigm [FK99b] with the efficiency that application users demand. While
we have outlined the requirements for Grid performance data management in
terms of the NWS design, we believe that these requirements are fundamental
to the Grid itself. As such, any truly effective resource allocation and schedul-
ing system will need the functionality that we have described herein, indepen-
dent of the way in which the NWS implements this functionality. Thus, for the
Grid to be a success, effective forecasts of resource performance upon which
scheduling and allocation decisions will be made, are critical.

Acknowledgments

This work was supported, in part, by a grant from the National Science
Foundation’s NGS program (EIA-9975020) and NMI program (ANI-0123911)
and by the NASA IPG project.

Chapter 15

USING PREDICTED VARIANCE FOR
CONSERVATIVE SCHEDULING ON
SHARED RESOURCES

Jennifer M. Schopf
�

and Lingyun Yang
�

�
Mathematics and Computer Science Division, Argonne National Laboratory�
Computer Science Department, University of Chicago

Abstract In heterogeneous and dynamic environments, efficient execution of parallel com-
putations can require mappings of tasks to processors with performance that is
both irregular and time varying. We propose a conservative scheduling policy
that uses information about expected future variance in resource capabilities to
produce more efficient data mapping decisions.

We first present two techniques to estimate future load and variance, one
based on normal distributions and another using tendency-based prediction meth-
odologies. We then present a family of stochastic scheduling algorithms that
exploit such predictions when making data mapping decisions. We describe ex-
periments in which we apply our techniques to an astrophysics application. The
results of these experiments demonstrate that conservative scheduling can pro-
duce execution times that are significantly faster and less variable than other
techniques.

1. INTRODUCTION

Clusters of PCs or workstations have become a common platform for paral-
lel computing. Applications on these platforms must coordinate the execution
of concurrent tasks on nodes whose performance is both irregular and time
varying because of the presence of other applications sharing the resources. To
achieve good performance, application developers use performance models to
predict the behavior of possible task and data allocations and to assist select-
ing a performance-efficient application execution strategy. Such models need

216 GRID RESOURCE MANAGEMENT

to accurately represent the dynamic performance variation of the application
on the underlying resources in a manner that allows the scheduler to adapt
application execution to the current system state, which means adapting to both
the irregular (heterogeneous) nature of the resources and their time-varying
behaviors.

We present a conservative scheduling technique that uses the predicted mean
and variance of CPU capacity to make data mapping decisions. The basic idea
is straightforward: We seek to allocate more work to systems that we expect to
deliver the most computation, where this is defined from the viewpoint of the
application. We often see that a resource with a larger capacity will also show
a higher variance in performance and therefore will more strongly influence
the execution time of an application than will a machine with less variance.
Also, we keep in mind that a cluster may be homogeneous in machine type but
quite heterogeneous in performance because of different underlying loads on
the various resources.

Our conservative scheduling technique uses a conservative load prediction,
equal to a prediction of the resource capacity over the future time interval of the
application added to the predicted variance of the machine, in order to deter-
mine the proper data mapping, as opposed to just using a prediction of capacity
as do many other approaches. This technique addresses both the dynamic and
heterogeneous nature of shared resources.

We proceed in two steps. First, we define two techniques to predict future
load and variance over a time interval, one based on using a normal distribu-
tion, the other using a tendency-based prediction technique defined in [YFS03].
Then, we use stochastic scheduling algorithms [SB99] that are parameterized
by these predicted means and variances to make data distribution decisions.
The result is an approach that exploits predicted variance in performance in-
formation to define a time-balancing scheduling strategy that improves appli-
cation execution time.

We evaluate the effectiveness of this conservative scheduling technique by
applying it to a particular class of applications, namely, loosely synchronous,
iterative, data-parallel computations. Such applications are characterized by
a single set of operations that is repeated many times, with a loose synchro-
nization step between iterations [FJL

�
88, FWM94]. We present experiments

conducted using Cactus [ABH
�

99, AAF
�

01], a loosely synchronous iterative
computational astrophysics application. Our results demonstrate that we can
achieve significant improvements in both mean execution time and the vari-
ance of those execution times over multiple runs in heterogeneous, dynamic
environments.

Conservative Scheduling 217

2. RELATED WORK

Many researchers [Dai01, FB96, KDB02, WZ98] have explored the use
of time balancing or load balancing models to reduce application execution
time in heterogeneous environments. However, their work has typically as-
sumed that resource performance is constant or slowly changing and thus does
not take later variance into account. For example, Dail [Dai01] and Liu et
al. [LYFA02] use the 10-second-ahead predicted CPU information provided
by the Network Weather Service (NWS)([Wol98, WSH99a], also described in
Chapter 14) to guide scheduling decisions. While this one-step-ahead predic-
tion at a time point is often a good estimate for the next 10 seconds, it is less
effective in predicting the available CPU the application will encounter during
a longer execution. Dinda et al. built a Running Time Advisor (RTA) [Din02]
that predicts the running time of applications 1 to 30 seconds into the future
based on a multistep-ahead CPU load prediction.

Dome [ABL
�

95]i and Mars [GR96] support dynamic workload balancing
through migration and make the application adaptive to the dynamic environ-
ment at runtime. But the implementation of such adaptive strategies can be
complex and is not feasible for all applications.

In other work [SB99] we define the basic concept of stochastic values and
their use in making scheduling decisions. This chapter extends that work to
address the use of additional prediction techniques that originally predicted
only one step ahead using a tendency-based approach [YFS03]. We define a
time-balancing scheduling strategy based on a prediction of the next interval
of time and a prediction of the variance (standard deviation) to counteract the
problems seen with a one-step-ahead approach. Our technique achieves faster
and less variable application execution time.

3. PROBLEM STATEMENT

Efficient execution in a distributed system can require, in the general case,
mechanisms for the discovery of available resources, the selection of an applica-
tion-appropriate subset of those resources, and the mapping of data or tasks
onto selected resources. In this chapter we assume that the target set of re-
sources is fixed, and we focus on the data mapping problem for data parallel
applications.

We do not assume that the resources in this resource set have identical
or even fixed capabilities in that they have identical underlying CPU loads.
Within this context, our goal is to achieve data assignments that balance load
between processors so that each processor finishes executing at roughly the
same time, thereby minimizing execution time. This form of load balancing is
also known as time balancing.

218 GRID RESOURCE MANAGEMENT

Time balancing is generally accomplished by solving a set of equations,
such as the following, to determine the data assignments:

z � � µj� &Ã<®z � � µx� &pï¯7�Q9ðñ µj� < µóòJô ¼¿õhö Q (15.1)

where

µj� is the amount of data assigned to processor
7
;

µóòJô ¼¿õhö is the total amount of data for the application;
z � � µj� & is the execution time of task on processor

7
and is generally pa-

rameterized by the amount of data on that processor, µ � . It can be cal-
culated by using a performance model of the application. For example,
a simple application might have the following performance model:

z � � µj� &Ã< � ���l��� µj� & F ��IJ���k���-� �´É}� Lq^�L[Mh79�_$6& A
� ���j^0� µj� & F ��IJ���k���-� � Áj÷ � Lq^�LNMd7	�k$6&h (15.2)

Note that the performance of an application can be affected by the future
capacity of both the network bandwidth behavior and the CPU availability.

In order to proceed, we need mechanisms for: (a) obtaining some mea-
sure of future capability and (b) translating this measure into an effective re-
source capability that is then used to guide data mapping. As we discuss below,
two measures of future resource capability are important: the expected value
and the expected variance in that value. One approach to obtaining these two
measures is to negotiate a service level agreement (SLA) with the resource
owner under which the owner would contract to provide the specified capabil-
ity [CFK

�
02]. Or, we can use observed historical data to generate a prediction

for future behavior [Din02, SB99, SFT98, VS02, WSH99b, YFS03]. We focus
in this chapter on the latter approach and present two techniques for predicting
the future capability: using normal distributions and using a predicted aggre-
gation. However, we emphasize that our results on topic (b) above are also
applicable in the SLA-negotiation case.

4. PREDICTING LOAD AND VARIANCE

The Network Weather Service (NWS) [Wol98] provides predicted CPU
information one measurement (generally about 10 seconds) ahead based on
a time series of earlier CPU load information. Some previous scheduling
work [Dai01, LYFA02] uses this one-step-ahead predicted CPU information
as the future CPU capability in the performance model. For better data dis-
tribution and scheduling, however, what is really needed is an estimate of the
average CPU load an application will experience during execution, rather than

Conservative Scheduling 219

øÜùÜúû¿ü4ý þ ÿ��������	�
 ���������� � M1 M3 M2

���������	� � �������� 	! " #�$�%�&�'�()
*�+�,�-�.	/ 0 1�2�3�4�5	6 7 8�9�:�;�<�= >
?�@�A�B�C	D E F�G�H�I�J	K L M�N�O�P�Q�R ST

i
m
e

Figure 15.1. The interrelated influence among tasks of a synchronous iterative application.

the CPU information at a single future point in time. One measurement is
simply not enough data for most applications.

In loosely synchronous iterative applications, tasks communicate between
iterations, and the next iteration on a given resource cannot begin until the
communication phase to that resource has been finished, as shown in Fig-
ure 15.1. Thus, a slower machine not only will take longer to run its own
task but will also increase the execution time of the other tasks with which
it communicates–and ultimately the execution time of the entire job. In Fig-
ure 15.1, the data was evenly divided among the resources, but M1 has a large
variance in execution time. If M1 were running in isolation, it would complete
the overall work in the same amount of time as M2 or M3. Because of its large
variation, however,however, it is slow to communicate to M2 at the end of the
second iteration, in turn delaying the task on M2 at the third computation step
(in black), and hence delaying the task on M3 at the fourth computation step.
Thus, the total job is delayed. It is this wave of delayed behavior caused by
variance in the resource capability that we seek to avoid with our scheduling
approach.

In the next subsections, we address two ways to more accurately predict
longer-range load behavior: using a normal distribution and extending a one-
step-ahead load prediction developed in previous work [YFS03]

4.1 Normal Distribution Predictions

Performance models are often parameterized by values that represent sys-
tem or application characteristics. In dedicated, or single-user, settings it is
often sufficient to represent these characteristics by a single value, or point
value. For example, we may represent bandwidth as 7 Mbits/second. However,
point values are often inaccurate or insufficient representations for character-
istics that change over time. For example, rather than a constant valuation of

220 GRID RESOURCE MANAGEMENT

7 Mbits/second, bandwidth may actually vary from 5 to 9 Mbits/second. One
way to represent this variable behavior is to use a stochastic value, or distribu-
tion.

By parameterizing models with stochastic information, the resulting predic-
tion is also a stochastic value. Stochastic-valued predictions provide valuable
additional information that can be supplied to a scheduler and used to improve
the overall performance of distributed parallel applications. Stochastic val-
ues can be represented in a variety of way—as distributions [SB98], as inter-
vals [SB99], and as histograms [Sch99]. In this chapter we assume that we can
adequately represent stochastic values using normal distributions. Normal dis-
tributions, also called Gaussian distributions, are representative of large collec-
tions of random variables. As such, many real phenomena in computer systems
generate distributions that are close to normal distributions [Adv93, AV93].

A normal distribution can be defined by the formula

I»� � &»<
�TVU eXW � �ZY�[%�]_^�`ba �bc ` Q |ed tW�ít d

(15.3)

for parameters f , the mean, which gives the center of the range of the distri-
bution, and T , the standard deviation, which describes the variability in the
distribution and gives a range around the mean. Normal distributions are sym-
metric and bell shaped and have the property that the range defined by the
mean plus and minus two standard deviations captures approximately 95% of
the values of the distribution.

Figure 15.2 shows a histogram of runtimes for an SOR benchmark on a sin-
gle workstation with no other users present, and the normal distribution based
on the data mean,

�
, and standard deviation, H R . Distributions can be repre-

sented graphically in two common ways: by the probability density function
(PDF), as shown on the left in Figure 15.2, which graphs values against their
probabilities, similar to a histogram, and by the cumulative distribution func-
tion (CDF), as shown on the right in Figure 15.2, which illustrates the proba-
bility that a point in the range is less than or equal to a particular value.

In the following subsections we describe the necessary compositional arith-
metic to use normal distributions in predictive models; in Sections 4.1.2
and 4.1.3 we discuss alternatives to consider when the assumption of a nor-
mal distribution is too far from the actual distribution of the stochastic value.

4.1.1 Arithmetic Operations over Normal Distributions

In order for prediction models to use stochastic values, we need to provide
a way to combine stochastic values arithmetically. In this subsection we define
common arithmetic interaction operators for stochastic values represented by
normal distributions by taking advantage of the fact that normal distributions
are closed under linear combinations [LM86].

Conservative Scheduling 221

1.5 2.0 2.5 3.0 3.5
Execution Time

0.0

10.0

20.0

30.0

40.0

Pe
rc

en
ta

ge
 o

f v
al

ue
s

eq
ua

l t
o

X
SOR Execution Histogram
Normal PDF

1.5 2.5 3.5
Execution Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

of
 v

al
ue

s
le

ss
 th

an
 X

Measured CDF
Normal CDF

Figure 15.2. Graphs showing the PDF and CDF of SOR benchmark with normal distribution
based on data mean and standard deviation.

For each arithmetic operation, we define a rule for combining stochastic
values based on standard statistical error propagation methods [Bar78]. In the
following, we assume that point values are represented by

Á
and all stochastic

values are of the form (
� � Q H R �) and represent normal distributions, where

� �
is the mean and H R � is the standard deviation.

When combining two stochastic values, two cases must be considered: cor-
related and uncorrelated distributions. Two distributions are correlated when
there is an association between them, that is, they jointly vary in a similar man-
ner [DP96a]. More formally, correlation is the degree to which two or more
attributes, or measurements, on the same group of elements show a tendency
to vary together. For example, when network traffic is heavy, available band-
width tends to be low, and latency tends to be high. When network traffic is
light, available bandwidth tends to be high, and latency tends to be low. We
say that the distributions of latency and bandwidth are correlated in this case.

When two stochastic values are uncorrelated, they do not jointly vary in a
similar manner. This case may occur when the time between measurements of
a single quantity is large or when the two stochastic values represent distinct
characteristics. For example, available CPU on two machines not running any
applications in common may be uncorrelated.

Table 15.1 summarizes the arithmetic operations between a stochastic value
and a point value, two stochastic values from correlated distributions, and two
stochastic values from uncorrelated distributions.

Note that the product of stochastic values with normal distributions does
not itself have a normal distribution. Rather, it is long-tailed. In many cir-
cumstances, we can approximate the long-tailed distribution with a normal
distribution and ignore the tail, as discussed below in Section 4.1.2.

222 GRID RESOURCE MANAGEMENT

Table 15.1. Arithmetic combinations of a stochastic value with a point value and with other
stochastic values [Bar78].

Addition Multiplication

Point Value and g á © Ûihkj ©�lnm Ì Ð Ì g á © Ûohbj ©�l Ðpg Ì á © Û Ì hkj ©�l
Stochastic Value gqg á ©_m Ì l Ûqhbj ©�l

Stochastic

rs
©utwv g á © Ûohbj © l Ð g á © Ûohbj © l g áyx�Ûzhkj{x l Ð

Values with

Correlated

| rs
©�twv á © Û rs

©�t}v]~ hkj © ~ � (á © á x Ûbg�hkj © á x m hkj x á ©Xm hbj © hkj x lql
Distributions

Stochastic

rs
©utwv g á © Ûohbj © l]� g á © Ûohbj © l g áyx�Ûzhkj{x l]�

Values with

Uncorrelated �� rs
©utwv á © Û����� rs

©�t}v hbj `©��� |
á © á�x�Û | á © á�x�� �X� £��� ��� ` m � � £z�� � � ` ���

Distributions

4.1.2 Using Normal Distributions to Represent Nonnormal
Stochastic Model Parameters

In this section, we provide examples of stochastic parameters that are not
normal but can often be adequately represented by normal distributions.

Not all system characteristics can be accurately represented by normal dis-
tributions. Figure 15.3 shows the PDF and CDF for bandwidth data between
two workstations over 10 Mbit Ethernet. This is a typical graph of a long-
tailed distribution; that is, the data has a threshold value and varies monotoni-
cally from that point, generally with the median value several points below (or
above) the threshold. A similarly shaped distribution, shown in Figure 15.4 on
the left, may be found in data resulting from dedicated runs of a nondetermin-
istic distributed genetic algorithm code.

Neither of these distributions is normal; however, it may be adequate to
approximate them by using normal distributions. Normal distributions are a
good substitution for long-tailed model parameters only when inaccuracy in the
predictions generated by the structural model can be tolerated by the scheduler,
performance model, or other mechanism that uses the data.

Conservative Scheduling 223

2.0 3.0 4.0 5.0 6.0 7.0
Bandwidth (Mbits/sec)

0.0

10.0

20.0

30.0

40.0
Pe

rc
en

ta
ge

 o
f v

al
ue

s
eq

ua
l t

o
X

Bandwidth Histogram
Normal PDF

2.0 3.0 4.0 5.0 6.0 7.0
Bandwidth (Mbits/sec)

0.0

20.0

40.0

60.0

80.0

100.0

Pe
rc

en
ta

ge
 o

f v
al

ue
s

le
ss

 th
an

 X

Measured CDF
Normal CDF

Figure 15.3. Graphs showing the PDF and CDF for bandwidth between two workstations over
10 Mbit Ethernet with long-tailed distribution and corresponding normal distribution.

4.0 6.0 8.0 10.0 12.0
Execution Time (sec)

0.0

2.0

4.0

6.0

8.0

10.0

N
um

be
r o

f V
al

ue
s

0.0 0.2 0.4 0.6 0.8 1.0
CPU Load

0.0

50.0

100.0

150.0

200.0

Figure 15.4. Two examples of nonnormal distribution behavior: a histogram of a nondeter-
ministic application on the left; Available CPU on a production workstation on the right.

Alternatively, some model parameters are best represented by multimodal
distributions. One characterization of the general shape of a distribution is
the number of peaks, or modes. A distribution is said to be unimodal if it
has a single peak, bimodal if it has two peaks, and multimodal if it has more
than two peaks. Figure 15.4 on the left shows a histogram of available CPU
data for an Ultra Sparc workstation running Solaris taken over 12 hours using
vmstat. The Unix tool vmstat reports the exact CPU activity at a given
time, in terms of the processes in the run queue, the blocked processes, and the
swapped processes as a snapshot of the system every

O
seconds (where for our

224 GRID RESOURCE MANAGEMENT

trace,
O

= 5). For this distribution, the majority of the data lies in three modes:
a mode centered at 0.94, a mode centered at 0.49, and a mode centered at 0.33.

For this data, the modes are most likely an artifact of the scheduling al-
gorithm of the operating system. Most Unix-based operating systems use a
round-robin algorithm to schedule CPU bound processes: When a single pro-
cess is running, it receives all of the CPU; when two processes are running,
each uses approximately half of the CPU; when there are three, each gets a
third; and so forth. This is the phenomenon exhibited in Figure 15.4.

To represent a modal parameter using a normal distribution, we need to
know whether values represented by the parameter remain within a single
mode during the timeframe of interest. If the values of the parameter remain
within a single mode (i.e. if they exhibit temporal locality), we can approxi-
mate the available CPU as a normal distribution based on the data mean and
standard deviation of the appropriate mode without excessive loss of informa-
tion. An example of this (from a 24-hour trace of CPU loads) is shown as a
time series in Figure 15.5 on the left.

0.0 500.0 1000.0 1500.0
Time (sec) ->

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fr
ac

tio
n

of
 C

PU
 A

va
ila

bl
e

0.0 500.0 1000.0 1500.0
Time ->

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 C

PU
 A

va
ila

bl
e

Figure 15.5. Two time series showing temporal locality (on the left) and nontemporal locality
(on the right) for CPU data.

If the values of the parameter change modes frequently or unpredictably,
we say that that the data exhibits temporal nonlocality. An example of this,
taken from the same 24-hour CPU trace as before, is shown as a time series in
Figure 15.5 on the right. In this case, some way of deriving a prediction must
be devised that takes into account the fluctuation of the parameter data between
multiple modes.

A brute-force approach to representing multimodal data would be to sim-
ply ignore the multimodality of the data and represent the stochastic value as
a normal distribution based on the mean and standard deviation of the data
as a whole. This approximation is, however, unlikely to capture the relevant
behavior characteristics of the data with any accuracy. Because of the multi-

Conservative Scheduling 225

modal behavior, a mode with a small variance in actuality may end up being
represented by a normal distribution with a large variance (and a large standard
deviation). If this brute-force method were used for the data in Figure 15.5, the
mean would be 0.66 and the standard deviation would be 0.24.

An alternative approach is to calculate an aggregate mean and aggregate
standard deviation for the value based on the mean and standard deviation for
each mode. Let (

� � Q H R �) represent the mean and the standard deviation for
the data in mode

7
. We define the aggregate mean (AM) and the aggregate

standard deviation (ASD) of a multimodal distribution by

� 3 < ½ ^ � ��� � & (15.4)

� � µ < ½ ^ � � H R � &hQ (15.5)

where
^ � is the percentage of data in mode

7
. Since we represent each individ-

ual mode in term of a normal distribution, (� 3 Q � � µ) will also have a normal
distribution. For the data in Figure 15.5, � 3 = 0.68 and � � µ = 0.031.

Note that using the aggregate mean and the aggregate standard deviation is
an attempt to define a normal distribution that is somehow close to the mul-
timodal distribution. Determining whether two distributions are close is itself
an interesting problem that we discuss briefly in the subsection below.

4.1.3 When Is a Distribution Close to Normal?

In the preceding subsections, we made a key assumption that the values in
the distribution were close to (could be adequately represented by) normal dis-
tributions. To define “close,” we can consider several methods for determining
the similarity between a given data set and the normal distribution represented
by its data mean and its data standard deviation.

One common measurement of goodness of fit is the chi-squared (� �) tech-
nique [DP96b]. This is a quantitative measure of the extent to which observed
counts differ from the expected counts over a given range, called a cell. The
value for � � is the sum of a goodness of fit for all quantities

� � < ½
õ�ö@ö��o�kö4ö v � observed cell count - expected cell count

& �
expected cell count

(15.6)

for the observed data and the expected data resulting from the normal distribu-
tion. The value of the � � statistic reflects the magnitude of the discrepancies
between observed and expected cell counts: a larger value indicates larger dis-
crepancies.

226 GRID RESOURCE MANAGEMENT

Another metric of closeness in the literature is called 1-distance between
PDF’s [MLH95], where

� I � |�IX� � � <����
� � Â I � � � &�|ÅI u � � & Â R � (15.7)

for function
I��

for the data and
I � for the normal distribution based on the data

mean and standard deviation. This corresponds to a maximal error between the
functions.

For both of these metrics, a user or scheduler would need to determine a
threshold for closeness acceptable for their purposes.

If we approximate nonnormal data using a normal distribution, there may
be several effects. When the distribution of a stochastic value is represented by
a normal distribution but is not actually normal, arithmetic operations might
exclude values that they should not. By performing arithmetic on the mean
and standard deviation, we are able to use optimistic formulas for uncorrelated
values in order to narrow the range that is considered in the final prediction.
If the distributions of stochastic values were actually long-tailed, for example,
this might cut off values from the tail in an unacceptable way.

Normal distributions are closed under linear combinations [LM86], but gen-
eral distributions are not. If we use arithmetic rules defined for normal distri-
butions on nonnormal data, we have no information about the distribution of
the result. Further, it may not be possible to ascertain the distribution of a
stochastic value, or the distribution may not be sufficiently close to normal. In
such cases, other representations must be used. In the next section, we explore
an alternative for representing stochastic values using an aggregated prediction
technique.

4.2 Aggregate Predictions

In this section we describe how a time series predictor can be extended to
obtain three types of predicted CPU load information: the next step predicted
CPU load at a future time point (Section 4.2.1); the average interval CPU load
for some future time interval (Section 4.2.2); and the variation of CPU load
over some future time interval (Section 4.2.3).

4.2.1 One-Step-Ahead CPU Load Prediction

The tendency-based time series predictor developed in our previous work
can provide one-step-ahead CPU load prediction based on history CPU load

Conservative Scheduling 227

// Determine Tendency
if ((V_(T-1) - V_T)<0)

Tendency="Increase";
else if ((V_T - V_(T-1)))<0)

Tendency="Decrease";
if (Tendency="Increase") then

PT+1 = V_T + IncrementConstant;
IncrementConstant adaptation process

else if (Tendency="Decrease") then
PT+1 = V_T - V_T*DecrementFactor;
DecrementFactor adaptation process

Figure 15.6. Psuedo-code for Tendency algorithm.

information [YFS03]. This predictor has been demonstrated to be more ac-
curate than other predictors for CPU load data. It achieves prediction errors
that are between 2% and 55% less (36% less on average) than those incurred
by the predictors used within the NWS on a set of 38 machines load traces.
The algorithm predicts the next value according to the tendency of the time
series change assuming that if the current value increases, the next value will
also increase and that if the current value decreases, the next value will also
decrease.

Given the preceding history data measured at a constant-width time inter-
val, our mixed tendency-based time series predictor uses the algorithm in Fig-
ure 15.6, where ò is the measured value at the y ��� measurement and

Á y AÄ�
is the predicted value for measurement value ò � � .

We find that a mixed-variation (that is, different behavior for the increment
from that of the decrement) experimentally performed best. The Increment-
Constant is set initially to 0.1, and the DecrementFactor is set to 0.01. At
each time step, we measure the real data (ò � �) and calculate the difference
between the current measured value and the last measured value (ò) to deter-
mine the real increment (decrement) we should have used in the last prediction
in order to get the actual value. We adapt the value of the increment (decre-
ment) value accordingly and use the adapted IncrementConstant (or Decre-
mentFactor) to predict the next data point.

Using this time series predictor to predict the CPU load in the next step, we
treat the measured preceding CPU load time series as the input to the predictor.
The predictor’s output is the predicted CPU load at the next step,

Á � � � . So
if the time series � < M � QSM � � � hM � is the CPU load time series measured at
constant-width time interval and is used as input to the predictor, the result is
the predicted value

Á � � � for the measurement value
M � � � .

228 GRID RESOURCE MANAGEMENT

4.2.2 Interval Load Prediction

Instead of predicting one step ahead, we want to be able to predict the CPU
load over the time interval during which an application will run. Since the CPU
load time series exhibits a high degree of self-similarity [Din99], averaging
values over successively larger time scales will not produce time series that are
dramatically smoother. Thus, to calculate the predicted average CPU load an
application will encounter during its execution, we need to first aggregate the
original CPU load time series into an interval CPU load time series, then run
predictors on this new interval time series to estimate its future value.

Aggregation, as defined here, consists of converting the original CPU load
time series into an interval CPU load time series by combining successive data
over a nonoverlapping larger time scale. The aggregation degree,

3
, is the

number of original data points used to calculate the average value over the time
interval. This value is determined by the resolution of the original time series
and the execution time of the applications, and need be only approximate.

For example, the resolution of the original time series is 0.1 Hz, or measured
every 10 seconds, and if the estimated application execution time is about 100
seconds, the aggregation degree M can be calculated by

3 <·z � �qM y 7	�"� ³ I � ^:^ « 79ML:�k79��O F � �-�¢¡ ³ I ³ �%7�:79OcL « y 7	�"���»���%7_� H< ���C�/Fn� �< ���
(15.8)

Hence, the aggregation degree is 10. In other words, 10 data points from the
original time series are needed to calculate one aggregated value over 100 sec-
onds. The process of aggregation consists of translating the incoming time se-
ries, (� <¸M � QSM � Q� � � hM �), into the aggregated time series, (� <¸L � QSL � Q� � � hL¤£),
such that

L � <
ñ �d¾ �b¥¦¥ § � �N�ZY £ �6� � � ^�¨ § � �3 (15.9)

for
7n< � � � do

i for
o�<ª© �§p« . Each value in the interval CPU load time seriesL � is the average CPU load over the time interval that is approximately equal

to the application execution time.
After the aggregated time series is created, the second step of our interval

load prediction involves using the one-step-ahead predictor on the aggregated
time series to predict the mean interval CPU load. So the aggregated time
series �=� is fed into the one-step-ahead predictor, resulting in

^�L¬ � � , the pre-
dicted value of

Lw£ � � , which is approximately equal to the average CPU load
the application will encounter during execution.

Conservative Scheduling 229

4.2.3 Load Variance Prediction

To predict the variation of CPU load, for which we use standard deviation,
during the execution of an application, we need to calculate the standard de-
viation time series using the original CPU load time series C and the interval
CPU load time series A (defined in the preceding section).

Assuming the original CPU load time series is � < M � QSM � Q� � � hM � , the inter-
val load time series is � <®L � QSL � Q� � � hL®£ , and an aggregation degree of

3
, we

can calculate the standard deviation CPU load time series
�Ç< H � Q H � Q� � � H £ :

� � < ¯°°± ½
�h¾ �b¥¦¥¦¥ §³² � �N�ZY £ �6� � � ^�¨ § � �2�µ´ ©o¶ �3 (15.10)

for
7�< � � � ho

.
Each value in standard deviation time series H � is the average difference

between the CPU load and the mean CPU load over the interval.
To predict the standard deviation of the CPU load, we use the one-step-

ahead predictor on the standard deviation time series. The output
^ H £ � � will

be the predicted value of H £ � � , or the predicted CPU load variation for the next
time interval.

5. APPLICATION SCHEDULING

Our goal is to improve data mapping in order to reduce total application exe-
cution time despite resource contention. To this end, we use the time-balancing
scheduling algorithm described in Section 3, parameterized with an estimate
of future resource capability.

5.1 Cactus Application

We apply our scheduling algorithms in the context of Cactus, a simulation of
a 3D scalar field produced by two orbiting astrophysical sources. The solution
is found by finite differencing a hyperbolic partial differential equation for the
scalar field. This application decomposes the 3D scalar field over processors
and places an overlap region on each processor. For each time step, each pro-
cessor updates its local grid point and then synchronizes the boundary values.
It is an iterative, loosely synchronous application, as described in Section 4.
We use a one-dimensional decomposition to partition the workload in our ex-
periments. The full performance model for Cactus is described in [LYFA02],
but in summary it is

z � � µ � &n< H ��L:�%�h÷n^ y 79�"� A � µ � F � ���j^ � A � ���l� � &F H « ��i=R:��i=On� effective CPU load
& (15.11)

230 GRID RESOURCE MANAGEMENT

� �1�j^ � and � ���l� � , the computation time of per data point and communi-
cation time of the Cactus application in the absence of contention, can be cal-
culated by formulas described in [RIF01b]. We incur a startup time when initi-
ating computation on multiple processors in a workstation cluster that was ex-
perimentally measured and fixed. The function slowdown(effective CPU load),
which represents the contention effect on the execution time of the application,
can be calculated by using the formula described in [LYFA02].

The performance of the application is greatly influenced by the actual CPU
performance achieved in the presence of contention from other competing ap-
plications. The communication time is less significant when running on a local
area network, but for wide-area network experiments this factor would also be
parameterized by a capacity measure.

Thus, our problem is to determine the value of CPU load to be used to
evaluate the slowdown caused by contention. We call this value the effective
CPU load and equate it to the average CPU load the application will experience
during its execution.

5.2 Scheduling Approaches

As shown in Figure 1, variations in CPU load during task execution can also
influence the execution time of the job because of interrelationships among
tasks. We define a conservative scheduling technique that always allocates less
work to highly varying machines. For the purpose of comparison, we define
the effective CPU load in a variety of ways, each giving us a slightly differ-
ent scheduling policy. We define five policies to compare in the experimental
section:

One-step scheduling (OSS): Use the one-step-ahead prediction of the
CPU load, as described in Sections 4.2.1, for the effective CPU load.

Predicted mean interval scheduling (PMIS): Use the interval load pre-
diction, described in Section 4.2.2, for the effective CPU load.

Conservative scheduling (CS): Use the conservative load prediction, e-
qual to the interval load prediction (defined in Section 4.2.2) added to
a measure of the predicted variance (defined in Section 4.2.3) for the
effective CPU load. That is, effective CPU load=

^�Lµ£ � � A ^ H £ � � .
History mean scheduling (HMS): Use the mean of the history CPU load
for the 5 minutes preceding the application start time for the value for
effective CPU load. This approximates the estimates used in several
common scheduling approaches [TSC00, WZ98].

History conservative scheduling (HCS): Use the conservative estimate
CPU load defined by using the normal distribution stochastic value de-

Conservative Scheduling 231

fined in Section 4.1. In practice, this works out to adding the mean and
variance of the history CPU load collected for 5 minutes preceding the
application run as the effective CPU load.

6. EXPERIMENTS

To validate our work, we conducted experiments on workstation clusters at
the University of Illinois at Champaign-Urbana (UIUC) and the University of
California, San Diego (UCSD), which are part of the GrADS testbed [BCC

�
01]

6.1 Experimental Methodology

We compared the execution times of the Cactus application with the five
scheduling policies described in Section 5: one-step scheduling (OSS), pre-
dicted mean interval scheduling (PMIS), conservative scheduling (CS), history
mean scheduling (HMS), and history conservative scheduling (HCS).

At UIUC, we used a cluster of four Linux machines, each with a 450 MHz
CPU; at UCSD, we used a cluster of six Linux machines, four machines with
a 1733 MHz CPU, one with a 700 MHz CPU, and one with a 705 MHz CPU.
All machines were dedicated during experiments.

To evaluate the different scheduling polices under identical workloads, we
used a load trace playback tool [DO00] to generate a background workload
from a trace of the CPU load that results in realistic and repeatable CPU con-
tention behavior. We chose nine load time series available from [Yan03]. These
are all traces of actual machines, which we characterize by their mean and
standard deviation. We used 100 minutes of each trace, at a granularity of 0.1
Hz. The statistic properties of these CPU load traces are shown in Table 15.2.
Note that even though some machines have the same speed, the performance
that they deliver to the application varied that they each experienced different
background loads.

Table 15.2. The mean and standard deviation of 9 CPU load traces.

CPU Load Trace Name Machine Name Mean SD

LL1 abyss 0.12 (L) 0.16 (L)
LL2 axp7 0.02 (L) 0.06 (L)
LH1 vatos 0.22 (L) 0.31 (H)
LH2 axp1 0.14 (L) 0.29 (H)
HL1 mystere 1.85 (H) 0.14 (L)
HL2 pitcairn 1.19 (H) 0.12 (L)
HH axp0 1.07 (H) 0.48 (H)
HH2 axp10 1.18 (H) 0.31 (H)

232 GRID RESOURCE MANAGEMENT

6.2 Experimental Results

Results from four representative experiments are shown in Figures 15.7–
15.10. A summary of the testbeds and the CPU load traces used for the exper-
iments is given in Table 15.3.

25

30

35

40

45

50

0 5 10 15 20
Repetitions

E
xe

cu
tio

n
T

im
e

(s
)

HMS

HCS

OSS

PMIS

 CS

Figure 15.7. Comparison of the history mean, history conservative, one-step, predicted mean
interval and conservative scheduling policies on the UIUC cluster with two low-variance ma-
chines (one with a low mean and the other with a high mean) and two high-variance machines
(one with a low mean, the other with a high mean).

27

30

33

36

39

42

0 5 10 15 20

Repetitions

E
xe

cu
tio

n
T

im
e

(s
) HMS

HCS

OSS

PMIS

CS

Figure 15.8. Comparison of the history mean, history conservative, one-step, predicted mean
interval and conservative scheduling policies on the UIUC cluster with two low-variance ma-
chines and two high-variance machines (all with a low mean).

Table 15.3. CPU load traces used for each experiment.

Experiments Testbed CPU Load Traces
Fig. 15.7 UIUC LL1, LH1, HL1, HH1
Fig. 15.8 UIUC LL1, LL2, LH1, LH2
Fig. 15.9 UCSD LL1, LL2, LH1, LH2, HL1, HL2
Fig. 15.10 UCSD LH1, LH2, HL1, HL2, HH1, HH2

Conservative Scheduling 233

30

35

40

45

50

0 5 10 15 20

Repetitions

E
xe

cu
tio

n
T

im
e

(s
)

HMS

HCS

OSS

PMIS

CS

Figure 15.9. Comparison of the history mean, history conservative, one-step, predicted mean
interval and conservative scheduling policies on the UCSD cluster with four low-variance ma-
chines (one with a low means and two with a high means) and two high-variance machines (with
low means).

45

50

55

60

65

70

75

80

0 5 10 15 20

Repetitions

E
xe

cu
tio

n
T

im
e

(s
)

HMS

HCS

OSS

PMIS

CS

Figure 15.10. Comparison of the history mean, history conservative, one-step, predicted mean
interval and conservative scheduling policies on the UCSD cluster with two low-variance ma-
chines (all with high means) and four high-variance machines (two with a low mean, two with
a high mean).

To compare these policies, we used two metrics: an absolute comparison
of run times and a relative measure of achievement. The first metric involves
an average mean and an average standard deviation for the set of runtimes of
each scheduling policy as a whole, as shown in Table 15.4. This metric gives a
rough valuation on the performance of each scheduling policy over a given in-
terval of time. Over the entire run, the conservative scheduling policy exhibited
2%–7% less overall execution time than history mean and history conserva-
tive scheduling policies, by using better information prediction, and 1.2%–7%
less overall execution time than did the one-step and predicted mean interval
scheduling policies. We also see that taking variation information into account
in the scheduling policy results in more predictable application behavior: The
history conservative scheduling policy exhibited 9%–29% less standard devia-
tion of execution time than did the history mean. The conservative scheduling

234 GRID RESOURCE MANAGEMENT

Table 15.4. Average mean and average standard deviation for entire set of runs for each
scheduling policy.

Exp. HMS HCS OSS PMIS CS
Mean SD Mean SD Mean SD Mean SD Mean SD

Fig. 15.7 36.2 3.7 36.1 2. 6 37.0 4.2 35.4 3.2 34.3 2.4
Fig. 15.8 34.1 3.1 33.3 2.8 33.2 2.7 33.0 3.4 31.9 2.7
Fig. 15.9 38.0 3.8 37.6 3.0 37.8 3.5 37.6 3.8 36.8 3.1
Fig. 15.10 58.2 9.1 55.7 8.1 57.7 7.2 57.0 8.0 54.2 6.1

policy exhibited 1.5%–41% less standard deviation in execution time than the
one-step scheduling policy and 20%–41% less standard deviation of execution
time than the predicted mean interval scheduling policy.

The second metric we used, Compare, is a relative metric that evaluates how
often each run achieves a minimal execution time. We consider a scheduling
policy to be better than others if it exhibits a lower execution time than another
policy on a given run. Five possibilities exist: best (best execution time among
the five policies), good (better than three policies but worse than one), average
(better than two policies and worse than two), poor (better than one policy but
worse than three), and worst (worst execution time of all five policies).

These results are given in Table 15.5, with the largest value in each case
shown in boldface. The results indicate that conservative scheduling using
predicted mean and variation information is more likely to have a best or good
execution time than the other approached on both clusters. This fact indicates
that taking account of the average and variation CPU information during the
period of application running in the scheduling policy can significantly im-
prove the application’s performance.

To summarize our results: independent of the loads and CPU capabilities
considered on our testbed, the conservative scheduling policy based on our
tendency-based prediction strategy with mixed variation achieved better results
than the other policies considered. It was both the best policy in more situations
under all load conditions on both clusters, and the policy that resulted in the
shortest execution time and the smallest variation in execution time.

7. CONCLUSIONS AND FUTURE WORK

We have proposed a conservative scheduling policy able to achieve efficient
execution of data-parallel applications even in heterogeneous and dynamic en-
vironments. This policy uses information about the expected mean and vari-
ance of future resource capabilities to define data mappings appropriate for
dynamic resources. Intuitively, the use of variance information is appealing

Conservative Scheduling 235

Table 15.5. Summary statistics using Compare to evaluate five scheduling policies.

Experiment Policy Best Good Avg Poor Worst
Fig. 15.7 HMS 2 2 7 3 6

HCS 1 4 6 6 3
OSS 5 5 0 2 8
PMIS 6 2 3 7 2
CS 6 7 4 2 1

Fig. 15.8 HMS 2 2 5 5 6
HCS 2 3 4 6 5
OSS 4 2 5 3 6
PMIS 1 8 3 5 3
CS 11 5 3 1 0

Fig. 15.9 HMS 4 3 5 4 4
HCS 4 3 7 4 2
OSS 1 1 4 4 10
PMIS 1 10 0 6 3
CS 10 3 4 2 1

Fig. 15.10 HMS 2 2 5 7 4
HCS 4 3 6 5 2
OSS 0 3 6 5 6
PMIS 4 8 1 1 6
CS 10 4 2 2 2

because it provides a measure of resource reliability. Our results suggest that
this intuition is valid.

Our work comprises two distinct components. First, we show how to obtain
predictions of expected mean and variance information. Then we show how in-
formation about expected future mean and variance (as obtained, for example,
from our predictions) can be used to guide data mapping decisions. In brief,
we assign less work to less reliable (higher variance) resources, thus protecting
ourselves against the larger contending load spikes that we can expect on those
systems. We apply our prediction techniques and scheduling policy to a sub-
stantial astrophysics application. Our results demonstrate that our techniques
can obtain better execution times and more predictable application behavior
than previous methods that focused on predicted means alone. While the per-
formance improvements obtained are modest, they are obtained consistently
and with no modifications to the application beyond those required to support
nonuniform data distributions.

We are interested in extending this work to other dynamic system informa-
tion, such as network status. Another direction for further study is a more
sophisticated scheduling policy that may better suit other particular environ-
ments and applications.

236 GRID RESOURCE MANAGEMENT

Acknowledgments

We are grateful to Peter Dinda for permitting us to use his load trace play
tool, and to our colleagues within the GrADS project for providing access to
testbed resources. This work was supported in part by the Grid Application
Development Software (GrADS) project of the NSF Next Generation Soft-
ware program, under Grant No. 9975020, and in part by the Mathematical,
Information, and Computational Sciences Division subprogram of the Office
of Advanced Scientific Computing Research, Office of Science, U.S. Depart-
ment of Energy, under contract W-31-109-Eng-38.

Chapter 16

IMPROVING RESOURCE SELECTION
AND SCHEDULING USING PREDICTIONS

Warren Smith
Computer Sciences Corporation
NASA Ames Research Center

Abstract
The introduction of computational Grids has resulted in several new prob-

lems in the area of scheduling that can be addressed using predictions. The first
problem is selecting where to run an application on the many resources available
in a Grid. Our approach to help address this problem is to provide predictions
of when an application would start to execute if submitted to specific scheduled
computer systems. The second problem is gaining simultaneous access to mul-
tiple computer systems so that distributed applications can be executed. We help
address this problem by investigating how to support advance reservations in
local scheduling systems. Our approaches to both of these problems are based
on predictions for the execution time of applications on space-shared parallel
computers. As a side effect of this work, we also discuss how predictions of
application run times can be used to improve scheduling performance.

1. INTRODUCTION

The existence of computational Grids allows users to execute their appli-
cations on a variety of different computer systems. An obvious problem that
arises is how to select a computer system to run an application. Many factors
go into making this decision: The computer systems that the user has access
to, the user’s remaining allocations on these systems, the cost of using different
systems, the location of data sets for the experiment, how long the application
will execute on different computers, when the application will start executing,
and so on. We wish to help users make this decision, so in Section 3, we dis-
cuss approaches to predicting when a scheduling system for a space shared
parallel computer will start executing an application.

238 GRID RESOURCE MANAGEMENT

The large number of resources available in computational Grids leads users
to want to execute applications that are distributed across multiple resources,
such as running a large simulation on 2 or more supercomputers. The diffi-
culty with this is that different resources may have different scheduling sys-
tems without any mechanisms to guarantee that an application obtains simul-
taneous access to the different resources. To address this problem, Section 5
describes ways to incorporate advance reservations into scheduling systems
and analyzes their performance. Users can use advance reservations to ask for
resources from multiple schedulers at the same time in the future and obtain
simultaneous access. As a side effect of this work, in Section 4 we discuss how
to improve the performance of scheduling systems even when no reservations
are needed.

We base much of the work above on techniques to predict the execution time
of applications on space shared parallel computers. We begin this chapter by
describing two techniques to calculate predictions of application run times and
discuss their performance.

2. RUN TIME PREDICTIONS

There have been many efforts to predict the execution time of serial and par-
allel applications. We can roughly classify prediction techniques by whether
the resources that are used are shared or dedicated, the type and detail of appli-
cation and resource models that are used, and the type of prediction technique
used.

There have been many efforts to predict the execution time of applications
on shared computer systems [DI89, Din01, WSH99b, SB98] and dedicated
computer systems [SFT98, SW02, Dow97, Gib97, IOP99, KFB99]. Almost all
of the techniques referenced above use very simple models of an application
such as the information provided to the scheduler or this information plus a
few application-specific parameters [KFB99]. An exception is the work by
Schopf [SB98, Sch97] where high-level structural models of applications were
created with the assistance of the creators of the applications.

The type of prediction technique that is used can generally be separated
into statistical, which uses statistical analysis of applications that have com-
pleted, and analytical, which constructs equations describing application exe-
cution time. Statistical approaches use time series analysis [WSH99b, Din01],
categorization [SFT98, Dow97, Gib97], and instance-based learning or lo-
cally weighted learning [KFB99, IOP99, SW02]. Analytical approaches de-
velop models by hand [SB98] or use automatic code analysis or instrumenta-
tion [TWG

�
01].

We present and analyze the performance of two techniques that we have de-
veloped. Both techniques are statistical and only use the information provided

Improving Resource Selection and Scheduling Using Predictions 239

when an application is submitted to a scheduler to make predictions. The first
technique uses categories to form predictions and the second technique uses
instance-based learning.

2.1 Categorization Prediction Technique

Our first approach to predicting application run times is to derive run time
predictions from historical information of previous similar runs. This approach
is based on the observation [SFT98, Dow97, FN95, Gib97] that similar appli-
cations are more likely to have similar run times than applications that have
nothing in common.

One difficulty in developing prediction techniques based on similarity is
that two applications can be compared in many ways. For example, we can
compare applications on the basis of application name, submitting user name,
executable arguments, submission time, and number of nodes requested. When
predicting application run times in this work, we restrict ourselves to those
values recorded in traces obtained from various supercomputer centers. The
workload traces that we consider originate from 3 months of data from an IBM
SP at Argonne National Laboratory (ANL), 11 months of data from an IBM SP
at the Cornell Theory Center (CTC), and 2 years of data from an Intel Paragon
at the San Diego Supercomputer Center (SDSC). The characteristics of jobs in
each workload vary but consist of a relatively small set of characteristics such
as user name, application name, queue name, run time, and so on.

Our general approach to defining similarity is to use job characteristics to
define templates that identify a set of categories to which applications can be
assigned. For example, the template (queue,user) specifies that applications
are to be partitioned by queue and user. On the SDSC Paragon, this template
generates categories such as (q16m, wsmith), (q64l, wsmith), and (q16m, fos-
ter).

We find that categorizing discrete characteristics (such as user name) in the
manner just described works reasonably well. On the other hand, the number
of nodes is an essentially continuous parameter, and so we prefer to introduce
an additional parameter into our templates, namely, a node range size that de-
fines what ranges of requested number of nodes are used to decide whether
applications are similar. For example, the template (u, n=4) specifies a node
range size of 4 and generates categories (wsmith, 1-4 nodes) and (wsmith, 5-8
nodes).

In addition to the characteristics of jobs contained in the workloads, a maxi-
mum history, type of data to store, and prediction type are also defined for each
run time prediction template. The maximum history indicates the maximum
number of data points to store in each category generated from a template. The
type of data is either an actual run time or a relative run time. A relative run

240 GRID RESOURCE MANAGEMENT

time incorporates information about user-supplied run time estimates by stor-
ing the ratio of the actual run time to the user-supplied estimate (the amount
of time the nodes are requested for). The prediction type determines how a
run time prediction is made from the data in each category generated from a
template. We considered four prediction types in our previous work: a mean, a
linear regression, an inverse regression, and a logarithmic regression [DS81].
We found that the mean is the single best predictor [Smi99], so this work uses
only means to form predictions. We also take into account running time, how
long an application has been running when a prediction is made, when making
predictions by ignoring data points from a category that have a run time less
than this running time.

Once a set of templates has been defined (using a search process described
later), we simulate a workload of application predictions and insertions. For
each insertion, an application is added to the categories that contain similar
applications. For each prediction, an execution time and a confidence interval
is calculated. A prediction is formed from each similar category of applications
and the prediction with the smallest confidence interval is selected to be the
prediction for the application.

We use a genetic algorithm search to identify good templates for a particular
workload. While the number of characteristics included in our searches is rel-
atively small, the fact that effective template sets may contain many templates
means that an exhaustive search is impractical. Genetic algorithms are a prob-
abilistic technique for exploring large search spaces, in which the concept of
cross-over from biology is used to improve efficiency relative to purely random
search [Gol89]. A genetic algorithm evolves individuals over a series of gen-
erations. Our individuals represent template sets. Each template set consists of
between 1 and 10 templates, and we encode the previously described informa-
tion in each template. The process for each generation consists of evaluating
the fitness of each individual in the population, selecting which individuals will
be mated to produce the next generation, mating the individuals, and mutating
the resulting individuals to produce the next generation. The process then re-
peats until a stopping condition is met. The stopping condition we use is that a
fixed number of generations are processed. Further details of our searches are
available in [Smi99].

The accuracy of the prediction parameters found by our searches are shown
in the second column of Table 16.1. The prediction error is 39 percent on av-
erage and ranges from 28 percent for the SDSC96 workload to 54 percent for
the CTC workload. We compare these results to the run time prediction per-
formance technique proposed by Gibbons [Gib97] and the run time prediction
technique used by Downey [Dow97] to predict how long jobs will wait at the

Improving Resource Selection and Scheduling Using Predictions 241

Table 16.1. Performance of our categorization technique versus those of Gibbons and Downey.

Workload Mean Error (minutes) Mean Run
Ours Gibbons Downey Time (minutes)

ANL 34.52 75.26 97.01 97.08
CTC 98.28 124.06 179.46 182.49

SDSC95 43.20 74.05 82.44 108.16
SDSC96 47.47 122.55 102.04 166.85

head of a scheduling queue before beginning to execute. Both of these tech-
niques categorize applications that have completed executing, find categories
that are similar to an application whose run time is to be predicted, and then
form a prediction from these categories. The categories and techniques used
to calculate predictions differ between the two techniques and differ from our
technique. Table 16.1 shows that our predictions have between 21 and 61 per-
cent lower mean error than the Gibbons’ approach and 45 to 64 percent lower
mean error than the better of Downey’s two techniques.

2.2 Instance-Based Learning Approach

In our second approach, we predict the execution time of applications using
instance-based learning (IBL) techniques that are also called locally weighted
learning techniques [AMS97, SM00]. In this type of technique, a database of
experiences, called an experience base, is maintained and used to make pre-
dictions. Each experience consists of input and output features. Input features
describe the conditions under which an experience was observed and the output
features describe what happened under those conditions. Each feature consists
of a name and a value where the value is of a simple type such as integer,
floating-point number, or string. In this work, the input features are the same
ones as used in our first approach: The user who submitted the job, the ap-
plication that was executed, the number of CPUs requested, and so on. The
execution time of the job is the only output feature of the experience.

When a prediction is to be performed, a query point consisting of input fea-
tures is presented to the experience base. The data points in the experience base
are examined to determine how relevant they are to the query where relevance
is determined using the distance between an experience and the query. There
are a variety of distance functions that can be used [WM97] and we choose
to use the Heterogeneous Euclidean Overlap Metric [WM97]. This distance
function can be used on features that are linear (numbers) or nominal (strings).
We require support for nominal values because important features such as the
names of executables, users, and queues are nominal. As a further refinement,
we perform feature scaling to stretch the experience space and increase the
importance that certain features are similar.

242 GRID RESOURCE MANAGEMENT

Once we know the distance between experiences and a query point, the next
question to be addressed is how we calculate estimates for the output features
of the query point. For linear output features, such as execution time, our
approach is to use a distance-weighted average of the output features of the
experiences to form an estimate. We choose to use a Gaussian function to
form this distance-weighted average. Further, we include a factor, called the
kernel width, so that we can compact or stretch the Gaussian function to give
lower or higher weights to experiences that are farther away.

To perform an estimate, we must select values for the parameters discussed
above along with the maximum experience base size and the number of nearest
neighbors (experiences) to use. Our approach to determine the best values for
these parameters is to once again perform a genetic algorithm search [Gol89]
to select values that minimize the prediction error.

Table 16.2 shows a comparison of our categorization technique and our
instance-based learning technique using the same trace data that we used to
evaluate our first technique. The table shows that at the current time, our
instance-based learning technique has an error which is 44 percent of mean
run times and 59 percent lower than the user estimates available in the ANL
and CTC workloads. The user estimates for the ANL and CTC workloads are
provided along with each job. Our IBL technique has an 89 percent lower er-
ror than the run time estimates that can be derived from the SDSC workloads.
This system has many queues with different resource usage limits. We derive
the run time limits for each queue by examining the workloads and finding the
longest running job submitted to each queue.

Table 16.2 also shows that the error of our categorization technique is cur-
rently 10 percent lower than our IBL technique. There are several possible
reasons for this result. First, we performed more extensive searches to find
the best parameters used in the categorization technique. Second, the catego-
rization technique essentially uses multiple distance functions and selects the
best results obtained after using each of these functions instead of the single
distance function used by our IBL approach. In future work, we will evaluate
how well our IBL approach performs when using multiple distance functions.

3. QUEUE WAIT TIME PREDICTIONS

On many high-performance computers, a request to execute an application is
not serviced immediately but is placed in a queue and serviced only when the
necessary resources are released by running applications. On such systems,
predictions of how long queued requests will wait before being serviced are
useful for a variety of tasks. For example, predictions of queue wait times
can guide a user in selecting an appropriate queue or, in a computational Grid,
an appropriate computer [FK99b]. Wait time predictions are also useful in a

Improving Resource Selection and Scheduling Using Predictions 243

Table 16.2. A comparison of our two execution time prediction techniques.

IBL Mean Categorization Mean Error of Mean Run
Error Mean Error User Estimate Time

Workload (minutes) (minutes) (minutes) (minutes)

ANL 36.93 34.52 104.35 97.08
CTC 103.75 98.28 222.71 182.49

SDSC95 51.61 43.20 466.49 108.16
SDSC96 52.79 47.47 494.25 166.85

Grid computing environment when trying to submit multiple requests so that
the requests all receive resources simultaneously [CFK

�
98b]. A third use of

wait time predictions is to plan other activities in conventional supercomputing
environments.

We examine two different techniques for predicting how long applications
wait until they receive resources in this environment. Our first technique for
predicting wait times in scheduling systems is to predict the execution time for
each application in the system (using the categorization technique presented in
Section 2) and then to use those predicted execution times to drive a simula-
tion of the scheduling algorithm. This allows us to determine the start time of
every job in the scheduling system. The advantage of this technique is that, for
certain scheduling algorithms and accurate run time predictions, it can poten-
tially provide very accurate wait time predictions. A disadvantage is that if the
scheduling algorithm is such that the start times of applications in the queues
depend on applications that have not yet been submitted to the queues, the wait
time predictions will not be very accurate. A second disadvantage of this tech-
nique is that it requires detailed knowledge of the scheduling algorithm used
by the scheduling system.

Our second wait time prediction technique predicts the wait time of an appli-
cation by using the wait times of applications in the past that were in a similar
scheduler state. For example, if an application is in a queue with four appli-
cations ahead of it and three behind it, how long did applications in this same
state wait in the past? This approach uses the same mechanisms as our ap-
proach to predicting application execution times with different characteristics
used to describe the conditions we are predicting.

3.1 Scheduling Algorithms

We use three basic scheduling algorithms in this work: first-come first-
served (FCFS), least work first (LWF), and conservative backfill [Lif96, FW98]
with FCFS queue ordering. In the FCFS algorithm, applications are given re-
sources in the order in which they arrive. The application at the head of the

244 GRID RESOURCE MANAGEMENT

Table 16.3. Wait time prediction performance using actual and maximum run times.

Wait Time Prediction Error Mean Wait
Scheduling Actual Run Maximum Run Time

Workload Algorithm Times (minutes) Times (minutes) (minutes)

ANL FCFS 0.00 996.67 535.84
ANL LWF 37.14 97.12 86.71
ANL Backfill 5.84 429.05 177.29
CTC FCFS 0.00 125.36 97.94
CTC LWF 4.05 9.86 10.49
CTC Backfill 2.62 51.16 26.93

SDSC95 FCFS 0.00 162.72 55.16
SDSC95 LWF 5.83 28.56 14.95
SDSC95 Backfill 1.12 93.81 28.17
SDSC96 FCFS 0.00 47.83 16.61
SDSC96 LWF 3.32 14.19 7.88
SDSC96 Backfill 0.30 39.66 11.33

queue runs whenever enough nodes become free. The LWF algorithm also tries
to execute applications in order, but the applications are ordered in increasing
order using estimates of the amount of work (number of nodes multiplied by
estimated wall clock execution time) the application will perform.

The conservative backfill algorithm is a variant of the FCFS algorithm. The
difference is that the backfill algorithm allows an application to run before it
would in FCFS order if it will not delay the execution of applications ahead of
it in the queue (those that arrived before it). When the backfill algorithm tries
to schedule applications, it examines every application in the queue, in order of
arrival time. If an application can run (there are enough free nodes and running
the application will not delay the starting times of applications ahead of it in
the queue), it is started. If an application cannot run, nodes are reserved for
it at the earliest possible time. This reservation is only a placeholder to make
sure that applications behind it in the queue do not delay it; the application
may actually start before this time.

3.2 Predicting Queue Wait Times: Technique 1

Our first wait time prediction technique simulates the actions performed by a
scheduling system using predictions of the execution times of the running and
waiting applications. We simulate the FCFS, LWF, and backfill scheduling
algorithms and predict the wait time of each application when it is submitted
to the scheduler.

Table 16.3 shows the wait time prediction performance when actual or max-
imum run times are used during prediction. The actual run times are the exact

Improving Resource Selection and Scheduling Using Predictions 245

running times of the applications, which are not known ahead of time in prac-
tice. The maximum run time is the amount of time a job requests the nodes
for and is when an application should be terminated if it hasn’t already com-
pleted. This data provides upper and lower bounds on wait time prediction
accuracy and can be used to evaluate our prediction approach. When using ac-
tual run times, there is no error for the FCFS algorithm because later arriving
jobs do not affect the start times of the jobs that are currently in the queue. For
the LWF and backfill scheduling algorithms, wait time prediction error does
occur because jobs that have not been queued can affect when the jobs cur-
rently in the queue can run. This effect is larger for the LWF results where
later-arriving jobs that wish to perform smaller amounts of work move to the
head of the queue. When predicting wait times using actual run times, the wait
time prediction error for the LWF algorithm is between is between 34 and 43
percent. There is a very high built-in error when predicting queue wait times
of the LWF algorithm with this technique because there is a higher probabil-
ity that applications that have not yet been submitted will affect when already
submitted applications will start. There is also a small error (3 - 4%) when
predicting the wait times for the backfill algorithm.

The table also shows that the wait time prediction error of the LWF algo-
rithm when using actual run times as run time predictors is 59 to 80 percent
better than the wait time prediction error when using maximum run times as
the run time predictor. For the backfill algorithm, using maximum run times
results in between 96 and 99 percent worse performance than using actual run
times. Maximum run times are provided in the ANL and CTC workload and
are implied in the SDSC workloads because each of the queues in the two
SDSC workloads have maximum limits on resource usage.

The third column of Table 16.4 shows that our run time prediction technique
results in run time prediction errors that are from 33 to 86 percent of mean
application run times and the fourth column shows that the wait time prediction
errors that are from 30 to 59 percent of mean wait times. The results also show
that using our run time predictor result in mean wait time prediction errors that
are 58 percent worse than when using actual run times for the backfill and LWF
algorithms but 74 percent better than when using maximum run times.

3.3 Predicting Queue Wait Times: Technique 2

Our second wait time prediction technique uses historical information on
scheduler state to predict how long applications will wait until they receive
resources. This is an instance of the same categorization prediction approach
that we use to predict application run times in Section 2. We selected scheduler
state characteristics that describe the parallel computer being scheduled, the
application whose wait time is being predicted, the time the prediction is being

246 GRID RESOURCE MANAGEMENT

Table 16.4. Wait time prediction performance of our two techniques.

Technique 1 Technique 2
Run Time Wait Time Wait Time

Scheduling Prediction Error Prediction Error Prediction Error
Workload Algorithm (minutes) (minutes) (minutes)

ANL FCFS 38.26 161.49 260.36
ANL LWF 54.11 44.75 76.78
ANL Backfill 46.16 75.55 130.35
CTC FCFS 125.69 30.84 76.18
CTC LWF 145.28 5.74 9.80
CTC Backfill 145.54 11.37 22.95

SDSC95 FCFS 53.14 20.34 39.79
SDSC95 LWF 58.98 8.72 13.67
SDSC95 Backfill 57.87 12.49 25.50
SDSC96 FCFS 55.92 9.74 10.55
SDSC96 LWF 54.27 4.66 6.83
SDSC96 Backfill 54.82 5.03 9.26

made, the applications that are waiting in the queue ahead of the application
being predicted, and the applications that are running to use when making
predictions. The characteristics of scheduler state are continuous parameters,
similar to the number of nodes specified by an application. Therefore, a range
size is used for all of these characteristics.

The fifth column of Table 16.4 shows the performance of this wait time pre-
diction technique. The data shows that the wait time prediction error is 42 per-
cent worse on average than our first wait time prediction technique. One trend
to notice is that the predictions for the FCFS scheduling algorithm are the most
accurate for all of the workloads, the predictions for the backfill algorithm are
all the second most accurate, and the predictions for the LWF algorithm are
the least accurate. This is the same pattern when the first wait time prediction
technique is used with actual run times. This indicates that our second tech-
nique is also affected by not knowing what applications will be submitted in
the near future.

4. SCHEDULING USING RUN TIME PREDICTIONS

Many scheduling algorithms use predictions of application execution times
when making scheduling decisions [Lif96, FW98, Fei95]. Our goal in this
section is to improve the performance of the LWF and backfill scheduling al-
gorithms that use run time predictions to make scheduling decisions. We mea-
sure the performance of a scheduling algorithm using utilization, the average

Improving Resource Selection and Scheduling Using Predictions 247

Table 16.5. Scheduling performance using actual and maximum run times.

Actual Run Times Maximum Run Times
Mean Wait Mean Wait

Scheduling Utilization Time Utilization Time
Workload Algorithm (percent) (minutes) (percent) (minutes)

ANL LWF 70.34 61.20 70.70 83.81
ANL Backfill 71.04 142.45 71.04 177.14
CTC LWF 55.18 11.15 55.18 36.95
CTC Backfill 55.18 27.11 55.18 123.91

SDSC95 LWF 41.14 14.48 41.14 14.95
SDSC95 Backfill 41.14 21.98 41.14 28.20
SDSC96 LWF 46.79 6.80 46.79 7.88
SDSC96 Backfill 46.79 10.42 46.79 11.34

percent of the machine that is used by applications, and mean wait time, the
average amount of time that applications wait before receiving resources.

Table 16.5 shows the performance of the scheduling algorithms when the
actual run times are used as run time predictors and when maximum run times
are used as run time predictors. These numbers give us upper and lower bounds
on the scheduling performance we can expect. The data shows that while max-
imum run times are not very accurate predictors, this has very little effect on
the utilization of the simulated parallel computers. Predicting run times with
actual run times when scheduling results in an average of 30 percent lower
mean wait times.

To evaluate how well our run time predictions can improve scheduling per-
formance, the first thing we need to determine is what template sets to use
to predict application run times. We initially tried to minimize the run time
prediction error for workloads generated by running the scheduling algorithms
using maximum run times as predictors and recording all predictions that were
made. We were not satisfied with the scheduling performance obtained us-
ing the parameters obtained by searching over these workloads. So, instead
of attempting to minimize run time prediction error, we perform scheduling
simulations using different run time prediction parameters and attempt to di-
rectly minimize wait times. We do not attempt to maximize utilization because
utilization only changes very slightly when different template sets are used or
even when a different scheduling algorithm is used.

Table 16.6 shows the performance of the results of these searches. As ex-
pected, our run time prediction has minimal impact on utilization. Using our
run time predictions does decrease mean wait time by an average of 25 percent
over using maximum wait times. These mean wait times are 5 percent more
than the wait times achieved when using actual run times.

248 GRID RESOURCE MANAGEMENT

Table 16.6. Scheduling performance using our run time prediction technique.

Mean Run Time Scheduling
Scheduling Prediction Utilization Mean Wait Time

Workload Algorithm Error (minutes) (percent) (minutes)

ANL LWF 72.88 70.75 69.31
ANL Backfill 116.52 71.04 174.14
CTC LWF 182.96 55.18 10.58
CTC Backfill 61.73 55.18 28.39

SDSC95 LWF 142.01 41.14 14.82
SDSC95 Backfill 38.37 41.14 22.21
SDSC96 LWF 112.13 46.79 7.43
SDSC96 Backfill 47.06 46.79 10.56

5. SCHEDULING WITH ADVANCE RESERVATIONS

Some applications have very large resource requirements and would like
to use resources from multiple parallel computers to execute. In this section,
we describe one solution to this co-allocation problem: Advance reservation
of resources. Reservations allow a user to request resources from multiple
scheduling systems at a specific time and thus gain simultaneous access to
sufficient resources for their application.

We investigate several different ways to add support for reservations into
scheduling systems and evaluate their performance. We evaluate scheduling
performance using utilization and mean wait time, as in the previous section,
and also mean offset from requested reservation time; the average difference
between when the users initially want to reserve resources for each application
and when they actually obtain reservations. The mean offset from requested
reservation time measures how well the scheduler performs at satisfying reser-
vation requests.

In this section, we use these metrics to evaluate a variety of techniques for
combining scheduling from queues with reservation. There are several as-
sumptions and choices to be made when doing this. The first is whether appli-
cations are restartable. Most scheduling systems currently assume that applica-
tions are not restartable (a notable exception is the Condor system [LL90] and
Chapter 9). We evaluate scheduling techniques when applications both can and
cannot be restarted. We assume that when an application is terminated, inter-
mediate results are not saved and applications must restart execution from the
beginning. We also assume that a running application that was reserved cannot
be terminated to start another application. Further, we assume that once the
scheduler agrees to a reservation time, the application will start at that time.

Improving Resource Selection and Scheduling Using Predictions 249

If we assume that applications are not restartable and the scheduler must ful-
fill it once it is made, then we must use maximum run times when predicting
application execution times to ensure that nodes are available. The resulting
scheduling algorithms essentially perform backfilling. This approach is dis-
cussed in Section 5.2

If applications are restartable, there are more options for the scheduling
algorithm and this allows us to improve scheduling performance. First, the
scheduler can use run time predictions other than maximum run times. Sec-
ond, there are many different ways to select which running applications from
the queue to terminate to start a reserved application. Details of these options
and their performance are presented in Section 5.3

Due to space limitations, we only summarize the performance data we col-
lected for the techniques presented in this section. Please see [Smi99] for a
more comprehensive presentation of performance data.

5.1 Reservation Model

In our model, a reservation request consists of the number of nodes desired,
the maximum amount of time the nodes will be used, the desired start time,
and the application to run on those resources. We assume that the following
procedure occurs when a user wishes to submit a reservation request:

1 The user requests that an application run at time y¸· on � nodes for at
most

3
amount of time.

2 The scheduler makes the reservation at time y¸· if it can. In this case, the
reservation time, y , equals the requested reservation time, y¹· .

3 If the scheduler cannot make the reservation at time y · , it replies with a
list of times it could make the reservation and the user picks the available
time y which is closest in time to y · .

The last part of the model is what occurs when an application is terminated.
First, only applications that came from a queue can be terminated. Second,
when an application is terminated, it is placed back in the queue from which it
came in its correct position.

5.2 Nonrestartable Applications

In this section, we assume that applications cannot be terminated
and restarted at a later time and that once a scheduler agrees to a reserva-
tion, it must be fulfilled. A scheduler with these assumptions must not start an
application from a queue unless it is sure that starting that application will not
cause a reservation to be unfulfilled. Further, the scheduler must make sure that
reserved applications do not execute longer than expected and prevent other re-

250 GRID RESOURCE MANAGEMENT

served applications from starting. This means that only maximum run times
can be used when making scheduling decisions.

A scheduler decides when an application from a queue can be started using
an approach similar to the backfill algorithm: The scheduler creates a timeline
of when it believes the nodes of the system will be used in the future. First, the
scheduler adds the currently running applications and the reserved applications
to the timeline using their maximum run times. Then, the scheduler attempts
to start applications from the queue using the timeline and the number of nodes
and maximum run time requested by the application to make sure that there are
no conflicts for node use. If backfilling is not being performed, the timeline is
still used when starting an application from the head of the queue to make sure
that the application does not use any nodes that will be needed by reservations.

To make a reservation, the scheduler first performs a scheduling simulation
of applications currently in the system and produces a timeline of when nodes
will be used in the future. This timeline is then used to determine when a
reservation for an application can be made.

One parameter that is used when reserving resources is the relative priorities
of queued and reserved applications. For example, if queued applications have
higher priority, then an incoming reservation cannot delay any of the applica-
tions in the queues from starting. If reserved applications have higher priority,
then an incoming reservation can delay any of the applications in the queue.
The parameter we use is the percentage of queued applications can be delayed
by a reservation request and this percentage of applications in the queue is
simulated when producing the timeline that defines when reservations can be
made.

5.2.1 Effect of Reservations on Scheduling

We begin by evaluating the impact on the mean wait times of queued appli-
cations when reservations are added to our workloads. We assume the best case
for queued applications: When reservations arrive, they cannot be scheduled
so that they delay any currently queued applications.

We add reservations to our existing workloads by randomly converting ei-
ther ten or twenty percent of the applications to be reservations with requested
reservation times randomly selected between zero and two hours in the future.
We find that adding reservations increases the wait times of queued applica-
tions in almost all cases. For all of the workloads, queue wait times increase
an average of 13 percent when 10 percent of the applications are reservations
and 62 percent when 20 percent of the applications are reservations. Our data
also shows that if we perform backfilling, the mean wait times increase by only
9 percent when 10 percent of the applications are reservations and 37 percent
when 20 percent of the applications are reservations. This is a little over half
of the increase in mean wait time when backfilling is not used. Further, there is

Improving Resource Selection and Scheduling Using Predictions 251

a slightly larger increase in queue wait times for the LWF queue ordering than
for the FCFS queue ordering.

5.2.2 Offset from Requested Reservations

Next, we examine the difference between the requested reservation times of
the applications in our workload and the times they receive their reservations.
We again assume that reservations cannot be made at a time that would delay
the startup of any applications in the queue at the time the reservation is made.

The performance is what is expected in general: The offset is larger when
there are more reservations. For 10 percent reservations, the mean difference
from requested reservation time is 211 minutes. For 20 percent reservations,
the mean difference is 278 minutes.

Our data also shows that the difference between requested reservation times
and actual reservation times is 49 percent larger when FCFS queue ordering
is used. The reason for this may be that LWF queue ordering will execute the
applications currently in the queue faster than FCFS. Therefore, reservations
can be scheduled at earlier times.

We also observe that if backfilling is used, the mean difference from re-
quested reservation times increases by 32 percent over when backfilling is not
used. This is at odds with the previous observation that LWF queue ordering
results in smaller offsets from requested reservation times. Backfilling also
executes the applications in the queue faster than when there is no backfill-
ing. Therefore, you would expect a smaller offsets from requested reservation
times. An explanation for this behavior could be that backfilling is packing ap-
plications from the queue tightly onto the nodes and is not leaving many gaps
free to satisfy reservations before the majority of the applications in the queue
have started.

5.2.3 Effect of Application Priority

Next, we examine the effects on mean wait time and the mean difference
between reservation time and requested reservation time when queued appli-
cations are not given priority over all reserved applications. We accomplish
this by giving zero, fifty, or one hundred percent of queued applications prior-
ity over a reserved application when a reservation request is being made.

As expected, if more queued applications can be delayed when a reserva-
tion request arrives, then the wait times are generally longer and the offsets are
smaller. On average, for the ANL workload, decreasing the percent of queued
applications with priority from 100 to 50 percent increases mean wait time by
7 percent and decreases mean offset from requested reservation times by 39
percent. Decreasing the percent of queued application with priority from 100
to 0 percent increases mean wait time by 22 percent and decreases mean offset

252 GRID RESOURCE MANAGEMENT

by 89 percent. These results for the change in the offset from requested reser-
vation time are representative of the results from the other three workloads:
as fewer queued applications have priority, the reservations are closer to their
requested reservations.

5.3 Restartable Applications

If we assume that applications can be terminated and restarted, then we can
improve scheduling performance by using run time predictions other than max-
imum run times when making scheduling decisions. We use our categorization
run time prediction technique that we described in Section 2.

The main choice to be made in this approach is how to select which running
applications to terminate when CPUs are needed to satisfy a reservation. There
are many possible ways to select which running applications that came from a
queue should be terminated to allow a reservation to be satisfied. We choose a
rather simple technique where the scheduler orders running applications from
queues in a list based on termination cost and moves down the list stopping
applications until enough CPUs are available. Termination cost is calculated
using how much work (number of CPUs multiplied by wall clock run time)
the application has performed and how much work the application is predicted
to still perform. Our data shows that while the appropriate weights for work
performed and work to do vary from workload to workload, in general, the
amount of work performed is the more important factor.

We performed scheduling simulations with restartable applications using
the ANL workload. When we compare this performance to the scheduling
performance when applications are not restartable, we find that the mean wait
time decreases by 7 percent and the mean difference from requested reservation
time decreases by 55 percent. There is no significant effect on utilization. This
shows that there is a performance benefit if we assume that applications are
restartable, particularly in the mean difference from requested reservation time.

6. SUMMARY

The availability of computational Grids and the variety of resources avail-
able through computational Grids introduce several problems that we seek to
address through predictions. The first problem is selecting where to run an
application in a Grid that we address by providing predictions of how long
applications will wait in scheduling queues before they begin to execute. The
second problem is gaining simultaneous access to multiple resources so that a
distributed application can be executed which we address by evaluating tech-
niques for adding support for advance reservations into scheduling systems.

Our approaches to both of these problems are based on predictions of the
execution time of applications. We propose and evaluate two techniques for

Improving Resource Selection and Scheduling Using Predictions 253

predicting these execution times. Our first technique categorizes applications
that have executed in the past and forms a prediction for an application us-
ing categories of similar applications. Our second technique uses historical
information and an instance-based learning approach. We find that our cate-
gorization approach is currently the most accurate and is more accurate than
the estimates provided by users or the techniques presented by two other re-
searchers.

We address the problem of selecting where to run an application in a compu-
tational Grid by proposing two approaches to predicting scheduling queue wait
times. The first technique uses run time predictions and performs scheduling
simulations. The second technique characterizes the state of a scheduler and
the application whose wait time is being predicted and uses historical informa-
tion of wait times in these similar states to produce a wait time prediction. We
find that our first technique has a lower prediction error of between 30 and 59
percent of the mean wait times.

We address our second major problem of gaining simultaneous access to
distributed resources by describing several ways to modify local scheduling
systems to provide advance reservations. We find that if we cannot restart
applications, we are forced to use maximum run times as predictions when
scheduling. If we can restart applications, then we can use our run time pre-
dictions when scheduling. We find that supporting advance reservations does
increase the mean wait times of applications in the scheduling queues but this
increase is smaller if we are able to restart applications. As a side effect of
this work, we find that even when there are no reservations, we can improve
the performance of scheduling algorithms by using more accurate run time
predictions.

Acknowledgments

We wish to thank Ian Foster and Valerie Taylor who investigated many of
the problems discussed here with the author. This work has been supported by
Mathematical, Information, and Computational Sciences Division subprogram
of the Office of Computational and Technology Research of the U.S. Depart-
ment of Energy, the NASA Information Technology program and the NASA
Computing, Information and Communications Technology program.

Chapter 17

THE CLASSADS LANGUAGE

Rajesh Raman, Marvin Solomon, Miron Livny, and Alain Roy
Department of Computer Science, University of Wisconsin-Madison

Abstract The Classified Advertisements (ClassAds) language facilitates the representation
and participation of heterogeneous resources and customers in the resource dis-
covery and scheduling frameworks of highly dynamic distributed environments.
Although developed in the context of the Condor system, the ClassAds language
is an independent technology that has many applications, especially in systems
that exhibit the uncertainty and dynamism inherent in large distributed systems.
In this chapter, we present a detailed description of the structure and semantics
of the ClassAds language.

1. INTRODUCTION AND MOTIVATION

This chapter provides a detailed description of the ClassAds (Classified Ad-
vertisements) language. The ClassAds language was designed in context of
the Condor distributed high throughput computing system ([LLM88], [LL90]),
but is an independent technology that facilitates the construction of general-
purpose resource discovery and scheduling frameworks in dynamic and het-
erogeneous environments.

Resource discovery and scheduling are two key functionalities of distributed
environments, but are difficult to provide due to the uncertainty and dynamism
inherent in such large distributed complexes. Examples of difficulties include:

1 Distributed Ownership. Resources are not owned by a single principal,
and therefore may span several administrative domains that each impose
distinct and idiosyncratic allocation policies.

2 Heterogeneity. Vastly different kinds of computational resources (work-
stations, storage servers, application licenses) complicate resource rep-
resentation and allocation semantics.

3 Resource Failure. Resources may fail unpredictably and disappear from
the environment, invalidating resource rosters and allocation schedules.

256 GRID RESOURCE MANAGEMENT

4 Evolution. Evolving hardware and software configurations and capabili-
ties invalidate the implicit system model used by allocators to determine
allocation schedules.

We have previously argued that a Matchmaking paradigm can be used to
opportunistically schedule such non-deterministic environments in a flexible,
natural and robust manner ([RLS98]). In the Matchmaking scheme, providers
and customers of services advertise their capabilities as well as constraints and
preferences on the entities they would like to be matched with. A Match-
maker pairs compatible advertisements and notifies the matched entities, who
then activate a separate claiming protocol to mutually confirm the match and
complete the allocation. All policy considerations are contained within the ad-
vertisements themselves: the Matchmaker merely provides the mechanism to
interpret the specified policies in context. Advertisements are short-lived and
periodically refreshed, resulting in matches made using the up-to-date infor-
mation of entities that currently participate in the environment; the claiming
protocol is used to resolve the few remaining inconsistencies.

The goal of this chapter is to provide a complete description of the syntax
and semantics of the ClassAds language. Although we include some ClassAd
examples from the Matchmaking context, a full description of the details and
capabilities of the Matchmaking approach is beyond the scope of this chapter.
Interested readers are referred to other documents that fully address this topic
([RLS98], [Ram00]).

2. OVERVIEW

Stated in database terms, a ClassAd encapsulates data, schema (metadata)
and queries (predicates) in a simple, self-defining structure. In effect, a ClassAd
is an extension of a property list, where the properties may be arbitrary expres-
sions (Figure 17.1).

[
room = "kitchen";
length = 17;
breadth = 8.54;
floor_area = length * breadth;
tile_size = 1.5;
num_tiles = ceiling(length/tile_size) *

ceiling(breadth/tile_size);
scrap = (num_tiles * tile_size * tile_size) +

- floor_area
]

Figure 17.1. An example ClassAd expression.

The ClassAds Language 257

The ClassAd expression (also called a record expression) consists of a set
of attribute definitions, each of which is a binding between an attribute name
and an expression. As seen from the example, the expressions may consist of
simple constants or arbitrary collections of constants and variables combined
with arithmetic and logic operators and built-in functions. The language also
has a list constructor, and operators to subscript from lists and select from
records. Lists and records may be arbitrarily nested.

The ClassAds language is functional (expression-oriented) and free of side-
effects: Expression evaluation has no other effect than generating the required
value. Expressions may be simplified into forms that are equivalent in context.
For example, the expressions bound to num tiles and scrap in the previous
example may be replaced by 72 and 16.82 respectively.

Expressions that may not be simplified further are said to be in normal form,
and are called constants. The language has been carefully designed so that
evaluation is efficient. In particular, it is possible for an implementation to
evaluate an expression in time proportional to the expression size.

ClassAd expressions are strongly but dynamically typed. Types supported
by the language include integer and floating point numbers, Boolean values
(true and false), character strings, timestamps, time intervals, and special error
and undefined values. The error value is generated when invalid operations
are attempted, such as "foo"3.14, 17/0, or {"foo", "bar"}. The
undefined value is generated when attribute references (i.e., attribute names
mentioned in expressions) cannot be successfully resolved due to missing or
circular attribute definitions. Attribute resolution during evaluation is block
structured: An attribute reference is resolved by searching all record expres-
sions containing the reference, from innermost outward, for a case-insensitive
matching definition. For example, the expression

[a = 1; b = c;
d = [f = g; i = a; j = c; k = l;];
L = d.k; C = 3;]

evaluates to

[a = 1; b = 3;
d = [f = undefined; i = 1; j = 3; k = undefined;];
L = undefined; C = 3;

]

ClassAds have several representations. The canonical (internal) representation
is an abstract syntax tree, consisting of a tree of operators and operands. Con-
crete syntaxes are external representations, consisting of sequences of charac-
ters. The above examples were rendered in the native syntax, although other
concrete syntaxes, including an XML syntax also exist. New concrete syn-
taxes may be defined in the future.

258 GRID RESOURCE MANAGEMENT

3. MATCHMAKING

The ClassAds language was designed to address the problem of heteroge-
neous resource representation, discovery and matching in distributed environ-
ments. The ClassAds language plays a central role in the Condor distributed
high throughput computing system, in which the characteristics and policies
of resources (such as workstations and storage servers) and customers (serial
and parallel jobs) are represented using the ClassAds language. Figures 17.2
and 17.3 illustrate example advertisements of workstations and jobs respec-
tively.

[
Type = "Machine";
Activity = "Idle";
KeybrdIdle = RelTime("00:23:12");
Disk = 323.4M;
Memory = 64M;
State = "Unclaimed";
LoadAvg = 0.045;
Mips = 104;
Arch = "INTEL";
OpSys = "SOLARIS7";
KFlops = 21893;
Name = "ws10.cs.wisc.edu";
Rank = other.Owner == "solomon" ? 1 : 0;
Requirements = other.Type == "Job"

&& LoadAvg < 0.3
&& KeybrdIdle > RelTime("00:15")
&& Memory - other.ImageSize >= 15M

]

Figure 17.2. An example workstation advertisement.

In order for an advertisement to be meaningfully included in the matchmak-
ing process, it must define top-level attribute definitions named
Requirements and Rank, which denote the constraints and preferences
of the advertising entity. The Requirements expression must specifically
evaluate to true (not undefined or any other value) for the constraints to be con-
sidered satisfied. The Rank expression may be considered to be a goodness
metric to measure the desirability of a candidate match, with higher values
denoting more desirable matches.

When determining the compatibility of two advertisements, the Matchmaker
places both advertisements in a single evaluation environment in which each
advertisement may use the attribute name other to refer to to the candidate
match ClassAd. Thus, a job may refer to the memory of a machine using

The ClassAds Language 259

the expression other.memory, while the machine may simultaneously refer
to the job’s owner using the expression other.owner. Interestingly, the
evaluation environment used for ClassAds is itself a ClassAd expression.

[
Type = "Job";
QueueDate = AbsTime("2002-10-03T10:53:31-6:00");
CompletionDate = undefined;
Owner = "solomon";
Cmd = "run_sim";
WantRemoteSyscalls = true
WantCheckpoint = true
Iwd = "/usr/raman/sim2";
Args = "-Q 17 3200 10";
Memory = 31M;
Rank = other.Kflops/1e3 + other.Memory/32;
Requirements = other.Type == "Machine"

&& other.Arch == "INTEL"
&& other.OpSys == "SOLARIS7"

]

Figure 17.3. An example job advertisement.

4. STRUCTURE AND SYNTAX

The ClassAds language defines a single abstract syntax, as well as several
concrete syntaxes. In this section, we describe the abstract syntax, as well as
the native concrete syntax. An XML concrete syntax has also been developed,
and future concrete syntaxes may be defined.

4.1 Abstract Syntax

The abstract syntax serves as the internal canonical representation of
ClassAd expressions. The abstract syntax tree is a rooted, ordered tree con-
sisting of a collection of nodes and edges. Each node is either an internal node
that includes a sequence of child nodes, or a child-less leaf node. Every node
(except the unique root node) also defines the unique parent node of which it
is a child. The leaves of an expression consist only of scalar constants and
references.

4.1.1 Constants

Constants may either be scalar or aggregate. A scalar constant may be
integer, real, string, boolean, absolute time, relative time, error or undefined.
Aggregate constants may be either records or lists. A record constant is one in

260 GRID RESOURCE MANAGEMENT

which every attribute name is bound to a constant, and a list constant is a finite
sequence of constants.

Each constant has a value that belongs to the domain defined by the type of
the constant, as shown in Table 17.1. There is a unique value of type Error;
error values may be annotated with an ASCII string for human consumption,
but all values of type Error are equivalent. Similar remarks apply to Undefined.

Table 17.1. Scalar constants.

Type Value or annotation
Integer 32-bit signed, two’s complement integer
Real 64-bit IEEE 754 double-precision floating point number
String Zero or more non-null ASCII characters
Boolean The value true or false
AbsTime Time offset to the base UNIX epoch time
RelTime Interval between two absolute times
Error Zero or more non-null ASCII characters for human consumption
Undefined Zero or more non-null ASCII characters for human consumption

4.1.2 Attribute Names

A leaf node may be a reference, which contains an attribute name—a se-
quence of one or more non-null ASCII characters. Two attribute names match
if the character sequences are of the same length and the corresponding char-
acters are the same except for differences in case. The reserved words error,
false, is, isnt, true, and undefined may not be used as attribute
names. Reserved words are defined independent of case, so false, FALSE
and False all refer to the same reserved word.

4.1.3 Operators

Much of the richness of the ClassAds language derives from the variety
of operators that the language offers. Operator nodes always reside as inter-
nal nodes in the abstract syntax tree, and have one or more operands that are
represented by the child nodes of the operator node. Operators are unary, bi-
nary, ternary or varargs according to whether they require one, two, three or
a variable number of operands. Operator precedence is used to disambiguate
expressions where multiple operator interpretations are possible, with larger
values denoting higher precedence. Thus, the expression

* A � * \ D is inter-
preted as

* A � � * \ D & because the DIV operator has higher precedence than the
PLUS operator. Table 17.2 lists the various operators along with their symbols
in the native concrete syntax and the corresponding precedence value. The
LIST, RECORD and FUNCTION CALL operators are varargs, the UPLUS,

The ClassAds Language 261

Table 17.2. Table of operators.

Name (Symbol) Precedence
UPLUS (+), UMINUS (-), BITCOMPLEMENT (~), NOT (!) 12
TIMES (*), DIV (/), MOD (%) 11
PLUS (+), MINUS (-) 10
LEFT SHIFT (<<), RIGHT SHIFT (>>), URIGHT SHIFT (>>>) 9
LESS (<), GREATER (>), LESS EQ (<=), GREATER EQ (>=) 8
EQUAL (==), NOT EQUAL (!=), SAME (is), DIFFERENT (isnt) 7
BITAND (&) 6
BITXOR (^) 5
BITOR (|) 4
AND (&&) 3
OR (||) 2
COND (? :) 1
SUBSCRIPT ([]) -
SELECT (.) -
LIST ({ ... }) -
RECORD ([...]) -
FUNCTION CALL (name(...)) -

UMINUS, BITCOMPLEMENT and NOT operators are unary, and the COND
operator is ternary. All other operators are binary.

Almost all operators accept arbitrary expressions for any of their operands.
Since ClassAd expressions are dynamically typed, even illegal expressions like
"foo"/34.3 are valid: such expressions merely evaluate to error. The three
operators that place restrictions on their operands are the SELECT, RECORD
and FUNCTION CALL operators. The second operand of the SELECT oper-
ator, which is called the selector must be an attribute name. The first operand
of the varargs FUNCTION CALL operator, the function name, must be a non-
empty sequence of characters and must be chosen from the fixed set of built-in
function names, as listed in Section 5.3.8: the remaining operands, the actual
parameters, may be arbitrary expressions. The RECORD operator has zero or
more operands, each of which is an attribute definition. An attribute definition
is an ordered pair consisting of an attribute name and an arbitrary expression.

4.2 Native Syntax

The native syntax of the ClassAds language is similar to C, C++ or Java.
The character representation of the expression consists of a sequence of tokens
that are separated by white space and comments. As in C++ and Java, there are
two kinds of comments: line comments are introduced by the sequence // and
extend up to the next newline character, whereas non-nestable block comments
are introduced by the sequence /* and extend up to the first */ sequence.

262 GRID RESOURCE MANAGEMENT

4.2.1 Tokens

The tokens that comprise the native syntax include integer, floating-point
and string literals, as well as character sequences to define attribute names
and operators, including miscellaneous delimiting characters. The native syn-
tax character sequences that specify operators are listed in Table 17.2. The
sequences that define the other token types are described below.

Integers. Integer literals may be specified in decimal, octal or hexadecimal
notations. E.g., 17, 077, 0xdeadbeef.

Reals. Real literals may be specified using conventional notations such as
3.1415 or 1.3e5. In addition, integer or real literals followed by the
suffixes B, K, M, G and T result in an a real valued literal whose value is
the original value times 1, 1024, 1048576, 1073741824 or
1099511627776 respectively. (As can be guessed, these suffixes stand
for byte, kilobyte, megabyte, gigabyte and terabyte respectively.)

Strings. A string literal is specified by enclosing zero or more characters be-
tween double quotes. E.g., "foo", "bar". In addition, escaped char-
acter sequences such as "hello,\\n\\tworld"may also be speci-
fied.

Attribute Names. An attribute name may be specified either as an unquoted
name or as a quoted name. Unquoted attribute names are simple se-
quences of alphanumeric characters and underscores in which the first
character is not a digit. All attribute names in the example expressions
have been unquoted attribute names. Quoted attribute names are delim-
ited by single quotes, and can contain arbitrary characters in the attribute
name, including escape sequences. Examples of quotes attribute names
include ’a long attr name’ and ’9 times 9\nequals
\n\t81’.

4.2.2 Grammar

The native syntax is defined by the informal context-free grammar illus-
trated in Figure 17.4. The grammar has been simplified for ease of readability:
since Figure 17.2 specifies both operator precedence and concrete syntactic
representations of operators, these details have been omitted from the gram-
mar.

4.2.3 Parsing and Unparsing

The process of parsing associates a node in the abstract syntax tree with
every activation of the expression, binary expression, prefix expression or suf-
fix expression productions. For example, a binary expression of the form

� � ^�� �

The ClassAds Language 263

expression ::= binary_expression
| binary_expression ’?’ expression

’:’ expression
binary_expression ::= binary_expression binary_operator

prefix_expression
| prefix_expression

prefix_expression ::= suffix_expression
| unary_operator suffix_expression

suffix_expression ::= atom
| suffix_expression ’.’ attribute_name
| suffix_expression ’[’ expression ’]’

atom ::= attribute_name
| ’error’ | ’false’
| ’undefined’ | ’true’
| integer_literal
| floating_point_literal
| string_literal
| list_expression
| record_expression
| function_call
| ’(’ expression ’)’

list_expression ::= ’{’ (expression (’,’
expression)* ’,’?)? ’}’

record_expression ::= ’[’ (attr_def (’;’ attr_def)* ’;’?)? ’]’
attr_def ::= attribute_name ’=’ expression
function_call ::= unquoted_name ’(’ (expression

(’,’ expression)*)? ’)’

Figure 17.4. Grammar of the concrete native syntax.

A � � ^�� � parses to an internal PLUS expression with operands corresponding
to the parsed output of

� � ^�� � and
� � ^�� � . Due to the presence of whitespace,

comments and optional parentheses, it is possible for multiple distinct strings
to parse to the same internal form. To support certain features like loss-less
transport and the built-in string function, we also define a canonical un-
parsing of an expression which, when parsed, yields an equivalent expression.

The canonical unparsing of an expression is completely parenthesized, and
has no comments or whitespace outside string literals or attribute names. For
example, the strings "b * b - 4 * a * c" and "(b*b)-(4*(a*c))"
both parse to the same internal form: the second string is the canonical unpars-
ing.

The canonical unparsing of an unquoted attribute name is simply the name
itself. Otherwise, a quoted name syntax is used where the name is delimited by
apostrophes and normal characters are left untouched, but backslashes are dou-
bled, apostrophes and double quotes are escaped and non-printable characters

264 GRID RESOURCE MANAGEMENT

are converted to escaped sequences. The canonical unparsing of string liter-
als follows the same rules, except that string literals are delimited with double
quotes.

The canonical unparsing of a record or list omits the optional trailing delim-
iter, so the empty record and list unparse to [] and {} respectively. The true,
false, error and undefined values respectively unparse to the literal character
sequences true, false, error and undefined of the native syntax.

The canonical unparsing of an integer is always performed in decimal no-
tation. In order to ensure loss-less representation of floating point numbers,
the canonical unparsing of a floating point number is defined to be the string
representation of a call to a built-in function. Specifically, the canonical un-
parsing is ieee754("XXXXXXXXXXXXXXXX"), where the sequence of X’s
represent the bit pattern (in lower-case hexadecimal) of the 64-bit quantity that
specifies the floating point number.

Similarly, the canonical unparsing of time values have the form of the built-
in functions reltime or abstime applied to a string containing the ISO
8601 representation of the date. Examples are reltime("5:15:34") and
abstime("2002-03-02T08:21:31").

5. EVALUATION AND SEMANTICS

The semantics of expression evaluation are defined assuming bottom-up
evaluation of the internal expression tree, along with call-by-value semantics.
In other words, each internal node is evaluated by evaluating all its children
and then applying the relevant operator to the resulting sequence of values.
Other evaluation strategies, such as a “lazy” evaluation scheme that only eval-
uates subexpressions whose values are required, are permissible provided that
the same results are produced.

5.1 Types, Undefined and Error

Every expression evaluates to a constant, which is an expression that con-
tains no free attribute references, and no operators other than LIST
and RECORD. Each constant has a type, which is one of Integer, Real, String,
Boolean, AbsTime, RelTime, Undefined, Error, List or Record. Integer and
Real are collectively called numeric types. AbsTime and RelTime are collec-
tively called timestamp types. Each operator imposes constraints on the types
of its operands. If these constraints are not met, the result of the evaluation
is error. In addition, attribute references evaluate to undefined if the reference
could not be successfully resolved either due to absent or
circular attribute definitions. For example, all attributes of the
expression [a = b ; b = a ; c = x] evaluate to undefined.

The ClassAds Language 265

Most operators are strict with respect to undefined and error That is, if any
operand is undefined or error, the operator correspondingly evaluates to unde-
fined or error (error, if both are present). The only exceptions are the Boolean
operators described in Section 5.3.5, the is and isnt operators described
in Section 5.3.2, and the LIST and RECORD constructors described in Sec-
tion 5.3.7. Strict evaluation obeys the following ordered sequence of rules.

1 If the operands do not obey the type restrictions imposed by the operator,
the result is error. The following sections list all combinations of types
accepted by each operator.

2 Otherwise, if any operand of a strict operator is undefined, the result is
undefined.

3 Otherwise, the result is computed from the operands as described in the
following sections.

5.2 Leaves

A leaf node that is a constant evaluates to itself. A leaf node that is a ref-
erence

`
with attribute name � is evaluated by finding the closest ancestor

record node
`»º

containing a definition � ºb< � � ^�� such that � º matches � ,
ignoring differences in case. If no such ancestor exists, the resulting value is
undefined. Otherwise, the value of

`
is the value of

� � ^�� . If the evaluation of� � ^�� directly or indirectly leads to a re-evaluation of
`

(i.e., a circular defini-
tion), the value of

`
is undefined.

5.3 Internal Nodes

5.3.1 Boolean Operators

The binary Boolean operators && and ||, and the ternary operator _?_:_
are non-strict: they are evaluated “left-to-right” so that

true || �½¼ true
false && �¾¼ false
true ?

¬NL «
: �½¼ ¬[L «

false ? � : ¬NL « ¼ ¬NL «
even if � evaluates to error. The Boolean operators treat Boolean values as
a three-element lattice with false t undefined t true. With respect to this
lattice, AND returns the minimum of its operands, OR returns the maximum,
and NOT interchanges true and false.

266 GRID RESOURCE MANAGEMENT

5.3.2 The SAME and DIFFERENT Operators

The SAME and DIFFERENT operators have non-strict semantics, and check
if the two comparands are identical or different, where different is defined as
the negation of the identical relation.

Specifically,
¬NL « � SAME

¬[L « � evaluates to true if and only if both
¬NL « � and¬[L « � are identical, and false otherwise. The identical-to relation is defined as

follows:

Values of different types are never identical. So,
D

and
D �

are not iden-
tical.

Two values both of type Integer, Real, AbsTime and RelTime are identi-
cal if and only if the values are numerically equal.

Two values of type Boolean are identical if and only if they are both true
or both false.

All undefined values are identical, as are all error values.

Two values of type String are identical if and only if they are identical
character by character, with case being significant. So the expressions,
("One" == "one") and ("One" isnt "one") both evaluate to
true.

Two values of type List or Record are identical if and only if they are
both created by the same expression. So, in the expression
[a = { 1 }; b = { 1 } ; c = a is b ; d = a is a]
the values of c and d are false and true respectively.

Note that the SAME and DIFFERENT operators always evaluate to true or
false, never undefined or error.

5.3.3 Comparison Operators

The comparison operators EQUAL, NOT EQUAL, LESS, LESS EQ,
GREATER and GREATER EQ evaluate to true only if the two comparands are
both numeric (i.e., Integer or Real), AbsTime, RelTime or String. The com-
parison evaluates to error if the values being compared are not of the above
combinations. For numeric and timestamp values, the comparison proceeds
as if the underlying numbers are being compared. String values are compared
lexicographically, ignoring case.

5.3.4 Arithmetic Operators

The arithmetic operators operate in the natural way when operating on nu-
meric types — they are defined to deliver the same results as the corresponding

The ClassAds Language 267

operators in Java. In particular if both operands of a binary arithmetic operator
are Integers, the result is an Integer; if one operand is an Integer and the other
is a Real, the Integer value is promoted to a Real and the result is computed
using double precision floating point arithmetic.

The DIV operator’s action on integral argument results in a integral quotient
that has been truncated towards zero. Likewise, the MOD operator generally
returns a remainder that has the same sign as the dividend. The action of both
these operators on a zero divisor yields the error value.

5.3.5 Bitwise Boolean and Shift Operators

The ClassAds language supports the bitwise operators BITAND, BITOR,
BITXOR, BITNOT and the shift operators LEFT SHIFT, RIGHT SHIFT and
URIGHT SHIFT. Their semantics is exactly like those of their Java counter-
parts. All apply to Integer operands and all but the shifts apply to Boolean
operands.

5.3.6 Select and Subscript

The SELECT operator requires two operands, the base and the selector,
which must be an attribute name. The expression

¬[L «
SELECT

LN�_�k�
(which

is written in the native syntax as
¬[L «]LN�_�k�

) evaluates to undefined if
¬NL «

is un-
defined and error if

¬NL «
is not a Record or a List. If

¬[L «
is the list LIST(

� À , � �
,
� �), the value of

¬NL «
SELECT

L:�k�k�
is LIST(

� À SELECT
LN�_�k�

,
 � �

,
� �

SELECT
L:�k�_�

). If
¬NL «

is a RECORD, the value of
¬NL «

SELECT
L:�k�k�

is iden-
tical to making the reference

LN�k�_�
in the Record value

¬NL «
. In other words,

the Record values enclosing
¬NL «

are searched successively from innermost to
outermost for a definition of the form

L:�k�_�x<�¬[L « �J�
, where the attribute names

are matched ignoring case. If a match is found, the resulting value is
¬[L « �Z�

.
Otherwise, the resulting value is undefined.

The SUBSCRIPT operator also requires two operands, the base and a sub-
script. The types of these operands must be either List and Integer, or Record
and String; any other combination of types results in the generation of unde-
fined or error values as appropriate. If the base is a List with

O
components

and the subscript is an Integer with value
o

, the result is the
o ¼�¿

component of
the list, where

�ÁÀ o t O . If
o

is outside the numeric bounds above, the result
of the expression is error.

When the base is a Record and the subscript is a String, the expression.dL H � SUBSCRIPT H �Z. H Md�%7 ^�� behaves exactly like the corresponding SELECT
operator. Thus the value of b is 1 in both the following expressions:
[a = [One = 1 ; Two = 2]; b = a.One]
[a = [One = 1 ; Two = 2]; b = a["one"]]

268 GRID RESOURCE MANAGEMENT

5.3.7 List and Record Constructors

The LIST and RECORD operators are vararg operators due to their variable
arity. The LIST operator takes a sequence of arbitrary values and creates a
List value by composing the values in order. Similarly a RECORD operator
takes a sequence of

��OcL:�"�-Q�¬NL « �J�1&
pairs and creates a Record value with the

appropriate entries.
Note that although the call-by-value semantics of these operators defines

complete evaluation of all constituent expressions, other more efficient eval-
uation schemes (such as “lazy evaluation” or call-by-name) may be used if
the semantics are not altered. Thus, the expression {...}[3] may be effi-
ciently evaluated by evaluating only the third component of the list. Similarly,
[...].aa may directly evaluate to undefined without evaluating any of the
definitions of the record if aa is not defined in the record. If a match is found,
only the matched expression and the sub-expressions used by the matched def-
inition require evaluation.

5.3.8 Function Calls

The FUNCTION CALL operator takes a function name and a variable num-
ber of actual parameters, which may be arbitrary values. The function name
must match the name of one of the built-in functions, but case is not significant.
Thus int(2.3), Int(2.3) and INT(2.3) all call the same function.

All the functions listed in Figure 17.3 are strict on all arguments with respect
to undefined and error, so if undefined or error is supplied for any argument,
the function correspondingly returns undefined or error. (Future versions of
this specification may introduce non-strict functions). Functions also return
error if the number or type of arguments do not match the function’s prototype.

6. APPLICATIONS

The primary application of the ClassAds language is the representation and
participation of resources and customers in Condor’s matchmaking-based re-
source discovery and allocation framework. As described in Section 3, the
language allows resources and customers to represent their characteristics and
policies in a simple, yet expressive scheme. In a similar fashion, ClassAds
have been used to distribute jobs across widely distributed Grid sites by the
European Data Grid’s Resource Broker ([GPS

�
02]). However, the ClassAds

language has applicability beyond this role.
The Hawkeye distributed system administration application represents prob-

lem symptoms as ClassAds, and leverages the matchmaking process to iden-
tify problems in distributed environments ([Haw]). Within the Condor sys-
tem itself, ClassAds have also been used in self-describing network protocols,

The ClassAds Language 269

Table 17.3. List of built-in functions.

Function Description
IsUndefined(V) True iff V is the undefined value.
IsError(V) True iff V is the error value.
IsString(V) True iff V is a string value.
IsList(V) True iff V is a list value.
IsClassad(V) True iff V is a classad value.
IsBoolean(V) True iff V is a boolean value.
IsAbsTime(V) True iff V is an absolute time value.
IsRelTime(V) True iff V is a relative time value.
Member(V,L) True iff scalar value V is a member of the list L
IsMember(V,L) Like Member, but uses is for comparison instead of ==.
CurrentTime() Get current time
TimeZoneOffset() Get time zone offset as a relative time
DayTime() Get current time as relative time since midnight.
MakeDate(M,D,Y) Create an absolute time value of midnight for the

given day. M can be either numeric or string (e.g., "jan").
MakeAbsTime(N) Convert numeric value N into an absolute time
MakeRelTime(N) Convert numeric value N into a relative time
GetYear(AbsTime) Extract year component from timestamp
GetMonth(AbeTime) 0=jan, ..., 11=dec
GetDayOfYear(AbsTime) 0 ... 365 (for leap year)
GetDayOfMonth(AbsTime) 1 ... 31
GetDayOfWeek(AbsTime) 0 ... 6
GetHours(AbsTime) 0 ... 23
GetMinutes(AbsTime) 0 ... 59
GetSeconds(AbsTime) 0 ... 61 (for leap seconds)
GetDays(RelTime) Get days component in the interval
GetHours(RelTime) 0 ... 23
GetMinutes(RelTime) 0 ... 59
GetSeconds(RelTime) 0 ... 59
InDays(Time) Convert time value into number of days
InHours(Time) Convert time value into number of hours
InMinutes(Time) Convert time value into number of minutes
InSeconds(Time) Convert time value into number of seconds
StrCat(V1, ... , Vn) Concatenates string representations of each value.
ToUpper(String) Convert to uppercase
ToLower(String) Convert to lowercase
SubStr(S,offset [,len]) Returns substring of S.
RegExp(P,S) Checks if S matches pattern P
Int(V) Converts V to an integer.
Real(V) Converts V to a real.
String(V) Converts V to its string representation
Bool(V) Converts V to a boolean value.
AbsTime(V) Converts V to an absolute time.
RelTime(V) Converts V to an relative time.
Floor(N) Floor of numeric value N
Ceil(N) Ceiling of numeric value N
Round(N) Rounded value of numeric value N

270 GRID RESOURCE MANAGEMENT

semi-structured log records that can be filtered using ClassAd predicates and
configuration information for programs.

Other more complex kinds of matchmaking may also be developed using
the ClassAds language as the substrate. For example, Gangmatching uses the
ClassAds language to implement a multilateral extension to Condor’s strict
machine-job bilateral matchmaking scheme ([RLS03], [Ram00]). The Class-
Ads language has also been extended slightly to allow matches against sets
of resources, where the size of the set is not known in advance ([LYFA02]).
Such set matching requires relatively few changes to the ClassAds language,
but very different matchmaking algorithms.

7. CONCLUSIONS

This chapter has provided an overview of the ClassAds language. The
ClassAds language has been used extensively in the Condor system to support
resource representation, discovery and allocation. The language’s dynamically
typed, semi-structured data model naturally accommodates the heterogeneity
and dynamism observed in distributed Grid environments. ClassAd expres-
sions are expressive enough to capture the policy expectations of resources
and customers that participate in high throughput and opportunistic Grid com-
puting. At the same time, the simplicity of the language affords efficient and
robust implementation. These properties have collectively enabled ClassAds
to be used in other domains independent of the Condor system.

Chapter 18

MULTICRITERIA ASPECTS OF GRID
RESOURCE MANAGEMENT

Krzysztof Kurowski,
�

Jarek Nabrzyski,
�

Ariel Oleksiak,
�

and Jan Węglarz
��� �

�
Poznań Supercomputing and Networking Center,�
Institute of Computing Science, Poznań University of Technology

Abstract Grid resource management systems should take into consideration the applica-
tion requirements and user preferences on the one hand and virtual organiza-
tions’ polices on the other hand. In order to satisfy both users and resource
owners, many metrics, criteria, and constraints should be introduced to formu-
late multicriteria strategies for Grid resource management problems.

In this chapter we argue that Grid resource management involves multiple
criteria and as such requires multicriteria decision support. We discuss available
multicriteria optimization techniques and methods for user preference modeling.
The influence of the Grid nature on the resource management techniques used
is also emphasized, including issues such as dynamic behavior, uncertainty, and
incomplete information. We present three aspects of the resource management
process: (i) providing the resource management system with all the necessary
information concerning accessible resources, application requirements, and user
preferences, (ii) making decisions that map tasks to resources in the best possible
way, and (iii) controlling the applications and adapting to changing conditions
of the Grid environment.

1. INTRODUCTION

This chapter has two main objectives: to prove a need for a multicriteria ap-
proach to Grid resource management, and to present ways to achieve this ap-
proach. To accomplish these objectives, we identify participants in a resource
management process. We present methods of modeling their preferences and
making the final decision concerning the best compromise for mapping tasks
to resources. These methods are illustrated by an example. Furthermore, we
define additional techniques to cope with the dynamic behavior of tasks and
resources as well as uncertain and incomplete information.

272 GRID RESOURCE MANAGEMENT

The rest of this chapter is organized as follows. Section 2 contains basic
notions and definitions related to a multicriteria approach. In Section 3 we jus-
tify the multicriteria approach in Grid resource management. The reader can
find there an answer to the question why Grid resource management involves
multiple criteria. With this end in view, this section aims at brief clarifica-
tion and comparison of the two main resource management strategies in the
Grid: application-level scheduling and job scheduling. We view these strate-
gies as two contradictory approaches from the perspective of performance and
high-throughput as well as that of Grid resource management. However, we
conclude that it is possible to combine both strategies and take advantages of a
multicriteria approach and AI support techniques. Additionally, the main par-
ticipants of the Grid resource management process are defined in this section.

In Section 4 we show how the multicriteria concept can be used in the Grid
resource management process. The steps that have to be performed, as well
as appropriate methods, are presented. This section includes an analysis of
possible criteria that can be used by various groups of stakeholders of the Grid
resource management process , presents methods of obtaining and modeling
their preferences, and shows how preference models can be exploited in order
to assign tasks to resources in the most appropriate way. In Section 5 ideas
and methods presented in the previous section are illustrated by an example.
This example depicts how multicriteria Grid resource management may look in
the presence of multiple constraints, criteria, and participants of this process.
In Section 6 we show how specific features of the Grid influence the Grid
resource management. We also present techniques and approaches that can
cope with these features. In Section 7 we draw some conclusions and present
the directions of our future research.

2. MULTICRITERIA APPROACH

In this section, we present the basis of our multicriteria approach, along with
the basic concepts and definitions needed for the rest of the chapter. We start
from a formulation of the multicriteria decision problem. Then we present ba-
sic definitions and describe different ways of modeling decision maker’s pref-
erences.

2.1 Multicriteria Decision Problem

In general, a decision problem occurs if there exist several different ways
to achieve a certain goal. In addition, the choice of the best method for the
achievement of this goal cannot be trivial. These different ways are decision
actions, also called compromise solutions or schedules in this chapter. An
evaluation of decision actions is often based on multiple criteria. Generally,
the main goal of a multicriteria decision making process is to build a global

Multicriteria Aspects of Grid Resource Management 273

model of the decision maker’s preferences and exploit them in order to find
the solution that is accepted by a decision maker with respect to values on all
criteria. In order to accomplish this, preferential information concerning the
importance of particular criteria must be obtained from a decision maker. If
these preferences are not available, then the only objective information is the
dominance relation in the set of decision actions. The basic concepts are briefly
presented in the next section.

2.2 Basic Definitions

The concepts of the non-dominated and Pareto-optimal set are crucial to the
choice of the compromise solution. Two spaces must be distinguished: deci-
sion variable space and criteria space. The former contains possible solutions
along with values of their attributes. The set of solutions in this space will be
denoted by D in the chapter. The set µ can be easily mapped into its image
in criteria space, which creates the set of points denoted by C(D). The most
important definitions concerning these sets are presented below. The functionsI � � � & represents values of criteria, and their number is denoted by k.

Definition 1 (Pareto Dominance)
Point z s C(D) dominates z’ s C(D), denoted as z Â z’, if and only ifïwð s � Q� Q�ocQS8 � U+8 º�ÄÃ�Å 7 s � Q� Q�oÇÆ:8 � (W8 º� (z’ is partially less than z).
Thus, one point dominates another if it is not worse with respect to all cri-

teria and it is better on at least one of them.

Definition 2 (Pareto Optimality)
Point z’ s C(D) is said to be non-dominated with respect to the set C(D)
if there is no z s C(D) that dominates z’. A solution x is Pareto opti-

mal(efficient) if its image in the criteria space is non-dominated.

Definition 3 (Pareto-optimal Set)
The set

Á ¨ of all Pareto-optimal solutions is called the Pareto-optimal set.
Thus, it is defined as:

Á ¨ <ÉÈ
x s D

Â¦Ê Å x’ s D: z’ Â z Ë , where
8nº

and8 sª� � µ &
Definition 4 (Pareto Front)

For a given Pareto optimal set
Á ¨ , Pareto front

��Á � ¨ & is defined asÁ � ¨ <ÌÈq8ó<ÌÈ1I � <®8 � Q� Q�IX£'� x &n<®8¢£ Ë Â x s Á ¨ Ë
A Pareto front is also called a non-dominated set because it contains all

non-dominated points.

274 GRID RESOURCE MANAGEMENT

2.3 Preference Models

As mentioned in Section 2.15, using the decision maker’s preferential infor-
mation concerning the importance of particular criteria, one can build a pref-
erence model that defines a preference structure in the set of decision actions.
Preference models can aggregate evaluation on criteria into

a) functions (e.g., weighted sum)
b) relations (e.g., binary relation: action a is at least as good as action b)
c) logical statements (e.g., decision rules: ”if conditions on criteria, then

decision,” where ”if conditions on criteria” is a conditional part of the rule and
”then decision” is a decision part of a rule).

Preference models and the relations between them are investigated, for ex-
ample, in [SGM02].

3. MOTIVATIONS FOR MULTIPLE CRITERIA

In this section we briefly describe the main motivations behind multicriteria
strategies in Grid resource management. Multicriteria approaches focus on a
compromise solution (in our case a compromise schedule). In this way, we can
increase the level of satisfaction of many stakeholders of the decision making
process and try to combine various points of view, rather than provide solutions
that are very good from only one specific perspective as is currently common
in other Grid resource management approaches. Such specific perspectives
result in different, often contradictory, criteria (along with preferences) and
make the process of mapping jobs to resources difficult or even impossible.
Consequently, all the different perspectives and preferences must be somehow
aggregated to please all the participants of the Grid resource management pro-
cess.

3.1 Various Stakeholders and Their Preferences

Grid scheduling and resource management potentially involves the interac-
tion of many human players (although possibly indirectly). These players can
be divided into three classes: (i) end users making use of Grid applications and
portals, (ii) resource administrators and owners, and (iii) virtual organization
(VO) administrators and VO policy makers (compare [FK99b]).

One goal of Grid resource management systems is to automate the schedul-
ing and resource management processes in order to minimize stakeholders’
participation in the entire process. That is why the final decision is often del-
egated to such systems. Thus, in this chapter, by the decision maker notion
we mean a scheduler, and all human players listed above are stakeholders of
a decision making process. This model assumes a single (artificial) decision
maker in a VO. In real Grids, however, multiple stakeholders (agents) may of-

Multicriteria Aspects of Grid Resource Management 275

ten act according to certain strategies, and the decision may be made by means
of negotiations between these agents. Such an approach requires distributed
decision making models with multiagent interactions [San99], which will not
be discussed in this chapter.

We refer to the assignment of resources to tasks as a solution or a schedule.
Since we consider many contradictory criteria and objective functions, finding
the optimal solution is not possible. The solution that is satisfactory from all
the stakeholders’ points of view and that takes into consideration all criteria is
called the compromise solution (see definitions in Section 2.1).

The need for formulation of Grid resource management as a multicriteria
problem results from the characteristics of the Grid environment itself. Such
an environment has to meet requirements of different groups of stakeholders
listed at the beginning of this section. Thus, various points of view and poli-
cies must be taken into consideration, and results need to address different
criteria for the evaluation of schedules. Different stakeholders have different,
often contradictory, preferences that must be somehow aggregated to please all
stakeholders. For instance, administrators require robust and reliable work of
the set resources controlled by them, while end users often want to run their ap-
plications on every available resource. Additionally, site administrators often
want to maintain a stable load of their machines and thus load-balancing crite-
ria become important. Resource owners want to achieve maximal throughput
(to maximize work done in a certain amount of time), while end users expect
good performance of their application or, sometimes, good throughput of their
set of tasks. Finally, VO administrators and policy makers are interested in
maximizing the whole performance of the VOs in the way that satisfy both end
users and administrators.

Different stakeholders are not the only reason for multiple criteria. Users
may evaluate schedules simultaneously with respect to multiple criteria. For
example, one set of end users may want their applications to complete as soon
as possible, whereas another one try to pay the minimum cost for the resources
to be used. Furthermore, the stakeholders may have different preferences even
inside one group. For example, a user may consider time of execution more
important than the cost (which does not mean that the cost is ignored).

3.2 Job Scheduling

Job scheduling involves using one central scheduler that is responsible for
assigning the Grid resources to applications across multiple administrative do-
mains. As presented in Figure 18.1, there are three main levels: a set of ap-
plications, a central scheduler, and the Grid resources. In principle, this ap-
proach is in common use and can be found today in many commercial and
public-domain job-scheduling systems, such as Condor [CON] (also Chap-

276 GRID RESOURCE MANAGEMENT

The Grid resources
The Grid resources

Application Application

Resource requirements
(soft and hard constraints)

Scheduler

Application

...

...

...

Resource requirements
(soft and hard constraints)

Resource requirements
(soft and hard constraints)

Resources allocation

and job execution

Available resources

and job controlling

Figure 18.1. Major blocks and flow of information processes in the job scheduling approach.

ter 17, PBS [PBS] (also Chapter 13), Maui [Mau] (also Chapter 11), and
LSF [LSF] (also Chapter 12). A detailed analysis and their comparative study
are presented in [KTN

�
03].

The first block in Figure 18.1 describes applications and their requirements.
The second block represents a scheduler and its role in processing resource
allocation, control, and job execution. Note that the dynamic behavior seen in
Grid environments is most often the result of competing jobs executing on the
resources. By having a control over all the applications, as happens in the job-
scheduling approach, a central scheduler is able to focus on factors that cause
variable, dynamic behavior, whereas application-level schedulers have to cope
with these effects.

3.3 Application-Level Scheduling

With application-level scheduling, applications make scheduling decisions
themselves, adapting to the availability of resources by using additional mech-
anisms and optimizing their own performance. That is, applications try to con-
trol their behavior on the Grid resources independently. The general schema of
this approach is presented in Figure 18.2. Note that all resource requirements
are integrated within applications.

Note that such an assumption causes many ambiguities in terms of the clas-
sic scheduling definitions. When we consider classic scheduling problems, the
main goal is to effectively assign all the available task requirements to available
resources so that they are satisfied in terms of particular objectives. In general,
this definition fits more the job scheduling approach, where job scheduling
systems take care of all the available applications and map them to resources
suitably. In both cases,

Multicriteria Aspects of Grid Resource Management 277

The Grid resources
The Grid resources

Application
Resource requirements

Scheduler

Available resources and job controlling

Resources allocation and job execution

Application
Resource requirements

Scheduler

Application
Resource requirements

Scheduler
...

...

...

Figure 18.2. Major blocks and flow of information processes in the application level schedul-
ing approach.

Application-level scheduling differs from the job-scheduling approach in
the way applications compete for the resources. In application-level schedul-
ing, an application schedule no knowledge of the other applications, and in
particular of any scheduling decisions made by another application. Hence, if
the number of applications increases (which is a common situation in large and
widely distributed systems like a Grid), we observe worse and worse schedul-
ing decisions from the system perspective, especially in terms of its overall
throughput. Moreover, since each application must have its own scheduling
mechanisms, information processes may be unnecessarily duplicated (because
of the lack of knowledge about other applications’ scheduling mechanisms).

Hence, the natural question is: Why do we need the application level schedul-
ing approach? In practice, job scheduling systems do not know about many
specific internal application mechanisms, properties, and behaviors. Obvi-
ously, many of them can be represented in the form of aforementioned hard
constraints, as applications requirements, but still it is often impossible to
specify all of them in advance. More and more, end users are interested in
new Grid-aware application scenarios [AAG

�
02] (also detailed in Chapter 3.

New scenarios assume that dynamic changes in application behavior can hap-
pen during both launch-time and run-time, as described in Chapter 6. Conse-
quently, Grid-aware applications adapt on-the-fly to the dynamically changing
Grid environment if a purely job scheduling approach is used. The adaptation
techniques, which in fact vary with classes of applications, include different
application performance models, and the ability to checkpoint and migrate.

Consequently, job scheduling-systems are efficient from high-throughput
perspective (throughput based criteria) whereas application-level schedulers
miss this important criterion, even though internal scheduling mechanisms can
significantly improve particular application performance (application perfor-
mance based criteria).

278 GRID RESOURCE MANAGEMENT

3.4 Hard and Soft Constraints

In this section we show that by extending present job-scheduling strategies
(especially to the way application requirements are expressed), we are able to
deal with both throughput and application-centric needs.

As noted in the preceding section, a central scheduler receives many re-
quests from different end-users to execute and control their applications. Re-
quests are represented in the form of hard constraints, a set of application and
resources requirements that must be fulfilled in order to run an application
or begin any other action on particular resources. These constraints are usu-
ally specified by a resource description language such as RSL in the Globus
Toolkit [FK98a], ClassAds in Condor (as described in Chapter 17), or JDL
in DataGrid [EDGa]. Simply stated, a resource description language allows
the definition of various hard constraints, such as the operating system type,
environment variables, memory and disk size, and number and performance
of processors, and generally varies with classes of applications on the Grid.
Based on our experiences with large testbeds and respecting the idea of Grid
computing (as explained in Chapter 1), we are of the opinion that many exten-
sions to the resource description languages are needed to represent soft con-
straints, the criteria for resource utilization, deadlines, response time, and so
forth needed when many stakeholders are involved. Unfortunately, soft con-
straints are rarely expressed in the resource description language semantics,
and consequently they are omitted in many resource management strategies.
We note that some work has been done in the GridLab project (XRSL descrip-
tion language) to address these issues [GL].

The main difference between hard and soft constraints is that hard con-
straints must be obeyed, whereas, soft constraints they should be taken into
consideration in order to satisfy all the stakeholders as far as possible. In other
words, we are able to consider soft constraints if and only if all hard con-
straints are met. Yet, soft constraints are actually criteria in the light of de-
cision making process, and they are tightly related to the preferences that the
stakeholders of the process want to consider.

We have indicated that resource management in a Grid environment requires
a multicriteria approach. However, proposition of a method coping with multi-
ple criteria during the selection of the compromise schedule does not solve the
resource management problem entirely. Therefore, apart from presenting our
view of the multicriteria Grid resource management process illustrated by an
example, we point out possible difficulties and problems as well as techniques
that can be used to cope with them in order to perform successfully resource
management in the Grid.

Multicriteria Aspects of Grid Resource Management 279

4. MULTICRITERIA APPROACH FOR GRID
RESOURCE MANAGEMENT

In this section we propose a multicriteria approach to resource management
that combines both the performance of an individual job (application-level
scheduling), and the performance of the Grid environment (job-scheduling ap-
proach) and combines two conflicting sets of criteria introduced as soft con-
straints. This approach leads to a more intelligent resource management strat-
egy that can fit the needs of the global Grid community as well as their Grid
applications.

We start by analyzing possible criteria that can be used in the Grid resource
management by various groups of stakeholders. We then propose several possi-
ble methods of obtaining and modeling decision makers’ preferences. Finally,
we show how preference models can be exploited using both decision rules
and multicriteria optimization in order to select the most appropriate schedule.

4.1 Criteria

Adequate criteria have to be chosen in order to represent all stakeholders
involved in the resource management process. In addition, all aspects of the
system and application efficiency must be considered. Hence, our approach
must consider criteria that measure application performance as well as the
throughput of the overall set of resources. We distinguish two general groups
of criteria: that, related to particular stakeholders (such as end users or resource
owners) and, that, related to the behavior of the whole system (which can be
represented by a VO policy maker or administrator).

Criteria can be also categorized into time criteria (e.g. mean response time,
makespan, mean weighted lateness), cost criteria (e.g. weighted resource con-
sumption, cost of the computation) and resource utilization criteria (e.g. load
balancing, minimal machine idleness).

The first group applies primarily to end users. This group is also interesting
for VO administrator, however, in the context of the whole VO’s performance.
Cost criteria are important to end users, resource owners and VO administrator.
Finally, resource owners and administrators focus on the last group of criteria.
In addition, VO administrator’s criteria may vary depending on the objectives
and polices adopted in a VO.

Within time criteria there is a subgroup of criteria that address lateness cri-
teria including deadlines and due dates. This subgroup is often treated as a
constraint when optimizing other criterion (i.e., makespan), although some-
times exceeding the due date does not result in a failure of the whole job or
even the single task. Therefore, the difference between a task completion time
and its due date can be treated as a criterion that should be minimized.

280 GRID RESOURCE MANAGEMENT

The important issue is to estimate precisely values of criteria. For instance,
calculation of all data transfers needed to provide a task with all required files
must to be done. Furthermore, all overheads related to a preparation of a task
for execution must be considered, including, for example, installation of re-
quired software, compilation of source code, etc.

Examples of definitions of criteria for representatives of different groups of
stakeholders that participate in a multicriteria resource management process in
the Grid are described in Section 5.

4.2 Modeling the Preferences

As explained in Section 2, decision maker’s preferences must be provided
to the scheduling algorithm in order to direct the search for compromise sched-
ules. Modeling preferences in a precise way allows participants of the decision
process to find satisfactory solutions. As described in Section 2.3, the prefer-
ences of a decision maker can be expressed in the form of decision rules, utility
functions, or relations. Relational models are adequate for relatively small sets
of decision actions.

Consequently, we take advantage of the first two approaches. In the mul-
ticriteria grid resource management system, preferences can be represented
as decision rules and weights in scalarizing functions. Rules express static
preferences regarding local resource management policy. Additionally, a rules
induction algorithm can take advantage of previous decisions in order to model
decision makers’ preferences automatically.

On the other hand, the weights that define the importance of particular crite-
ria can be obtained on the basis of priorities of particular tasks, priorities of end
users, or information obtained from stakeholders using the method presented
in [KNP01]. In this method, preferences are included in MC-RSL resource
specification language, which extends the standard RSL language by adding
the possibility of formulating a multicriteria approach for Grid resource man-
agement.

An example of expressing preferences of stakeholders in the form of both
decision rules and scalarizing functions is presented in Section 5.

4.3 Selection Method

In our opinion, a Grid resource management system should consist of many
different scheduling algorithms because of the diversity of applications and
dynamics of the Grid environment. An application can be an independent task
or a large set of tasks containing precedence constraints, and it can run from
several seconds to days. Additionally, the rate of incoming tasks can vary
over time. Furthermore, resource owners or system administrators will have

Multicriteria Aspects of Grid Resource Management 281

preferences for their general policies. A rule-based system is able to meet such
requirements because all policies can be taken into consideration.

Therefore, preferences of stakeholders can be expressed by using decision
rules on a high level and functions on a lower level within particular scheduling
algorithms. These issues concerning both rule-based systems and scalarizing
functions used in multicriteria optimization are considered in the next two sub-
sections.

4.3.1 Rule-Based System

On the basis of the considerations presented above we can identify the fol-
lowing set of requirements that a rule-based system should meet:

a) Expression of policies. The system should allow VO administrator and
policy maker to define rules with different levels of priorities to determine
required behavior for specific end users, tasks, and resources. A rule-based
system has to enable stakeholders to define all these preferences (in fact, hard
constraints) dynamically, that is, during work of the resource management sys-
tem.

b) Execution of different scheduling procedures on the basis of a job type.
Tasks submitted to the Grid may have very differentiated characteristics. In
general, for longer and more complex jobs, more advanced scheduling proce-
dures are needed. In addition, different scheduling algorithms should be used
for independent and dependent tasks or for interactive or batch applications.

c) Adaptation to the environment. Different scheduling strategies can be
adapted to a changing Grid environment in order to make the most of the ac-
cessible resources. Some decisions can be based on certain factors, such as
frequency of incoming tasks, a load of resources, and expressed in the form of
rules.

d) Selection of the best solutions from the Pareto-optimal set. If we perform
a multicriteria choice without any information concerning the importance of
a particular criterion, the result is the set of Pareto-optimal solutions. Thus,
further processing of the obtained solutions is required. In order to select one
compromise schedule without interference of stakeholders, the set of appropri-
ate rules should be used. Rules can be defined by the VO’s administrators and
end users or determined on the basis of their previous decisions (see [GMS01]
to get more information about methods for induction of decision rules).

The conditional part of a rule (see Section 2.3) should contain conditions
such as job type, particular resource requirements, and user identification.
Most of the conditions can be predefined or obtained in the process of clus-
tering and classification. Furthermore, since it is often difficult to express con-
ditions by using precise numbers, fuzzy conditions (see Section 7) should be
allowed as well. For instance, the rule: ’if the job is long, then run optimization
using rescheduling’ could be more appropriate than the rule ’if job is expected

282 GRID RESOURCE MANAGEMENT

to execute more than one hour, then run optimization using metaheuristic’. In
the case of the latter rule, optimization will not be run for a job that usually
finishes after fifty-nine minutes. The MC-Broker presented in [KNP01] is an
example of a system that takes advantage of decision rules in order to discover
resources, evaluate them, and select the best compromise solution from the
Pareto-optimal set. Examples of rules used in a multicriteria resource manage-
ment are given in Section 5.

4.3.2 Multicriteria Optimization

When a number of decision actions (solutions) is large or even infinite, it
is impossible to check all of them. In that case, methods searching the space
of possible solutions must be applied. We call this process a multicriteria
optimization.

The majority of scheduling problems are computationally hard even in the
single-criterion case. Thus, since exact algorithms are not appropriate for such
problems, enumerative or heuristic methods should be used. Dynamic pro-
gramming and branch and bound [Węg99] belong to the former approaches,
whereas minimum completion time or more general hill-climbing heuristic can
serve as the example of the latter methods. Enumerative methods are, in gen-
eral, practical only for relatively small instance sizes, because of their compu-
tational complexity. On the other hand, the heuristics mentioned above often
take a single specific metric into consideration and make decisions on the ba-
sis of local knowledge. Consequently, all these methods may turn out to be
inefficient, especially in the multicriteria case and for large sets of solutions.

Recently metaheuristics [Glo86] have been successfully used to solve vari-
ous combinatorial problems. They include, among others, Tabu
Search [Glo89], [Glo90], Simulated Annealing [KGJV83] and [Čer85] and
Evolutionary Algorithms [Hol75], [Gol89] and [Mic92]. The main idea of
these methods is general, so they can be used for single- and multi-criteria
problems with various metrics as the optimization criteria. The general ap-
proach to the single-criterion Grid scheduling problem using metaheuristics
has been presented in Chapter 19. These metaheuristics, however, can be ex-
tended to multicriteria problems.

In [Nab00] a multicriteria approach based on tabu search has been proposed.
The use of this methodology for Grid environments has also been studied and
presented in this thesis.

Many researchers emphasize that evolutionary algorithms (EAs) are espe-
cially suitable for multicriteria optimization, because of their ability to process
many solutions simultaneously in the population, whereas other techniques
usually process one solution. This is a good feature in multicriteria optimiza-
tion, when the goal is to find a set or a subset of Pareto optimal solutions. The
main difference between single and multiobjective EAs lies in the selection

Multicriteria Aspects of Grid Resource Management 283

phase. On the basis of values on particular criteria, a fitness value is assigned
to each solution. There are several techniques of multicriteria selection. Gener-
ally, methods of evaluating solution quality may be classified into two groups:
using scalarizing (utility) functions, and the so-called Pareto ranking of solu-
tions. It is difficult to judge which of these two methods is more effective be-
cause both have advantages and disadvantages. The former approach has been
investigated in [IMT96], [Jas98] and [IM98], where it has been successfully
used in a multiobjective genetic local search algorithm for workflow schedul-
ing. The latter has been introduced by [Gol89] and studied in [KC00a]. In
addition, a comparison of two algorithms using these two different approaches
is described in details in [KC00b].

We use scalarizing (utility) functions instead of finding a set or a subset of
Pareto-optimal solutions because a resource management system needs to se-
lect one schedule rather than the list of possible good solutions. The examples
of scalarizing functions, their use, and also certain drawbacks are presented in
the next section.

5. EXAMPLE OF MULTICRITERIA ANALYSIS

In this section we present an example of a multicriteria matching of tasks to
resources in a single VO. We show how a compromise schedule is selected in
the presence of multiple criteria and various participants of the decision making
process. Although this example is significantly simplified, it shows the need
for a multicriteria approach and explains how notions and definitions given in
the preceding sections can be used in practice. We assume that there is one
scheduler controlling R = 7 resources and then �ÎÍ¸Ï < D

end-users (eu1, eu2,
eu3) submit simultaneously their tasks

� ��� Q�� �d� Q�� ��� Q�� � � using this scheduler.
For simplicity, tasks of a particular end-user belong to the single job (which
cannot be assumed in general case). In addition, resources are managed and
administrated by �ÑÐÒ < D

resource owners (ro1, ro2, ro3), and there is also
one global VO administrator (see the first column in the in Figure 18.3).

Theoretically, the number of possible solutions for this example is 210, and
in general the number of solutions increases exponentially with the problem
instance size. Note that due to many hard constraints appearing in practice
(specified by means of resource description language, policy rules in a sched-
uler, etc.), the number of feasible solutions can be decreased significantly. For
instance, due to specific requirements of tasks (

� ��� Q�� �d� Q�� ��� , and
�
� �) the set of

available resources is limited to
� � Q�� � Q�� � and

� � . In addition, the manager’s
task

� ��� is assigned automatically to the dedicated resource
�
� (because invok-

ing appropriate administration rules) so only
� � Q�� � , and

� � are considered (see
the second column in Figure 18.1). Once all hard constraints are met, we can
examine the soft constraints and multicriteria analysis.

284 GRID RESOURCE MANAGEMENT

Scheduler

End users

t11 t21 t22 t31

Administrators

r1

r2

r3

r4

Hard constraints Soft constraints

t11: 1CPU>2GHz,
Mem>800MB

t21,t22: 1CPU>500MHz,
Mem>600MB

t31: 1CPU>1GHz,
Mem>300MB

Policy rules:
...
if “user = Manager”
then “user_priority =high”

if ”user_priority = high”
then “use r3 or r6 or r7”

if “current_day = Sunday”
then “do not use r1 and r2”

...
if “r1 up to 12h” then “cost = 3 per hour”
if “r2 up to 12h” then “cost = 1 per hour”
if “r3” then “cost = 10 per hour”

r1: IP 12.68.128.3, PC Linux OS,

2.4 GHz,512 MB RAM, Load 90%

r2: IP 201.3.13.65, PC Linux OS,

1.8 GHz,1 GB RAM, Load 10%

End users’ criteria and their preferences:
- the cost of resource usage ()

- the average execution time ()

C

T

(1) Manger: T very important, C unimportant
(2) User: T important, C important
(3) User: T less important, C very important

(1)Manager (2)User (3)User

?

r3: IP 12.43.15.22, UNIX OS,

4 x 1.8 GHz, 2 GB RAM, Load 0%

r4: IP 216.3.91.2, PC Linux OS,

1.4 GHz,512 MB RAM, Load 50%

r5
r7

r6

r3

t11

r5, r6, r7 do not meet hard constraints

r1

?

r2

?

r4

?

r3r1 r2 r4

t21t22 t31t11

Applications:

Resources:

The number of possible
solutions: (7!/(3!*4!))*3! = 210

Res. owners’ criteria and their preferences:

Global criteria and their preferences:

- the income (),I

(1) I very important
(2) I very important
(3) I unimportant

VO admin. criteria and his/her prefereces:

(1) End users - very important
(2) Res. owners - less importan
(3) VO admin. - less important

- the whole VO performance (VOP)

Multicriteria analysis:

The number of possible
solutions: (3!/(3!*1!))*3! = 6
s1

s2.

s3.

s4.

s5.

s6.

. (t21-r1, t22-r2, t31-r4)

(t21-r1, t22-r4, t31-r2)

(t21-r2, t22-r1, t31-r4)

(t21-r2, t22-r4, t31-r1)

(t21-r4, t22-r1, t31-r2)

(t21-r4, t22-r2, t31-r1)

?

The best compromise solution:

s3. (t21-r2, t22-r1, t31-r4) = 0.37

VO admin

Res. owners

Solutions:

A resource specification language:

Figure 18.3. Example of a multicriteria approach to Grid resource management.

On Table 18.1 we present the complete notation of parameters using for
multicriteria analysis in the example.

Groups of stakeholders (end users, resource owners, administrators, etc.)
represent their own preferences. Furthermore, each of these stakeholders may
want to evaluate solutions using multiple criteria. The novelty of our approach
is that all different points of view of various stakeholders (in the form of soft
constraints) are taken into consideration in the Grid resource management pro-
cess. Besides preferences, the performance of the whole VO is taken into
account as well. Thus, we consider two levels of criteria: criteria of particu-
lar stakeholders (end users and resource owners) along with their preferences
concerning these criteria, and aggregated criteria of stakeholders and criteria
important from the viewpoint of the VO policy (established by the VO admin-
istrator).

To make this example clear, we confine ourselves to �ÓÍ¸Ï�iÔ �d� �iÔ � < e
end-

users’ criteria: T - the average execution time (see Equation (1)) and C - the
cost of resource usage (see Equation (2)). Note, that we consider only two end
users because eu1’s task has been assigned

� ��� ¼ �
� . There is also a single

criterion �ÕÐÒ· ô ��� · ô �d� · ô � < �
for resource owners: I - income (see Equation (3))

Multicriteria Aspects of Grid Resource Management 285

Table 18.1. Notation of parameters used in the example.

Symbol DefinitionÖ
number of resourcesè»×]Ø
number of end-usersè»ÙÛÚ
number of resource ownersÝ ×]Ø© number of criteria for ith end-userÝ ÙÛÚ© number of criteria for ith resource ownerÝ�Ü Ú number of criteria for a VO administratorì ×}Ø© x weight of jth criterion of a ith end-userì ÙÛÚ© x weight of jth criterion of a ith resource ownerìÝÜ Úx weight of jth criterion of a VO administratorÞ ×]Ø© priority of ith end-userÞ ÙÛÚ priority of ith resource ownerß © number of task of ith user��ä�à�á execution time of jth task of ith user on a kth resourceâ © x�ã cost of the usage of kth resource by jth task of a ith userã solution containing numbers of resources allocated by particular tasksä ×]Ø© g ã l scalarizing function for ith end-userä ÙÛÚ© g ã l scalarizing function for ith resource ownerä Ü Ú g ã l scalarizing function for a VO administratorä ×]Ø© x g ã l value of jth criterion for ith end-userä ÙÛÚ© x g ã l value of jth criterion for ith resource ownerä Ü Úx g ã l value of jth criterion for a VO administrator

and a single criterion �Õå Ò < �
for the VO administrator: VOP - VO’s overall

performance (see formula (7)).
The goal is to minimize T, C, and VOP (and thus maximize the performance

of the whole VO) criteria and maximize the I criterion in order to satisfy all
groups of stakeholders. Below, the criteria are presented along with their short
descriptions:

- The average execution time (T). This is an average execution time of all
tasks submitted by the ith end-user. Optionally weights can be added in order
to express task priorities. This criterion can be expressed as

yZ� � � &Ã<
�
yZ�
F ò ©½
�d¾ �

� �]�{[© x Q (18.1)

where i denotes the number of the end user.
- The cost of resource usage (C). This is the sum of the costs of the re-

sources used by the end user’s tasks. This criterion can be expressed as

286 GRID RESOURCE MANAGEMENT

Table 18.2. Example vales of the total completion time(T) and cost(C) matrix for tasks� ` v Û�� `q` Û��qæ v and resources ç v Ûèç ` Ûqçêé
T Cç v ç ` ç é ç v ç ` ç é

� ` v 11h 13h 15h � ` v 33 13 10� `q` 7h 9h 11h � `q` 21 9 10� æ v 136h 160h 178h � æ v 200 100 10

� � � � &Ã<
ò ©½
�d¾ �

M �]�{[© x Q (18.2)

where i denotes the number of the end user.
- The income (I). This is the total income for the ith resource owner. This

criterion can be expressed as:

�� � � &Ã< ½
� � ��ë [© x ¾ £ M �!� £27�Q (18.3)

where k denotes the number of the resource, i denotes the number of the end
user and j =

� y��
First, the values of particular criteria for end users have to be computed.

Therefore, we need basic information regarding the values of parameters
needed for T and C criteria, see Table 18.2:

The values of criteria have to be standardized in view of their aggregation
using an arithmetic average. This standardization can be done by taking advan-
tage of the knowledge of the extreme values of the particular criteria. These
values can be obtained on the basis of various techniques (more details are pre-
sented in Section 6), directly from an end user or during a negotiation process,
as described in Chapter 8. In our example these ranges are set on the basis
of minimum and maximum values. In addition, we assume that the following
preferences unimportant, less important, important, and very important, de-
note values of weights: 0, 1, 2, and 3, respectively (see the third column in
Figure 18.3).

Scaled values on criteria (T, C) for the second and third end user (Table 18.3)
as well as the visualization of end-users’ preferences are presented in Fig-
ure 18.4.

The Pareto-optimal set for the second end-user includes s3, s6 solutions.
Note that for the third end-user all the solutions form the Pareto set. Because
of the preferences of the end users concerning the C and T criteria, the best

Multicriteria Aspects of Grid Resource Management 287

C

T

s1

s2

s3

s4

s5

s6

C

T

s1

s2

s3

s4

s5

s6

2 - End user: T important

C important

3 - End user: T less important

C very important

Figure 18.4. Scaled values of solutions in the criteria space (C, T) for second and third end
user.

compromise solutions are: s3 for eu2, and s1 or s3 for eu3 (see Section 2.2).
Let us now begin the second level of multicriteria analysis.

Aggregation of an end user’s criteria can be done by using a scalarizing
function, for instance

I Í¹Ï� � � &Ã<
�

ñ ¬ ×]Ø©�d¾ � i Í¸Ï�!� F
¬ ×]Øx½
�d¾ �

��i Í¸Ï�]� F I Í¹Ï�]� � � &�&hQ (18.4)

where i denotes the number of the end user.
We need to aggregate the criteria of the end-users and administrators in or-

der to represent their points of view in a global aggregation with VO-specific
criteria. In the example we assume that the priority of the second end user (eu2)
is adjusted to

^ Í¹Ï�iÔ � < e
, and the third to (eu3)

^ Í¸Ï�iÔ � < �
and all the resource

owners have the same priority p = 1. We propose the following (minimization)
criteria:

- End users’ satisfaction (EUS). This criterion measures to what extent an
end-users’ preferences have been met. It can be defined as a weighted average
of the end users’ scalarizing functions values:

Table 18.3. Scaled values on criteria C and T.

Solutions
ß ¤�ì ` í ì�¤ ` ß ¤�ì æ ß ¤�ì æ

s1 g � ` vî ç v Û�� `q` î ç ` Û��qæ vî çêé l 0.00 0.96 1.00 0.00
s2 g � ` vî ç v Û�� `q` î çêédÛ��qæ vî ç ` l 0.50 1.00 0.57 0.47
s3 g � ` vî ç ` Û�� `q` î ç v Û��qæ vî çêé l 0.00 0.63 1.00 0.00
s4 g � ` vî ç ` Û�� `q` î çêédÛ��qæ vî ç v l 1.00 0.17 0.00 1.00
s5 g � ` v î ç é Û�� `q` î ç v Û�� æ v î ç ` l 0.50 0.50 0.57 0.47
s6 g � ` v î ç é Û�� `q` î ç ` Û�� æ v î ç vzl 1 0 0 1

288 GRID RESOURCE MANAGEMENT

zp÷/�;� � &n< �ïñð ×}Ø©�t}v u ×}Ø© F ñóò ×]Ø�¿¾ � �@^ Í¸Ï� F I Í¸Ï� � � &�&

- Resource owners satisfaction (ROS). This criterion measures to what ex-
tent a resource owners preferences have been met. It can be defined as a
weighted average of resource owners’ scalarizing functions values:

` ³ �;� � &Ã< �ïôð ÙÛÚ©utwv u ÙÛÚ© F ñ ò ÙÛÚ�¿¾ � �@^ ÐõÒ� F I ÐÒ� � � &�&

- VO’s overall performance (VOP). This criterion can be defined using vari-
ous methods, e.g. measuring throughput or average completion time of all tasks
submitted in a VO. We present formula for the average completion time below: j³ ÁY� � &»< �ï © ò © F ñ �!� � �]�{[© x , where

7�< � Q� Q � Í¹Ï Q9ðó< � Q� Q yJ�
In Figure 18.5, all the solutions are presented in the global criteria space.

Note, that in the final multicriteria analysis there are three Pareto-optimal solu-
tions: s3, s5, s6. In this case, the best compromise solution is s3 (the minimum
overall value equals 0.37 according to overall calculations including aggre-
gated criteria and global preferences).

The weights (priorities) were set up by the global VO administrator in order
to satisfy the end-users (weight 3 for EUS) more than resource owners and the
whole performance of VO (weights equal 1 for ROS and VOP). By changing
these weights a VO administrator can introduce different administration poli-
cies into practice in the form of soft constraints, another big advantage of our
approach.

We emphasize again that this example is simplified for easier understanding
of the multicriteria approach to Grid resource management. For instance, it
assumes that tasks start their execution immediately after being submitted to a
resource. Thus, the task execution time is equal to the task completion time.
In addition, the simplest aggregation operators have been selected, such as
a weighted average. This operator has many drawbacks. One of them is a

Table 18.4. Scaled values on the global criteria space.

Weights 3 1 1
Solutions EUS ROS VOP Overall

s1 g � ` vî ç v Û�� `q` î ç ` Û��èæ vî çêé l 0.40 0.03 1.00 0.45
s2 g � ` vî ç v Û�� `q` î çêédÛ��èæ vî ç ` l 0.67 0.53 0.58 0.62
s3 g � ` vî ç ` Û�� `q` î ç v Û��èæ vî çêé l 0.29 0.02 1.00 0.37 ö
s4 g � ` vî ç ` Û�� `q` î çêédÛ��èæ vî ç v l 0.64 0.52 0.00 0.49
s5 g � ` v î ç é Û�� `q` î ç v Û�� æ v î ç ` l 0.50 0.50 0.58 0.52
s6 g � ` v î ç é Û�� `q` î ç ` Û�� æ v î ç vzl 0.58 0.50 0.00 0.45

Multicriteria Aspects of Grid Resource Management 289

EUS

VOP

s1

s2

s3

s4

s5

s6

Global criteria:
EUS - very important

ROS - less important

VOP. - less importantROS

Figure 18.5. Solutions in the global criteria space (EUS, ROS and VOP).

compensation of criteria values. Consequently, the decision is very sensitive
to the scaling of the attributes. Moreover, some values of aggregation function
are close to each other so it is difficult to conclude which of them is the best.
The use of more suitable operators will be considered in future work.

Additionally, we assumed in the example that exact values of all parameters
are known, an assumption that may be not true in a practice. Thus, the use
of prediction techniques and methods for representing imprecise information
should be investigated, and we point out to these issues in the next section.
Finally, since state of resources and tasks may change dynamically, a Grid re-
source management system should be able to adapt its decisions to this variable
environment.

6. GRID SPECIFICITY AND AI SUPPORT

In the preceding sections we have presented motivations and methods of
the multicriteria approach for Grid resource management, as illustrated by the
example in Section 5. While designing such methods, however, we cannot
forget about the peculiarity of the Grid environment.

In the Grid environment we have to deal with more rapidly changing and of-
ten unpredictable input data, causing uncertainty and incompleteness of infor-
mation. The availability of resources as well as the status of jobs may change
rapidly. Additionally, in practice, in terms of scalability and efficiency, one
central job scheduler is not able to control all the resources in the VO. On the
other hand, even advanced adaptive techniques for applications do not guaran-
tee efficient scheduling because of the lack of knowledge of the global state of
resources and jobs.

Thus, a multicriteria decision making process must fit the Grid nature and be
supported by additional techniques in order to meet the requirements of Grid
environments.

In particular, two issues are of great importance for efficient resource man-
agement in the Grid: dealing with imprecision of information and adapting to

290 GRID RESOURCE MANAGEMENT

the changing environment. We consider these in the next two subsections. In
view of the main goal of the chapter, which presents the multicriteria approach
for a resource management in the Grid, we confine ourselves to indicating pos-
sible methods that can be used to cope with the problems given at the beginning
of this paragraph.

6.1 Dealing with Imprecision of Information

A Grid environment contains a large number of heterogeneous resources
being used simultaneously by many users running their various applications.
In such an environment the resource management system is not likely to have
access to all necessary up-to-date information regarding the current state of the
resources and submitted jobs.

We see two approaches that could help to cope with imprecise information:
appropriate representation of information and prediction techniques.

6.1.1 Representation of Information

The imprecision of information is a very common phenomenon both in the
natural environment and in complex systems created by people. We have to
deal with various forms of imprecision, including inaccuracy, uncertainty, in-
completeness, random variability, or ambiguity of information. As a conse-
quence, many methods of modeling imprecise information have been intro-
duced. We present briefly three approaches along with possibilities of their use
in multicriteria Grid resource management.

Calculus of probability and mathematical statistics. The calculus of prob-
ability and mathematical statistics provide well-known and widely used mea-
sures and tools to take the random variability of parameters into consideration.
Basic measures such as an average and variance enable a scheduling algorithm
to use the knowledge concerning the uncertainty of input information. Further-
more, tools such as regression allow a more advanced analysis, for example,
expressing a job execution time as a function of an input data size. The use of
regression in the prediction of job execution time is presented in [VS03].

Fuzzy set theory [Zad65]. Given a classical set, we have to determine
whether each object belongs to the set. In the case of a fuzzy set, objects may
belong to the set to a certain extent, for example, 0.6. This extent is expressed
by the membership function. Values of this function range from 0 to 1. As far
as Grid resource management is concerned, fuzzy sets can be constructed in
two ways: through the analysis of frequencies of some events included in his-
torical data or the definition of the so-called linguistic variables. For example,
fuzzy sets can express an execution time of jobs because exact, single values
are usually hard to determine. Of course, such a representation of informa-
tion requires special methods in order to exploit this knowledge. Thus, fuzzy

Multicriteria Aspects of Grid Resource Management 291

operators have to be defined, and scheduling algorithms should be adapted to
operate on such data. The example of a fuzzy logic utilization in a load bal-
ancing system is investigated in [Che01].

Rough set theory [Paw82]. Rough set theory is a mathematical tool for the
analysis of inconsistency or ambiguity that results from a granulation of infor-
mation. Objects (jobs) having the same description are indiscernible (similar)
with respect to the available information. Thus the universe is partitioned into
blocks of indiscernible objects, called elementary sets. Every object is asso-
ciated with a certain amount of information, expressed by means of a set of
attributes such as the size of the input data or a list of parameters. A subset of
jobs may be characterized using upper and lower approximations. The lower
approximation of the subset is composed of objects that certainly belong to this
subset, while the upper approximation consists of objects that may belong to
this subset. On the basis of such sets, certain and possible decision rules can be
found. As a consequence, one can distinguish between certain and possible in-
formation. In the case of jobs in a Grid environment, the scheduling algorithm
is then able to take advantage of the knowledge of, for example, certain and
possible job execution times. More details concerning the use of rough sets in
multicriteria decision making can be found in [GMS01].

6.1.2 Prediction Techniques

Sometimes input information required by a scheduler is not available, so
the necessary parameters must be estimated on the basis of historical data.
Generally speaking, these parameters can be predicted by using statistical or
AI methods.

Statistical techniques. Statistical methods are commonly used for the anal-
ysis of data in various disciplines. A variety of statistical tools are available. In
particular, correlation and regression can be used in order to find dependencies
between particular attributes of jobs, for example, to what extent a job execu-
tion time depends on the number of processors available or a size of input data.
Statistical methods can also be used in an analysis of time series [WSH99a].

AI techniques (knowledge discovery and machine learning). AI techniques
have become increasingly popular in various domains. These methods take
advantage of automatic learning in order to find dependencies in data or predict
future behavior of a system or an environment. Several techniques from this
field that can be used in Grid resource management are briefly described in the
next paragraphs.

- Classification. The classification analysis is the organization of data into
predefined classes. Decision trees [Qui86], naive Bayes classifiers [LIT92],
and neural networks [RHW86] are the best-known methods for the classifi-
cation problem. In the case of Grid resource management, we can classify
jobs according to, for example, memory usage. Then, analyzing the classified

292 GRID RESOURCE MANAGEMENT

jobs, we can find characteristics of these jobs that require particular amounts
of memory. Furthermore, classified jobs may be used for prediction. It is pos-
sible, on the basis of job parameters, to predict the amount of memory that
should be reserved for this job. The resource management system can take
advantage of this knowledge, using it directly during the optimization process.

- Clustering. Clustering is a method similar to classification. The main
difference is that it does not require any initial definition of classes. Using
this method, one can divide jobs into groups and find descriptions of these
groups. For example, groups of jobs having similar resource requirements can
be found. The k-means algorithm [DM90] is an example of clustering.

- Sequential patterns. This method takes a sequence of operations into con-
sideration. Search dependencies are not restricted to single records of data
(e.g., jobs). The order of events is important, too. The most popular algorithm
is based on an associative rules generation method called Apriori [AS94]. Used
in a Grid environment, it can give information about frequent sequences of jobs
run by particular users. Appropriate use of this knowledge should improve sig-
nificantly efficient resource use because the scheduler would be able to predict
the order of submitted jobs.

In view of an imprecision or even lack of necessary input information to
the Grid, an efficient use of the methods listed above for multicriteria resource
management will be investigated in our future work.

6.2 Adapting to Changing Environment
It is often assumed that the role of the scheduling algorithm ends when a

job is submitted to resources. However, this is not true for Grid environments
where the state of the resources and tasks changes rapidly, various faults occur
or hardware configurations evolve during an application runtime. Hence, vari-
ous methods have to be developed to address dynamic application adaptation.
These approaches can be divided into three groups: monitoring, rescheduling
and task migration.

The goal of monitoring is to gather information about various faults, appli-
cation performance, and the state of the resources. A rescheduling component
has to calculate a new schedule for the application. This must be lightweight
and fast because rescheduling is done while the application is running. Con-
sequently, unsophisticated heuristics or the so-called incremental methods that
take advantage of the first schedule (perhaps modifying it slightly) are needed.
Task migration techniques (including checkpointing) enable an application to
stop the execution, migrate to another resource (perhaps with the required
data), and start from the same point where it was previously stopped.

Generally speaking, decisions concerning the adaptation of an application
can be made in the following three situations: (i) in the case of faults or changes
in a hardware configuration that results in an application failure, (ii) if it is im-

Multicriteria Aspects of Grid Resource Management 293

possible to meet earlier defined requirements such as deadlines (e.g., in the
case of dramatic changes in the availability of resources), or (iii) in order to
improve execution of an application (e.g., shorten the execution time or de-
crease the cost of a resource consumption).

Techniques that enable applications to dynamically adapt to a changing
state of resources and jobs are being developed in the scope of the GridLab
project [GL].

7. CONCLUSIONS
The approaches described in this chapter cover some of the methods that can

be used to improve the multicriteria Grid resource management process. Such
methods are crucial if we want to fully exploit the possibilities of the Grid.
In Section 3 we emphasized the need for compromise between two leading
approaches to scheduling and their conflicting goals. These goals result in
the existence of two groups of conflicting criteria, high-performance and high-
throughput, that together reflect the wider perspective of decision processes
and the need for new strategies. We present possible methods for aggregation
of such criteria in Section 4. In Section 5 we illustrated these methods using an
example and gave more practical view of how a multicriteria approach can be
used in the context of Grid resource management. However, we also indicate
that our approach requires additional support from AI-based techniques mainly
during information gathering and application execution control. Some of the
issues are described briefly in Section 6.

Our general analysis is motivated by the main objective of this chapter to
define a general framework for the Grid resource management processes from
the multicriteria decision making perspective. Consequently, the identification
of problems, possible techniques, and research directions are considered in
the scope of this chapter, rather than a detailed analysis of specific solutions.
We also identified challenges that need to be investigated in future research,
including methods of aggregating criteria in the presence of many decision
makers, representing imprecise information concerning a state of jobs and re-
sources, using prediction techniques, and adapting applications to a changing
environment.

Acknowledgments
We are pleased to acknowledge support from the EU GridLab project (IST-

2001-32133).

Chapter 19

A METAHEURISTIC APPROACH TO
SCHEDULING WORKFLOW JOBS ON A GRID

Marek Mika,
�

Grzegorz Waligóra,
�

and Jan Węglarz
��� �

�
Institute of Computing Science, Poznań University of Technology�
Poznań Supercomputing and Networking Center

Abstract In this chapter we consider the problem of scheduling workflow jobs on a Grid.
This problem consists in assigning Grid resources to tasks of a workflow job
across multiple administrative domains in such a way that minimizes the ex-
ecution time of a particular set of tasks. The considered problem is formu-
lated as a multi-mode resource-constrained project scheduling problem with
schedule-dependent setup times, which is an extension of the classical resource-
constrained project scheduling problem to minimize the makespan (RCPSP). We
present a binary linear programming (0-1 LP) formulation of the problem, and
propose a local search metaheuristic approach to solve the considered problem.

1. INTRODUCTION

We consider the problem of scheduling workflow applications on a Grid.
The objective of our research is to formulate the problem as an extension of
the resource-constrained project scheduling problem, to build its mathematical
model, and to propose a local search metaheuristic approach to solve it. Al-
though the approach we develop is general and allows the scheduling of any set
of tasks on any set of resources, we consider so-called workflow applications
because of their particular practical importance. Workflow applications can be
viewed as complex sets of precedence-related various transformations (tasks)
performed on some data. They are mostly scientific, data intensive applica-
tions that require large amounts of computing power to be executed efficiently.
Although different criteria may be considered when evaluating schedules, we
focus on a time criterion, more precisely, we try to minimize the time to exe-
cute a given workflow job.

The problem of scheduling workflow applications across many sites on a
Grid is very complex, especially when the network capacity varies between

296 GRID RESOURCE MANAGEMENT

the sites. In addition, we often do not possess complete information about the
jobs. The process of obtaining a performance model of a job is not trivial. In
particular, the processing times of all the tasks on different computer systems
(Grid resources) are not easy to evaluate. Also other parameters, for example
bandwidth, resource availability, etc., may change quite rapidly in Grid en-
vironments. Thus, generally, we deal with scheduling under uncertainty. In
this chapter we will show under what assumptions we can bring the consid-
ered problem to a purely deterministic scheduling problem. More precisely,
under these assumptions we will formulate our problem as an extension of the
resource-constrained project scheduling problem (RCPSP). In this problem,
activities (tasks) are scheduled in such a way that the precedence as well as re-
source constraints are satisfied, and the project duration (the completion time
of a given set of activities, also known as the makespan) is minimized.

It is easy to see the similarity between a workflow job and a project. In both
cases we have a set of precedence-related tasks (activities) that are to be sched-
uled on a given set of resources. Thus, it is justified to describe the problem
of scheduling workflow jobs in terms of project scheduling. There are many
extensions of the RCPSP. Since in Grid environments tasks can be processed
on different types of resources, i.e. they can be executed in several different
ways (modes), we consider project scheduling in its multi-mode version (MR-
CPSP). Moreover, we base our approach on an extension of the MRCPSP with
so-called setup times, where a setup time is a time necessary to prepare the
required resource for processing a task. Setup times in our problem are trans-
mission times of files between tasks. These times depend on which resources
the tasks are scheduled. As a result, we obtain a problem that is called the
multi-mode resource-constrained project scheduling problem with schedule-
dependent setup times (MRCPSP-SDST).

The RCPSP is known to be NP-hard, and therefore the MRCPSP-SDST
is also NP-hard since it is a more general problem. Later in this chapter we
will formulate the considered problem as a 0-1 LP problem (binary linear pro-
gramming problem). Although this problem can be solved optimally by using
specialized binary linear solvers, the complexity of any exact method for solv-
ing it is exponential. Therefore, in this research we propose another approach
to solve the MRCPSP-SDST, namely to use local search metaheuristics that
have proved to be very efficient strategies for the classical MRCPSP.

This chapter is organized as follows. In Section 2 we describe the problem
of scheduling workflow applications on a Grid in more detail. We define the in-
formation the superscheduler needs to build a schedule, distinguishing between
parameters characterizing tasks, resources and networks. Section 3 is devoted
to the mathematical formulation of the considered problem. In this section we
introduce the assumptions and notation, and we formulate our problem as the
MRCPSP-SDST. Finally, we present a 0-1 LP problem that is to be solved in

A Metaheuristic Approach to Scheduling Workflow Jobs on a Grid 297

order to construct an optimal schedule. In Section 4 we present a metaheuris-
tic approach to the considered problem. In this section we briefly describe the
idea of local search, then we detail the most commonly used metaheuristics:
simulated annealing, tabu search, and genetic algorithms. Next we propose a
solution representation, a method of choosing a starting solution, a definition
of the objective function, and a neighborhood generation mechanism, as ele-
ments of a local search algorithm approach for our problem. We also describe
the method of transforming a feasible solution into a schedule (a so-called de-
coding rule), as well as the process of mapping, defined as assigning actual
resources existing on a Grid to tasks. The last section contains conclusions and
some directions for further research, including various extensions of the model
and the approach proposed.

2. PROBLEM DESCRIPTION

In this section we describe the problem of scheduling workflow jobs on
a Grid. We define the information (about applications as well as about the
Grid environment itself) that the superscheduler needs in order to schedule
tasks of a workflow application on Grid resources. Moreover, we distinguish
between information provided by the user and information that can be obtained
by some Grid service. We formulate all the assumptions needed to approach
the considered problem from the resource-constrained project scheduling point
of view.

2.1 Problem Overview

Let us start with a brief description of a workflow application. In many sci-
entific areas, such as high-energy physics, bioinformatics, astronomy, and oth-
ers, we encounter applications involving numerous simpler components that
process large data sets, execute scientific simulations, and share both data
and computing resources. Such data intensive applications consist of multi-
ple components (tasks) that may communicate and interact with each other
over the course of the application. The tasks are often precedence-related, and
the precedence constraints usually follow from data flow between them. Data
files generated by one task are needed to start another task. In this way, an out-
put of one task becomes an input for the next task. Although this is the most
common situation, the precedence constraints may follow from other reasons
as well, and may be arbitrarily defined by the user. Such complex applications,
consisting of various precedence-related transformations (tasks) performed on
some data with data files transmitted between them often, are called workflow
applications. For example, in astronomy, workflows with thousands of tasks
need to be executed during the identification of galaxy clusters within the Sloan
Digital Sky Survey [SKT

�
00]. Because of large amounts of computations and

298 GRID RESOURCE MANAGEMENT

data involved, such workflows require high computing power to be executed
efficiently. This can be delivered by a Grid.

Since workflow applications are usually very time consuming (even if single
tasks can be quite short), and input/output data files for tasks can be quite large,
the problem of scheduling such applications on a Grid is very challenging, and
has great practical importance these days. Below we address this problem in
more detail.

In general, the superscheduling problem has been defined as assigning Grid
resources to tasks across multiple administrative domains. Users submit their
jobs (in this case, workflow applications) to a Grid. As it has been mentioned,
jobs consist of multiple tasks. A task can be anything that needs a resource —
a bandwidth request, a schedulable computation, a data access, or an access
to any remote resource, such as remote instruments, databases, humans-in-the-
loop, etc. A resource is anything that can be scheduled, for example a machine,
disk space, a QoS network, a person, etc. Each resource is described by a set
of attributes. These attributes are, in general, static data concerning the CPU,
memory, disks, operating system, and network interfaces.

A superscheduler has to assign available Grid resources to tasks taking into
account an assumed performance measure. We try to minimize the time of
execution of a given workflow job although various other measures may be
considered for the scheduling criterion, for example cost, reliability, resource
leveling, etc., and a multi-objective approach that combines two or even more
measures (see [KNP01] and Chapter 18) may be justified.

In order to build a formal model of the scheduling problem considered we
need to define precisely the assumptions, and decide what features of the real
problem should be taken into account. If we consider too few attributes, a flaw
in having a too general approach, the model may be unrealistic, but on the other
hand, too many attributes can result in a model that is too complex to be solved
by any existing or newly developed method. Therefore it is crucial to identify
the parameters that allow us to build both a realistic and a solvable model of
the problem.

2.2 Problem Parameters

A workflow job consists of multiple tasks. Thus, first of all the order of exe-
cution of tasks must be defined, i.e. the precedence constraints between them.
This information is usually represented by a directed acyclic graph (DAG),
where vertexes correspond to tasks while arcs represent the precedence con-
straints. A DAG specifies the sequence of execution of tasks, and no task can
be started before all its predecessors are finished. The precedence constraints
usually follow from data flow between tasks, thus, they are given in advance
and known a priori.

A Metaheuristic Approach to Scheduling Workflow Jobs on a Grid 299

Each task can be processed on different resources. The information deter-
mining the required types of resources (CPU, minimum memory size, mini-
mum available disk space, operating system, etc.) on which a particular task
can be performed is also needed by the superscheduler. This information de-
fines the list of admissible Grid nodes (resource units) for each task. Once the
set of resources is known, an estimated processing time of each task, for each
node on which the task may be performed is needed in order to evaluate the
makespan. In general, this may be done using a function to bind the duration
of a task with some characteristics of nodes as well as with input data of this
task, but any method must be able to approximate the processing time of the
task on each node. This information can be obtained from a prediction system,
for example as described in Chapter 16 or [KNP00, SFT98], or we can use a
technique to determine the expected execution time of a process, for example
an analysis of the data obtained from previous executions. The latter approach
is especially applicable considering the fact that workflow applications are of-
ten launched many times on different sets of data. In any case, we assume that
this information is available for the superscheduler. In Table 19.1 we present
an example task vs. node matrix, where value

^ � £ is the processing time of taskð
on node,

o
, and � denotes that this task cannot be executed on the relevant

node.

Table 19.1. Matrix of processing times of tasks.

node 1 node 2 Ò�Ò�Ò node k ÒkÒ�Ò node N

task 1 Þ vqv X Ò�Ò�Ò Þ v ã Ò�Ò�Ò Þ v ð
task 2 Þ ` v Þ `q` Ò�Ò�Ò X Ò�Ò�Ò Þ ` ð

...
...

...
...

...
task j Þ x v Þ x ` Ò�Ò�Ò Þ xiã Ò�Ò�Ò Þ x ð

...
...

...
...

...
task n Þ r v Þ r ` Ò�Ò�Ò Þ r ã Ò�Ò�Ò X

As mentioned before, tasks mostly communicate between themselves in
such a way that an output file of one task becomes an input file for another task.
Usually the sizes of these files are very large, and therefore their transmission
times must be considered. Thus, the next necessary parameter to define is the
transmission time of the input/output files between all pairs of communicating
tasks. This value cannot be defined without knowing which nodes will execute
a task, but this is unknown in advance. However, in practice, the transmission
time can be calculated using only the sizes of transmitted files as well as a few
parameters (e.g. average bandwidth, latency, etc.) of the physical link between
the two nodes executing the tasks. Of course, the results of these calculations

300 GRID RESOURCE MANAGEMENT

depend on the prediction methods used, as well as on the sizes of the transmit-
ted files [VS02].

Thus, the user should provide the maximum expected size of the input and
output files for each task, as well as a communication graph describing what
files are to be transferred from one task to another. We assume that after the
execution of a task, an output file it generates is saved on the node that ran the
task. In the case of tasks that use as an input file already existing on the Grid
(not generated by other tasks), we assume that the sizes and locations of these
files are known in advance. Of course, a particular file can be replicated and
distributed across multiple sites, and therefore it may exist in many different
locations, as detailed in Chapter 22 and elsewhere [CDF

�
02, SSA

�
02].

We do not give consideration to the time to transfer the executables of the
tasks themselves. The size of these files are insignificant in comparison with
the size of data files of a workflow job, and therefore their transmission times
may be neglected. Still, this assumption is not critical for the approach, and
these times can be easily considered when it is needed.

Continuing, the system must supply up-to-date information about the qual-
ity of the physical link between nodes of a Grid. We assume that the transmis-
sion of files between different pairs of tasks may be executed in parallel. In
other words, we assume that the bandwidth of the network interface of each
node is much greater than the bandwidth of the physical link between these
nodes. Thus, it is possible to transmit several files from one task to several
other tasks in parallel [ABB

�
02a, ABB

�
02b]. We also assume that if more

than one file is transmitted from a given task to another one, then these files
are transmitted sequentially. In Table 19.2 we present a sample bandwidth ma-
trix between nodes of a Grid. Value

.�£ ö denotes the bandwidth between nodeso
and

«
, and it is assumed to be independent from the data transfer direction

i.e.
.÷£ ö = . ö £ .

Table 19.2. Matrix of bandwidth between nodes.

node 1 node 2 Ò�ÒkÒ node k Ò�Ò�Ò node N

node 1 X ø v ` Ò�Ò�Ò ø v ã Ò�ÒkÒ ø v ð
node 2 ø ` v X Ò�Ò�Ò ø xiã Ò�ÒkÒ ø ` ð

...
...

...
...

...
node k ø ã v ø ã ` Ò�Ò�Ò X Ò�ÒkÒ ø ã ð

...
...

...
...

...
node N ø ð v ø ð ` Ò�Ò�Ò ø ð ã Ò�ÒkÒ X

A Metaheuristic Approach to Scheduling Workflow Jobs on a Grid 301

Summarizing, we assume that data to characterize the following is available:

Workflow job properties:

– A precedence directed acyclic graph (DAG) that describes the con-
trol flow between tasks of the job.

– The processing time of each task on each type of resource. This
may be a function defined on the types of resources on which this
task can be performed and on its input data.

– A communication graph that lists the files to be transmitted be-
tween tasks, as well as the sizes of those files.

– Any deadlines and/or ready times of the tasks, if they are imposed.

Grid environment properties:

– The point-to-point characteristics (bandwidth, latency, etc.) of the
network connections between the nodes of a Grid.

– The characteristics of resources on which particular tasks can be
executed.

Many of these parameters are temporal, average, or uncertain. Some of them
change slowly, and some can change in minutes or seconds. For example, the
processing time of a task may be determined by the user, according to his ex-
pectations. However, this processing time may change for some unpredictable
reasons. This means that some tasks may be completed earlier, but others may
take longer to run than expected. In such cases, the job may be canceled by the
node on which it was running, and therefore may need to be executed again
(perhaps on another node), or else the entire job may be canceled. In addition,
the network characteristics can change very rapidly, which may result in a mis-
calculation of the transmission times of some files, and consequently affect the
schedule. Such changes in network performance may be able to be predicted,
using some specialized services, for example the Network Weather Service,
detailed in Chapter 14.

Nevertheless, despite these difficulties, it is still reasonable to build a model
of the considered problem under the above assumptions. The time benefit fol-
lowing from proper scheduling tasks of a workflow application on a Grid can
be large, even when realizing some uncertainty or changes of the problem data.

3. MATHEMATICAL MODEL

In this section we present a mathematical model of the considered prob-
lem, as the multi-mode resource constrained project scheduling problem with
schedule-dependent setup times (MRCPSP-SDST). The MRCPSP-SDST is an
extension of the resource-constrained project scheduling problem (RCPSP)

302 GRID RESOURCE MANAGEMENT

that can be used to model various discrete optimization problems including
cutting stock problems, high school timetabling, audit staff scheduling, or ma-
chine scheduling (single-machine scheduling problems, problems with iden-
tical or uniform parallel machines, and shop scheduling problems). In this
problem activities (tasks) are to be scheduled in such a way that the prece-
dence as well as resource constraints are satisfied, and the project duration (the
makespan) is minimized.

3.1 Resource-Constrained Project Scheduling Problems

Let us start with the definition of the RCPSP. We assume we have a set of
O

non-preemptable activities that need to be executed using and consuming some
resources. In general, resources can be renewable, non-renewable, doubly con-
strained, or partially renewable. Renewable resources are available at any time
in limited numbers of units, i.e. an available amount of such a resource is re-
newed from period to period. For non-renewable resources, total consumption
of the resource units is limited for the entire project. For doubly constrained
resources, both total and per period availabilities are limited. Availability of
partially renewable resources is defined for a specific time interval (a subset of
periods). Each activity uses and/or consumes several units of some renewable,
non-renewable, doubly constrained, or partially renewable resources.

Precedence constraints are defined between activities, as given by relations
of the type:

7¾ù ð
, where

7¾ù ð
means that activity

ð
must not start be-

fore activity
7

is completed. A project is generally represented by a directed
acyclic graph

,¯� QSzó& . There are two possible representations of graph
,

.
The first one is called activity-on-node (AoN) network, where a set of vertexes for graph

,
corresponds to the set of project activities, and a set of arcsz <úÈN��7SQ9ðN&ûÆJ7SQ9ð sü þý 7ÿù¶ð Ë represent the precedence constraints between

activities of set . The second representation is called activity-on-arc (AoA)
network, where set

z
corresponds to activities of the project and set consists

of time events, representing, for example, completion of several activities.
It is possible to execute each activity in one of several alternative modes

that represent a relation between the used and consumed resources, and the
duration of the activity. In such a case, the resulting problem is called the
multi-mode resource-constrained project scheduling problem (MRCPSP). The
objective is to find an assignment of modes to activities, as well as precedence-
and resource-feasible starting times of all activities, such that we minimize the
makespan of the project.

The MRCPSP problem is strongly NP-hard, since it is a generalization of
RCPSP. The RCPSP is strongly NP-hard as a generalization of the well-known
job shop problem [BLRK83]. Moreover, for more than one non-renewable
resource, the problem of finding a feasible solution of the MRCPSP is NP-

A Metaheuristic Approach to Scheduling Workflow Jobs on a Grid 303

complete [Kol95]. For a comprehensive survey on project scheduling
see [BDM

�
99], and a review of recent models, algorithms, and applications

can be found in [Węg99].
In several papers, extensions of the MRCPSP with setup times have been

considered, where, generally, a setup time is the time necessary to prepare
the required resource for processing an activity. There are two types of setup
times considered in the literature: sequence-independent setup times [Kol95]
and sequence-dependent setup times [NSZ02]. In the first case, setup times
depend only on the resource that processes the respective activity. In the second
case, setup times depend not only on the resource but also on the sequence of
activities processed on this resource. For example, if there are three activities7SQ9ð-Q�o

such that
7 ù o

and
ð�ù o

, and they are to be processed on the same
resource, the setup time needed for processing activity

o
may vary, depending

on whether activity
o

is executed immediately after activity
7
, i.e. the order is� ð-Q�7SQ�o6&

or immediately after activity
ð
, i.e. the order is

� ðCQ�oJQ�7�&
.

In the problem of scheduling workflow jobs on a Grid, setup times follow
from transmissions of files between tasks. A node is prepared for processing
a task only when all input files required for the task are stored on the local
disks of this node. However, it is easy to see that the transmission times of
the files depend on which nodes the files are transferred between. In other
words, the transmission times (setup times) depend not only on the node to
which the files are transferred, but also on the nodes where they are originally
located. Because of this, setup times in our problem do not depend only on
the sequences of tasks on particular resource units, but, more generally, on
the assignment of nodes to tasks over time. Thus, they are not just sequence-
dependent, but they are schedule-dependent. We call the resulting problem the
multi-mode resource-constrained project scheduling problem with schedule-
dependent setup times (MRCPSP-SDST). In the next subsection we show how
we model our problem as the MRCPSP-SDST.

3.2 MRCPSP-SDST Model of the Problem

A workflow job and its tasks correspond to a project and its activities, re-
spectively. Precedence constraints of the type

7Äù ð
usually follow from data

flow between tasks
7

and
ð
, that is, data files generated by task

7
are required

to start task
ð
. Thus, the structure of the workflow job can by represented by

an AoN graph
,¯� QSzj& , where set is the set of tasks, and set

z
represents

the precedence constraints between tasks. No task may be started before all its
predecessors are finished. Vertexes in graph

,
are numerically numbered, and

a task has always a higher number than all its predecessors.
Graph

,
may differ from the original DAG submitted by the user for two

general reasons. First, we assume that graph
,

submitted to the superscheduler

304 GRID RESOURCE MANAGEMENT

is presented in its minimal form. For example, a job submitted by the user may
contain tasks previously submitted by the same or another user, and therefore
some data files required as an input to other tasks may already exist somewhere
on a Grid. Thus, there is no need to execute these tasks once more, and they can
be removed from the graph. Of course, the action of reducing the original DAG
will not be performed by the superscheduler, rather it should be processed by
a specialized application. Second, it is usually assumed that a project should
have exactly one starting and exactly one finishing activity. If graph

,
, after

the reduction phase, has more than one starting and/or finishing task, it may be
necessary to modify the graph. This can be done by adding (if necessary) one
additional dummy starting task that should be processed before all other tasks
of the project, and/or one additional dummy finishing task that must not start
before the completion of all other tasks. The dummy tasks do not require any
resources, and their processing times are equal to 0.

We assume that there are two types of tasks represented by vertexes of graph,
. The first type are computational tasks that may need input data and can

produce output data files. The second type are schedule-independent data
transfers, or transmissions of files that are not output files of other tasks of
a given workflow job. For example, if it is necessary to transfer a file that
already exists from a given physical location to a task, then this data transfer
is treated as a task. Otherwise, if a data transfer concerns a file that does not
exist yet, but will be generated as an output file of another task, it is not treated
as a task but as setup time. Thus, we distinguish two types of data transfers:
schedule-independent data transfers treated as tasks, and schedule-dependent
data transfers (setups) that, in contrast, are not treated as tasks.

Before defining the second type of data transfers, we need to introduce the
concepts of execution modes, resource types, and resource groups. As de-
scribed in Section 2, each node existing on a Grid can be described by a set
of attributes that contain the information such as CPU, RAM, disks, network
interfaces, operating system, etc. It is possible to divide the set of all Grid com-
putational resource units into disjoint subsets according to these attributes in
such a way that computational resource units with the same attributes belong
to the same subset, and computational resource units with different attributes
belong to different subsets. These subsets will be called resource types. As a
consequence, resource units having identical characteristics (described by an
identical set of attributes) are considered as resources of the same type.

Of course, there are also resources other than computational ones. For the
problem of scheduling workflow jobs on a Grid, network resources are also
important. We assume that the bandwidth of network interfaces is high enough
to exclude them from further consideration. This means that the bandwidth of
each network interface is much greater than the bandwidth of the physical link
between these interfaces, therefore the only limitation is the bandwidth of the

A Metaheuristic Approach to Scheduling Workflow Jobs on a Grid 305

physical link. It is possible to gather basic information about the network re-
sources (average or temporary bandwidth of the physical link, average latency,
etc.) between every two nodes of a Grid, as we have shown in Table 19.2.

Next, we can divide the set of all computational resource units into disjoint
subsets according to this information, similar to the way in which the resource
units were divided into resource types. These subsets are called resource lo-
cations, and contain nodes physically placed in the same location. Of course,
some characteristics may differ slightly among nodes physically located in the
same place, nevertheless, if the differences are negligible, then these nodes
should belong to the same subset. It may be necessary to define the range of
acceptable deviations for each of the network characteristics.

Next, we define a resource group as an intersection of a resource type and
a resource location. In other words, a group represents resource units of the
same characteristics placed in the same location, i.e. computers with the same
parameters connected to the same LAN. Let us stress that when taking into
account the types of resources existing in Grid environment, it is justified to
consider all the resources as renewable ones.

Continuing, each task will be executed on one node of a Grid. Each node
belongs to a particular resource type. The processing time of a task depends
on the type of resource used to execute this task. In other words, the task may
be executed in one of several modes. Modes represent various combinations of
resource requirements and processing times.

Now, it is possible to define a schedule-dependent data transfer as a trans-
mission of a data file between the output of task

7
and the input of task

ð
,

where
7»ù ð

. We call this type of data transfer schedule-dependent because
the time of such a transmission depends on which nodes (unknown in advance,
and therefore dependent on the schedule) tasks

7
and

ð
will be processed.

Let
,»£ u be the group defined as the intersection of resource type

`ô£
and

resource location
a u . If task

7
is executed on a node from group

,û£ u and taskð
is executed on a node from group

, ö · , then the transmission time H u · of file
�ë�]� , the output of task

7
and the input of task

ð
, is calculated using the following

formula:

H u · < ���� Â �ë�!� Â�� � u · A�� u · 7_Ià^
	<��Â �ë�!� Â�� � u · 7_Ià^º<��
� 7_I�7��´ð

��
� (19.1)

where
Â �ë�]� Â is the size of file ���!� , � u · is the bandwidth between locationsa u and
a · , � u · is the sum of constant values (latency, transfer negotiation,

etc.) that do not depend on the size of the file but because of its size cannot be
neglected, and

7���ð
denotes that task

ð
is processed on the same node as task7

.

306 GRID RESOURCE MANAGEMENT

In Equation 19.1 we assume that if the transfer is carried out between nodes
belonging to the same location (̂

�< �
), then

� u ·�� �
, and if both task

7
andð

are executed on the same node, then there is no need to transfer the file. Let
� � be the completion time of task

7
and

� � the starting time of task
ð
, then the

restriction �g� A H u · À � � must be satisfied. It is also usually assumed that
transmission time H u · satisfies the triangle inequality H u�� A H � · U H u · for every
triple

^PQê¡[Q�� s È � Q e Q� � � 1QSa Ë , where
a

is the number of resource locations.
Schedule-independent data transfers are usually represented by DAG ver-

texes without predecessors. This means that a data file to transfer already exists
in one or more locations on a Grid. We model the possibility of transferring
the file from several locations using the concept of modes. Each mode of such
a task corresponds to a resource group from which the data file can be trans-
ferred. For each such mode, the duration of the task executed in this mode is
the minimum transmission time (H u ·) value over all locations where replicas of
this data file can be found. In other words, we assume that the data file con-
sidered is always transferred from the nearest (in terms of transmission time)
location of this file.

The goal is to minimize the makespan, that is, to find an assignment of
modes to tasks and, simultaneously, precedence- and resource-feasible starting
times of tasks such that the completion time of the finishing task of the work-
flow job is minimized. We take this objective into consideration because it is
most accurate for both the owner of the job, who wants to obtain the results as
soon as possible, and the owner of the resources, who wants to maximize the
utilization of his resources.

3.3 Notation and 0-1 LP Formulation

Summarizing the considerations from the two previous subsections, we in-
troduce the following notation given in Table 19.3.

Using this notation, the problem of scheduling workflow jobs on a Grid can
be formulated as the following 0-1 LP problem:

�l79OK7	�l798:� �b� õ [< ��� rñ¼ ¾ Í � r � � ��� � ¼H �J.�ðN�2Md���k�
� �� § x �ñ

� ¾ �
��� xñ
¼ ¾ Í � x �[��� ¼ < � ý ðj< � Q� � � qQ�O

e � § § �ñ
� ¾ �

��� §ñ¼ ¾ Í � § � � � ¿ � ¼ À � § x �ñ
�g¾ �

��� xñ
¼ ¾ Í � x ���»|º^ ��� | H u · & � �[��� ¼ ýðj< � Q� � � 1Q�O ý � s Áx�C�qR �Xý ���Ba u ý ð��Ba ·

A Metaheuristic Approach to Scheduling Workflow Jobs on a Grid 307

D �ñ
�d¾ �

� § x �ñ
�g¾ �

� � £ � ¼ � u x � � �ñ� ¾ ¼ � ��� � À ` £ ý o < � Q� � � qQS` ý �Ã< � Q� � � 1Q y
f' � �S� ¼ s È � Q � ËÛý ðà< � Q� � � JO ý � s 3 � ý �n< � Q� � � qQ y

Table 19.3. Notation for our approach.

Symbol Definition�
workflow job;�
set of tasks of workflow job

�
;å/Ð ~ � ~ number of tasks of workflow job
�

;ä! à precedence constraint between tasks ä and à ;Ê
set of precedence constraints of the type ä! à between tasks
in workflow job

�
;" g � Û Ê l directed AoN graph representing the structure of workflow job

�
;Ì ç$#bj x set of direct predecessors of task à ;é&% â�â x set of direct successors of task à ;æ x set of modes of task à ;á x execution mode of task à ;Þ x � processing time of task à in mode á ;é x starting time of task à ;í x completion time of task à ;Ê(' x earliest completion time of task à ;)*' x latest completion time of task à ;

R set of renewable resources;è Ð ~ Ö ~ number of all available resource units (nodes);Ö
number of resource types;Ö ã resource type á ;Ö ã number of available units of resource type

Ö ã : + Ùã t}v Ö ã Ð è ;ç x�ã � usage of resource type á by task à executed in mode á ;)
number of resource locations;)!,
resource location Þ ;" ã , resource group defined by the intersection of resource type

Ö ã
and resource location

) ,
;~ ' © x ~ size of file

' © x transferred between tasks ä and à ;-.,0/
bandwidth of the physical link between
two resource locations

) ,
and

) /
;1 ,0/

constant time factor of the schedule-dependent data transfer between
two resource locations

)!,
and

)2/
;h ,3/ schedule-dependent transfer time of files between two tasks executed

on nodes in resource locations
)!,

and
)*/

(setup time);� time;ß
time horizon;

308 GRID RESOURCE MANAGEMENT

where �w��� ¼ is a decision variable that is equal to 1 if and only if task
ð

is
performed in mode

�
and finished at time

�
, and

ð4�Wa u denotes that task
ð

is
executed on a node in location

a u .
The objective function (denoted as � � õ [) defines the execution time of the

workflow job that is equal to the completion time of the finishing task
O

. This
dummy task has only one execution mode. Constraint Set 1 assures that each
task is assigned exactly one mode and exactly one completion time. Prece-
dence feasibility is maintained by Constraint Set 2. These constraints make
sure that if task

�
, executed in resource location

a u , is a predecessor of task
ð
,

executed in location
a · , then task

ð
must not start before task

�
is completed

and required data files are transmitted from location
a u to location

a · . Con-
straint Set 3 addresses the resource limitations. And finally, Constraint Set 4
defines the binary status of the decision variables.

Of course, as we have mentioned in the Introduction, a binary linear pro-
gramming problem can be solved optimally by using specialized solvers, but
the complexity of any exact method for solving it is exponential. Therefore,
in this research we propose another approach to solve the formulated com-
binatorial optimization problem – to attack it by local search metaheuristics.
They have proved to be very efficient strategies for the classical MRCPSP, be-
ing able to find optimal solutions in about 90% instances of problems with
up to 30 activities. For more details concerning applications of metaheuris-
tics to the MRCPSP see [Har98] – genetic algorithm, [NI01] – tabu search,
and [JMR

�
01] – simulated annealing.

4. METAHEURISTIC APPROACH

In the previous sections we have described the problem of scheduling work-
flow jobs on a Grid, and we have formulated its mathematical model as the
multi-mode resource-constrained project scheduling problem with schedule-
dependent setup times. However, as it has been mentioned in Section 3, the
RCPSP and all its extensions (including the MRCPSP-SDST) are strongly
NP-hard problems, which makes the process of finding their optimal solutions
computationally intractable in a general case. Heuristic approaches have to be
developed to solve NP-hard problems. In this section we propose a local search
metaheuristic approach to our problem.

4.1 Local Search

Generally, in a combinatorial optimization problem we have a finite set of
feasible solutions, and a so-called objective function (or criterion) that deter-
mines the quality of each feasible solution. We look for an optimal solution, i.e.
a solution that optimizes the criterion over the whole set of feasible solutions.
Heuristic algorithms can be divided into two classes: constructive algorithms

A Metaheuristic Approach to Scheduling Workflow Jobs on a Grid 309

Iterative improvement method

Initialize(x ∈ X);
repeat

Select(x’ ∈ N(x));
if c(x’) < c(x) thenx := x’;

until (c(x’) ≥ c(x) for all x’ ∈ N(x));

Figure 19.1. Iterative improvement method psuedo-code.
Ë

is the set of feasible solutions,â65 Ë 87 is the objective function, and
è g ã l is the neighborhood of solution ã .

and local search algorithms. Constructive algorithms build partial solutions,
and stop at the moment of constructing a complete solution.

Local search algorithms use the notion of a neighborhood. It is a set of so-
lutions possible to generate from the current solution according to a defined
neighborhood generation mechanism. These algorithms start from a chosen
initial solution, and move from one solution to another one by searching suc-
cessive neighborhoods in order to get a solution as close to optimum as possi-
ble. The idea of local search (or neighborhood search) has already been known
for about 45 years, one of the earliest references to it is by [Cro58] who used
the idea to get good solutions of the traveling salesman problem. Nowadays,
the local search strategy is widely used for solving hard combinatorial opti-
mization problems. Comprehensive reviews on local search strategies can be
found e.g. in [Ree93] or [AL97]. The simplest local search algorithm is the
iterative improvement method that is given in Figure 19.1.

4.2 Metaheuristics

Iterative improvement methods may not find an optimal solution since they
perform improving moves only so the final solution is a local optimum, which
may be different from the global one. In addition, these approaches strongly
depend on the starting solution chosen. Therefore, most recent local search
methods are designed to escape from the local optima traps. Among them,
local search metaheuristics have a particularly important position. A meta-
heuristic [Glo86] is an iterative master process that guides and modifies the
operations of subordinate heuristics in order to efficiently produce high-quality
solutions. It may manipulate a single solution or a collection of solutions at
each iteration. The subordinate heuristics may be high (or low) level proce-
dures, a simple local search, or just a constructive algorithm. The advantage of
metaheuristics is a reasonable computational effort. Even if they do not guar-
antee finding an optimal solution they have proved to be efficient approaches
to many combinatorial optimization problems, and have a great number of suc-
cessful applications.

310 GRID RESOURCE MANAGEMENT

Simulated annealing

Initialize(k , x, x*, Tpk, MCk);
repeat

for l := 1 to MCk do begin
Select_Randomly (x' ∈ N(x));
? c := c(x') – c(x);
if ? c = 0 thenx := x'
else if exp(-? c/Tpk) = Random thenx := x' end;

if c(x) < c(x*) thenx* := x;
k := k + 1;
Update (Tpk, MCk);

until Stop_Criterion;

Figure 19.2. Simulated annealing pseudo-code. The value á is the iteration number,
ß Þ ã is

the temperature at á -th iteration, and
æ í ã is so-called the length of the Markov chains and

determines the number of transitions for a given value of the control parameter; ã�9 is the best
solution found by the algorithm.

The family of metaheuristics includes, but is not limited to, adaptive mem-
ory procedures, ant systems, evolutionary methods, mimetic algorithms, vari-
able neighborhood search, greedy randomized adaptive search, scatter search,
neural networks, and their hybrids. For an extensive survey on metaheuris-
tic strategies see [OK96, RS96]. Three strategies have been most popular and
successful from among the metaheuristics over the years: simulated annealing,
tabu search, and genetic algorithms. Below we briefly describe the principles
underlying these algorithms.

4.2.1 Simulated Annealing

Simulated annealing (SA) is a well-known local search metaheuristic that
belongs to a class of the threshold algorithms as presented in [AKvL97], and
can be viewed as a special case of the First Fit Strategy, where the next solution
is accepted with a certain probability. SA is based on the Monte Carlo method
introduced by [MRR

�
53]. This idea was originally used to simulate a physical

annealing process, and was applied to combinatorial optimization for the first
time in the 1980’s, independently by [KGJV83] and [Čer85]. Most adaptations
of the SA algorithm use its homogeneous version [vLA87].

SA works by searching the set of all feasible solutions, and reducing the
chance of getting stuck in a poor local optimum by allowing moves to infe-
rior solutions under the control of a randomized scheme. Specifically, if a
move from solution � to a neighboring inferior solution � º results in a change
in the objective function value equal to : M , then the move is still accepted if;=<&> ��| : M \qy ^K&pU `/L:OcRN���

, where y ^ (temperature) is a control parameter,
and

`/LNOcR:��� s@? � ý �$A is a uniform random number. The parameter y ^ is ini-
tially high, allowing many inferior moves to be accepted, and is slowly reduced

A Metaheuristic Approach to Scheduling Workflow Jobs on a Grid 311

Tabu search

Initialize(k , x, x*, TabuList);
repeat

Select_Best(x': c(x') = min{c(y): y ∈ N(x) \ TabuList});
x := x';
if c(x) < c(x*) thenx* := x;
k := k + 1;
Update (TabuList);

until Stop_Criterion;

Figure 19.3. Tabu search pseudo-code.

to a value where inferior moves are nearly always rejected. The process of de-
creasing the value of temperature is called the cooling scheme. Determining
the initial value of the control parameter as well as the method of decreasing
its value are important elements of the cooling scheme. A general form of the
SA algorithm in its homogeneous version is presented in Figure 19.2.

4.2.2 Tabu Search

Tabu search (TS) is a metastrategy based on neighborhood search with over-
coming local optimality. Unlike simulated annealing, it works in a determinis-
tic way, trying to model human memory processes. Memory is implemented by
the implicit recording of previously seen solutions, using simple but effective
data structures. This approach focuses on the creation of a tabu list of moves
that have been performed in the recent past of the search, and that are forbid-
den for a certain number of iterations, to help to avoid cycling and to promote
a diversified search over the set of feasible solutions. Tabu search was origi-
nally developed by [Glo86, Glo89, Glo90], and a comprehensive report of the
basic concepts and recent developments was given in [GL97]. Tabu lists can
be managed in many different ways. Several tabu list management methods
have been considered in the literature, choosing one of them is an important
decision when applying the TS algorithm to an optimization problem. At each
iteration TS moves to the best solution that is not forbidden, regardless of the
fact whether this is an improving move or not. As a result, the algorithm is
independent of local optima. A general form of tabu search can be presented
in Figure 19.3.

4.2.3 Genetic Algorithms

Genetic algorithms (GA) can also be viewed as a form of local search, al-
though their original inspiration comes from population genetics. Unlike SA
and TS, GA use a collection (or population) of solutions from which better
solutions are produced using selective breeding and recombination strategies.
Simple genetic operators, such as crossover and mutation, are used to con-

312 GRID RESOURCE MANAGEMENT

Genetic algorithm

Initialize(k , Pk);
Evaluate(Pk);
repeat

Select_Individuals(Pk);
Recombinate(Pk);
Evaluate(Pk);
k := k + 1;

until Stop_Criterion;

Figure 19.4. Genetic algorithm psuedo-code. The value
Ì ã is the population of individuals atá -th iteration, and Evaluate is a function determining the quality of individuals in the popula-

tion (usually inversely dependent on their objective function values).

struct new solutions from pieces of old one in such a way that the population
steadily improves. The population is then maintained according to the “sur-
vival of the fittest” principle. GA operate on a population of individuals, each
one representing a feasible solution of the considered problem. The random
nature of genetic operators, assuming accidental changes of randomly selected
individuals from the current population, sometimes results in the difficulty in
maintaining the feasibility of individuals during the evolution process. The
initial development of GA concepts was done by [Hol75], and an extensive
survey on genetic algorithms is given in [Mic92].

GA, like SA and TS, also requires several parameters to tune. But, like
the other metaheuristics, can often be fairly robust in its basic version, with
simple recombination operators and a selection method based on well-known
strategies like roulette wheel, tournament, or ranking selection. A general form
of a GA algorithm can be presented in Figure 19.4.

4.3 Problem-Specific Decisions

All the three algorithms presented in the last subsections can be used with
a variety of applications in business, engineering, economics, and science, and
are able to produce high-quality solutions in reasonable time horizons for many
hard combinatorial optimization problems. In order to apply a metaheuristic
algorithm to a given problem, several decisions have to be made. They can be
divided into two categories: decisions related to the metaheuristic itself (so-
called generic decisions), and decisions related to the problem being solved
(so-called problem-specific decisions). Generic decisions are characteristic for
a particular approach used, and have to be considered in connection with this
approach. However, problem-specific decisions can be considered separately,
without respect to any particular metaheuristic applied.

A Metaheuristic Approach to Scheduling Workflow Jobs on a Grid 313

Problem-specific decisions include:

Solution representation: the form of representing a feasible solution of
the problem;

Objective function: the way of calculating the objective function value
for each feasible solution;

Neighborhood generation mechanism: the method of generating the
neighborhood of the current solution; and

Starting solution: the way of constructing an initial solution for the
search process.

In this section we propose definitions of the above elements for the consid-
ered problem of scheduling workflow jobs on a Grid.

A feasible solution is represented by two
O

-element lists, a Task List and
a Node List. The Task List (TL) is a precedence-feasible permutation of task.
Each task is placed on the list after all its predecessors but before all its succes-
sors. The Mode List (ML) is a list of modes in which tasks will be executed. In
other words, the value in position

ð
on this list represents the execution mode� � of task

ð
. This value determines the resource group in which task

ð
will be

executed, as well as its duration in this mode.
Figure 19.5 shows a simple graph

,
in which all tasks may be executed in

one of five possible modes and Task 1 and Task 10 are dummies. An example
solution for this graph is is presented in Figure 19.6.

A good starting solution can be generated by setting all tasks on ML in
an ascending order, and assigning the mode with the shortest duration to each

10

9

8

7

6

5

4

2

31

Figure 19.5. An example of graph
"

representing a workflow job.

1 4 2 3 7 9 6 5 8 10 Task List

2 3 4 1 5 5 4 2 2 3 Mode List

Figure 19.6. An example of a solution for the job presented in Figure 19.5.

314 GRID RESOURCE MANAGEMENT

1 2 3 4 5 6 7 8 9 10 Task List

1 1 1 1 1 1 1 1 1 1 Mode List

Figure 19.7. A sample starting solution for the job presented in Figure 19.5.

1 4 2 3 6 7 9 5 8 10 Task List after

B
j

C
j

D
j

1 4 2 3 7 9 6 5 8 10 Task List before

Figure 19.8. An example of a shift operation.

1 4 2 3 7 9 5 6 8 10 Task List after

1 4 2 3 7 9 6 5 8 10 Task List before

Figure 19.9. An example of a pairwise interchange.

task. Assuming that modes of each task are numbered in an ascending order
of duration, the starting solution for the considered example job is presented in
Figure 19.7.

A neighbor of a current solution can be constructed by a change either on TL
or on ML. The simplest change on ML is to choose a random a position on the
list and change the corresponding value. The changes on TL can be performed
in several ways, including using a shift operator and a pairwise interchange
operator among others.

A neighbor generated using the shift operator is constructed as follows. We
select ask

ð
in position EK� on TL. The nearest predecessor

W � of task
ð

from
the left hand side, and the nearest successor T � of task

ð
from the right hand

side of EZ� , are found. Next, task
ð

is moved to certain position Fj� between
W �

and T � , and all tasks between E � and F � are shifted towards position E � . An
example shift operation is shown in Figure 19.8.

Using the pairwise interchange, a neighbor of the current solution can be ob-
tained by choosing two tasks that are not precedence-related, and interchanging
them on TL. An example pairwise interchange operation is presented in Fig-
ure 19.9. Of course, also other operators can be used to generate neighboring
solutions.

A Metaheuristic Approach to Scheduling Workflow Jobs on a Grid 315

The solution representation described above determines only the execution
modes of all tasks and a possible task execution order, but it does not con-
tain any information about the schedule. Therefore, it is necessary to provide
another mechanism for calculating starting times of tasks, as well as for map-
ping resources to tasks. The schedule is constructed using a so-called decod-
ing rule. We use the serial Schedule Generation Scheme (SGS) [Kel63] in a
slightly modified version. It has been shown in [Kol95] that this approach al-
ways generates active schedules i.e. schedules where none of the tasks can be
started earlier without delaying some other task, and for makespan minimiza-
tion problems the optimal solution is a member of the set of active schedules,
that is, there is always a task list TL for which the serial SGS gives an optimal
solution.

The serial SGS for a task list TL can be described as follows. We select the
first unscheduled task

ð
from TL, and we schedule it at the earliest possible

starting time
� � that does not violate precedence or resource constraints, also

considering setup times (times of schedule-dependent data transfers). No task
may be started before all its predecessors are completed, and all transmissions
of data files from these predecessors are finished. Thus, the starting time

� � of
task

ð
executed in location

a · has to fulfill the inequality � � A H u · À � � for
every task

7 s Á/�-�2R � executed in location
a u .

For every two precedence-related tasks executed in the same resource group
with a schedule-dependent data transfer between them, we have to decide
whether these tasks should be executed on the same node or not. This de-
cision is vital since if both tasks are performed on the same node, the data
transfer time between these tasks is equal to zero, according to Equation 19.1.
We propose the following solution of this problem. If task

7
is executed in

group
,»£ u , and its immediate successor

ð
is also executed in

,ô£ u and can be
executed immediately after the completion of task

7
, we assume that there is

no need to transfer any data between these tasks because they can be executed
on the same node. Unfortunately, it is possible that more than one immediate
successor of task

7
will be assigned to the same resource group, and can be

executed immediately after the completion of task
7
. In such a case, the super-

scheduler must decide which task should be executed on the same node as task7
. We propose a simple rule that chooses the task that occurs first on TL from

the set of all alternative tasks. The remaining alternative tasks are scheduled in
the order in which they occur on TL, either on the same node as task

7
at the

earliest possible starting time
� [(if the transmission of the corresponding file

from task
7

to another node in
, £ u would be finished after

� [) or otherwise on
another node in

,»£ u . In other words, this node from among all nodes in
,ô£ u is

chosen on that the considered task can be started at the earliest. We represent
the information that task

ð
will be executed on a given node or on any other

node from
,»£ u by the flag GÃ� , which is set to 0 if the task may be mapped to an

316 GRID RESOURCE MANAGEMENT

arbitrary node from the considered resource group, and is set to the number of
its immediate predecessor if the task has to be executed on the same node as its
predecessor. In case there are more than one immediate predecessors for taskð

executed in the same group
,�£ u , task

ð
will be executed on the same node as

task
7
, such that the value

^ � � A H uSu is minimized, where
�

is the execution
mode of task

7
and

7¹ù ð
.

Finally, the mapping of resources to tasks is performed according to the rule
that a task is scheduled on any node from

,û£ u if GÃ� < �
, or on the same node

as task
7

if G � <�7 .
The objective function is defined as the total execution time of the consid-

ered workflow job i.e. the makespan or � � õ [. This value is obtained as a result
of the execution of the serial SGS procedure for a given feasible solution.

4.4 Example

An example of a feasible solution, i.e. a pair (TL, ML), and the correspond-
ing schedule obtained by using the described serial SGS for task lists TL is pre-
sented in Figure 19.10. The structure of the workflow job used in this example
is defined by graph

,
from Figure 19.5. The feasible solution considered is

presented in Figure 19.10 above the schedule. There are two resource types
(
` < e

):
` � and

` � , and two resource locations (
a < e

):
a � and

a � . We
assume that resource type

` � is available in resource location
a � , and resource

type
` � is available in resource location

a � . Resource type
` � is available in

3 units (
` � < D

), and resource type
` � in 2 units (

` � < e
). Thus, the total

number of available resource units (nodes) � < *
. Therefore, there are two

resource groups:
, ��� and

, ��� .
The bandwidth within resource location

a � is equal to 10M/t (
� ��� < ���

),
within resource location

a � is equal to 5M/t (
� ��� < ���

), and between these
two locations is equal to 2M/t (

� �9� < � �d� < e
), where M is a data unit and t

is a time unit. We assume for simplicity that
� �9� < � �d� < � .

All data concerning tasks are presented below in Tables 19.4 and 19.5. In
Table 19.4 resource requirements and durations of tasks are given, and in Ta-
ble 19.5 we present the sizes of files transferred between tasks. In this example
we assume for simplicity that the tasks are not parallel computations, i.e. each
task

ð
requires in each mode exactly one resource unit:

� � £ � < �
. Table 19.5

is the bandwidth matrix between resource locations
a � and

a � .
Before presenting the schedule, let us complete the assumptions for the con-

sidered example. From our example, Task 2 is a schedule-independent data
transfer that is responsible for providing an input data file for Task 5. This file
already exists on a Grid, so Task 2 is a data transmission itself and thereforeÂ � ��� Â < �

. The minimum time needed to transfer the required file by Task 2
to group

, ��� equals 8, whereas to group
, ��� equals 10 time units. Remember

A Metaheuristic Approach to Scheduling Workflow Jobs on a Grid 317

Table 19.4. Example – tasks.à á v á `Þ x v ç x vqv ç x ` v Þ x ` ç x v ` ç x `q`
1 0 0 0 – – –
2 8 0 1 10 1 0
3 10 1 0 15 0 1
4 12 0 1 14 1 0
5 5 1 0 10 0 1
6 4 1 0 9 0 1
7 3 1 0 4 0 1
8 9 0 1 12 1 0
9 6 1 0 8 0 1
10 0 0 0 – – –

Table 19.5. Example file transfer times (left) and bandwidth values (right).

ä à ~ ' © x ~2 5 0
3 5 16M
3 6 10M
4 6 30M
4 7 25M
5 8 25M
6 8 30M
7 8 60M
7 9 20M

) v) `) v 10M/t 2M/t) ` 2M/t 5M/t

that the file transmitted by Task 2 is saved on the same node as Task 2 is exe-
cuted. Tasks 3 and 4 do not need any input files, but they both generate some
output files. The remaining tasks both need input files and generate output
files, however, files generated by Tasks 8 and 9 are not required by any other
tasks, the data is just saved on the nodes that executed these tasks. Using these
assumptions for the example, we obtain a schedule presented in Figure 19.10.

5. SUMMARY

In this chapter we address the problem of scheduling workflow jobs on a
Grid. The problem consists of assigning Grid resources to tasks of a workflow
application across multiple administrative domains in such a way that the time
of execution of a particular set of tasks is minimized.

In this work we formulate the problem as an extension of the resource-
constrained project scheduling problem (RCPSP) to minimize the makespan.

318 GRID RESOURCE MANAGEMENT

1 2 3 4 5 7 6 8 9 10 Task List

1 1 1 1 2 2 2 1 1 1 Mode List

time

6

3

G22

2

Cmax

5 8

9

74

G11

Figure 19.10. A feasible solution and corresponding schedule for the the considered example.
Task 2 is not shaded since it is a schedule-independent data transfer, not a computational task.
Arrows represent schedule-dependent data transfers (or setups).

The multi-mode version of this problem with schedule-dependent setup times
has been used. The problem of scheduling workflow jobs on a Grid has been
defined as the MRCPSP-SDST, and formulated as a 0-1 LP problem. We pro-
pose using a local search metaheuristic approach to solve this combinatorial
optimization problem. We present ways to address the problem specific deci-
sions (solution representation, objective function, neighborhood, starting solu-
tion) required for a local search algorithm.

Our model is purely deterministic, and we assume all parameters are fixed
and known a priori. This may not be possible in real Grid environments where
some information can be temporal or uncertain. Therefore, future directions
may include developing other approaches to the problem such as stochastic
techniques, using fuzzy or rough set based approaches, using simulation, or
involving learning systems. Another approach to this problem would be from
the sensitivity and robustness point of view, which would look for schedules
that may be not that high-quality in terms of the execution time, but are more
robust and breakdown resistant. Also other criteria can be considered, for
example cost, reliability, resource leveling, etc., as well as a multi-objective
approach. Our current approach is being implemented within the GridLab
project [AAG

�
02]. Examining the approach in a real Grid environment will

be the ultimate verification of its efficiency.

Acknowledgments

This research has been supported by the Polish State Committee for Scien-
tific Research (KBN) grant no. KBN 4T11F 001 22. We express our gratitude
to Jarek Nabrzyski and Krzysiek Kurowski for their valuable help and fruitful
discussions.

V

DATA-CENTRIC APPROACHES
FOR GRID RESOURCE MANAGEMENT

Chapter 20

STORAGE RESOURCE MANAGERS

Essential Components for the Grid

Arie Shoshani, Alexander Sim, and Junmin Gu
Lawrence Berkeley National Laboratory

Abstract
Storage Resource Managers (SRMs) are middleware components whose func-

tion is to provide dynamic space allocation and file management of shared stor-
age components on the Grid. They complement Compute Resource Managers
and Network Resource Managers in providing storage reservation and dynamic
information on storage availability for the planning and execution of a Grid job.
SRMs manage two types of resources: space and files. When managing space,
SRMs negotiate space allocation with the requesting client, and/or assign default
space quotas. When managing files, SRMs allocate space for files, invoke file
transfer services to move files into the space, pin files for a certain lifetime, re-
lease files upon the clients request, and use file replacement policies to optimize
the use of the shared space. SRMs can be designed to provide effective sharing
of files, by monitoring the activity of shared files, and make dynamic decisions
on which files to replace when space is needed. In addition, SRMs perform
automatic garbage collection of unused files by removing selected files whose
lifetime has expired when space is needed. In this chapter we discuss the design
considerations for SRMs, their functionality, and their interfaces. We demon-
strate the use of SRMs with several examples of real implementations that are in
use today in a routine fashion or in a prototype form.

1. INTRODUCTION

The grand vision of the Grid is to provide middleware services that give a
client of the Grid the illusion that all the compute and storage resources needed
for their jobs are running on their local system. This implies that the client
only logs in and gets authenticated once, and that the middleware software
figures out what is the most efficient way to run the job, reserves compute,
network, and storage resources, and executes the request. Initially, the Grid

322 GRID RESOURCE MANAGEMENT

was envisioned as a way to share large compute facilities, sending jobs to be
executed at remote computational sites. For this reason, the Grid was referred
to as a Computational Grid. However, very large jobs are often data intensive,
and in such cases it may be necessary to move the job to where the data sites
are in order to achieve better efficiency. Thus, the term Data Grid was used to

emphasize applications that produce and consume large volumes of data. In
some applications, the volume of data is so large (in the order of hundreds of
gigabytes to terabytes) that partial replication of the data is performed ahead
of time to sites where the computation is expected to take place.

In reality, most large jobs that require Grid services, especially in the scien-
tific domain, involve the generation of large datasets, the consumption of large
datasets, or both. Whether one refers to the Grid as a Computational Grid or
a Data Grid, one needs to deal with the reservation and scheduling of storage
resources when large volumes of data are involved, similar to the reservation
and scheduling of compute and network resources.

In addition to storage resources, Storage Resource Managers (SRMs) also
need to be concerned with the data resource (or files that hold the data). A
data resource is a chunk of data that can be shared by more than one client.
For the sake of simplifying the discussion, we assume that the granularity of
the data resource is a file. In some applications there may be hundreds of
clients interested in the same subset of files when they perform data analysis.
Thus, the management of shared files on a shared storage resource is also an
important aspect of SRMs. In particular, when a file has to be stored in the
storage resource that an SRM manages, the SRM needs to allocate space for
the file, and if necessary remove another file (or files) to make space for it.
Thus, the SRM manages both the space and the content of that space. The
decision of which files to keep in the storage resource is dependent on the cost
of bringing the file from some remote system, the size of the file, and the usage
level of that file. The role of the SRM is to manage the space under its control
in a way that is most cost beneficial to the community of clients it serves.

In general, an SRM can be defined as a middleware component that manages
the dynamic use of a storage resource on the Grid. This means that space can
be allocated dynamically to a client, and that the decision of which files to keep
in the storage space is controlled dynamically by the SRM.

The initial concepts of SRMs were introduced in [SSG02]. In this chapter
we expand on the concepts and functionality of SRMs. As described
in [SSG02], the concept of a storage resource is flexible; an SRM could be
managing a disk cache (we refer to this as a Disk Resource Manager - DRM),
or managing a tape archiving system (Tape Resource Manager - TRM), or a
combination of both, called a Hierarchical Resource Manager (HRM). Fur-
ther, an SRM at a certain site can manage multiple storage resources, thus
have the flexibility to be able to store each file at any of several physical stor-

Storage Resource Managers 323

age systems it manages or even to replicate the files in several storage systems
at that site. The SRMs do not perform file transfers, but can invoke middleware
components that perform file transfers, such as GridFTP [ABB

�
02b].

All SRMs have the same uniform interface, thus allowing any current or fu-
ture hardware configurations to be addressed in the same manner. For example,
an archive does not have to be a robotic tape system; a disk system could serve
as archival storage as well. As far as the client is concerned, getting a file into
an SRM-managed space may incur a delay because the file is being retrieved
from a tape system or from a remote site over the network, or both.

This chapter is structured as follows: Section 2 overviews the basic func-
tionality of SRMS by walking through several related scenarios. The concepts
of permanent, volatile and durable files are defined in Section 3. Section 4 de-
scribes how to manage space reservations, and Section 5 details the concepts of
negotiations, site and transfer URLs, and the semantics of file pinning. Section
6 describes several projects currently using SRMs in practice. We conclude in
Section 7.

2. THE FUNCTIONALITY OF STORAGE RESOURCE
MANAGERS

2.1 Example Scenarios

To illustrate the functionality that SRM services expose to a client, let us
consider a series of related scenarios. Each will illustrate increasingly more
complex functionality required of the SRMs.

2.1.1 Local Data Consumption by a Single Client

Consider a simple scenario where a set of requested files are to be moved
to the clients system. Let’s assume that the client needs files from several
locations on the Grid, that the client knows exactly the site of each file (the
machine name and port), and the physical location of the file (i.e. directory
and file name). In this case, the client can go directly to each location and get
each file. In this case, the client needs to monitor the file transfers to make sure
that each is completed successfully, and to recover from failures.

Now, suppose that the client wants to get 500 files of 1 GB each, but the
amount of available space on the local disk is only 50 GBs. Suppose further
that the client can process each file independently of the other files, and there-
fore it is possible to bring in files incrementally. The client has the burden
of bringing in the files, monitoring the file transfers, recovering from failures,
keeping track of which files were brought in, removing each file after it is pro-
cessed to make space for additional files, and keeping track of available space.

324 GRID RESOURCE MANAGEMENT

An SRM can be used to alleviate this burden of dealing with a large num-
ber of files by providing a service where the client issues a single request for
all 500 files. The SRM deals with dynamic space allocation, removal of files,
and recovering from transient failures. This is illustrated schematically in Fig-
ure 20.1. Note that the local storage system is a disk, and that the two remote
systems shown are a disk, and a mass storage system that includes a robotic
tape. The solid line from the client to DRM represents a multi-file request. The
dashed line from the client to the disk represents file access (open, read, write,
close, copy, etc.).

tape systemtape system

File
Transfer Service

File
Transfer Service

Disk
Cache
Disk

Cache

file
transfer requests network

DRMDRMDisk
Cache
Disk

Cache

clientclient

...

Disk
Cache
Disk

Cache

File
Transfer Service

File
Transfer Service

Multi-file
request

File
Access

Figure 20.1. A multi-file request service by an SRM.

Each file in the multi-file request can be represented as a Uniform Re-
source Identifier (URI) given that the protocol to get the file is known (such
as GridFTP, ftp [PR85], http [FGM

�
99], etc.). For example, gridftp://

cs.berkeley.edu:4004/tmp/fileX represents a file fileX in the di-
rectory tmp of the machine cs.Berkeley.edu and the gridftp transfer
protocol that uses port 4004. In this manner, the multi-file request can be com-
posed of files on different systems.

The functionality provided by the SRM to support such a multi-file request
includes: (a) queuing the set of files requested, (b) keeping track of the files
in the disk cache, (c) allocating space for each file to be brought in, (d) if the
requested file is already in cache because of a previous use, mark it as needed,
so it is not removed by the SRM, (e) if the file is not in cache, invoke a file
transfer service to get the file.

Storage Resource Managers 325

2.1.2 Shared Local Data Consumption by Multiple Clients

Figure 20.2 shows a similar situation to Figure 20.1, except that multiple
clients share the local disk. This situation is not unusual, especially for ap-
plications that need to process a large amount of data and it is prohibitive to
provide each client with a dedicated large disk. Another advantage of sharing
a disk cache is that files accessed by one client can be shared by other clients.
In this case, the file does not have to be brought in from the remote site again,
saving time to the clients and unnecessary traffic on the network. Of course,
this can be done for read-only files or when the master file has not been updated
since the last read.

tape systemtape system

File
Transfer Service

File
Transfer Service

Disk
Cache
Disk

Cache

file
transfer requests network

DRMDRMDisk
Cache
Disk

Cache

...

Disk
Cache
Disk

Cache

File
Transfer Service

File
Transfer Service

Multi-file
request

File
Access

...clientclient clientclient

Figure 20.2. Sharing a DRM-managed disk cache.

Even with this simple scenario, one can already notice an important concept
emerging: The concept of file pinning. When a file is brought into the disk
cache, there is no guarantee that it will stay there, because the space may be
needed by other clients. Thus, in order to keep the file in cache, it is necessary
for the SRM to pin the file. It is also necessary to provide the client with
a release pin call so that the SRM can unpin the file. Another related concept
that needs to be supported is the concept of a lifetime of a pin. This is necessary
in case that a client neglects to release (or unpin) the file. This can happen
if the clients program crashes, goes into a loop, or simply terminates without
releasing the file. The lifetime of a file is a necessary feature for automatic
garbage collection of unused files.

326 GRID RESOURCE MANAGEMENT

The above concepts are meaningful when dealing with shared temporary
space, which we refer to as volatile space. We use the term volatile rather than
temporary because there is a guarantee that files will not be removed so long
as they are pinned. As we’ll see in the next sub-section, other types of files and
spaces need to be supported as well.

There are several implications to the functionality described above. First,
in order to support multi-file requests for multiple users it is necessary to in-
troduce the concept of a quota per user. The management of the quota de-
pends on the policy of the specific SRM. It could be fixed, or change dy-
namically based on the number of clients at the time a request is made. Sec-
ond, a service policy must be supported. A good service policy will make
sure that all requests are serviced in a fair manner, so that no one request is
starved. Third, since files have to be removed when space is needed, a re-
placement policy has to be provided, whose function is to determine which
file (or files) to evict in order to make space for a file that needs to be brought
in. A good replacement policy would maximize the use of shared files. There
are many papers discussing good replacement policies in the domain of web
caching [AY97, CI97, DFJ

�
96, Gue99] but these policies do not take into ac-

count the cost of bringing in the file if the SRM needs to get it again. Recent
work has shown that different policies need to be used when considering large
files over a Grid [OOS02].

2.1.3 Pinning Remote Files

When a file is needed from a remote site, there is no guarantee that the
file will be there when the file transfer starts, or whether the file is deleted or
modified in the middle of the file transfer. Normally, archived files are not
removed and this issue does not come up. However, on the Grid there may be
replicas that are stored temporarily in shared disk caches that may be removed
at any time. For example, one model of the Grid is to have a tier architecture
where the long term archive is a Tier 0 site, a shared disk cache may exist
in a Tier 1 regional site (such as Southern Europe), a shared disk may exist at
a Tier 2 local site (such as the Lyon area), and a Tier 3 disk cache may exist
at some university. The tier architecture is designed so that files are always
accessed from the closest tier if possible. However, over time the content of
the intermediary shared disk caches change depending on the access patterns.
Therefore, it is possible to have a file removed just before transfer is requested
or while the transfer is in progress.

To avoid this possibility, and also to make sure that files are not removed
prematurely, one can use the same pinning concept for remote files as well.
Thus, remote sites that have SRMs managing their storage resources can be
requested to pin a file. This is shown in Figure 20.3, where the remote sites
have SRMs associated with them.

Storage Resource Managers 327

tape systemtape system
Disk

Cache
Disk

Cache

file
transfer requests network

DRMDRMDisk
Cache
Disk

Cache

...

Disk
Cache
Disk

Cache

Multi-file
request

File
Access

...clientclient clientclient

DRMDRMHRMHRM

Figure 20.3. Accessing remote SRMs.

For every file that needs to be brought into a local site, the following actions
take place: 1) the local SRM allocates space, 2) the local SRM requests that
the remote SRM pins the file, 3) the remote SRM acknowledges that the file
was pinned, and the physical location of the file is returned; this is referred to
as the transfer URL, 4) the local SRM invokes the file transfer service, and 5)
upon successful completion of the transfer, the local SRM notifies the remote
SRM to release the pin.

2.2 Where do SRMs Fit in a Grid Architecture?

Running jobs on the Grid requires the coordination of multiple middleware
components. It is convenient to think of these components as layered. One
popular view of layering of the Grid services is described in [FKT01]. There
are five layers, labeled: fabric, connectivity, resource, collective, and applica-
tion. Typically, an application at the top layer makes a request for running a
job to the request manager, a component at the collective layer. The request
manager may include a component called a request planner that figures out the
best way to run the job by consulting metadata catalogs, file replica catalogs,
monitoring information (such as the Network Weather Service [WSH99a]),
etc. The plan, which can be represented as a workflow graph (referred to as ex-
ecution DAG [DAG] by the Condor project [LL90] described in Chapter 9) can

328 GRID RESOURCE MANAGEMENT

then be handed to a request executer that will then contact compute resource
managers and storage resource managers to allocate resources for executing
the job. Figure 20.4 shows the view where compute and storage resources can
be anywhere on the Grid, and the results returned to the clients site.

MSS

Request
Executer

Storage
Resource
Manager

Metadata
Catalog

Replica
Catalog

Network
Weather
Service

logical
query

network

ClientClient ...

Request
Interpreter

Request
Planning

a set of
logical files

execution plan
and site-specific

files

Client’s site

...
Disk

Cache

Disk
Cache

Compute
Engine

Disk
Cache

Compute
Resource
Manager

Storage
Resource
Manager

Compute
Engine

Disk
Cache

requests for
data placement and
remote computation

Site 2Site 1 Site N

Storage
Resource
Manager

Storage
Resource
Manager

Compute
Resource
Manager

result
files

execution
DAG

MSSMSS

Request
Executer
Request
Executer

Storage
Resource
Manager

Storage
Resource
Manager

Metadata
Catalog

Replica
Catalog
Replica
Catalog

Network
Weather
Service

Network
Weather
Service

logical
query

network

ClientClientClientClient ...

Request
Interpreter
Request

Interpreter

Request
Planning
Request
Planning

a set of
logical files

execution plan
and site-specific

files

Client’s site

...
Disk

Cache

Disk
Cache
Disk

Cache

Compute
Engine

Disk
Cache
Disk

Cache

Compute
Resource
Manager

Storage
Resource
Manager

Compute
Engine

Disk
Cache
Disk

Cache

requests for
data placement and
remote computation

Site 2Site 1 Site N

Storage
Resource
Manager

Storage
Resource
Manager

Compute
Resource
Manager

result
files

execution
DAG

Figure 20.4. Interaction of SRMs with the request executer.

According to this view, SRMs belong in the resource layer, in that a com-
ponent, such as a request executer would rely on the SRMs to perform space
allocation and file management when requested to do so.

Figure 20.4 introduces another requirement that SRMs need to support.
They can be invoked not only by clients or client applications, but also by
other middleware software. This implies that SRMs should be able to report
information on how busy they are (in case that they have many files to serve
on their queue), how much free space they have, and what is the quota policy
they support. Similarly, they should be able to provide information on whether
they still have specific files in the managed storage resource.

Considering SRMs as belonging to the storage layer is not accurate, since
they do provide a limited service of brokering, a function usually considered
at the collective layer. Recall that the SRM can be handed a set of files to be
accessed, each with a source URL. If the file is found locally, either because
it was placed there permanently or because it was brought in by a previous
request, the SRM simply returns the location of the file. If it is not available
locally, the SRM will contact the source location to pin the file, and then invoke
a transfer service to get the file. This last action is a brokering action, which is

Storage Resource Managers 329

quite useful to clients. Thus, an SRM as we described it here, can be thought
of as being a local SRM that provides a brokering capability of getting files
from remote sites.

The general function of determining the site or sites where to reserve spaces
and to move data into the spaces, is referred to as storage scheduling and data
placement services, which are indeed at the collective layer. These should not
be confused with SRMs. Rather, their task is to negotiate space reservation,
and schedule data movement by requesting such services from multiple SRMs.

3. TYPES OF FILES

The concepts of permanent and temporary spaces are supported by most
shared file systems. A permanent space is a space that a user controls, and only
that user can put in and remove files from that space. A temporary space is a
shared space that is allocated to a user, but can be reclaimed by the file system.
If space is reclaimed, all the files in that space are removed by the file system.
The implication is that files in these spaces are also permanent and temporary.

3.1 Permanent and Volatile Files

On the Grid, the same concepts of permanent and temporary can be ap-
plied to file types, but temporary files require additional functionality. Tempo-
rary files on shared Grid spaces cannot be removed arbitrarily. Some minimal
amount of time must be guaranteed by the SRM for the client to rely on. This
is the reason for a lifetime of a file. This feature of a lifetime for a file is as-
sociated with each user accessing the file. That is, a lifetime is associated with
a file for a user when the file is made available to the user. If another user
requests the same file later, the file gets a fresh lifetime associated with that
user. We refer to a file that is temporary in nature, but has a lifetime guarantee
as a volatile file. Since volatile files can be shared by multiple users at the
discretion of the SRM, volatile files can be thought of as owned by the SRM,
and permission to use them by the users is granted by the SRM on a temporary
basis enforced by the lifetime. Alternatively, an SRM can choose to replicate
files for each user, although this approach is less space efficient. The concept
of volatile files is very useful for sharing space, automatic garbage collection,
and sharing of files on a temporary basis. Most shared disk caches on the Grid
are likely to provide support only for volatile files.

In contrast, a permanent file is a file associated with long-term archival
storage that may or may not be shared by clients. Similar to file systems,
permanent files can only be removed by the owner.

330 GRID RESOURCE MANAGEMENT

3.2 Durable Files

For Grid applications, one needs another type of a file that has properties of
both permanent and volatile files. A durable file has the behavior of a volatile
file in that it has a lifetime associated with it, but also the behavior of a perma-
nent file in that when the lifetime expires the file is not automatically eligible
for removal. Instead, the SRM may advise the client or an administrator that
the lifetime expired or take some other action. For example, the SRM may
move the file to a permanent space, release the durable space, and notify the
client. A durable file type is necessary in order to provide temporary space
for files generated by large simulations, which need to be eventually archived.
Since the archiving process (for example, into a mass storage system) is usu-
ally slower than the data generation process, attempting to move files directly
to the archive will slow down and waste computational resources. By storing
durable files into available shared disk caches, the simulation can continue ef-
ficiently, yet it is guaranteed that the files will not be removed before they are
moved to the archive as a secondary task. This is a more reasonable approach
for sharing temporary space, while still protecting important files. Similar to
volatile files, durable files can be released by the client as soon as the files have
been moved to a permanent location.

4. MANAGING SPACE RESERVATIONS

Space reservation is a necessary feature of SRMs since reservations are
needed in order to support the request planning and request execution steps of
running jobs on the Grid. Space reservation is also needed in order to replicate
data to locations where computations take place, or to have space to store the
results of computations. However, space reservation brings up many difficult
issues. What policies to use when space is requested? Is the space guaranteed?
Should the SRM set aside the space requested? What if the space is not used
for a long time?

The answer to these questions depends on the cost model used. To support
space reservations, there needs to be a way to provide a ticket or a capabil-
ity to the user in order to claim the space. There needs to be an authority
that manages this capability. There needs to be a mechanism for reporting the
space-time consumed. And there needs to be a way of taking away the space
if it exceeds the reservation period.

Dynamic space reservation is not a concept generally supported by file sys-
tems, but is essential for supporting shared storage resources on the Grid. For
example, in the Unix system, space is allocated by the administrator (the root
owner) on a long-term basis. A user cannot request additional space dynam-
ically, or release space dynamically. SRMs are designed to provide dynamic
space allocation and release.

Storage Resource Managers 331

4.1 Types of Spaces

In order to support space reservations, we found it useful to apply the con-
cepts of permanent, durable, and volatile to spaces as well. The semantics are
similar. Permanent space is owned by the user and has an indefinite lifetime.
Durable space is also owned by the user, but when a lifetime expires there are
two cases to consider. If the durable space does not contain any files, the space
is released. If it contains durable files, the system claims all the unused space,
and notifies the file owner that the lifetime of the durable files has expired.
Volatile space also has a lifetime, but when it expires, all the space and the
files in it can be removed by the SRM.

Reserving permanent space is obviously needed for dynamic archival stor-
age reservation. Similarly, reserving volatile space is necessary for shared disk
resources that are intended to be used on a temporary basis. However, support
for reservation of durable space requires an explanation as to its value.

Recall that durable files are files that have a lifetime associated with them,
but the SRM cannot remove them without some explicit action. Durable files
are especially useful when a client generates a large number of files that need
to be stored temporarily in some shared disk cache before being archived. The
purpose of durable space is similar: reserving a guaranteed space on a tem-
porary basis that cannot be removed without an explicit action by the client.
Similar to volatile space, durable space can be released by the client. Durable
space is particularly useful for request planning.

In contrast to durable space, which is a space that cannot be removed with-
out an explicit action, volatile space can be reclaimed by the SRM if space
is needed. For example, suppose that a client asks for 200 GB volatile space
when there are very few clients using the SRM. The SRM can initially allocate
this space, but when many new clients request space the SRM can reduce the
space used by the first client to say, 50 GBs, provided that there are no pinned
files in that space.

4.2 Best Effort Space

The concept of best effort is well known in association with reserva-
tions [BS98]. It stems from the wish to use the resources efficiently, even
if there is a way to charge for the space. For example, suppose that an SRM
controls some space, and that a client asks and is granted a space reservation
of 200 GBs for 5 hours. If this space is reserved and not used by the client, and
if as a result some other clients were denied, then the space was wasted, and
the client was charged for space that was not used. This can be thought of as
fair, but it may not be the clients fault. It could be that another resource that
was scheduled (such as a compute resource) was not available. A good request

332 GRID RESOURCE MANAGEMENT

planner would have released the space, but this cannot be depended on. The
result is that the allocation was lost, and the space was wasted.

Best effort is an alternative that requires some flexibility on the part of the
client, but makes more efficient use of resources. The reservation is considered
advisory. The SRM will try to honor the request within the reservation time
window. Space is only allocated as it is claimed, i.e. when files move into the
space. If competition is high, the client may not get all the space requested, and
may need to look for additional space elsewhere dynamically. This is difficult
for human beings to manage, but may be perfectly reasonable to expect from
a request planner since in general it needs to deal with various failure modes
on the Grid (such as a temporary network partition, archive temporarily down,
unscheduled maintenance, etc.)

Best effort can be flexible in that some minimum is guaranteed. This min-
imum can vary with the type of space. For example, a durable space should
have priority in honoring the reservation over volatile space. Here again, the
policy of best effort reservation is a local policy for each SRM.

The above discussion implies that in order for a request planner to optimize
resource usage, it needs to find out the policies provided by various SRMs it
might want to use. The general policies can be advertised, but the SRMs need
to provide dynamic information as well, such as the quota currently available
in the case that a quota policy is variable. These issues are quite complex, and
so far there are no standard methods for advertising and requesting policy and
quota information.

4.3 Assignment of Files to Spaces

Can a volatile file reside in permanent space? At first glance, one would
consider a one-to-one mapping between file types and the space types they are
assigned to. However, it is actually useful to support volatile files in perma-
nent space, for example. If a client has the right to get permanent space, it is
reasonable for the client to use it for volatile files, so that space can be auto-
matically reclaimed if it is needed. If we rank volatile, durable, and permanent
files types from low to high rank, then a file of a particular type should be able
to be stored in a higher ranking space type. We note, however, that such a
policy of assigning files to spaces is a choice of the local SRM policies. In
general, such policies may be used for more efficient space utilization, but it
is harder to manage. For this reason, most SRMs will most likely assign file
types to spaces of the same type.

There is a condition that needs to be enforced when assigning files to spaces:
no file can be pinned for a lifetime longer than the lifetime of the space it is
put into. This condition guarantees that when the space lifetime expires, the
lifetime of all the files in that space expired too.

Storage Resource Managers 333

5. OTHER IMPORTANT SRM DESIGN CONCEPTS

In this section we discuss additional items that were added to the design of
SRMs as a result of experience of their development by several groups.

5.1 Transfer Protocol Negotiation

When making a request to an SRM, the client needs to end up with a pro-
tocol that the storage system supports for the transfer of files. In general, sys-
tems may be able to support multiple protocols and clients may be able to
use multiple protocols depending on the system they are running on. While
it is advantageous to select a single standard transfer protocol that each SRM
should support (such as GridFTP), this approach is too restrictive. There could
be some university researcher without access to GridFTP who wishes to ac-
cess files through regular FTP, or there could be another FTP service that some
community prefers to use. There needs to be a way to match the transfer pro-
tocol that a client wishes to use with protocols supported by the SRMs storage
system. This is referred to as protocol negotiation.

The mechanism to support protocol negotiation is to allow clients to specify
an ordered list of protocols in their requests, and let the SRM respond with
the protocol that matches the highest possible ranking. For example, suppose
that the client wants to use a new FTP service called FastFTP. The client can
submit in the request the ordered list: FastFTP, GridFTP, FTP. An SRM whose
storage system has a FastFTP service will respond with Fast FTP, otherwise it
will respond with GridFTP, or with FTP if it does not have a GridFTP service.
In this way all SRM sites that support FastFTP will be able to use it. This
mechanism will allow a community to adopt their preferred transfer protocol,
and to introduce new protocol services over time without modifying the SRMs.

5.2 Other Negotiations and Behavior Advertising

In general, it should be possible to negotiate any meaningful quantities that
may affect the behavior of SRMs. In particular, it should be possible to nego-
tiate the lifetime of spaces and files, and the space-time quantities of reserva-
tions. It may also be possible to negotiate how many simultaneous requests the
same user may have. In all such cases, it is up to each SRM what policies to
use, and how to respond to negotiable requests. An SRM may simply choose
to always respond with the same fixed lifetime period, for example.

SRMs can also choose what type of spaces they support. For example,
SRMs that manage shared disk caches may not be designed to support perma-
nent spaces. Other SRMs may not support durable space, only volatile space.
SRMs may also choose to give one type of service to certain user groups, but
not to others. Furthermore, SRMs should be able to change these choices dy-

334 GRID RESOURCE MANAGEMENT

namically. To accommodate this dynamic behavior, it is necessary to have a
way of advertising the SRMs capabilities, policies, and dynamics loads. An-
other approach is the passive approach, where SRMs respond to inquiries about
their capabilities, dynamic resource capacity available, and dynamic load of the
SRM (i.e. how much work they still have in their queue). The passive approach
is preferable since the SRMs do not need to find out and coordinate where to
advertise except when they are first added to the Grid.

5.3 Source URLs, Transfer URLs, and Site URLs

In previous sections we represented to the location of a file on the Grid as a
URL. The example used for such a URL was gridftp://
cs.berkeley.edu:4004/tmp/fileX. In this example, we refer to
gridftp as the protocol, and cs.berkeley.edu:4004/tmp/fileX
as the Physical File Name (PFN). Since on the Grid there may be many repli-
cas of a file, each will have a different PFN. This necessitates a unique file
name that is location and machine independent. This is referred to as a Log-
ical File Name(LFN). A middleware component, such as the Globus Toolkit
Replica Catalog [SSA

�
02] or the Replication Location Service

(RLS) [CDF
�

02] can provide a mapping of the LFNs to one or more PFNs.
SRMs are not concerned with LFNs, since it is the task of the client or the
Request Planner to consult with the RLS ahead of time and to make the choice
of the desired PFN.

Because SRMs support protocol negotiation, it is not necessary to specify a
specific protocol as part of the source URL. Thus, a file that is controlled by an
SRM would have srm instead of a specific protocol. For the example above,
the source URL will be srm://cs.berkeley.edu:4004/tmp/fileX.
Assume that the preferred transfer protocol in the request is GridFTP, and that
it is supported at cs.berkeley.edu, then the transfer URL the SRM will
return will be: gridftp://cs.berkeley.edu:4004/tmp/fileX.

The transfer URL returned to the client does not have to have the same PFN
that was provided to the SRM. This is the case when the client wants the SRM
to get a file from a remote site. For example, suppose that the source URL
srm://cs.berkeley.edu:4004/tmp/fileX was provided to an
SRM with the host address dm.fnal.gov:4001. That SRM will act as
a broker, requesting the file from the SRM at cs.berkeley.edu:4004.
It may choose to place the file in a local directory /home/cs/newfiles/,
keep the same file name fileX, and select the protocol gridftp. In this
case, after the file is transferred to the SRM at dm.fnal.gov:4001, the
transfer URL that will be returned will be gridftp://dm.fnal.gov:
4001/home/cs/newfiles/fileX.

Storage Resource Managers 335

Another important case where the PFN in the transfer URL may be different
from the PFN in the source URL is that an SRM at some site may be control-
ling multiple physical resources, and may want to move the files dynamically
between these resources. Such an SRM maintains a mapping between the ex-
ternal PFN exposed to the outside world and the internal PFN of the file de-
pending on which storage component it is stored on. Furthermore, the SRM
may choose to keep the same file in multiple storage components, each having
its own internal PFN. Note, that the external PFN is not really a physical file
name, but a file name maintained by the site SRM. We refer to the URL that
contains this external PFN as the site URL.

5.4 On the Semantics of the Pinning Concept

In database systems the concept of locking is commonly used to coordinate
the content of objects in the database (records, disk blocks, etc.) when they are
subject to updates. Furthermore, the concept of locking is tightly coupled with
the concept of a transaction in that locking is used as a means of ensuring that
the entire transaction that may involve multiple objects completes correctly.
This led to the well-known theory of serializability and concurrency control
[BHG87], and to the widely used two-phase locking algorithm [GR94]. How
does the concept of pinning differ from locking? Below, we will limit our
discussion to files, without loss of generality. The same concepts apply to any
granularity of data, but on the Grid most applications deal with files.

The concept of pinning is orthogonal to locking. While locking is associated
with the content of a file to coordinate reading and writing, pinning is associ-
ated with the location of the file. Pinning a file is a way of keeping the file in
place, not locking its content. Both locks and pins have to be released. Releas-
ing a lock implies that its content can now be read. Releasing a pin means that
the file can now be removed.

The concept of a lifetime is important to both locks and pins. A lifetime on
a lock is a way of ensuring that the lock is not unreasonably long, making that
file unavailable to others. A lifetime on a pin is a way of ensuring that the file
does not occupy space beyond the time necessary for it to be accessed. Pinning
is used mainly to manage space allocated to the pinned files. It is necessary
for garbage collection of un-released files, cleaning up, or releasing space for
reuse.

The length of a lifetime is dependent on the application. Locking lifetimes
are usually short (measured in seconds), since we do not want to make files
unavailable for a long time. Pinning lifetimes can be made long (measured in
minutes) since pinned read-only files can be shared. The only penalty for a
long pin lifetime is that the space of the pinned file may not be available for
that lifetime period. Releasing a pin as soon as possible ensures the efficient

336 GRID RESOURCE MANAGEMENT

use of resources, and should be used by any middleware or applications using
SRMs.

In many scientific applications, the order that the files are retrieved for pro-
cessing may not be important. As an example, suppose that client A on site
X needs 60 files (1 GB each) from site Y, and a client B on site Y needs 60
files (1 GB each) from site X. Suppose that each site has 100 GBs altogether.
Now, for each request the 60 files have to be pinned first. If the pins happened
simultaneously, each system has only 40 GBs available, no additional space
can be released. Thus, the two processes will wait for each other forever. This
is a pin-lock.

There are many elaborate schemes to deal with deadlocks, ranging from co-
ordination between processes to avoid deadlock, to optimistic solutions that
assume that most of the time deadlocks do not occur and that it is only nec-
essary to detect a deadlock and preempt one of the processes involved. For
SRMs, the lifetime on a file should be a natural mechanism for preemption.
However, since we also have durable and permanent file types, it is worth in-
corporating some mechanism to prevent pin-locks. Assuming that pin-locks
are rare, a mechanism similar to two-phase locking is sufficient, which we
may call two-phase pinning. It simply states that all spaces and pins must be
acquired first before any transfers take place. Otherwise, all pins and spaces
must be relinquished, and the process can be tried again. It is unlikely, but
possible that this will lead to thrashing. If this is the case, then there must be
additional coordination between processes.

6. SOME EXAMPLES OF SRM IMPLEMENTATION
AND USE

In this section we describe several efforts that have already shown the value
of SRMs.

6.1 Using SRMs to Access Mass Storage Systems

SRMs have been developed at four laboratories as components that facil-
itate Grid access to several different Mass Storage Systems (MSSs). At the
Thomas Jefferson National Accelerator Facility (TJNAF) an SRM was de-
veloped to provide Grid access to the JASMine MSS [BHK01]. At Fermi
National Accelerator Laboratory (Fermilab) an SRM was developed as part
of the Enstore MSS [BBH

�
99]. At Lawrence Berkeley National Laboratory

(LBNL), an SRM was build to function as an independent component in front
of HPSS [HPS]. At CERN, a prototype SRM was recently developed for the
CASTOR system [CAS]. All these systems use the same interface using the
WSDL and SOAP web service technology. The interoperability of these SRMs

Storage Resource Managers 337

was demonstrated to allow files to be accessed through the same interface over
the Grid.

The above experience showed the flexibility of the SRM concepts. In the
case of JASMine and Enstore, it was possible to develop SRMs as part of the
MSSs because the developers are either the developers of the MSSs as was the
case at TJNAF, or the developers had access to the source code, as was the
case at Fermilab. The reason that the SRM-HPSS was developed as an inde-
pendent component in front of HPSS was that HPSS is a product supported by
a commercial vendor, IBM. It would have been impossible to develop an SRM
as part of HPSS without negotiating with the commercial vendor. Instead, the
SRM was build as an independent component that controls its own disk.

6.2 Robust File Replication Service Using SRMs

File replication of thousands of files is an extremely important task in data
intensive scientific applications. For example, large Climate Modeling sim-
ulations [CGD] may be computed in one facility, but the results need to be
stored in an archive in another facility. This mundane, seemingly simple task
is extremely time consuming and prone to mistakes. Moving the files by writ-
ing scripts requires the scientist to monitor for failures, to have procedures for
checking that the files arrived at their destination correctly, and to recover from
transient failures, such as a refusal by an MSS to stage a file.

This task is particularly problematic when the files have to be replicated
from one MSS to another. For each file, three conditions have to occur prop-
erly: staging of the file in the source MSS, transferring the file over the net-
work, and archiving the file at the target MSS. When staging files, it is not
possible to ask for all files to be staged at once. If too many staging requests
are made, the MSS will refuse most of the requests. The scientist’s script have
to monitor for refusals and any other error messages that may be issued by
the MSS. Also, if the MSS is temporarily out of order, the scripts have to be
restarted. Similar problems can occur on the target MSS in the process of
archiving files. In addition, since we are transferring hundreds of large files
(order of GBs each), it is possible that network failures occur while transfers
are taking place. There is a need to recover from these as well. Replicating
hundreds of large files is a process that can take many hours. Providing a ser-
vice that can support massive file replication in a robust fashion is a challenge.

We realized that SRMs are perfectly suited to perform massive file repli-
cation automatically. The SRMs queue the multi-file request, allocate space,
monitor the staging, transfer, and archiving of files, and recover from transient
failures. Only a single command is necessary to request the multi-file transfer.
Figure 20.5 shows the setup of having SRMs at NCAR and LBNL to achieve

338 GRID RESOURCE MANAGEMENT

continuous file replication of hundreds of files in a single request. We note that
in this setup the source MSS is the NCAR-MSS, and the target MSS is HPSS.

Disk
Cache

Disk
Cache

HRM-COPY
(thousands of files)

HRM-GET (one file at a time)

HRM-Client
Command-line Interface

HRM
(performs writes)

HRM
(performs reads)

LBNL NCAR

GridFTP GET (pull mode)

Anywhere

stage filesarchive files

Network transfer

NCAR-MSS

Get list
of files

Disk
Cache
Disk

Cache
Disk

Cache
Disk

Cache

HRM-COPY
(thousands of files)

HRM-GET (one file at a time)

HRM-Client
Command-line Interface

HRM
(performs writes)

HRM
(performs reads)

LBNL NCAR

GridFTP GET (pull mode)

Anywhere

stage filesarchive files

Network transfer

NCAR-MSS

Get list
of files

HPSS

Figure 20.5. The use of SRMs for file replication between two different mass storage systems.

In Figure 20.5 we refer to the SRMs as Hierarchical (storage) Resource
Managers (HRMs) because each HRM has its own disk and it accesses an
MSS that has a robotic tape. As can be seen in the figure the request for a
multi-file replication can be initiated anywhere. The request can be for an
entire directory to be replicated. The SRM-Command-Line-Interface connects
first to the source HRM to get the list of files to be moved, and then a single
request to replicate these files is submitted to the target HRM.

The great value of using HRMs is that they perform all the operations nec-
essary for multi-file replication as part of their functionality. This setup of file
replication is in routine use between an HPSS system at Brookhaven National
Laboratory (BNL) and Lawrence Berkeley National Laboratory (LBNL). Each
multi-file transfer involves hundreds of files and 10-100s of gigabytes. A typ-
ical multi-file replication can take many hours. Another important feature of
this setup is that multiple files can be staged at the source concurrently, mul-
tiple files can be transferred over the network concurrently, and multiple files
can be archived concurrently. Consequently, we achieve a greater efficiency in
the end-to-end transfer rate.

This setup can also replicate files from multiple sites. Since URLs are used
for the source files, the multi-file transfer request can be from any SRM, includ-
ing SRMs that manage only disk caches (DRMs). This generality of the SRM

Storage Resource Managers 339

design can support a data production scenario that involves multiple sites. For
example, a simulation can be run at one or more sites, and the files dumped
into several disk caches. A single request to the target SRM where the files
have to be archived can get the files from all the temporary disks, and release
the space when the files are safely in the archival storage.

6.3 Providing GridFTP to a Storage System Through an
SRM

Some storage systems may not be accessible using GridFTP. It is not un-
common to need access to a mass storage system that has not been retrofitted
to support GridFTP since this is a non-trivial task and GridFTP would need
to be implemented as part of the code base of that system. Using SRMs it is
possible to alleviate this problem by having the GridFTP server daemon and
the SRM run on a Grid-enabled machine external to the MSS hardware.

A prototype of this nature was developed for HPSS at LBNL. It works as
follows. When a GridFTP request for a file is made, the GridFTP code was
modified to send a request to HRM. HRM issues a request to HPSS to stage a
file. When this completes, the HRM returns the location of the file to GridFTP,
which proceeds to transfer the file to the requester. When this completes,
GridFTP issues a release to the HRM, so that the space on the HRM disk can
be reused. The opposite occurs when a file archiving is requested.

The implementation of this setup did not require any changes to the HRM.
The HRM functionality was sufficient to support all the interaction with the
GridFTP server daemon. We note that this can be applied with any HRM,
not just HRM-HPSS without any modification to the HRM using the same
modified GridFTP server code. Also, this can be applied to any system that
supports a DRM, and therefore can be applied to any file system not connected
to the Grid to make it accessible by GridFTP.

7. CONCLUSIONS

In this chapter we introduced the concepts necessary to support storage re-
sources on the Grid. Similar to compute and network resources, storage re-
sources need to be dynamically reserved and managed in order to support Grid
jobs. In addition to managing space, Storage Resource Managers (SRMs) man-
age the content (or files) in the spaces used. Managing the content permits file
sharing between clients in order to make better use of the storage resources.
We have shown that the concepts of file pinning, file releasing (or unpinning)
and lifetime of files and spaces are necessary and useful to support the reli-
able and efficient use of SRMs. We have also shown that the same standard
SRM functionality and interfaces can be used for all types of storage resources,
including disk systems, robotic tape systems, mass storage systems, and mul-

340 GRID RESOURCE MANAGEMENT

tiple storage resources managed by a single SRM at a site. SRMs have already
been implemented on various systems, including specialized mass storage sys-
tems, and their interoperability demonstrated. They are also routinely used to
provide massive robust multi-file replication of 100-1000s of files in a single
request.

Acknowledgments

While the initial ideas of SRMs were first developed by people from the
Lawrence Berkeley National Laboratory (LBNL), many of the ideas and con-
cepts described in this chapter were developed over time and suggested by
various people involved in joint meetings and discussions, including from the
European Data Grid: Jean-Philippe Baud, Jens Jensen, Emil Knezo, Peter Kun-
szt, Erwin Laure, Stefano Occhetti, Heinz Stockinger, Kurt Stockinger, Owen
Synge, from US DOE laboratories: Bryan Hess, Andy Kowalski, Chip Wat-
son (TJNAF), Don Petravick, Rich Wellner, Timur Perelmutov (FNAL), Brian
Tierney, Ekow Otoo, Alex Romosan (LBNL). We apologize for any people we
might have overlooked.

This work was supported by the Office of Energy Research, Division of
Mathematical, Information, and Computational Sciences, of the U.S. Depart-
ment of Energy under Contract No. DE-AC03-76SF00098.

Chapter 21

NEST: A GRID ENABLED STORAGE
APPLIANCE

John Bent,
�

Venkateshwaran Venkataramani,
�

Nick LeRoy,
�

Alain Roy,
�

Joseph Stanley,
�

Andrea C. Arpaci-Dusseau,
�

Remzi H. Arpaci-Dusseau,
�

and
Miron Livny

�
�
Department of Computer Science, University of Wisconsin-Madison�
Oracle

Abstract We describe NeST, a flexible software-only storage appliance designed to meet
the storage needs of the Grid. NeST has three key features that make it well-
suited for deployment in a Grid environment. First, NeST provides a generic
data transfer architecture that supports multiple data transfer protocols (includ-
ing GridFTP and NFS), and allows for the easy addition of new protocols. Sec-
ond, NeST is dynamic, adapting itself on-the-fly so that it runs effectively on
a wide range of hardware and software platforms. Third, NeST is Grid-aware,
implying that features that are necessary for integration into the Grid, such as
storage space guarantees, mechanisms for resource and data discovery, user au-
thentication, and quality of service, are a part of the NeST infrastructure. We
include a practical discussion about building Grid tools using the NeST soft-
ware.

1. INTRODUCTION

Data storage and movement are of increasing importance to the Grid. Over
time, scientific applications have evolved to process larger volumes of data, and
thus their overall throughput is inextricably tied to the timely delivery of data.
As the usage of the Grid evolves to include commercial applications [Loh02],
data management will likely become even more central than it is today.

Data management has many aspects. While performance has long been the
focus of storage systems research, recent trends indicate that other factors, in-
cluding reliability, availability, and manageability, may now be more relevant.
In particular, many would argue that manageability has become the dominant
criterion in evaluating storage solutions, as the cost of storage management

342 GRID RESOURCE MANAGEMENT

Control flow
Data flow

Dispatcher

Transfer
Manager

Storage Manager
Concurrency models

Physical storage

Chirp HTTP NFSGrid FTPFTP

Common protocol layer

Physical network

Figure 21.1. NeST Software Design. The diagram depicts NeST and its four major compo-
nents: the protocol layer, the storage manager, the transfer manager, and the dispatcher. Both
control and data flow paths are depicted.

outweighs the cost of the storage devices themselves by a factor of three to
eight [Pat02].

One potential solution to the storage management problem is the use of
specialized storage devices known as appliances. Pioneering products such
as the filers of Network Appliance [HLM94] reduce the burden of manage-
ment through specialization; specifically, their storage appliances are designed
solely to serve files to clients, just as a toaster is designed solely to toast. The
results are convincing: in field testing, Network Appliance filers have been
shown to be easier to manage than traditional systems, reducing both operator
error and increasing system uptime considerably [LR01].

Thus, storage appliances seem to be a natural match for the storage needs of
the Grid, since they are easy to manage and provide high performance. How-
ever, there are a number of obstacles that prevent direct application of these
commercial filers to the Grid environment. First, commercial storage appli-
ances are inflexible in the protocols they support, usually defaulting to those
common in local area Unix and Windows environments (e.g., NFS [WLS

�
85]

and CIFS [Sha99]). Therefore, filers do not readily mix into a world-wide
shared distributed computing infrastructure, where non-standard or specialized
Grid protocols may be used for data transfer. Second, commercial filers are
expensive, increasing the cost over the raw cost of the disks by a factor of ten
or greater. Third, storage appliances may be missing features that are crucial
for integration into the Grid environment, such as the ability to interact with
larger-scale global scheduling and resource management tools.

NeST: A Grid Enabled Storage Appliance 343

To overcome these problems and bring appliance technology to the Grid,
we introduce NeST, an open-source, user-level, software-only storage appli-
ance. As compared to current commercial storage appliances, NeST has three
primary advantages: flexibility, cost, and Grid-aware functionality. We briefly
discuss each of these advantages in more detail.

First, NeST is more flexible than commercial storage appliances. NeST
provides a generic data transfer architecture that concurrently supports mul-
tiple data transfer protocols (including GridFTP [ABB

�
02b] and NFS). The

NeST framework also allows new protocols to be added as the Grid evolves.
Second, because NeST is an open-source software-only appliance, it pro-

vides a low-cost alternative to commercial storage appliances; the only ex-
penses incurred are the raw hardware costs for a PC with a few disks. How-
ever, because NeST is a software-based appliance, it introduces new problems
that traditional appliances do not encounter: NeST must often run on hardware
that it was not tailored for or tested upon. Therefore, NeST contains the ability
to adapt to the characteristics of the underlying hardware and operating sys-
tem, allowing NeST to deliver high performance while retaining the ease of
management benefits of storage appliances.

Finally, NeST is Grid-aware. Key features, such as storage space guar-
antees, mechanisms for resource and data discovery, user authentication, and
quality of service, are a fundamental part of the NeST infrastructure. This
functionality enables NeST to be integrated smoothly into higher-level job
schedulers and distributed computing systems, such as those detailed in Chap-
ters 23, 22, 10, 20, and 8.

The rest of this chapter is organized as follows. Section 2 describes the
overall design of NeST. The protocol layer which mediates interaction with
clients is described in Section 3. Section 4 describes the transfer manager
which is responsible for monitoring and scheduling concurrency and quality
of service, and Section 5 describes the storage layer which manages the actual
physical storage of the system. An example usage of NeST is traced within
Section 6, Section 7 describes the user interface, comparisons to related work
are in Section 8, and conclusions are drawn in Section 9.

2. DESIGN OVERVIEW

As a Grid storage appliance, NeST provides mechanisms both for file and
directory operations as well as for resource management. The implementa-
tion to provide these mechanisms is heavily dependent upon NeST’s modular
design, shown in Figure 21.1. The four major components of NeST are its pro-
tocol layer, storage manager, transfer manager and dispatcher. We first briefly

344 GRID RESOURCE MANAGEMENT

examine each of these components separately; then we show how they work
together by tracing an example client interaction.

2.1 Component Descriptions

The protocol layer in NeST provides connectivity to the network and all
client interactions are mediated through it. Clients are able to use NeST to
communicate with any of the supported file transfer protocols, including
HTTP [FGM

�
99], NFS [PR85], FTP [PR85], GridFTP [ABB

�
02b], and Chirp,

the native protocol of NeST. The role of the protocol layer is to transform the
specific protocol used by the client to and from a common request interface
understood by the other components in NeST. We refer to this as a virtual
protocol connection and describe it and the motivation for multiple protocol
support in Section 3.

The dispatcher is the main scheduler and macro-request router in the sys-
tem and is responsible for controlling the flow of information between the other
components. It examines each client request received by the protocol layer and
routes each appropriately to either the storage or the transfer manager. Data
movement requests are sent to the transfer manager; all other requests such as
resource management and directory operation requests are handled by the stor-
age manager. The dispatcher also periodically consolidates information about
resource and data availability in the NeST and can publish this information as
a ClassAd (see Chapter 23) into a global scheduling system [TBAD

�
01].

The storage manager has four main responsibilities: virtualizing and con-
trolling the physical storage of the machine (e.g., the underlying local filesys-
tem, raw disk, physical memory, or another storage system), directly executing
non-transfer requests, implementing and enforcing access control, and manag-
ing guaranteed storage space in the form of lots. Lots are discussed in more
detail below.

Because these storage operations execute quickly (in the order of millisec-
onds), we have chosen to simplify the design of the storage manager and have
these requests execute synchronously. It is the responsibility of the dispatcher
to ensure that storage requests are serialized and executed at the storage man-
ager in a thread-safe schedule.

The transfer manager controls data flow within NeST; specifically, it trans-
fers data between different protocol connections (allowing transparent three-
and four-party transfers). All file data transfer operations are managed asyn-
chronously by the transfer manager after they have been synchronously ap-
proved by the storage manager. The transfer manager contains three different
concurrency models, threads, processes and events, and schedules each transfer
using one of these models. Scheduling policies, such as preferential schedul-

NeST: A Grid Enabled Storage Appliance 345

ing, and scheduling optimizations are the responsibility of the transfer manager
and are discussed in Section 4.

2.2 An Example Client Interaction

We now examine how these four components function together by tracing
the sequence of events when interacting with a client. In this example, we
consider the case when a client first creates a new directory (i.e., a non-transfer
request) and then inserts a file into that directory (i.e., a transfer request).

When the client initially connects to NeST with the request to create the
directory, the dispatcher wakes and asks the protocol layer to receive the con-
nection. Depending upon the connecting port, the protocol layer invokes the
handler for the appropriate protocol. The handler then authenticates the client,
parses the incoming request into the common request format, and returns a
virtual protocol connection to the dispatcher.

The dispatcher then asks the storage manager to create the directory. After
checking for access permissions, the storage manager synchronously creates
the directory and sends acknowledgment back to the client through the dis-
patcher and the virtual protocol connection.

At this point, the dispatcher assumes responsibility for the client and listens
for further requests on its channel. After the client sees that the directory is
created successfully, it requests permission to send a file. The dispatcher in-
vokes its virtual protocol connection to receive this request and again queries
the storage manager. The storage manager allows the transfer and returns a vir-
tual protocol connection into which the transfer can be written. The dispatcher
passes both connections to the transfer manager, stops listening on the client
channel, and sleeps, waiting for the next client request.

The transfer manager is then free to either schedule or queue the request;
once the request is scheduled, the transfer manager uses past information to
predict which concurrency model will provide the best service and passes the
connection to the selected model. The transfer continues as the chosen con-
currency model transfers data from the client connection to the storage con-
nection, performing an acknowledgment to the client if desired. Finally, the
transfer status is returned to the transfer manager and then up to the dispatcher.

In the following sections, we describe the most important aspects of NeST.
First, we motivate the importance of supporting multiple communication pro-
tocols within a virtual protocol layer. Second, we describe how the transfer
manager adapts to the client workload and underlying system to pick the con-
currency model with the best performance. Third, we show how the transfer
manager can apply scheduling policies among different connections. Fourth,
we explain the role of storage guarantees in NeST, and explain how the storage
manager implements this functionality.

346 GRID RESOURCE MANAGEMENT

3. PROTOCOL LAYER

Supporting multiple protocols is a fundamental requirement of storage ap-
pliances used in the Grid. Though there has been some standardization toward
a few common protocols within the Global Grid Forum [OGSc], diversity is
likely to reign in a community as widespread and fast-moving as the Grid. For
example, even if all wide-area transfers are conducted via GridFTP, local-area
file access will still likely be dominated by NFS, AFS, and CIFS protocols.

Multiple protocols are supported in NeST with a virtual protocol layer. The
design and implementation of our virtual protocol layer not only allows clients
to communicate with NeST using their preferred file transfer protocol, but also
shields the other components of NeST from the detail of each protocol, al-
lowing the bulk of NeST code to be shared among many protocols. Thus, the
virtual protocol layer in NeST is much like the the virtual file system (VFS)
layer in many operating systems [Kle86].

An alternative approach to having a single NeST server with a virtual pro-
tocol layer is to implement separate servers that understand each individual
protocol and run them simultaneously; we refer to this latter approach as “Just
a Bunch Of Servers” or “JBOS”. The relative advantage of JBOS is that servers
can be added or upgraded easily and immediately once any implementation of
that protocol is available; with NeST, incorporating a new or upgraded proto-
col may take more effort, as the protocol operations must be mapped onto the
NeST common framework.

However, we believe the advantages of a single server outweigh this im-
plementation penalty for a number of reasons. First, a single server enables
complete control over the underlying system; for example, the server can give
preferential service to requests from different protocols or even to different
users across protocols. Second, with a single interface, the tasks of admin-
istering and configuring the NeST are simplified, in line with the storage ap-
pliance philosophy. Third, with a single server, optimizations in one part of
the system (e.g., the transfer manager or concurrency model) are applied to all
protocols. Fourth, with a single server, the memory footprint may be consid-
erably smaller. Finally, the implementation penalty may be reduced when the
protocol implementation within NeST can leverage existing implementations;
for example, to implement GridFTP, we use the server-side libraries provided
in the Globus Toolkit and we use the Sun RPC package to implement the RPC
communication in NFS.

At this point, we have implemented five different file transfer protocols in
NeST: HTTP, NFS, FTP, GridFTP, and the NeST native protocol, Chirp. In
our experience, most request types across protocols are very similar (e.g., all
have directory operations such as create,remove, and read, as well as file
operations such as read, write, get, put, remove, and query) and fit

NeST: A Grid Enabled Storage Appliance 347

easily into our virtual protocol abstraction. However, there are interesting ex-
ceptions; for instance, Chirp is the only protocol that supports lot management
(lots will be discussed further in Section 5) and NFS is the only protocol with
a lookup and mount request. Note that mount, not technically part of NFS, is
actually a protocol in its own right; however, within NeST, mount is handled
by the NFS handler.

We plan to include other Grid-relevant protocols in NeST, including data
movement protocols such as IBP [PBB

�
01] and resource reservation proto-

cols, such as those being developed as part of the Global Grid Forum [OGSc].
We expect that as new protocols are added, most implementation effort will be
focused on mapping the specifics of the protocol to the common request object
format, but that some protocols may require additions to the common internal
interface.

Since the authentication mechanism is protocol specific, each protocol han-
dler performs its own authentication of clients. The drawback of this approach
is that a devious protocol handler can falsify whether a client was authenti-
cated. Currently, we allow only Grid Security Infrastructure (GSI) authentica-
tion [FKTT98], which is used by Chirp and GridFTP; connections through the
other protocols are allowed only anonymous access.

4. TRANSFER MANAGER

At the heart of data flow within NeST is the transfer manager. The trans-
fer manager is responsible for moving data between disk and network for a
given request. The transfer manager is protocol agnostic: thus, all of the ma-
chinery developed within the manager is generic and moves data for all of the
protocols, highlighting one of the advantages of the NeST design.

4.1 Multiple Concurrency Models

Inclusion in a Grid environment mandates the support for multiple on-going
requests. Thus, NeST must provide a means for supporting concurrent trans-
fers. Unfortunately, there is no single standard for concurrency across operat-
ing systems: on some platforms, the best choice is to use threads, on others,
processes, and in other cases, events. Making the decision more difficult is the
fact that the choice may vary depending on workload, as requests that hit in the
cache may perform best with events, and those that that are I/O bound perform
best with threads or processes [PDZ99].

To avoid leaving such a decision to an administrator, and to avoid choosing a
single alternative that may perform poorly under certain workloads, NeST im-
plements a flexible concurrency architecture. NeST currently supports three
models of concurrency (threads, processes, and events), but in the future we
plan to investigate more advanced concurrency architectures (e.g.,

348 GRID RESOURCE MANAGEMENT

SEDA [WCB01] and Crovella’s experimental server [CFHB99]). To deliver
high performance, NeST dynamically chooses among these architectures; the
choice is enabled by distributing requests among the architectures equally at
first, monitoring their progress, and then slowly biasing requests toward the
most effective choice.

4.2 Scheduling

Because there are likely to be multiple outstanding requests within a NeST,
NeST is able to selectively reorder requests to implement different scheduling
policies. When scheduling multiple concurrent transfers, a server must decide
how much of its available resources to dedicate to each request. The most ba-
sic strategy is to service requests in a first-come, first-served (FCFS) manner,
which NeST can be configured to employ. However, because the transfer man-
ager has control over all on-going requests, many other scheduling policies are
possible. Currently, NeST supports both proportional share and cache-aware
scheduling in addition to FCFS.

4.2.1 Quality of Service

Proportional-share scheduling [WW95] is a deterministic algorithm that al-
lows fine-grained proportional resource allocation and has been used previ-
ously for CPU scheduling and in network routers [KMC

�
00]. Within the cur-

rent implementation of NeST, it is used to allow the administrator to specify
proportional preferences per protocol class (e.g., NFS requests should be given
twice as much bandwidth as GridFTP requests); in the future, we plan to ex-
tend this to provide preferences on a per-user basis.

Using byte-based strides, this scheduling policy accounts for the fact that
different requests transfer different amounts of data. For example, an NFS
client who reads a large file in its entirety issues multiple requests while an
HTTP client reading the same file issues only one. Therefore, to give equal
bandwidth to NFS requests and HTTP requests, the transfer manager sched-
ules NFS requests � times more frequently, where � is the ratio between the
average file size and the NFS block size.

NeST proportional share scheduling is similar to the Bandwidth and Request
Throttling module [How] available for Apache. However, proportional share
scheduling in NeST offers more flexibility because it can schedule across mul-
tiple protocols, whereas Apache request-throttling only applies to the HTTP
requests the Apache server processes, and thus cannot be applied to other traf-
fic streams in a JBOS environment.

The overhead and achieved fairness of proportional share scheduling in
NeST is shown in Figure 21.2. The first set of bars shows our base case in

NeST: A Grid Enabled Storage Appliance 349

0

5

10

15

20

25

30

35

40

 FIFO 1:1:1:1 1:2:1:1 3:1:2:1 1:1:1:4

S
er

ve
r

ba
nd

w
id

th
 (

M
B

/s
)

Scheduling configuration

Proportional Protocol Scheduling

Total
Chirp

GridFTP
HTTP

NFS
Desired

Figure 21.2. Proportional Protocol Scheduling. This graph measures the fairness and overhead
of quality of service scheduling in a NeST running a synthetic workload. Within each set of bars,
the first bar represents the total delivered bandwidth across all protocols; the remaining bars
show the bandwidth per protocol. The labels for the sets of bars show the specified proportional
ratios; the desired lines show what the ideal proportions would be. Note that NeST is able to
achieve very close to the desired ratios in each case except the right-most.

which the NeST transfer manager uses the simple FIFO scheduler. The other
sets of bars adjust the desired ratio of bandwidth for each protocol.

We can make two conclusions from this graph. First, the proportional share
scheduler imposes a slight performance penalty over FIFO scheduling, deliv-
ering a total of approximately 24-28 MB/s instead of 33 MB/s. Second, the
proportional-share scheduler achieves very close to the desired ratios in almost
all cases. Specifically, using Jain’s metric [CJ89] of fairness in which a value
of 1 represents an ideal allocation, we achieve values of greater than 0.98 for
the 1:1:1:1, the 1:2:1:1, and the 3:1:2:1 ratios.

The only exception is that allocating additional bandwidth to NFS (e.g.,
1:1:1:4 for Chirp:GridFTP:HTTP:NFS) is extremely difficult; the Jain’s fair-
ness value in this case drops to 0.87. The challenge is that due to the smaller
block size used by NFS there are not a sufficient number of NFS requests for
the transfer manager to schedule them at the appropriate interval; in the case
where there is no available NFS request, our current implementation is work-
conserving and schedules a competing request, rather than allow the server
to be idle. We are currently implementing a non-work-conserving policy in
which the idle server waits some period of time before scheduling a competi-
tor [ID01]; such a policy might pay a slight penalty in average response time
for improved allocation control.

350 GRID RESOURCE MANAGEMENT

4.2.2 Cache-Aware Scheduling

Cache-aware scheduling is utilized in NeST to improve both average client
perceived response time as well as server throughput. By modeling the kernel
buffer cache using gray-box techniques [ADAD01], NeST is able to predict
which requested files are likely to be cache resident and can schedule them
before requests for files which will need to be fetched from secondary storage.
In addition to improving client response time by approximating shortest-job
first scheduling, this scheduling policy improves server throughput by reducing
the contention for secondary storage.

In earlier work [BBADAD02], we examined cache-aware scheduling with
a focus toward web workloads; however, given the independence between the
transfer manager and the virtual protocol layer, it is clear that this policy works
across all protocols. This illustrates a major advantage that NeST has over
JBOS in that optimizations in the transfer code are immediately realized across
all protocols and need not be reimplemented in multiple servers.

5. STORAGE MANAGER

Much as the protocol layer allows multiple different types of network con-
nections to be channeled into a single flow, the storage manager has been de-
signed to virtualize different types of physical storage and to provide enhanced
functionality to properly integrate into a Grid environment. The three spe-
cific roles fulfilled by the storage manager are to implement access control,
virtualize the storage namespace, and to provide mechanisms for guaranteeing
storage space.

Access control is provided within NeST via a generic framework built on
top of collections of ClassAds, as described in Chapter 23. AFS-style access
control lists determine read, write, modify, insert, and other privileges, and the
typical notions of users and groups are maintained. NeST support for access
control is generic, as these policies are enforced across any and all protocols
that NeST supports; clients need only be able to communicate via the native
Chirp protocol (or any supported protocol with access control semantics) to set
them.

NeST also virtualizes the physical namespace of underlying storage, thus
enabling NeST to run upon a wide variety of storage elements. However, in
our current implementation, we currently use only the local filesystem as the
underlying storage layer for NeST; we plan to consider other physical storage
layers, such as raw disk, in the near future.

When running in a remote location in the Grid, higher-level scheduling sys-
tems, individual users and Grid middleware, such as SRM descibredin Chap-
ter 20, all must be assured that there exists sufficient storage space to save the
data produced by their computation, or to stage input data for subsequent ac-

NeST: A Grid Enabled Storage Appliance 351

cess. To address this problem, NeST provides an interface to guarantee storage
space, called a lot, and allows requests to be made for space allocations (similar
to reservations for network bandwidth [ZDE

�
93]).

Each lot is defined by four characteristics: owner, capacity, duration, and
files. The owner is the client entity allowed to use that lot; only individual
owners are currently allowed but group lots will be included in the next release.
The capacity indicates the total amount of data that can be stored in the lot.
The duration indicates the amount of time for which this lot is guaranteed to
exist. Finally, each lot contains a set of files; the number of files in a lot is not
bounded and a file may span multiple lots if it cannot fit within a single one.

When the duration of a lot expires, the files contained in that lot are not
immediately deleted. Rather, they are allowed to remain indefinitely until their
space needs to be reclaimed to allow the creation of another new lot. We
refer to this behavior as best-effort lots and are currently investigating different
selection policies for reclaiming this space.

To create files on a NeST, a user must first have access to a lot; however,
most file transfer protocols do not contain support for creating lots. In our
environment, a lot can be obtained in two different ways. First, when system
administrators grant access to a NeST, they can simultaneously make a set of
default lots for users. Second, a client can directly use the Chirp protocol to
create a lot before accessing the server with an alternative data-transfer proto-
col. Section 7 demonstrates via example how to use the Chirp protocol for lot
managament.

To provide maximize flexibility and user-customization, NeST currently
supports two different implementations of lots: kernel enforced and solely
NeST-managed. Kernel enforced lots rely on the quota mechanism of the un-
derlying filesystem, which allows NeST to limit the total amount of disk space
allocated to each user. Utilizing the quota system affords a number of benefits:
direct access to the file system (perhaps not through NeST) must also observe
the quota restrictions, thus allowing clients to utilize NeST to make the space
guarantee and then to bypass NeST and transfer data directly into a local file
system. However, one limitation in this approach is that all of a user’s lots must
be consolidated into a single quota limit. This consolidation makes it therefore
possible for a user to overfill one of his or her lots and then be unable to fill
another lot to capacity. Another limitation of the kernel enforced lots is that
the NeST must be run as super-user. The NeST-managed lot implementation
does not suffer from these limitations but it does require that all access to a
NeST machine be through one of the supported protocols. We leave it to the
individual administrator to select which implementation is more appropriate
for their users.

352 GRID RESOURCE MANAGEMENT

NeST

Global execution
 manager

NeST

Argonne cluster

(4)

(2)

(6)

(1)

Chirp
GFTP
NFS

Submit

Madison, WI

(3)

(5)

Figure 21.3. NeST and the Grid. The diagram illustrates information flow in a scenario in
which multiple NeST servers are utilized on the Grid.

6. NeST AND THE GRID

With a basic understanding of NeST in place, we now illustrate how multiple
NeST servers might be used in a global Grid environment. Figure 21.3 depicts
such a scenario; all major events are labeled with the sequence numbers as
defined in the following description.

In the figure, a user has their input data permanently stored at their home
site, in this case at a NeST in Madison, Wisconsin. In step 1, the user submits
a number of jobs for remote execution to a global execution manager. This
manager is aware that a remote cluster, labeled the Argonne cluster, has a large
number of cycles available. The NeST “gateway” appliance in the Argonne
cluster has previously published both its resource and data availability into
a global Grid discovery system [TBAD

�
01]. The manager is therefore also

aware that the Argonne NeST has a sufficient amount of available storage.
The manager decides to run the user’s jobs at the Argonne site, but only after

staging the user’s input data there. Thus, in step 2, the manager uses Chirp to
create a lot for the user’s files at Argonne, thus guaranteeing sufficient space
for input and output files. For step 3, the manager orchestrates a GridFTP third-
party transfer between the Madison NeST and the NeST at the Argonne cluster.
Other data movement protocols such as Kangaroo could also be utilized to
move data from site to site [TBSL01].

In step 4, the manager begins the execution of the jobs at Argonne, and those
jobs access the user’s input files on the NeST via a local file system protocol,
in this case NFS. As the jobs execute, any output files they generate are also
stored upon the NeST. Note that the ability to give preference to some users or
protocols could be harnessed here, either by local administrators who wish to
ensure preference for their jobs, or by the global manager to ensure timely data
movement.

NeST: A Grid Enabled Storage Appliance 353

Finally, for step 5, the jobs begin to complete, at which point the manager
moves the output data back to Madison, again utilizing GridFTP for the wide
area movement. The manager is then free to use Chirp to terminate the lot in
step 6, and inform the user that the output files are now available on the local
NeST.

Note that many of the steps of guaranteeing space, moving input data, exe-
cuting jobs, moving output data, and terminating reservations, can be encapsu-
lated within a request execution manager such as the Condor Directed-Acyclic-
Graph Manager (DAGMan) [DAG]. Also, higher-level storage resource man-
agers such as SRM could use NeST services to synchronize access between
globally-shared storage resources, as detailed in Chapter 20.

7. USING NeST SOFTWARE

The NeST software is available for download [NeS]. Currently, NeST builds
on both Linux and Solaris platforms. However, the kernel enforced lot imple-
mentation relies on Linux kernel utilities and is therefore not available with the
Solaris version. Generally, using both the NeST client and server is compara-
ble to using other file transfer software such as FTP. Therefore, most of this
discussion will focus on using lots as they are a unique feature of NeST.

7.1 The NeST Server

Using the NeST server is straightforward. Since NeST is user-level software
that doesn’t require any modified kernel patches, it can be installed and run
simply. Please refer to the installation instructions on the webpage [NeS] for
information about enabling the kernel quota system and downloading and in-
stalling necessary libraries such as the Globus Grid API bundle [FK97, GLO].
We recommend initially running NeST with the NeST-managed lot implemen-
tation instead of the kernel enforced version because it can be run without
super-user privilege.

7.2 The NeST Interactive Client and Client Libraries

Because NeST supports many different protocols, clients can interact with
the NeST server using any of the standard client programs such as GridFTP,
FTP, HTTP and NFS. However, only the native Chirp protocol has lot manage-
ment support. Included with the NeST software is a client library for putting
Chirp protocol requests directly into user software and a thin interactive client
program built from this library. In addition to all of the standard directory and
data transfer operations, these client programs have support for user and group
management as well as lot management. Figures 21.4 and 21.5 show how to
use both the interactive client and the client library for lot management. Note
that the Chirp protocol is used in both of these examples for both the lot man-

354 GRID RESOURCE MANAGEMENT

chirp:db16:~johnbent/> lot user 10
Lot Handle - 1

chirp:db16:~johnbent/> lot stat 1
Lot Handle : 1
Lot Type : Guaranteed
OwnerUser : johnbent
Lot Size : 10.000000 MB
Lot Used : 0.000000 MB (0.00%)
Start time : 1/12/2003 12:34:00
Duration : 1440.00 Minutes
Time left : 1440.00 Minutes

chirp:db16:~johnbent/> lot update 1 0 10
chirp:db16:~johnbent/> put /usr/share/dict/linux.words

409286 / 409286 (2.56 MB/s)
chirp:db16:~johnbent/> lot stat 1

Lot Handle : 1
Lot Type : Guaranteed
OwnerUser : johnbent
Lot Size : 10.000000 MB
Lot Used : 0.390326 MB (3.90\%)
Start time : 1/12/2003 12:34:00
Duration : 1450.00 Minutes
Time left : 1448.72 Minutes

Figure 21.4. Interactive NeST-client. This shows one example server-client session using the
provided interactive nest-client program. In this session, a user first creates a lot, then increases
its duration by 10 minutes, writes a file into the lot and then queries the status of the lot.

agement as well as the data transfer operations. However, in practice users
may prefer to use Chirp for lot management and then a different protocol such
as GridFTP for the data transfers.

8. RELATED WORK

As a storage appliance, NeST relates most closely to the filers of Network
Appliance [HLM94] and the Enterprise Storage Platforms of EMC [EMC].
NeST does not attempt to compete with these commercial offerings in terms
of raw performance as it is primarily intended for a different target domain.
As such, NeST offers a low-cost, software-only alternative that offers more
protocol flexibility and Grid-aware features that are needed to enable scientific
computations in the Grid.

Within the Grid community, there are a number of projects that are related to
NeST. GARA, described in Chapter 23, is an architecture that provides advance
reservations across a variety of resources, including computers, networks, and
storage devices. Like NeST, GARA provides reservations (similar to NeST’s

NeST: A Grid Enabled Storage Appliance 355

#include "nest_client.h"

void main() {
NestReplyStatus stat;
NestConnection server;
NestLot lot;
NestLotHandle lot_handle;

stat = NestOpenConnection(&server, "nest.cs.wisc.edu");
stat = NestRequestUserLot(&lot_handle, server, 10, 1440);
stat = NestUpdateLot(server, &lot_handle, 0, 10);
stat = NestSendFile("/usr/share/dict/linux.words",

"words", server);
stat = NestGetLotStat(&lot, server, &lot_handle);

}

Figure 21.5. NeST-client library. This code sample, (which ignores error-handling for the
sake of brevity), demonstrates the same functionality as shown using the interactive client in
Figure 21.4. This code first connects to a nest server, then creates and updates a lot, writes a file
to it and then queries its status.

lots), but allows users to make them in advance. However, GARA does not
provide the best-effort lots or the sophisticated user management that NeST
provides.

The Disk Resource Managers in SRM, described in Chapter 20, the stor-
age depots in IBP [PBB

�
01] and the LegionFS servers, described in Chap-

ter 10 also provide Grid storage services. However, each of these projects
is designed to provide both local storage management and global scheduling
middleware. Conversely, NeST is a local storage management solution and
is designed to integrate into any number of global scheduling systems. This
distinction may account for one key difference between NeST and the storage
servers in each of these systems: as they are all designed to work primarily
with their own self-contained middleware, none of these other projects have
protocol independence in their servers. Another unique feature of NeST is its
dynamic concurrency adaptation; we note however that this is not intrinsic to
the design of NeST and could be incorporated in these other systems.

SRM and IBP provide space guarantees in manners similar to NeST lots.
One difference however in SRM is that SRM guarantees space allocations for
multiple related files by using two-phased pinning; lots in NeST provide the
same functionality with more client flexibility and control and less implemen-
tation complexity.

In comparing NeST lots with IBP space guarantees, one difference is that
IBP reservations are allocations for byte arrays. This makes it extremely diffi-

356 GRID RESOURCE MANAGEMENT

cult for multiple files to be contained within one allocation; it can be done but
only if the client is willing to build its own file system within the byte array.
Another difference is that IBP allows both permanent and volatile allocations.
NeST does not have permanent lots but users are allowed to indefinitely renew
them and best-effort lots are analogous to volatile allocations. However, there
does not appear to be a mechanism in IBP for switching an allocation from
permanent to volatile while lots in NeST switch automatically to best-effort
when their duration expires.

Like NeST, LegionFS also recognizes the importance of supporting the NFS
protocol in order to allow unmodified applications the benefit of using Grid
storage resources. However LegionFS builds this support on the client side
while NeST does so at the server side. LegionFS’s client-based NFS allows
an easier server implementation but makes deployment more difficult as the
Legion-modified NFS module must be deployed at all client locations.

Although NeST is the only Grid storage system that supports multiple pro-
tocols at the server, PFS [PFS] and SRB [BMRW98] middleware both do so
at the client side. We see these approaches as complementary because they
enable the middleware and the server to negotiate and choose the most ap-
propriate protocol for any particular transfer (e.g., NFS locally and GridFTP
remotely).

9. CONCLUSION

We have presented NeST, an open-source, user-level, software-only storage
appliance. NeST is specifically intended for the Grid and is therefore designed
around the concepts of flexibility, adaptivity, and Grid-awareness. Flexibility
is achieved through a virtual protocol layer which insulates the transfer archi-
tecture from the particulars of different file transfer protocols. Dynamic adap-
tation in the transfer manager allows additional flexibility by enabling NeST
to run effectively on a wide range of hardware and software platforms. By
supporting key Grid functionality such as storage space guarantees, mecha-
nisms for resource and data discovery, user authentication, and quality of ser-
vice, NeST is Grid-aware and thereby able to integrate cleanly with distributed
computing systems.

Acknowledgments

This chapter is an updated version of the paper which appeared in HPDC 11.
Some of the experimental results have been removed and replaced with a more
functional description of using NeST to build Grid services. This work is spon-
sored by NSF CCR-0092840, CCR-0098274, NGS-0103670, CCR-0133456,
ITR-0086044, and the Wisconsin Alumni Research Foundation.

NeST: A Grid Enabled Storage Appliance 357

We would like to thank the members of the Condor team, too numerous
to list, and the members of the WiND group, who are not: Nathan C. Bur-
nett, Timothy E. Denehy, Brian C. Forney, Florentina I. Popovici and Muthian
Sivathanu. However, we would like to specially mention Erik Paulson, Dou-
glas Thain, Peter Couvares and Todd Tannenbaum of the Condor team. All of
these people, as well as our anonymous reviewers, have contributed many use-
ful suggestions specifically for this paper or for the development of the NeST
project in general. Also, we would like to extend our gratitude to the members
of our Computer Systems Lab who do such an outstanding job keeping our
computers running and our networks up.

Chapter 22

COMPUTATION SCHEDULING AND
DATA REPLICATION ALGORITHMS
FOR DATA GRIDS

Kavitha Ranganathan
�

and Ian Foster
��� �

�
Department of Computer Science, The University of Chicago�
Mathematics and Computer Science Division, Argonne National Laboratory

Abstract Data Grids seek to harness geographically distributed resources for large-scale
data-intensive problems such as those encountered in high energy physics, bioin-
formatics, and other disciplines. These problems typically involve numerous,
loosely coupled jobs that both access and generate large data sets. Effective
scheduling in such environments is challenging, because of a need to address
a variety of metrics and constraints (e.g., resource utilization, response time,
global and local allocation policies) while dealing with multiple, potentially in-
dependent sources of jobs and a large number of storage, compute, and network
resources.

We describe a scheduling framework that addresses these problems. Within
this framework, data movement operations may be either tightly bound to job
scheduling decisions or performed by a decoupled, asynchronous process on
the basis of observed data access patterns and load. We develop a family of
job scheduling and data movement (replication) algorithms and use simulation
studies to evaluate various combinations. Our results suggest that while it is
necessary to consider the impact of replication on the scheduling strategy, it
is not always necessary to couple data movement and computation scheduling.
Instead, these two activities can be addressed separately, thus significantly sim-
plifying the design and implementation of the overall Data Grid system.

1. INTRODUCTION
A Grid is a distributed collection of computer and storage resources main-

tained to serve the needs of some community or virtual organization
(VO) [FK99b, FKT01]. Any of the potentially large number of authorized
users within that VO has access to all or some of these resources and is able to
submit jobs to the Grid and expect responses. The choice of algorithms used
to schedule jobs in such environments depends on the target application. Our

360 GRID RESOURCE MANAGEMENT

focus here is on scheduling algorithms suitable for large-scale data-intensive
problems, such as those that arise in the high-energy physics experiments cur-
rently being developed at CERN [CMS] that will generate petabytes of scien-
tific data by 2006. In these experiments, a community of hundreds of physi-
cists around the world will ultimately submit millions of jobs, with each job
accessing some subset of that data.

Scheduling is a challenging task in this context. The data-intensive na-
ture of individual jobs means it can be important to take data location into
account when determining job placement. Replication of data from primary
repositories to other locations can be an important optimization step to reduce
the frequency of remote data access. And the large number of jobs and re-
sources means that centralized algorithms may be ineffective. Thus, for exam-
ple, scheduling algorithms that focus only on maximizing processor utilization
by mapping jobs to idle processors (disregarding costs associated with fetching
remote data) are unlikely to be efficient.

To address this problem, we define a general and extensible scheduling
framework within which we can instantiate a wide variety of scheduling algo-
rithms. We then use simulation studies to explore the effectiveness of different
algorithms within this framework.

We assume a system model in which many users submit requests for job
execution from any one of a large number of sites. At each site, we place three
components: an external scheduler (ES), responsible for determining where
to send jobs submitted to that site; a local scheduler (LS), responsible for de-
termining the order in which jobs are executed at that particular site; and a
dataset scheduler (DS), responsible for determining if and when to replicate
data and/or delete local files. The choice of algorithms for each component
defines a particular scheduling system.

Within this framework, we have defined a family of five ES and four DS
algorithms, LS algorithms being widely researched in the past [SHK95]. Our
ES algorithms dispatch jobs to a random site, the least loaded site, a randomly
selected less loaded site, the local site, or a site where required data already
exists. Our DS algorithms perform no explicit replication (only caching), or
alternatively, choose a random or the least loaded neighbor for replication of
popular datasets (we shall use file and dataset interchangeably for the rest of
the chapter). In the case of no replication, a job execution is preceded by a
fetch of the required data, leading to a strong coupling between job scheduling
and data movement. By contrast, the other replication strategies are loosely
coupled to job execution.

To study the effectiveness of these different scheduling algorithms, we have
developed a modular and extensible discrete event Data Grid simulation sys-
tem, ChicagoSim (the Chicago Grid Simulator) [Chi]. In this chapter, we syn-
thesize and extend simulation results presented in other articles [RF03, RF02].

Computation Scheduling and Data Replication 361

Our simulation results show a marked improvement in Grid performance
when the right combination of loosely coupled replication and scheduling poli-
cies are used. Our results also show that evaluating scheduling algorithms on
their own, without considering the impact of replication techniques, can lead
to suboptimal choices.

The outline of the chapter is as follows. Section 2 reviews relevant work in
the arenas of Web caching and replication, distributed file systems, and Grid
resource management. In Section 3, we briefly touch upon alternative Grid
scheduling frameworks and provide details of our proposed model. Section 4
describes the scheduling and replication algorithms that we evaluate. Simu-
lation details are discussed in Section 5 while Section 6 contains results. We
conclude and point to future directions in Section 7.

2. RELATED WORK
Our work is related to two distinct areas: replication/caching on the Web

and data management in distributed file systems. We discuss related work in
these areas and their applicability to data management in Grids. We also talk
about related research in the arena of Grid computing.

2.1 Data Management on the Web
Replication/caching of files has proved beneficial to reduce access latency,

server load, and network bandwidth consumption on the Internet. Dynamic
replication strategies are useful when user behavior changes over time, thus
facilitating automatic creation and deletion of replicas.

Push caching, proposed by [GS95], uses access history to replicate files on
remote servers. A server knows how popular its files are and so it decides
when to push one of its popular files to a remote friend server. The network is
divided into subnets, and a server has a record of how many requests for a file
were generated by each subnet. Depending on the number of requests, a server
calculates the optimal subnet to replicate a file. A similar strategy can be used
for Grids. An entity (such as the proposed dataset scheduler in our framework)
can keep track of file popularity at storage centers in the Grid and replicates
popular files to less loaded data centers or to data centers near potential users,
thus reducing hotspots and access latency.

Both [BC96] and [RA99] propose techniques to exploit geographical and
temporal locality exhibited in Web client access patterns, by moving popular
data closer to potential users. Bestavros et al. use the information available in
the TCP/IP record route option is used to put together a tree of nodes. The
server (host) is the root, the various other proxies (replication sites) form the
nodes of the tree, and the clients form the leaves. The server keeps track of
the popularity of each document and where the requests come from in the tree.
It then periodically creates replicas of the files down the tree depending on

362 GRID RESOURCE MANAGEMENT

a popularity function. RaDar [RA99] (Replicator and Distributor and Redi-
rector) uses the information available in routers to move data closer to clients.
When a request for data is generated from a client to a server, the route taken by
the request is noted and used to generate what is known as a preference path.
The host computes preference paths periodically from information from the
system’s router. If one particular node appears frequently on a file’s preference
path, it is considered a good choice to replicate the file at that node.

Of particular importance is the issue of whether Grid user access patterns
exhibit some degree of temporal, geographical, or spatial locality. Such in-
formation can then be exploited for intelligent replication strategies, similar to
those described above. Initial studies of potential Grid user logs [IR03] sug-
gest that interesting patterns of locality do exist. Earlier [RF01] we studied
different file replication strategies for Grid scenarios, with the aim of exploit-
ing locality properties in user behavior, but we did not consider job scheduling.
Here we consider the effect of using such replication strategies in combination
with certain job scheduling strategies.

2.2 Distributed File Systems
Projects such as OceanStore [KBC

�
00], Pangaea [SK01] and

Freenet [CSWH00] aim to span the globe and facilitate large-scale data shar-
ing, with an emphasis on security, reliability, availability, or anonymity. Others
such as MojoNation [MOJ], Gnutella [Gnu], and Napster [Nap] focus on peer-
to-peer file-sharing without much concern for security or locality. We discuss
here some of the data management techniques employed by two such systems
and their applicability to Grid data management.

OceanStore uses two approaches, cluster recognition and replica manage-
ment, to increase the efficiency of the system. Cluster recognition involves
periodically running a clustering algorithm that attempts to identify closely re-
lated files. This helps to pre-stage clusters of files that are likely to be used
together. Replica management involves tracking the load created by a partic-
ular file and creating more replicas for that file on nearby nodes when access
requests overwhelm it. Both methods are applicable to data management in
Grid computing.

Pangaea focuses on achieving a high availability of files by massive, decen-
tralized and optimistic replication [SK01]. Since the developers of Pangaea be-
lieve that predicting access patterns for wide-area transfers is difficult, Pangaea
aggressively creates a replica of a file, whenever and wherever it is accessed.
Pangaea maintains a sparely connected graph of all replicas for each file that
aids in updating or deleting replicas. Replicas are deleted when the disk is out
of space or a replica is inactive. To ensure a minimum number of replicas for
a file, Pangaea classifies replicas as either gold or bronze and tries to maintain
gold replicas on the disk for as long as possible.

Computation Scheduling and Data Replication 363

Aggressive replication in Grids may be a viable option, especially if access
patterns cannot be predicted accurately. Since files are replicated only when
they are accessed, unneeded data transfers are avoided. Moreover, disk space
is occupied only as long as there is no better use for it. Widespread replication
in a Grid could, however, cause thrashing of disks. If a job was sent to a site
because of the data it contained, and that data was quickly expunged (to make
room for new replicas) before the job could run, the job would have to be
transferred elsewhere, or the files would have to be fetched again.

2.3 Resource Management for Grids

A number of projects deal with Grid resource management. Thain et
al. [TBAD

�
01], for example, describe a system that links jobs and data by

binding execution and storage sites into I/O communities that reflect physical
reality. An I/O community consists of a storage device and several compute
devices associated with that storage device. Jobs that run on those compute ele-
ments are encouraged to use their own community’s storage device for access-
ing and storing data. Thus, similar applications could form a community and
reduce usage of wide-area resources. Since the work of Thain et al. presents
building blocks for such communities but does not address policy issues, our
work on scheduling policies complements that effort.

Execution Domains [BLM00] is a framework that defines bindings between
computing power and data resources in a Grid such that applications are sched-
uled to run at CPUs that have access to required data and storage. Again, since
this work is concerned with building such a system as opposed to defining
scheduling policies, our work can be put to use here.

Another recent project, the DaP (Data Placement) Scheduler [DAP], aims to
intelligently manage and schedule data to decrease I/O wait time and response
time and increase disk usage and throughput in Grid communities. AppLeS
(Application Level Scheduling) [BWF

�
96], involves scheduling from the per-

spective of an application. Information such as the computation/communica-
tion ratio, memory required, and nature of application data structures is all
taken into account while generating schedules. Casanova et al. [COBW00] de-
scribe an adaptive scheduling algorithm XSufferage, for parameter sweep ap-
plications in Grid environments, under the AppLeS guidelines. Their approach
is to place files strategically for maximum reuse. The basic difference between
their work and ours is that our heuristic also actively replicates/pre-stages files.
In addition, while [COBW00] makes scheduling decisions centrally, we con-
centrate on a decentralized and presumably more scalable model, where each
site decides where and when to place its job and data.

364 GRID RESOURCE MANAGEMENT

3. ARCHITECTURES FOR SCHEDULING ON DATA
GRIDS

One can envision three basic categories of scheduling architec-
tures [HSSY00] for a distributed wide-area community: centralized, hierar-
chical, and decentralized. In centralized scheduling, all jobs, no matter where
they originate, are submitted to a central scheduler for the whole Grid. The
central scheduler then decides which machine to run each job on, depend-
ing on the state of different remote machines. The advantage of a centralized
scheme is potentially very efficient schedules, since global state knowledge is
used to generate workloads. A drawback of the centralized scheme is the bot-
tleneck caused by all the scheduling functionality being present at one entity.
As the size of the Grid grows, the central scheduler must manage more and
more computing elements and thus does not scale well. Another disadvantage
of a centralized scheme is the conflict in administrative domains. Local ad-
ministration must give all machine handling rights to the central scheduler that
decides what job to run on any machine in the Grid.

A solution to the administrative problem is to use a hierarchical scheme.
In a hierarchical scheme, both local and global policies can be in place. Jobs
are submitted to a central global scheduler, which then sends the jobs to a
local scheduler present at a site. The local scheduler allocates those jobs to its
machines depending on its local policy.

In the decentralized framework, jobs are submitted to more than one global
or external schedulers. These external schedulers then select a local scheduler
for each job. An advantage is that the failure of a single component does not
adversely affect the whole system. Also, this scheme scales well, an important
feature when we have thousands of users simultaneously submitting jobs. The
disadvantage is that schedulers may have to reply on partial information or a
restricted view of the Grid to make their decisions. Coordination among the
external schedulers may help minimize the so-called herd behavior [Dah99]
of multiple entities submitting simultaneously to a desirable site, causing it to
overload.

A typical Data Grid may be composed of many different administrative do-
mains and may ultimately serve hundreds of sites with thousands of users.
Intelligent data management techniques can play a crucial role in maximizing
the efficiency of Grid resources for such a Data Grid. Keeping the above fac-
tors in mind, we define a Grid scheduling framework that facilitates efficient
data management, allows priority to local policies, and is decentralized with no
single point of failure. We adopt a decentralized architecture, but the proposed
framework could also handle the other two architectures described earlier. The
scheduling logic is encapsulated in three modules (see Figure 22.1).

Computation Scheduling and Data Replication 365

User User User

ES

N users

User User

ES

Local Scheduler Data
Mover

DataSet
Scheduler

Computers Storage

J... ...

S sites

LS DS

Storage

LS DS

Computers Storage

D

Monitor
Popularity

E External Schedulers

Computers

Migrate
Data

J

J J

Schedule
on Idle
node

D D

J

J

J

Figure 22.1. Interactions among Data Grid components.

External Scheduler (ES): Users submit jobs to the external scheduler
they are associated with. The ES then decides which remote site to send
the job to depending on some scheduling algorithm. It may need external
information such as the load at a remote site or the location of a dataset
in order to make its decisions.

Local Scheduler (LS): Once a job is assigned to run at a particular site
(and sent to an incoming job queue), it is then managed by the local
scheduler. The LS of a site decides how to schedule all jobs allocated to
its using its local resources.

Dataset Scheduler (DS): The DS at each site keeps track of the popular-
ity of each dataset locally available. It then replicates popular datasets to
remote sites depending on some algorithm. The DS may need external
information such as whether the data already exists at a site or the load
at a remote site before making a decision.

Different mappings between users and external schedulers lead to different
scenarios. For example, in a one-to-one mapping between external schedulers
and users, the users make scheduling decisions on their own, whereas having
a single ES in the system involves a central scheduler to which all users sub-
mit their jobs. For our experiments we assumed one ES per site. We plan to

366 GRID RESOURCE MANAGEMENT

study other mappings in the future. The external information a module needs
can be obtained either from an information service (e.g., the Globus Toolkit’s
Monitoring and Discovery Service [CFFK01] or the Network Weather Ser-
vice [Wol97]) or directly from the sites.

4. SCHEDULING AND REPLICATION ALGORITHMS

We are interested in two distinct functionalities: external scheduling and
data replication. For each, we define and evaluate a range of different algo-
rithms.

Our framework allows each site to have its own local scheduling policy that
is implemented by the LS. Management of internal resources is a problem that
has been widely researched [FR01, SHK95]. We use FIFO (first-in first-out)
as a simplification.

An external scheduler selects a remote site to which to send a job, based on
one of five algorithms:

Random: A randomly selected site. Each site has an equal probability of
getting selected, and the expected number of jobs assigned to each site
is the same.

LeastLoaded: The site that currently has the least load. Various defini-
tions for load are possible; here we define it simply as the least number
of jobs waiting to run, that is, the shortest job queue.

RandLeastLoaded: A site randomly selected from the n least-loaded
sites. This is a variation of LeastLoaded with the aim of minimizing
any hotspots caused by the symmetry of actions of various sites.

DataPresent: A site that already has the required data. If more than one
site qualifies, the least loaded one is chosen.

Local: The site where the job originated. That is, a job is always run
locally.

In each case, any data required to run a job is fetched locally before the task
is run, if it is not already present at the site. For the dataset scheduler, we define
four algorithms:

DataCaching: No active replication takes place. Datasets are pre-assign-
ed to different sites, and no dynamic replication policy is in place. Data
may be fetched from a remote site for a particular job, in which case it
is cached and managed using a least recently used (LRU) algorithm. A
cached dataset is then available to the Grid as a replica.

Computation Scheduling and Data Replication 367

DataRandom: The DS keeps track of the popularity of the datasets it
contains (by tracking the number of jobs that have needed a particular
dataset); and when the site’s load exceeds a threshold, those popular
datasets are replicated to a random site on the Grid.

DataLeastLoaded: The DS keeps track of dataset popularity and chooses
the least loaded site as a new host for a popular dataset. Again it repli-
cates only when the load at its site exceeds a threshold.

DataRandLeastLoaded: This is a variation of DataLeastLoaded where a
random site is picked from the top n least loaded sites to avoid symmetry
of behavior among sites.

In all cases, data is also cached, and the finite storage at each site is managed
by using LRU.

We thus have a total of 5x4 = 20 algorithms to evaluate.

5. SIMULATION STUDIES

We have constructed a discrete event simulator, ChicagoSim, to evaluate the
performance of different combinations of job and task scheduling algorithms.
ChicagoSim is built on top of Parsec [PARb], a C-based simulation language.
We describe in turn the simulation framework and experiments performed.

5.1 Simulation Framework

We model a Data Grid as a set of sites, each comprising a number of pro-
cessors and a limited amount of storage; a set of users, each associated with
a site; and a set of files, each of a specified size, initially mapped to sites ac-
cording to some distribution. We assume that all processors have the same
performance and that all processors at a site can access any storage at that site.
Each user generates jobs according to some distribution. Each job requires that
a specified set of files be available before it can execute. It then executes for a
specified amount of time on a single processor.

In the absence of real traces from real Data Grids, we model the amount
of processing power needed per unit of data, and the size of input and output
datasets, on the expected values of CMS experiments [Hol01], but otherwise
generate synthetic data distributions and workloads, as we now describe.

Table 22.1 specifies the simulation parameters used for our study. Dataset
sizes are selected randomly with a uniform distribution between 500 MB and
2 GB and with initially only one replica per dataset in the system. Users are
mapped evenly across sites and submit jobs according to a Poisson distribution
with an inter-arrival time of 5 seconds. Each job requires a single input file and
runs for 300D seconds (estimated job characteristics for CMS experiments),

368 GRID RESOURCE MANAGEMENT

where D is the size of the input file in gigabytes. The transfer of input files from
one site to another incurs a cost corresponding to the size of the file divided
by the nominal speed of the link. Since job output is often much smaller than
input we disregard output optimization for now.

The jobs (i.e., input file names) needed by a particular user are generated
randomly according to a geometric distribution with the goal of modeling sit-
uations in which a community focuses on some datasets more than others. We
note that we do not attempt to model changes in dataset popularity over time.

Table 22.1. Simulation parameters used in study.

Number of sites/users 30/120
Compute elements per site 2-5
Total number of datasets 1000
Connectivity bandwidth 10 MB/sec
Size of workload 6000 jobs

5.2 Experiments

A particular Data Grid execution (DGE) is defined by a sequence of job
submissions, allocations, and executions along with data movements. A DGE
can be characterized according to various metrics, such as elapsed time, aver-
age response time, processor utilization, network utilization, and storage uti-
lization. The scheduling problem for a Data Grid is to define algorithms that
will produce DGEs that are both correct and good with respect to one or more
metrics.

We use the following metrics for our experiments:

Average amount of data transferred (bandwidth consumed) per job

Average job completion time (max (queue time, data transfer time) +
compute time)

Average idle time for a processor

The amount of data transferred is important from the perspective of overall
resource utilization, while system response time is of more concern to users.
Since the data transfer needed for a job starts while the job is still in the pro-
cessor queue of a site, the average job completion time includes the maximum
of the queue time and transfer time, in addition to the execution time.

The idle time of processors helps measure the total utilization of the system
under the different algorithms. A processor is idle because either the job queue
of that site is empty or the datasets needed for the jobs in the queue are not yet
available at that site.

Computation Scheduling and Data Replication 369

We ran each of our 5x4 = 20 pairs of scheduling algorithms five times, with
different random seeds in order to evaluate variance. In practice, we found no
significant variation.

6. RESULTS AND DISCUSSION

Figures 22.2, 22.3, and 22.4 show the average response time, data trans-
ferred, and average idle time of processors for the system parameters of Ta-
ble 22.1 for the different combinations of the data replication and job schedul-
ing algorithms. The results are the average over five experiments performed
for each algorithm pair. The access patterns follow a geometric distribution
with T = 0.98.

Figure 22.2. Average response time for different combinations of scheduling and replication
strategies.

When plain caching (DataCaching) is used, algorithm RandLeastLoaded
(send job to a randomly selected least loaded site) performs the best in terms
of response time, and algorithm DataPresent (compute where the data is) per-
forms the worst. Random and Local perform worse than the least loaded algo-
rithms but significantly better than DataPresent. This result can be explained
as follows. Although data is uniformly distributed across the Grid, the geomet-
ric distribution of dataset popularity causes certain sites to contain often-used
datasets. When the algorithm DataPresent is used, these sites get more jobs
than others and hence tend to get overloaded. This overloading leads to long
queues at those particular sites and hence a degradation in performance. Since
there is no active replication, the amount of data transferred is zero in this par-
ticular case (Figure 22.3). Also, RandLeastLoaded effectively minimizes the

370 GRID RESOURCE MANAGEMENT

Figure 22.3. Average data transferred per job for the different scheduling and replication com-
binations.

Figure 22.4. Average idle time of processors for the different strategies.

negative impact of symmetry of decisions made by different sites. This fact
explains the significant improvement in response times of RandLeastLoaded
as compared with LeastLoaded.

Once we introduce a replication policy, however, DataPresent performs bet-
ter than all the other alternatives (Figure 22.2). It does not seem to matter
which particular replication strategy is chosen, as long as one of them is em-

Computation Scheduling and Data Replication 371

ployed. In terms of data transfer (Figure 22.3), the best combination is again
DataPresent and DataRandom since the amount of bandwidth used in this case
is almost ten times less than the other job allocation choices. Similarly, the idle
time of processors is significantly smaller (Figure 22.4) for DataPresent with
replication.

Clearly, in this case, dynamic replication helps reduce hotspots created by
popular data and enables load sharing. The significantly better performance
of strategy DataPresent when combined with any replication policy can be ex-
plained as follows.

The scheduling strategy by itself generates minimal data transfer, since jobs
are scheduled to the site where the data they need is already present. Datasets
are moved only as a result of explicit replication. This strategy ensures that
the network does not get overloaded. Moreover, since the input data is already
present at the site, jobs are not held up waiting for the required data to arrive;
hence, response times are shorter. We note that once we extend our work to
consider jobs that require more than one dataset, these statements may not
always be true, since a job may be sent to a node that has only some of the
datasets required by that job. The replication policy ensures that jobs do not
accumulate at a few sites that contain popular data (by replicating popular data
to other sites). Thus the computing power at a site does not cause a bottleneck.
However, the replication algorithms studied do not have any significant effects
on the other three scheduling algorithms.

As Figure 22.3 illustrates, the difference in the average amount of data trans-
ferred between algorithm DataPresent and the others is large. Clearly, if data
locality issues are not considered, even the best scheduling algorithms fall
prey to data transfer bottlenecks. These results point to the following. If the
scheduling algorithms are studied by themselves (using plain caching), Ran-
dLeastLoaded appears to be the best choice. When the algorithms are studied
along with the effect of replication strategies, however, we see that DataPre-
sent works much better than any other choice. Similarly, a replication policy
that might work well by itself may not guarantee the best overall performance
of the Grid. Only by studying the effects of the combination of different repli-
cation and scheduling policies were we able to come up with a solution that
works better than each isolated study.

In terms of idle time, DataRandom performs much worse than the other two
replication policies DataLeastLoaded, and DataRandLeastLoaded.

6.1 Effect of Bandwidth

The large amounts of data transfers that take place seem to imply that the
bandwidth available to processes has a direct impact on performance. In-
deed, we find that if network bandwidth is decreased from 10 MB/sec to 1

372 GRID RESOURCE MANAGEMENT

Figure 22.5. Response times of job scheduling algorithms for different bandwidth scenarios
(replication algorithm used is DataRandLeastLoaded).

MB/sec (Figure 22.5), the performance of all algorithms that involve extensive
data transfer (Random, LeastLoaded, RandLeastLoaded, and Local) degrade
sharply. DataPresent performs more or less consistently, since it does not in-
volve a large amount of data movement. Similarly, when the network band-
width is increased, the four algorithms with large data transfers perform much
better. The point to be noted here is that under these new conditions of ample
bandwidth (100 MB/sec), RandLeastLoaded performs almost as well as Dat-
aPresent. Thus, while we believe that the system parameters of Table 22.1 are
realistic for a global scientific Grid, we must be careful to evaluate the impact
of future technological changes on our results.

7. CONCLUSIONS AND FUTURE WORK

We have addressed the problem of scheduling job executions and data move-
ment operations in a distributed Data Grid environment with the goal of iden-
tifying both general principles and specific algorithms that can be used to
achieve good system utilization and/or response times. In support of this in-
vestigation, we have developed a modular and extensible Data Grid schedul-
ing framework. We have instantiated this framework with five different job
scheduling algorithms and four different replication algorithms and then used
a Data Grid simulation system, ChicagoSim, to evaluate the performance of
different algorithm combinations.

Our results are as follows. First, the choice of scheduling algorithm has a
significant impact on system performance. Second, it is important to address
both job and data scheduling explicitly: for example, simply scheduling jobs
to idle processors, and then moving data if required, performs significantly

Computation Scheduling and Data Replication 373

less well than algorithms that also consider data location when scheduling.
Third, and most interesting, we can achieve particularly good performance
with an approach in which jobs are always scheduled where data is located, and
a separate replication process at each site periodically generates new replicas
of popular datasets. We note that this approach has significant implementation
advantages when compared with (say) approaches that attempt to generate a
globally optimal schedule: first, it effectively decouples job scheduling and
data replication, so that these two functions can be implemented and optimized
separately, and second it permits highly decentralized implementations.

These results are promising, but in interpreting their significance we have
to bear in mind that they are based on synthetic workloads and simplified Grid
scenarios. In future work, we plan to investigate more realistic scenarios (e.g.,
multiple input files) and real user access patterns. We are currently working on
using workloads from Fermi Laboratory [FNA].

We also plan to validate our simulation results on real Grid testbeds, such as
those being developed within the GriPhyN project [GRIb] and by participants
in the International Virtual Data Grid Laboratory [iVD].

Furthermore, we plan to explore adaptive algorithms that select algorithms
dynamically depending on current Grid conditions. For example, slow links
and large datasets might imply scheduling the jobs at the data source and using
a replication policy similar to those we used for our studies. On the other hand,
if the data is small and networks links are not congested, moving the data to
the job.

Acknowledgments

We thank Jennifer Schopf and Mike Wilde for their valuable discussions
and feedback, and Koen Holtman for his input on physics workloads. This
research was supported by the National Science Foundation’s GriPhyN project
under contract ITR-0086044.

VI

QUALITY OF SERVICE: QOS

Chapter 23

GARA: A UNIFORM QUALITY OF
SERVICE ARCHITECTURE

Alain Roy
�

and Volker Sander
�

�
Department of Computer Science, University of Wisconsin-Madison�
Central Institute for Applied Mathematics, Forschungszentrum Jülich GmbH

Abstract Many Grid applications, such as interactive and collaborative environments, can
benefit from guarantees for resource performance or quality of service (QoS).
Although QoS mechanisms have been developed for different types of resources,
they are often difficult to use together because they have different semantics and
interfaces. Moreover, many of them do not allow QoS requests to be made in
advance of when they are needed. In this chapter, we describe GARA, which
is a modular and extensible QoS architecture that allows users to make advance
reservations for different types of QoS. We also describe our implementation of
network QoS in detail.

1. INTRODUCTION

Many computing applications demonstrate increasingly voracious appetites,
consuming ever more resources. From USENET to the spread of the World
Wide Web to peer to peer file sharing, the demand for bandwidth on the Internet
has been steadily increasing. Similarly, scientific programs used to measure
their speed in megaflops, but now strive for teraflops and process terabytes
instead of gigabytes [FK99b].

Just as data seems to expand to fill any size hard drive one can buy, today’s
most demanding applications strain the capacities of the networks, comput-
ers, and storage devices they use. When these applications must share their
resources with other applications, they may be unable to perform to the satis-
faction of their users. The problem is twofold: the resources are limited and the
amount of a resource available to a particular application fluctuates depending
on conditions beyond its control.

If an application does not have enough resources available to meet its perfor-
mance needs, there are only two general solutions: the capacity of the resources

378 GRID RESOURCE MANAGEMENT

available to the application can be increased (such as buying more bandwidth),
or the need for the resource can be decreased (such as decreasing the resolution
of a streaming video). Sometimes resources have sufficient capacity for one
application, but the actual capacity available to that application fluctuates be-
cause the resource is being shared with other applications. The most common
example of this is a network, which is almost always shared between multiple
applications. If we have such a shared resource and we cannot reliably have
constant and sufficient service from it, there are two general strategies we can
use. First, an application can adapt to the amount that is available. For exam-
ple, a video streaming application may decrease the resolution of the video it
sends when less bandwidth is available. Second, the resource may provide a
guarantee that it will provide a certain quality, such as an upper boundary for
the end-to-end delay, to the application. When a resource is able to offer such
a guarantee, it is said to offer quality of service, or QoS.

While some applications are capable of easily adapting or may need only a
single type of QoS, such as network QoS, others are very demanding and run
in complex environments. They may require combinations of several types of
QoS including network, CPU, and storage. Managing multiple resources with
QoS can be difficult for applications because each type of QoS is typically con-
trolled by a completely different system with different interfaces, capabilities,
and behavior. Yet this management is important, because without combining
different types of QoS, some applications may fail to operate well enough to
meet users’ expectations.

Additionally, applications often need to be scheduled. Sometimes an appli-
cation needs to run at a particular time, perhaps to perform a demonstration or
to be coordinated with some other activity. Other times, it is merely necessary
to find a time when different QoS constraints can be simultaneously satisfied.
In these examples, it is advantageous to be able to schedule the reservations
for QoS in advance of when they are needed. We call these advance reserva-
tions. More precisely, an advance reservation is obtained through a process of
negotiating a possibly limited or restricted delegation of a particular resource
capability from the resource owner to the requester over a defined time interval.

To address this demand, we believe that there must be a resource manage-
ment framework that is capable of providing a uniform interface to advance
reservations for different types of QoS. To fill this need, we have developed
such an architecture, the General-purpose Architecture for Reservation and
Allocation (GARA) to allow demanding applications to easily manage qual-
ity of service for the various resources used by the application. GARA is a
modular and extensible QoS system architecture that integrates different QoS
mechanisms.

GARA: A Uniform Quality of Service Architecture 379

2. A UNIFIED ARCHITECTURE FOR QUALITY OF
SERVICE

GARA provides a uniform mechanism for programmers to request QoS for
different types of QoS. Once such uniform mechanisms are in place, it simpli-
fies life for more than just the application programmer. It becomes possible to
easily create higher-level services that can manage multiple simultaneous QoS
requests on behalf of users. Perhaps the most important reason for having a
uniform architecture for QoS is that it allows for relatively easy expansion of
the services provided to users. As we will see below, GARA has a layered
architecture that allows developers to easily add new QoS providers.

GARA’s uniform architecture allows it to be easily used and extended by
Grid users and developers. GARA has four key features:

A uniform interface makes it easy to build services on top of GARA that
provide new features to end-users, such as the ability to make coordi-
nated reservations, or co-reservations.

The ability to request advance reservations, in order to schedule appli-
cations against other constraints, or in order to find a time when all the
QoS constraints will be able to be simultaneously met in the future.

A layered architecture that allows for easy extensions as new QoS reser-
vation mechanisms become available. For example, a graphical appli-
cation that makes CPU and network reservations can easily add reserva-
tions for graphic pipelines if that ability is added to the lower layers of
GARA. It is easy to add to the lower layers, and it does not require deep
understanding of the higher layers in order to do so.

GARA operates in a Grid infrastructure that includes a security infras-
tructure so that all reservation requests are securely authenticated and
authorized. Security is an important aspect for a system that allows
reservations, yet many QoS systems do not provide security. The Grid
infrastructure that GARA currently uses is Globus.

2.1 Architecture

2.1.1 A Generic Framework for Advance Reservation in Grid
Environments

GARA has a four-layer architecture, as illustrated in Figure 23.1.
The layer that most programmers would use is the GARA layer, which pro-

vides uniform remote access via the GARA Application Programmers Inter-
face (API). This layer provides three essential services. First, it allows reser-
vation requests to be described in a simple, uniform way. Second, when a

380 GRID RESOURCE MANAGEMENT

Information
service

Uniform, remote acess
(GARA API)

Resource manager
interface

Local Resource
managers

QoS Agent ApplicationHigh-Level Layer:

GARA Layer:

LRAM Layer:

Resource Manager
Layer:

Figure 23.1. GARA’s four-layer architecture. Applications and higher-level services use the
GARA API, which communicate securely with the local resource layer, which in turn commu-
nicates with resource managers. Applications also communicate with an information service to
find out information about resources for which they can make reservations.

reservation has been granted, it is described by a unique, data structure called
a handle that can be stored, transmitted, and used to refer to the reservation.
Third, it communicates with reservation services that may be located remotely
or locally.

Applications also communicate with an information service that can inform
them about likely reservations that can be made, and what to contact to make
them. By combining resource reservation and allocation with the ability to
search the information service, GARA offers a flexible framework for the con-
struction of higher-level scheduling services.

The GARA layer communicates with the LRAM layer. The LRAM layer
provides a resource manager interface that is responsible for authenticating
and authorizing that the user is allowed to make a reservation. This layer is
unaware of the specifics of the reservation, so it can only provide coarse autho-
rization such as “Alice can make reservations”, but not “Alice can only make
reservations for bandwidths less than ten percent of the available bandwidth”.
That fine-grained authorization happens at a lower-level because it often de-
pends on specifics of the available resource.

The LRAM layer is a “mostly uniform” interface to resource managers. It
is not completely uniform because it is unnecessary: this layer provides a thin
shim between the resource interface layer and the resource manager level be-
neath. It is the responsibility of this layer to translate all incoming requests so

GARA: A Uniform Quality of Service Architecture 381

that they can be presented to the resource managers that actually provide the
QoS reservations.

The resource managers in the resource manager layer are responsible for
tracking reservations and enforcing them by communicating with the lower-
level resources, such as the network.

Instead of applications, there may be higher-level services in a high-level
layer. These handle QoS requests for applications, often interacting with the
information service and making multiple reservations at the same time. Such
services are discussed in Section 3.

This four layer architecture allows for a uniform interface at the top, secure
access to remote resources, and any number of QoS implementations.

2.1.2 Resource Reservations: A High-Level Interface for Grid
Applications

Let us take an example of how a programmer may make a reservation for
network bandwidth needed tomorrow afternoon. First, the program needs
to make a list of the attributes needed for the reservation. GARA uses a
text-based attribute-value representation of a reservation. The representation
language we currently use—the Globus Resource Specification Language, or
RSL [CFK

�
98b]—is schema-free, but GARA has some standard attributes. A

typical reservation request may look like:

&(reservation-type=network)
(start-time=953158862)
(duration=3600)
(endpoint-a=140.221.48.146)
(endpoint-b=140.221.48.106)
(bandwidth=150)}

The first three fields (reservation-type, start-time, and duration) are used for
all reservations. The last three fields are unique to network reservations.

To request the reservation, the programmer does:

(error, handle) = reservation-create(resource-name, resv-desc);

Assuming there is no error, the reservation has been made. It can be queried at
any time to find out the status of the reservation:

(error, status) = reservation-status(handle);

There is also an asynchronous event delivery service that can inform a pro-
gram about reservation related events. These events are sent by the resource
manager. Example events are a notification that a reservation time has begun or
that an application is sending data faster than the reservation allows [FRS00].

382 GRID RESOURCE MANAGEMENT

When a program is ready to use a reservation, it sometimes needs to inform
GARA of the information that was not previously available. For example, a
network reservation needs to provide the port numbers used by the TCP or
UDP connection so that the network routers can provide QoS guarantees, but
these port numbers are not known in advance. Providing this information is
known as binding the reservation:

bind_params = "(endpoint-a-port=1234)"
+ "(endpoint-b-port=5678)";

error = reservation-bind(handle, bind_params);

When the program is done with a reservation, it can be canceled:

error = reservation-cancel(handle);

Note that the information passed within a bind request is always related to
the requested type of service. GARA uses RSL to provide a generic inter-
face. As much as possible, these parameters are kept consistent in GARA, but
they must change to reflect the underlying properties of the QoS. Beyond this
difference though, GARA present a uniform interface to the underlying QoS
providers.

2.1.3 Resource Managers: Service Provisioning for Grid Resources

A resource manager translates requests for QoS into actions that need to
be taken to ensure that the QoS is provided to the application. For instance, a
resource manager may configure a router to ensure that an application receives
the bandwidth that it requested.

GARA was designed to make it easy to integrate new resource managers
written by other people, but we also created several resource managers just for
use in GARA. For GARA, we created a network QoS resource manager that
uses differentiated services, a prototype disk space QoS resource manager, and
a CPU QoS resource manager that uses process priorities. We also created two
hybrid resource managers: one interacts with the Dynamic Soft Real-Time
(DSRT) CPU scheduler [CN99] and adds advance reservations, another inter-
acts with the Portable Batch System (PBS) which already provides advance
reservations. A collaborator created a resource manager for graphic pipelines.
Although we worked with a number of resource managers, most of our focus
was on the network resource manager.

To be used in GARA, resource managers need to have a few common fea-
tures:

Advance Reservations. Each resource manager must support advance
reservations. If a resource manager does not support advance reserva-
tions, support can be added by using a hybrid resource manager on top

GARA: A Uniform Quality of Service Architecture 383

of the resource manager, similar to the DSRT example mentioned above.
Within GARA, we developed a simple but effective slot table manager
to manage reservations that are considered as slots in time. Each slot
represents a single capacity delegation as a “slot” of time. These slot
tables can be used by any resource manager to keep track of reserva-
tions. In addition to the provision of basic slot table operations such as
creating, modifying, and deleting an entry, the manager can also deliver
asynchronous events when a reservation begins or ends. Therefore, it of-
fers an implementation framework for implementing advanced notifica-
tion services as described above and can be reused in different resource
managers.

Interaction with Resource. Each resource manager needs to interact with
the underlying resource in order to enforce the QoS. If the resource man-
ager does not have complete control over the QoS, then reservations can-
not be guaranteed.

External Interface. Services provided by resource managers need to be
accessed. Because GARA incorporates the interface of resource man-
agers into a Grid resource management framework, it depends on the
ability to interface directly with the resource manager. Note that GARA
was implemented within the Globus framework which provides user del-
egation. It therefore knows which user is accessing a resource manager,
and all interaction happens as that user.

Note that resource managers do not necessarily need to provide authenti-
cation or remote access, since that is provided through the higher levels in
GARA. However, because GARA understands users and uses delegation when
users authenticate, resource managers can do additional authentication.

3. CO-RESERVATIONS

Most QoS research has concentrated on single types of reservations, whether
network reservations [FV90], CPU reservations [LRM96], or disk reserva-
tions [MNO

�
96]. However, it is often important to use different reservations

at the same time. When multiple reservations are made at the same time, we
call them coordinated reservations, or co-reservations.

Consider, for example, the scientific visualization application shown in Fig-
ure 23.2. Here we have an application reading experimental results from disk,
rendering the results by creating lists of polygons, and sending the results to
a remote computer which then visualizes the results. If the entire system is
manually reserved to be used by the application alone, perhaps by a phone call
to a system administrator, then no QoS mechanism is necessary. However, if
we are using shared systems, any portion of the system could experience con-

384 GRID RESOURCE MANAGEMENT

tention, slowing down the scientific visualization. In particular we could have
contention for:

the disk system where the experimental results are stored,

the CPU doing the rendering,

the network used for sending the rendered data,

the CPU displaying the final results.

Server

Raw
Data

Rendering
Engine

Network

Client

Display

Figure 23.2. An application that could benefit from co-reservation. An example of an ap-
plication that could benefit from co-reservation. Because the reservation pipeline uses several
different potentially shared resources, it is likely to be beneficial for the application to make a
reservation for each resource: disk, graphic pipeline, computer, display, and network.

Any one or a combination of these systems could require the use of QoS.
We need to make reservations for each system to ensure that everything works
smoothly when we cannot predict what contention will occur in the future.

Figure 23.3 shows a concrete example of the usefulness of co-reservation.
In this example, an application is attempting to send data at 80 Mb/s using
TCP. Because the application is sending at a high rate, it may delay in sending
data if the CPU is busy. Because of TCP’s sliding window mechanism, this
may result is significantly lower bandwidth. In the experiment, the applica-
tion experienced two types of congestion. First, there was network congestion
beginning at about time 15 and continuing to the end of the experiment. A net-
work reservation was made at time 40 to request for an appropriate bandwidth.
Second, there was contention for the CPU at about time 60 and continuing for
the rest of the experiment. A CPU reservation was made at time 80 to correct
for this. From time 80 to 120, both reservations were active, and the application
was able to send data at its full rate. co-reservation.

Although the application shown in Figure 23.3 was an experiment and not
performed with a real application, it reinforces our point that it is often impor-
tant to combine different types of reservations.

Because GARA has a uniform interface to multiple types of underlying
reservation systems, it is fairly easy to build co-reservation agents that manage
the multiple reservations on behalf of a user. We have built such co-reservation
agents, and they are described in [Roy01].

GARA: A Uniform Quality of Service Architecture 385

0

20000

40000

60000

80000

100000

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (

K
b/

s)

Time (s)

Reserved TCP Traffic
Competitive UDP Traffic

Figure 23.3. Combining DSRT and differentiated services reservations.

4. NETWORK RESERVATIONS

In a Grid environment, networks are essential to the smooth operation of the
Grid, and they are also often the most shared resources. Therefore, when we
developed GARA we spent considerable effort in ensuring that GARA could
effectively manage advance reservations and QoS for applications that made
demanding use of networks.

Grid applications have a wide-variety of network QoS needs which are
much more challenging than other network QoS applications such as voice
over IP. This is because Grid applications use a wide variety of network flows,
including low-bandwidth but low-latency control flows, high-bandwidth and
low-latency data transfers for applications such as visualization, and high-
bandwidth but not necessarily low-latency data transfers for moving large
amounts of data for analysis and other purposes. This combination of types of
network flow places strong requirements on the network QoS layers. When we
examined the needs of various applications [FK99b] we saw the need to sup-
port two basic services: a premium service offering a low-delay virtual leased
line and a guaranteed rate service. Because of the wide variety and complexity
of network demands coupled with the requirement to incorporate the resource
“network” into our Grid resource management framework, GARA has a flex-
ible resource manager that addresses the particular requirements of emerging
Grid applications in IP-based networks.

Initially, our efforts focused on providing network QoS within a single net-
work domain, which considerably simplified the problem. Later, we investi-
gated providing network QoS between multiple network domains. All of these
efforts were implemented in GARA at the resource manager level.

386 GRID RESOURCE MANAGEMENT

4.1 Single Domain Network Reservations

We initially built a GARA resource manager that could provide reservations
within a single network domain. This facilitated a rapid prototyping, because
it is possible to give it access to all of the relevant network resources in order
enforce the QoS.

The first problem we considered was the mechanism to use to implement
the network QoS. QoS in an Internet Protocol (IP) network can be provided in
different ways. Over the years, two primary approaches have been used and
are exemplified by two standards published by the Internet Engineering Task
Force’s (IETF). One of these is Integrated Services [Wro97, BCS94] which
provides service guarantees based on a flow-based packet differentiation in
each router, and the other is Differentiated Services, or diffserv, which dif-
ferentiates only the treatment of classes of packets called aggregates instead
of individual reservations. Integrated Services has been largely abandoned in
favor of diffserv, and we do not discuss it further here.

The diffserv architecture [BBC
�

98] is a reaction to the scalability problems
of the flow-based approach of the Integrated Services architecture, and does
not provide reservations. Instead, packets are identified by simple markings in
the type of service field of the IP-header [NBBB98] that indicate how routers
should treat the packets. In the core of the network, routers need not to deter-
mine which flow a packet is part of, only which aggregate behavior they should
apply. In this scenario, one needs to decide which packets get marked–this is
how a higher-level service can provide reservations. To do this, a particular
resource manager called a bandwidth broker is used. A bandwidth broker is
a middleware service which controls and facilitates the dynamic access to net-
work services of a particular administrative domain. Our goal for GARA was
to design and implement a resource manager which fulfills the functions of a
bandwidth broker.

Diffserv allows packets to be marked either by applications or by the first
router that receives the packets—the edge router. If applications are allowed
to mark packets, QoS cannot be guaranteed, so GARA uses the edge routers
to mark packets. In order to enforce the reservation, packets are only marked
when they are “within profile”—that is, when the sender is sending within rate
given to the reservation.

Core routers (those that are not on the edge) have an easier job because they
do not need to identify packets that need marking, nor police packets to en-
sure they are within profile. Instead, core routers apply a particular packet
treatment—called per-hop behavior (PHB)—based only on these markings.
Currently, the Internet Engineering Task Force’s Differentiated Services Work-
ing Group has specified a small set of PHBs [DCB

�
01, HFB

�
99].

GARA: A Uniform Quality of Service Architecture 387

GARA uses the Expedited Forwarding (EF) PHB, which is intended to be
used for a high-priority service with little jitter and queuing delay. The exact
definition of EF is rather technical, so to simplify, each router interface can
be configured so that traffic marked for the EF aggregate is prioritized over all
other packets. To prevent starvation, we have to limit the amount of data which
is marked as EF. This admission control is the task of the GARA resource
manager. Details of how EF is required to work are defined in [CBB

�
02]. We

have found that when carefully used, EF can provide robust reservations.
In order to implement a premium service based on EF, GARA assumes that

each output link is configured to identify EF packets and to prioritize them
appropriately by applying priority queuing. Note that this potentially requires a
configuration update of all routers in a domain. Fortunately, this only has to be
done once. While the admission control procedure uses the slot table manager
to respond to reservation requests, reservations also have to be instantiated
and policed in the edge routers. GARA dynamically configures the packet
classifier, the policer, and the packet marker to appropriately map packets to
EF. Figure 23.4 illustrates this scenario. Packet classification is done based
on the reservation attributes specified when a user made a reservation. When
applied to the scenario we describe here, it is done based on the end-points
(address and port number) and the protocol (TCP or UDP).

Once the packets have been classified, a so-called “token bucket” is used to
ensure that during the time interval ? � À Q�� � A of length y <�� � |º� À the amount of
data sent does not exceed

� y A . bytes. Here,
�

denotes the average rate the at
which the token bucket operates and

.
represents the depth of the token bucket

which allows some limited bursts. Packets which fulfill this constraint will be
marked to belong to EF. To do this correctly, GARA identifies and configures
the relevant edge router every time a reservation is activated.

Note that applications may have a difficult time staying within the limits
of their reservations. While monitoring the policing function and providing
feedback to the application is appropriate for UDP-based flows, this mecha-
nism does not work well for TCP-based communication. In order to assist
applications, a third mechanism, called traffic shaping, is used for the traffic
entering the edge router. The idea is to shape the injected TCP-traffic that it
injects a smooth rate that conforms to the reservation to the core network. By
incorporating this with the relaxed configuration of the policing function, TCP-
applications can effectively paced to use their reserved bandwidth. Details of
work we have done with this can be found in [SF02].

In previous papers such as [SFRW00], we have described many experi-
ments that demonstrate the details of implementing such schemes successfully.
GARA follows a concept which we call the “easy-to-deploy” paradigm, that
is, GARA’s ability to provide network services to Grid applications does not
rely on complex nor unrealistic assumptions. Based on the deployment of a

388 GRID RESOURCE MANAGEMENT

Source
Application

Destination
Application

GARA

Edge Router

Priority
Queuing

Core Router

Priority
Queuing

Classify
per-aggregate

Configure Data

Classify
per-flow

Enforce & Mark
(token bucket)

Figure 23.4. A simple network that shows how GARA uses diffserv. GARA configures edge
routers to use classification, marking, and enforcement per-flow, and priority queuing is used in
the core.

single prioritized PHB, GARA is able to provide a premium and a guaranteed
rate service. Furthermore, we do not rely on changes of the transport protocol,
nor specific advanced capabilities of the operating system, such as the support
of traffic shaping. A comprehensive discussion can be found in [San03].

4.2 Multi-Domain Network Reservations

As mentioned above, the GARA network resource manager that implements
network QoS is an example of what is commonly known as a bandwidth bro-
ker. Because of the fact that end-to-end guarantees in Grid environments are
likely to happen in complex network environments where multiple indepen-
dent administrative organizations are responsible for the operation of subparts
of the network, it is very unlikely that a single bandwidth broker will control
more than one administrative domain. Instead, each administrative domain
wishes to have control over their resources and will thus operate its own policy
decision point.

Therefore, bandwidth brokers must interact with other bandwidth brokers.
A network reservation for traffic traversing multiple domains must obtain mul-

GARA: A Uniform Quality of Service Architecture 389

tiple network reservations, as shown in Figure 23.5. Here, Alice wants to make
a network reservation from her computer in source domain A to Charlie’s com-
puter in destination domain C. Somehow she needs to contact and negotiate a
reservation with

�j� ´ and
�ó�IH

as well as the intermediate domain,
�j�KJ

.
We have experimented with two approaches to multi-domain reservations: co-
reservation and chained bandwidth brokers.

BB-B BB-CBB-A

CharlieAlice

Domain A Domain B Domain C

Figure 23.5. The multi-domain reservation problem. Alice needs to contact three
bandwidth brokers (BB-A, BB-B, BB-C) to make a network reservation from her
computer in domain A to Charlie’s computer in domain C.

4.2.1 Using Co-Reservation

Alice, or an agent working on her behalf, can contact each bandwidth bro-
ker individually A positive response from every bandwidth broker indicates
that Alice has an end-to-end reservation. However, there are two serious flaws
with this methodology. First, it is difficult to scale since each bandwidth broker
must know about (and be able to authenticate) Alice in order to perform autho-
rization. Furthermore, if another user, Bob, makes an incomplete reservation,
either maliciously or accidentally, he can interfere with Alice’s reservation. An
example of this type of bad reservation is illustrated in Figure 23.6.

The authorization problem could be solved if Alice could acquire some com-
mon credential issued by a community wide authorization server. GARA could
interoperate with the Community Authorization Server (CAS) [PWF

�
02] of

the Globus project to achieve this. However, the problem of incomplete reser-
vations discouraged us from pursuing network co-reservations further.

4.2.2 Using Chained Bandwidth Brokers

The problems just noted are a motivation for the specification of an alterna-
tive approach, in which reservation requests are propagated between bandwidth
brokers rather than all originating at the end domain. As shown in Figure 23.7,
this means that Alice only contacts

�ó� ´ , which then propagates the reserva-
tion request to

�j� J
only if the reservation was accepted by

�j� ´ . Similarly,

390 GRID RESOURCE MANAGEMENT

BB-B BB-CBB-A

CharlieAlice

Domain A Domain B Domain C

BB-D

David

Domain D

Figure 23.6. Consistency problem of source-domain-based signaling. David, a mali-
cious user in domain D, makes a reservation in domains D and B, but fails to make a
reservation in domain C, even though he will be sending his marked packets to Charlie
in domain C. Domain C polices traffic based on traffic aggregates, not on individual
users, so it cannot tell the difference between David’s traffic and Alice’s reserved traf-
fic. Therefore, there will be more reserved traffic entering domain C than domain
C expects, causing it to discard or downgrade the extra traffic and thereby affecting
Alice’s reservation.

�j� J
contacts

�j� H
. With this solution, each bandwidth broker only needs to

know about its neighboring bandwidth brokers, and all bandwidth brokers are
always contacted. In addition to this chained signaling approach, Figure 23.7
also demonstrates the use of the GARA API (see Section 2.1.2) to couple a
multi-domain network reservation with a CPU reservation in domain C.

With this chained signaling approach, the bandwidth broker interfaces not
only with the high-level GARA interface for application, but also with its peer
bandwidth brokers. The Internet2 community [ABC

�
01] has proposed us-

ing a long term TCP connection to establish a stateful communication between
peered bandwidth brokers. However, a reservation actuator accompanies reser-
vations during their lifetime. Therefore, there is no need for a long term con-
nection for individual requests. The abstraction of a traffic trunk is the res-
olution for these heterogeneous demands. While a traffic trunk represents a
single reservation for end-domains, it represents the pieces of interest for tran-
sient domains: core tunnels. A core tunnel is an aggregated uni-directional
reservation between the two end-domains. It connects the egress router of the
source-domain with the ingress router of the destination-domain by means of
the service request parameters. By introducing a traffic trunk for each core
tunnel, a reservation actuator accompanies a core tunnel during its lifetime. It
subscribes to events signaled by the peered domains and in doing so, it enforces

GARA: A Uniform Quality of Service Architecture 391

a TCP connection for all entities which have registered a callback which life-
time is related to the lifetime of the core tunnel. For static Service Level Agree-
ments (SLAs), the proposed model conforms to the SIBBS model, because a
static SLA is represented by a set of long term core tunnels. A comprehensive
discussion on this approach can be found in [SAFR01, San03].

BB-B BB-CBB-A

Charlie
CPUAlice

Domain A Domain B Domain C

Co-Reservation
API

Network
CPU

Figure 23.7. Multi-domain reservations with hop-by-hop-based signaling. Hop-by-
hop-based signaling of QoS requests is done using an authenticated channel between
peered bandwidth brokers along the downstream path to the destination.

4.2.3 Building Per-Domain Behaviors

The purpose of specifying PHBs for aggregates is to establish services. Be-
cause diffserv is used in domains in which the specific PHBs are applied, ser-
vices are established by domains and are provided within domain boundaries.
[NC01] defined this more precisely as a Per-Domain Behavior (PDB). It de-
scribes the expected treatment that an identifiable or target group of packets
will receive from “edge-to-edge” of a diffserv domain. The creation of a core
tunnel in transient domains can thus be interpreted as an agreement to serve
the related aggregate with a particular service level, or PDB.

Earlier, we described GARA’s slot table manager for performing its admis-
sion control task. Initially, we used it in a simplistic way, and used a single
slot table for a whole domain. This solution limited the offered service to the
achievable service of the link with the minimum QoS capability of the domain,
that is, we assumed that all requests will flow through this particular link.

Later, we used a more advanced admission control procedure using the
knowledge about the network topology and about the routing tables, which
is able to identify the actual path of the request in the controlled domain. In
this case, the service was not limited by the minimum link capability anymore.
However, also this approach does have its limitations. In the fuzzy context
of aggregate based scheduling it is hard to provision strict delay and jitter
boundaries [CB00]. We therefore respected the ability to incorporate traffic
engineering capabilities into the admission control procedure of GARA. In ex-

392 GRID RESOURCE MANAGEMENT

tending the interaction with the edge router by also controlling the use of the
traffic engineering capabilities of the MultiProtocol Label Switching (MPLS)
architecture [RVC01, RTF

�
01], GARA offers a flexible framework for service

provisioning in transient domain. Applying network calculus [BT00, Bou96],
a formal method for the worst-case analysis of the achievable network service,
gives the opportunity to use this feature for the establishment of strong service
guarantees [San03, Fid03].

5. AN IMPLEMENTATION FOR THE GLOBUS
TOOLKIT

The current implementation of GARA uses the Globus Toolkit as a foun-
dation. It was initially implemented as part of Globus 1.1.3, although a port to
Globus 2.0 has been done by a third party.

The four layers of the GARA architecture shown in Figure 23.1 map closely
to the layers of the Globus Toolkit. The GARA API, which resides in the
remote access layer, corresponds closely with the Globus Resource Alloca-
tion Manager (GRAM) API [CFK

�
98b], which uses the Grid Security Infras-

tructure (GSI) for authentication (see Chapter 5). The Globus gatekeeper is
responsible for authenticating and authorizing all GRAM and GARA interac-
tions with a system. The LRAM layer and the local resource managers do not
have exact analogues in the Globus Toolkit, but were implemented completely
within the GARA framework.

Because the protocol for communication with the gatekepeer and the secu-
rity mechanisms were already completely existing within the Globus Toolkit,
we were able to easily leverage them without any loss of generality or flexibil-
ity in the overall architecture of GARA.

5.1 Security

Globus uses the Grid Security Infrastructure (GSI) [FKTT98]. The GSI nor-
mally uses public key cryptography. Users have private keys that they never
share, and public keys (called certificates) that anyone can view. An important
aspect of GSI is that it allows users to delegate credentials. To do this, a user
can create a proxy certificate which has a new public and private key and is
signed by the user’s private key. However, it usually has a much shorter life
time, generally on the order of twelve to twenty-four hours. This proxy cer-
tificate can then be used for authentication. If the proxy should happen to be
compromised, it will useful for a much shorter time than the user’s private key.

GARA: A Uniform Quality of Service Architecture 393

5.2 The Gatekeeper Protocol

GARA uses GSI to authenticate with the gatekeeper. After authentica-
tion, the gatekeeper passes the network connection to another program called
the GARA service. This GARA service uses the Local Resource Manager
(LRAM) API to interact with the local resource managers. Each GARA API
call is a transaction with the gatekeeper, so each call benefits from the security
and remote access capability.

The GARA API allows users to request callbacks that inform the user when
changes to the reservation occur. These do not use the gatekeeper for callbacks,
but retain the connection originally opened to the gatekeeper, but redirected to
another program that provides the callbacks.

5.3 Mapping of Service Requests to Resource Managers

As mentioned above, the GARA service uses the LRAM API. This is sim-
ilar to the GARA API, but it does not provide remote access or security. It
does provide an abstract interface to the resource managers so that the GARA
service does not require intimate knowledge of different resource managers.
Instead, the LRAM API knows the details of speaking to the resource man-
agers.

The LRAM is implemented as a series of libraries that can be used to com-
municate with different resource managers. While it was written in C, it is
essentially an object-oriented framework that allows for abstract interfaces to
a variety of implementations.

6. FUTURE WORK

Although GARA has been demonstrated to be an effective system [SFRW00,
FRS00, San03, Roy01], it is a first-generation architecture, and there are im-
portant improvements we are planning for GARA.

To improve GARA’s functionality in Grid environments, we will extend its
uniform API, particularly to include a two-phase commit protocol, which is
essential for reliability. We also intend to move GARA to the Open Grid Ser-
vices Architecture (OGSA) [FKNT02, TCF

�
03]. For a detailed discussion

about this convergence refer to [CFK
�

02].
GARA needs a better mechanism for helping users find reservations. Cur-

rently GARA publishes information about what reservations may be available
in an information service, and it is up to the user to ask for a reservation that
may work. GARA can only respond with “yes” or “no” when a request is
made. A more effective approach is the sort used by ClassAd matchmaking
[RLS98]. Such a system would allow users to say, “I need 10-15 megabits per
second for an hour tomorrow afternoon”.

394 GRID RESOURCE MANAGEMENT

Enhancing GARA’s resource managers is driven by user demand. The im-
provement of the network resource manager is still an ongoing effort. The Path
Allocation in Backbone networks (PAB) project [SIF03] funded by the German
Research Network (DFN) and the Federal Ministry of Education and Research
(BMBF) is developing an optimized admission control procedure. The em-
bedded advanced traffic engineering capabilities can be optimized based on an
emerging simulation tool. We intend to integrate the results within GARA’s
admission control procedures.

Extending GARA’s reach to other types of QoS, particularly disk space
reservations would be very useful. Our prototype disk space resource manager
was sufficient to show that it was interesting, and we believe that interacting
with a system such as NeST (see Chapter 21) would work well.

7. CONCLUSIONS

GARA is an architecture that provides a uniform interface to varying types
of QoS, and allows users to make advance reservations. In our experience,
GARA has provided a useful framework in which to experiment with differ-
ent types of QoS. In particular, we have experimented heavily with network
QoS, but have also investigated providing reservations for computers, CPU
time, disk space, and graphic pipelines. We believe that GARA is a promising
platform for future investigations into quality of service.

For those interested in further discussion of this topic, please see Chapter 8
and [Roy01, San03].

Chapter 24

QOS-AWARE SERVICE COMPOSITION
FOR LARGE-SCALE PEER-TO-PEER SYSTEMS

Xiaohui Gu and Klara Nahrstedt
Department of Computer Science, University of Illinois at Urbana-Champaign

Abstract In this chapter, we present a scalable QoS-aware service composition frame-
work, SpiderNet, for large-scale peer-to-peer (P2P) systems. The SpiderNet
framework comprises: (1) service path selection, which is responsible for se-
lecting and composing proper service components into an end-to-end service
path satisfying the user’s functional and quality requirements; (2) service path
instantiation, which decides the specific peers, where the chosen service compo-
nents are actually instantiated, based on the distributed, dynamic, and composite
resource information; and (3) benefit-driven clustering, which dynamically or-
ganizes a large-scale P2P system into an overlay network, based on each peer’s
benefit. Conducting extensive simulations of a large-scale P2P system (Ô�Ñ é
peers), we show that SpiderNet can achieve much higher service provisioning
success rate than other common heuristic approaches.

1. INTRODUCTION

In a peer-to-peer (P2P) computing Grid, computers, which are called peers,
communicate directly among themselves and can act as both clients and servers.
Recently, P2P systems have drawn much research attention with the popular-
ity of P2P file sharing systems such as Gnutella [AH00] and Napster [Nap].
Much research work has been done to provide scalable P2P data lookup ser-
vice [SMK

�
01, RFH

�
01]. However, little has been done to solve the P2P

service composition problem, which is important for the P2P user to utilize a
wealth of application services (e.g., media transcoding, language translation)
in P2P systems.

Although service composition has been addressed under different context
[CCF

�
01, RK03, XN02, GN02], previous approaches present the following

major limitations when applying to P2P systems. First, they often assume a

396 GRID RESOURCE MANAGEMENT

global view of the entire system in terms of performance information, which
is impractical for large-scale, decentralized P2P systems. Second, they do not
consider arbitrary peer arrivals/departures in P2P systems.

In this chapter, we address the above challenges by proposing a QoS-aware,
P2P service composition framework, SpiderNet, which is designed in a de-
centralized and self-organizing fashion. The SpiderNet framework comprises
three major components: (1) service path selection; (2) service path instantia-
tion; and (3) benefit- driven peer clustering.

The service path selection component is responsible for choosing correct
service components, available in the current P2P system, to compose an end-
to-end service path satisfying the user’s functional and quality requirements.
To satisfy the user’s end-to-end quality requirements for the composed ap-
plication, we provide a quality consistency check algorithm to guarantee the
consistency of quality parameters between any two interacting service compo-
nents.

In P2P systems, each service component can be mapped to multiple service
instances, which are provided by different peers. Hence, we introduce a ser-
vice path instantiation mechanism to achieve load balancing and improve the
overall resource utilization in P2P systems. For this purpose, each peer needs
to monitor the dynamic and distributed resource information (e.g., CPU load
and network bandwidth).

However, for scalability, each peer can maintain the resource information for
only a few closely related peers that are called its neighbors. It is important for
each peer to wisely choose its neighbors for efficiency. Hence, we introduce
the benefit-driven peer clustering to dynamically organize a large-scale P2P
system into a virtual service overlay network based on each peer’s benefit.

The rest of the chapter is organized as follows. We introduce the SpiderNet
system models in Section 2. Section 3 describes the design details and algo-
rithms of the SpiderNet framework. In Section 4, we present the performance
evaluation of SpiderNet framework using extensive large-scale simulations. Fi-
nally, we conclude this chapter in Section 5.

2. SYSTEM MODELS

We first state a number of key assumptions made by the SpiderNet system.
Then, we present a component-based application service model to characterize
the QoS sensitive distributed applications such as video-on-demand and con-
tent delivery. Finally, we present SpiderNet service composition model for
large-scale P2P systems

QoS-Aware Service Composition for Large-Scale Peer-to-Peer Systems 397

2.1 Assumptions

First, we assume that service components’ meta-data information such as
QoS specifications, are accessible to SpiderNet in P2P systems. Several QoS
programming frameworks and specification languages have been proposed to
allow application developers to provide such QoS specifications
[FK98b, LBS

�
98, GNY

�
02]. Second, we assume that there exists a trans-

lator that can map the application-specific QoS specifications into its resource
requirements such as CPU cycles and network bandwidth. Such a translation
procedure can be performed by using two major approaches: (1) analytical
translations; and (2) offline or online resource profiling, which have been ad-
dressed by a wealth of research work [Abd00, LN00, WNGX01, WGN02].
Third, this chapter only addresses the session setup problem to deliver a com-
posed application. We assume that the runtime QoS provisioning of the com-
posed application can be guaranteed by reserving resources for each chosen
service instances using resource reservation systems such as GARA presented
in Chapter 9.

2.2 Composed Application Service Model

Each composed application delivery is represented by a chain of composable
service components, called service path. Each service component accepts in-
put data with a quality level L � � and generates output with a quality level L ô Ôq¼ ,
both of which are vectors of application-specific QoS parameters, such as me-
dia data format (e.g., MPEG, JPEG) and video frame rate (e.g., [0,20]fps). In
order to process input data and generate output data, a specific amount of re-
sources

`
is required, which is a vector of required end-system resources (e.g.,

cpu, memory). The network resource requirement, such as bandwidth
. ´ � J ,

is associated with the link between two communicating components A and B.
Figure 24.1(a) illustrates such a characterization in terms of QoS parameters
and resources.

Formally, we define the input QoS vector L � � , output QoS vector L ô Ô2¼ , and
resource requirement vector

`
as follows:

L � � < ? ¡ � �� Qê¡ � �� Q� Qê¡ � �� A (24.1)L ô Ô2¼ < ? ¡ ô Ô2¼� Qê¡ ô Ôq¼� Q� Qê¡ ô Ô2¼� A
(24.2)`m< ? � � Q�� � Q� Q�� � A (24.3)

Intuitively, if a service component A is connected to a service component B,
the output QoS of A (L ô Ôq¼´) must match the input QoS requirements of com-
ponent B (L � �J). In order to formally describe this QoS consistency require-
ments, we define an inter-component relation “ M ”, called satisfy, as follows:

398 GRID RESOURCE MANAGEMENT

Two-hop service path
Three-hop service path

(b)(a)

Peer host Service component

service
component

A

 service
component

B

Qin Qout Qin

Resource requirements
R = f (Qin, Qout)

Bandwidth
requirement bA,B

satisfy

Figure 24.1. Illustration of the application service model for P2P systems.

L ô Ôq¼´ MNL � �J if and only if
ïJ7SQ ��À 7 À µ 7	��� L � �J &hQ Å ðCQ � À ð À µ 7	��� L ô Ô2¼´ &hQ¡ ô Ô2¼´[� < ¡ � �J � Ql7kIþ¡ � �J � 7 H L H 7	OZ « �g¬NL « �J� ý¡ ô Ô2¼´[� � ¡ � �J � Q#7_I ¡ � �J � 7 H Lx�%LNOZ[�b¬NL « �J�- (24.4)

The “Dim(Q)" represents the dimension of the vector “Q". The single-value
QoS parameters include data format, resolution, and others. The range-value
QoS parameters include frame rate ([10fps,30fps]) and others.

If a composed application service involves n service components, we call
it an n-hop service path, illustrated in Figure 24.1 (b). For example, a sim-
ple content distribution application represents a 2-hop service path: content
source

ù
content consumer. Note that the hop count represents the number

of application-level connections. An n-hop service path consists of
O"| �

vir-
tual application-level connections. Each application-level connection can in-
clude many network-level hops depending on the network distance between
two peers.

2.3 SpiderNet Service Composition Model

The SpiderNet service composition model can dynamically compose and
instantiate a service path to deliver distributed composed applications in P2P
systems. For example, Mary wants to stream her honeymoon trip video to her
friend Jane who is having lunch in a restaurant and only has a smart cell-phone
on hand. Thus, Mary asks the service composition framework to compose and
instantiate a composed application with the service path: MPEG-4 encodingù

scaling for small screen
ù

MPEG-4 decoding, to stream the video to Jane.
The SpiderNet service composition model exploits the inherent redundancy

property of P2P systems. The redundancy property is represented by the facts

QoS-Aware Service Composition for Large-Scale Peer-to-Peer Systems 399

that: (1) the same application service (e.g., video player) can be provided by
different service components (e.g., real player, windows media player), each of
which has different L � � and L ô Ô2¼ parameters; and (2) the same service compo-
nent (e.g., real player) can have multiple service instances deployed on differ-
ent physical peer hosts. Hence, the two-tier service composition model solves
two key problems for composing services at setup time of each application ses-
sion: (1) how to choose correct service components to compose an end-to-end
service path according to the user function and quality requirements; and (2)
how to select proper peers to instantiate the chosen service components ac-
cording to the current system load and resource availabilities of all candidate
peers.

The service composition model includes two cooperating layers: (1) service
path selection; and (2) service path instantiation. Upon receiving a user re-
quest, the service path selection component first chooses correct service com-
ponents to establish a QoS consistent service path satisfying the user’s func-
tional and quality requirements, according to the equation 24.4. Next, the ser-
vice path instantiation component is responsible for selecting among candidate
peers, where the chosen service components are instantiated, according to the
dynamic, distributed resource information and uptime of each candidate peer.
For scalability, the service instantiation decision is made by a distributed al-
gorithm using only local resource information at each candidate peer. The
rational of using a two-layer model is that: (1) it allows us to simultaneously
achieve both application-specific QoS assurances and load balancing by decou-
pling application-specific QoS management from resource management; (2) it
allows us to achieve scalability by eliminating the requirements of global re-
source availability information of the whole P2P system. Such a service com-
position model would be beneficial to a range of quality-sensitive distributed
applications in P2P systems such as the critical content delivery and Internet
multimedia streaming applications.

3. SYSTEM DESIGN

This section describes the design details of the scalable QoS-aware service
composition framework SpiderNet. The SpiderNet framework enables high
performance distributed application delivery in P2P systems by meeting the
following challenges: (1) Decentralization. The solution must be fully dis-
tributed and must only involve local computation based on local information;
(2) Scalability. The solution must scale well in the presence of large number
of peer nodes; (3) Efficiency. The solution should be able to utilize resource
pools provided by P2P systems efficiently so that it can admit as many user
requests as possible; and (4) Load balancing. Although each peer makes its
own service instantiation decisions based on only local information, the so-

400 GRID RESOURCE MANAGEMENT

lution should achieve the desired global properties such as load balancing in
P2P systems. We first describe the design details for the service path selec-
tion and service path instantiation tiers, respectively. Then we introduce the
benefit-driven peer clustering algorithm.

3.1 Service Path Selection

In order to compose an end-to-end service path satisfying the user’s function
and quality requirements, the service path selection tier needs to execute the
following protocol steps:

Acquire user requirements. In SpiderNet, the user request is specified
by two parts: (1) the requested application in terms of a functional graph;
and (2) end-to-end quality requirements. The user can directly spec-
ify the functional graph, such as video server

ù
image enhancementù

video player. Alternatively, the user can use the application name
such as video-on-demand or distance learning. The functional graph
can then be created by various tools, such as Q-compiler [WGN02]
and SWORD [PF02]. The end-to-end quality requirements can be ex-
pressed by application-specific QoS parameters such as frame rate, re-
sponse time, and availability.

Retrieve service component meta-data information. Once the user
requirements are acquired, a discovery service, based on decentralized
P2P data lookup systems (e.g., Chord [SMK

�
01], CAN [RFH

�
01]), is

invoked to retrieve the meta-data information such as locations (e.g., IP
addresses) and QoS specifications (e.g., L � � , L ô Ô2¼ , `) of all service
component candidates for each required service.

Compose an end-to-end qualified service path. Because of the inher-
ent redundancy property of P2P systems, multiple service components
can be discovered in P2P systems, which all deliver the same service
functionality but have different L � � and L ô Ô2¼ parameters. Thus, we need
to select proper service components to compose an end-to-end qualified
service path that satisfies the user’s quality requirements. We will dis-
cuss this step with more details later in this section.

Deliver the composed service path to the service path instantiation
tier. After the third step, a qualified service path is generated and de-
livered to the service path instantiation tier. This tier is responsible for
instantiating all service components on the composed service path ac-
cording to the distributed resource availabilities in the P2P system. We
will present the service path instantiation tier in detail in the next section.

QoS-Aware Service Composition for Large-Scale Peer-to-Peer Systems 401

13

client

13

service 3

client

(a) All candidate service components (b) Add edges between two
consistent service components

1

2

3

4

service 1

5

6

7

service 2

8

9

10

11

12

service 3

1

2

3

4

5

6

7

8

9

10

11

12

service 1
service 2

13

(c) Find the shortest service path

client

1

2

3

4

5

6

7

8

9

10

11

12

service 1
service 2

service 3

service
component

chosen service
component

Figure 24.2. Illustration of service path selection.

Among the above four steps, the third step is the key part of the service
path selection. It addresses two problems: (1) the composed service path must
be QoS consistent, which means that the L � � of a service component must be
satisfied by the L ô Ô2¼ of its predecessor (see equation 24.4); (2) If multiple QoS
consistent service paths exist, the service path selection component selects the
shortest one that has the minimum aggregated resource requirements. Thus,
the overall workload of a P2P system is minimized.

We propose the QCS algorithm, the acronym for the QoS consistent and
shortest algorithm, to solve the service path selection problem. It includes the
following major operations, illustrated by Figure 24.2: (1) generate a candidate
service graph, which lists all candidate service components for each required
service, illustrated by Figure 24.2 (a); (2) start from the client component,
check the QoS consistency between the current examined service component
and all of its candidate predecessors on the service path. Since the output
QoS of the client component represents the user QoS requirements, the QoS
parameter consistency check and adjustment start from the client component
in order to guarantee the output QoS of the client component. If the L ô Ô2¼ of
the predecessor satisfies the L � � of the current examined service component,
we add a directed edge from the predecessor to the current examined service
component, illustrated by Figure 24.2 (b); (3) define the cost value on each
edge from A to B as a resource tuple (

` ´ ,
. ´ � J), where

` ´ < ? � ´� Q�� ´� Q� Q�� ´� A
represents the required end-system resources (e.g., CPU, memory) of node A
and

. ´ � J represents the required network bandwidth from A to B. Because the
client component is the common part of all candidate service paths, its required
end-system resources are not included in the calculation; and (4) select the
shortest path from all possible service paths using the Dijkstra’s algorithm,
illustrated by Figure 24.2 (c).

402 GRID RESOURCE MANAGEMENT

In order to apply the Dijkstra algorithm, we define the comparison of any
two resource tuples as follows:

DEFINITION 3.1 Given two tuples (
` ´ ,

. ´ � J) and (
` H

,
. H � O), they can

be compared in the following way:�½
�¿¾ �

i � � � ´� |´� H�� � õ [�
A i � � � � . ´ � J |�. H � O. � õ [(�

¼ ��` ´ Q�. ´ � J &g(m��` H Q�. H � O & (24.5)

where
� � õ [� ,

. � õ [represent the maximum values of the resource requirements
for the

7	���
end-system resource type and network bandwidth, respectively,

i �
(1
À

i
À

m+1, m is the number of all end-system resource types) are nonnega-
tive values such that � � �½

� ¾ �
i � < �

(24.6)

For any end-system resource type
� � (e.g., CPU, disk storage),

·0P© �]·RQ©· � 0S© is a nor-
malized value ranging between

| �
and

�
, while

i � represents its significance.
Generally, we assign higher weights for more critical resources. For the net-
work resource type,

� P ¨ Q � �UT ¨ V� � 0S is a normalized value between
| �

and
�
, wherei � � � represents the importance of the network resource.

Thus, if we associate each edge in Figure 24.2 (b) with a cost value (
` [,. [� W), we can use the Dijkstra algorithm to find a shortest path from all service

components for the source service (e.g., service 1 in Figure 24.2) to the client
component. For example, Figure 24.2 (c) illustrates such a QoS consistent
shortest path (thick line). The computation complexity of the service path
selection algorithm is ³ � �Õ � & , where is the total number of all candidate
service components, and � is the number of candidate service components for
the source service. The above service path selection algorithm is computed
locally and takes less than a few seconds on average.

The final result generated by the service path selection is the functional com-
position of a service path that satisfies the user-specific functional and qual-
ity requirements and also has the minimum aggregated resource requirements.
However, because of the redundancy property of P2P systems, each chosen
service component can be provided by multiple peers. Hence, we introduce
the service path instantiation mechanism to select proper peers to instantiate
the service components on the functional composition of the service path.

3.2 Service Path Instantiation

The service path instantiation component selects proper peers to instantiate
the chosen service components based on the resource requirements of the ser-

QoS-Aware Service Composition for Large-Scale Peer-to-Peer Systems 403

vice components, the distributed resource availabilities, and uptime of different
candidate peers. However, there are two difficulties for selecting peers in P2P
systems: (1) each peer can only maintain the up-to-date resource and uptime
information for a small number of peers because of the scalability requirement;
and (2) the required information for peer selection is distributed and includes
multiple factors such as the peer’s uptime, end-system resources, and network
bandwidth. Hence, we make the following design decisions for the scalable
and decentralized service path instantiation.

Distributed and hop-by-hop service path instantiation. Since it is
impossible for each peer to have the global view of the up-to-date per-
formance information, the service path instantiation has to be performed
in a distributed and hop-by-hop manner using a greedy algorithm. Each
peer, starting from the client, chooses the most suitable peer among all
peers that provide its preceding service component on the service path.
The peer selection is based on the current peer’s locally maintained per-
formance information of those candidate peers. Then, the peer selected
in this step will be responsible for choosing its preceding peer and so
on. Note that the service path instantiation is performed in the reverse
direction of the service path. In analogy, each step in service path instan-
tiation resembles the server selection in the conventional client-server
application model. Although the above decentralized greedy algorithm
can give a sub-optimal service path, our experimental results show that
it performs well in general case, which will be presented in the Section
4.

An integrated and configurable metric for peer selection. Now we
focus on the peer selection at each single step, where current peer needs
to choose its preceding peer according to its locally maintained perfor-
mance information. First, we select among all candidate peers according
to the candidate peer’s uptime and the expected application session du-
ration. To guarantee the 100% availability of the composed application,
the estimated peer uptime must be greater than the expected applica-
tion session duration. Otherwise, if any selected peer leaves during the
session, the application delivery fails. Second, the candidate peer’s re-
source availability must be greater than the service instance’s resource
requirements. Third, if multiple peers qualify, we use an integrated and
configurable metric G to choose the best one.

The metric G is proposed to solve the problem of composite-value decision-
making for peer selection and achieving load balancing in P2P systems. We
define

` � < ? �%L � Q� Q��%L � A as the available end-system resources (e.g., CPU,
memory) of the candidate peer, and

.dL
as the end-to-end available network

404 GRID RESOURCE MANAGEMENT

bandwidth from the candidate peer to the current peer.
` � represents the same

set of resources as the resource requirement vector
`m< ? � � Q� Q�� � A and obeys

the same order. Both
` � and

.dL
are monitored locally on the current peer

through proactive probing. We define
.

as the network bandwidth requirement
from the preceding service component to the current one. Based on the above
definitions, the metric G can be defined as follows:

G < �½
� ¾ � Eë� �

� ��CL �
A Eë� � � � ..dL (24.7)

where Eë� (1
À

i
À

(m+1)) are nonnegative values so that

� � �½
� ¾ � E � < �

(24.8)

We choose the best candidate peer that minimizes the value of the metric G .
For any end-system resource

� � (e.g., CPU, memory),
· ©· õ © is a load balancing

ratio, which represents that the more abundant the candidate peer’s resource
availability is, the smaller is the load balancing ratio, the more advantageous it
is to select this peer for achieving load balancing in P2P systems.

�� õ represents
the same meaning for the network bandwidth. In order to allow customization,
we introduce Eë� � � À 7 À � A{� &

to represent the importance of the
7	���

resource type in making the peer selection decision. They can be adaptively
configured according the application’s semantics and user’s preference. For
example, we can assign a higher weight to the CPU resource if the application
is CPU-intensive.

However, for scalability, it is impossible for the peer to keep the resource
information of all other peers. Hence, in the case that the resource information
of the candidate peers is not available, the peer selection falls back to a ran-
dom policy. At the end of the service path instantiation phase, the distributed
application delivery can be started along the chain of the selected peers.

3.3 Benefit-Driven Peer Clustering

In SpiderNet, we require each peer to directly measure the performance
information of its neighbors using proactive probing. In order to achieve scal-
ability and avoid flooding of probing messages, we assume that each peer can
only probe a small number of peer neighbors whose resource information is
most beneficial to the peer. We say that a neighbor is beneficial to the peer if
the neighbor provides the service needed by the peer.

We propose benefit-driven peer clustering, which dynamically organizes a
large-scale P2P system into a dynamic overlay network. Each peer dynami-
cally selects a few other peers as its neighbors based on its own benefits. To be

QoS-Aware Service Composition for Large-Scale Peer-to-Peer Systems 405

A

B2

B1

B3

C1

D1

Peer
Service
component

Service
path

Network
connection

D2

Figure 24.3. Illustration of benefit-driven peer clustering.

specific, if peer B provides services that peer A needs, B should be considered
as A’s candidate neighbor. If the service that peer B provides is i-hop away
from peer A on the service path, B is defined as A’s i-hop neighbor candidate.
Moreover, if the service that peer B provides is part of an application that A
needs, B is defined as the A’s direct neighbor candidate. Otherwise, B is re-
garded as A’s indirect neighbor candidate. For example, in Figure 24.3,

� � ,� � , and
�
� are A’s 1-hop direct neighbor candidates. � � and µ � are A’s 2-hop

and 3-hop direct neighbor candidates, respectively. � � and µ � are
�
� ’s 1-hop

and 2-hop indirect neighbor candidates, respectively. For scalability, we define
an upper-bound for the number of neighbors that can be actively measured.
Under the upper-bound constraint, a peer first selects to monitor its 1-hop di-
rect neighbor candidates, then 1-hop indirect neighbor candidates, then 2-hop
direct neighbor candidates and so on.

Based on the above benefit-driven peer neighbor selection, the neighbor list
of each peer is dynamic and depends on the results from the service path se-
lection. To be specific, after the service path selection component generates a
service path, the peer first updates its direct neighbor list to include those di-
rect neighbor candidates that provide the services on the service path. Then the
peer notifies those direct neighbor candidates to update their indirect neighbor
list to include those peers that provide their preceding services on the service
path. The neighbor list at each peer is maintained as soft state information.
The above neighbor resolution messages are sent periodically to refresh the
soft states as long as the service path is valid and needed.

4. PERFORMANCE EVALUATION

We evaluate the performance of SpiderNet framework by simulations. We
first describe our evaluation methodology. Then we present and analyze the
simulation results.

406 GRID RESOURCE MANAGEMENT

4.1 Evaluation Methodology

We simulate a large-scale P2P system with
��� �

peers. Each peer is randomly
assigned an initial resource availability

` � < ? M_^��ëQ��"���#���%$ A , ranging from
[100,100] to [1000,1000] units. Different units reflect the heterogeneity in P2P
systems. The end-to-end available network bandwidth between any two peers
is defined as the bottleneck bandwidth along the network path between two
peers, which is initialized randomly as 10M, 500k, 100k, or 56k bps. The
network latency between two peers is also randomly set as 200, 150, 80, 20, or
1 ms according to the recent Internet measurement study [LB01].

The SpiderNet algorithms are locally executed at each peer. They include
processing user request, composing service paths, instantiating service paths,
and periodically probing neighbors that are dynamically selected. The maxi-
mum number of neighbors that a peer can probe is 100 in order to control the
probing overhead within

���C� \ ���C�C�C� < �YX
. During each minute, a number of

user requests are generated on each peer. The user request is represented by any
of the 10 distributed applications whose service paths have 2 to 5 hops. Each
application session has random length ranging from 1 to 60 minutes. Each ser-
vice instance is randomly assigned values for its L � � , L ô Ôq¼ and

`
parameters.

The number of different service components for each service is randomly set
between 10 to 20. The number of peers, which all provide a specific service
component, is randomly set between 40 to 80. The importance weights for
different resource types are uniformly distributed.

The metric that we use for evaluating the performance of the SpiderNet algo-
rithm, is the provisioning success rate, called Z . A service provisioning is said
to be successful if and only if (1) A qualified service path can be found; and
(2) the resource requirements of the service path are always satisfied during the
entire session. The metric Z is defined as the number of successful service de-
liveries over the total number of user requests. A higher provisioning success
rate represents improved service availability and load balancing in P2P sys-
tems. For comparison, we also implement two common heuristic algorithms:
random and fixed. The random algorithm randomly chooses a QoS consistent
service path (without considering the aggregated resource consumption) and
randomly selects peer candidates for instantiating the service path. The fixed
algorithm always picks the same qualified service path for a specific applica-
tion request, and chooses the dedicated peers to instantiate the service path.

The major goals of the SpiderNet framework are to achieve better perfor-
mance and higher tolerance to the topology variation of P2P systems. Hence,
we conduct two sets of experiments to evaluate how well SpiderNet framework
meets these goals. In the first set of experiments, we study the performance of
SpiderNet compared to the random and fixed algorithms, for a fixed P2P sys-
tem. In the second set of experiments, we consider the topology variation in

QoS-Aware Service Composition for Large-Scale Peer-to-Peer Systems 407

P2P systems. We study the resilience of SpiderNet to the topology variation,
compared with the random and fixed algorithms. In both sets of experiments,
we use Z as the performance metric.

4.2 Results and Analysis

Figure 24.4 and Figure 24.5 show the simulation results for the first set of
experiments, which do not consider the topology variation in P2P systems. In
Figure 24.4, the X axis represents different user request rate, calculated by the

0

20

40

60

80

100

0 200 400 600 800 1000

av
er

ag
e

pr
ov

is
io

ni
ng

 s
uc

ce
ss

 r
at

e
(%

)

request rate (req/min)

Our Approach
Random

Fixed

Figure 24.4. Average provisioning success rate under different load conditions, over a period
of 400 minutes, without P2P network topology variation.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

su
cc

es
s

ra
te

 (
%

)

time (min)

Our Approach
Random

Fixed

Figure 24.5. Provisioning success rate within a period of 100 minutes, for the request rate Ð
200 req/min without P2P network topology variation.

408 GRID RESOURCE MANAGEMENT

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

su
cc

es
s

ra
te

 (
%

)

time (min)

Our Approach
Random

Fixed

Figure 24.6. Average provisioning success rate under different topology variation rate
(peers/min) over a period of 60 minutes with request rate Ð 100 req/min.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

su
cc

es
s

ra
te

 (
%

)

time (min)

Our Approach
Random

Fixed

Figure 24.7. Provisioning success rate within a period of 60 minutes, for the request rate Ð
100 req/min, and topology variation rate Ð 100 peers/min.

number of requests per minute. The range of request rate is selected to reflect
different workload of the P2P system. The Y axis shows the average service
provisioning success rate (Z) achieved by the SpiderNet, random and fixed
algorithms, respectively. Each average success rate value is calculated and av-
eraged over a period of 400 minutes. The results show that the average success
rate of the SpiderNet algorithm is always higher than the other two heuristics
under all request rates. The reason is that the SpiderNet algorithm reduces the
overall workload of the P2P system by choosing the service path with mini-

QoS-Aware Service Composition for Large-Scale Peer-to-Peer Systems 409

mum aggregated resource consumption. Moreover, the SpiderNet algorithm
achieves better load balancing by selecting the peers that have the most abun-
dant resources. The random algorithm achieves lower success rate than the
SpiderNet algorithm, but much higher success rate than the fixed algorithm.
Such results reflect the prominent advantage of the P2P system brought by its
redundancy property.

Figure 24.5 gives a more detailed picture about the success rate under a
particular request rate (200 requests/minute). Each run of simulation lasts 100
minutes and the success rate value is sampled every 2 minutes. We observe
that the success rate of SpiderNet is consistently higher than those of random
and fixed. The former may be higher than the other two by as much as 15%
and 90%, respectively.

The second set of simulation results is illustrated in Figure 24.6 and Fig-
ure 24.7. In this set of experiments, we consider the topology variation in
P2P systems, which is measured by the number of peers leaving or arriving
every minute. Figure 24.6 shows the average success rate achieved by Spider-
Net, random and fixed under different topology variation rates. Each run of
simulation lasts 60 minutes under a fixed request rate (100 requests/minute).
Figure 24.7 shows the success rate for a fixed topology variation rate (100
peers/minute) with a particular request rate (100 requests/minute). Both sim-
ulation results show that SpiderNet can best tolerate topology variations and
uniformly achieve the highest provisioning success rate. The reason is that
when SpiderNet selects among peer candidates for instantiating a service in-
stance, it considers the peer uptime measured by the duration that the peer has
remained connected to the P2P system, but random and fixed algorithms do
not. The SpiderNet always chooses peers already connected to the P2P system
for an average uptime that is longer than the expected session duration, in hope
that those peers will stay connected to the P2P system for at least the same
uptime duration. However, such a heuristic cannot be true all the time. Hence,
the results in Figure 24.6 and Figure 24.7 show that the performance of P2P
systems is very sensitive to the topology variation, even with a small number
of peer arrivals/departures (

À
2% total peers). Under such circumstances, we

do need runtime service path recovery to improve the performance.

5. CONCLUSION

We present a scalable P2P service composition framework, called Spider-
Net, for providing dynamic composed QoS-sensitive applications in large-
scale P2P systems. The major contributions of the chapter are as follows:
(1) identify and solve two key problems, service path selection and service
path instantiation in an integrated service composition framework; (2) present a
resource- and quality-aware service path selection algorithm, which can gener-

410 GRID RESOURCE MANAGEMENT

ate a QoS consistent service path with minimum aggregated resource require-
ments; (3) provide a fully distributed peer selection scheme for instantiating
the composed service path; and (4) propose a benefit-driven peer clustering al-
gorithm to organize a large-scale P2P system into an efficient service overlay
network. We implement a large-scale simulation testbed and our extensive sim-
ulation results show that SpiderNet framework can achieve (1) end-to-end QoS
consistency while composing service paths; and (2) much better load balancing
and overall resource utilization in P2P systems than other common heuristics.

Acknowledgments

This work was supported by the NASA grant under contract number NASA
NAG 2-1406, NSF under contract number 9870736, 9970139, and EIA 99-
72884EQ. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect
the views of the NASA, NSF or U.S. Government.

VII

RESOURCE MANAGEMENT
IN PEER-TO-PEER ENVIRONMENTS

Chapter 25

A PEER-TO-PEER APPROACH TO RESOURCE
LOCATION IN GRID ENVIRONMENTS

Adriana Iamnitchi
�

and Ian Foster
��� �

�
Department of Computer Science, The University of Chicago�
Mathematics and Computer Science Division, Argonne National Laboratory

Abstract Resource location (or discovery) is a fundamental service for resource-sharing
environments: given desired resource attributes, the service returns locations of
matching resources. Designing such a service for a Grid environment of the
scale and volatility of today’s peer-to-peer systems is not trivial. We explore
part of the design space through simulations on an emulated Grid. To this end,
we propose four axes that define the resource location design space, model and
implement an emulated Grid, evaluate a set of resource discovery mechanisms,
and discuss results.

1. INTRODUCTION

When dealing with large sets of shared resources, a basic problem is locat-
ing resources in the absence of a naming scheme, that is, dealing with requests
that specify a set of desired attributes (“Linux machine with more than 128
MB of available memory”) rather than a globally unique identifier (such as
“ficus.cs.uchicago.edu”). Attribute-based search is challenging when resource
attributes can vary over time (e.g., CPU load, available bandwidth, even soft-
ware versions) and when the number of resources is large and/or dynamic (as
resources join, leave, or fail).

We study the resource discovery problem in a resource-sharing environ-
ment that combines the complexity of Grids with the scale and dynamism of
peer-to-peer communities. While the two environments have the same final
objective—to pool large sets of resources—they emerged from different com-
munities, and hence their current designs highlight different requirements. We
believe that the design objectives of the two environments will eventually con-

414 GRID RESOURCE MANAGEMENT

verge. Consequently, it is important to analyze, compare, and contrast their
current requirements and characteristics.

To this end, we discuss the resource location problem in the context of the
two resource-sharing environments (Section 2). We identify four critical de-
sign objectives for resource discovery (Section 3), and we present a scheme
for characterizing resource discovery mechanisms (Section 4) that defines the
design space and provides the basis for comparing existing solutions. We then
describe an emulated large-scale resource-sharing environment (Section 5),
which we use for a preliminary performance evaluation of resource discovery
techniques (Section 6). We conclude with a brief summary.

2. GRID AND PEER-TO-PEER ENVIRONMENTS

In recent years significant interest has focused on two resource-sharing en-
vironments: Grids and peer-to-peer (P2P) systems. The two systems have
followed different evolutionary paths. Grids have incrementally scaled the
deployment of relatively sophisticated services, connecting small numbers of
sites into collaborations engaged in complex scientific applications. P2P com-
munities, on the other hand, have developed rapidly around unsophisticated
but popular services such as file sharing, focusing on scalability and support
for intermittent user and resource participation. As a result of these different
evolutionary paths, the two systems differ in three respects: target communi-
ties, resources, and applications. We discuss each of these below.

Despite these differences, however, we maintain that the two environments
are in fact concerned with the same general problem, namely, resource shar-
ing within virtual organizations (VOs) that link resources and people spanning
multiple physical organizations. Moreover, the two environments seem likely
to converge in terms of their concerns, as Grids scale and P2P systems address
more sophisticated application requirements [FI03].

2.1 Target Communities and Incentives

The development and deployment of Grid technologies were motivated ini-
tially by the requirements of professional communities to access remote re-
sources, federate datasets, and/or to pool computers for large-scale simulations
and data analysis. Participants in contemporary Grids form part of established
communities that are prepared to devote effort to the creation and operation of
required infrastructure and within which exist some degree of trust, account-
ability, and opportunities for sanctions in response to inappropriate behavior.

A Peer-to-Peer Approach to Resource Location in Grid Environments 415

In contrast, P2P has been popularized by grass-roots, mass culture (music)
file-sharing and highly parallel computing applications [ACK

�
02, AK02] that

scale in some instances to hundreds of thousands of nodes. The “communities”
that underlie these applications comprise diverse and anonymous individuals
with little incentive to act cooperatively and honestly. Thus, for example, we
find that in file-sharing applications, there are few providers and many con-
sumers [AH00]; the operators of SETI@home [SET] devote significant effort
to detecting deliberately submitted incorrect results; and people tend to inten-
tionally misreport their resources [SGG02].

The two target communities differ in scale, homogeneity, and the intrinsic
degree of trust. The natural tendency of Grids to grow, however, will inevitably
lead to less homogeneous communities and, consequently, to smaller degrees
of trust. Participation patterns will change also with scale: intermittent partic-
ipation is likely to become the norm. All these characteristics have a strong
impact on defining the assumptions one can make (or, rather, cannot) about the
environment. We need support for volatile user communities; and we need to
deal with the lack of incentives for and interest in centralized, global adminis-
trative control.

2.2 Resources

In general, Grid systems integrate resources that are more powerful, more
diverse, and better connected than the “desktop at the edge of the
Internet” [Shi00] that constitutes a typical P2P resource. A Grid resource might
be a cluster, storage system, database, or scientific instrument of considerable
value that is administered in an organized fashion according to some well-
defined policy. This explicit administration enhances the resource’s ability to
deliver desired qualities of service and can facilitate, for example, software up-
grades, but it can also increase the cost of integrating the resource into a Grid.
Explicit administration, higher cost of membership, and stronger community
links within scientific VOs mean that resource availability tends to be high and
uniform.

In contrast, P2P systems deal with intermittent participation and highly vari-
able behavior. For example, one study of Mojo Nation [WO02] showed that
a node remained connected on average for about 28% of time. Moreover, the
connection time distribution was highly skewed, with one sixth of the nodes
remaining always connected.

Large-scale Grids will borrow some of the characteristics of today’s P2P
systems in resource participation: unreliable resources and intermittent partic-
ipation will constitute a significant share. At the same time, Grid resources
will preserve or increase their diversity. Consequently, services - and resource
discovery in particular - will have to tolerate failures and adapt to dynamic
resource participation.

416 GRID RESOURCE MANAGEMENT

2.3 Applications

The range and scope of scientific Grid applications vary considerably. Three
examples that show the variety of deployed Grid applications are the Hot-
Page portal, providing remote access to supercomputer hardware and soft-
ware [TMB00]; the numerical solution of the long-open nug30 quadratic opti-
mization problem using hundreds of computers at many sites [ABGL02]; and
the NEESgrid system that integrates earthquake engineering facilities into a
national laboratory [PKF

�
01].

In contrast, P2P systems tend to be vertically integrated solutions to spe-
cialized problems: currently deployed systems share either compute cycles
or files. Diversification comes from differing design goals, such as scalabil-
ity [RFH

�
01, SMK

�
01, RD01], anonymity [CSWH00], or

availability [CSWH00, KBC
�

00].
Grid applications also tend to be far more data intensive than P2P appli-

cations. For example, a recent analysis of Sloan Digital Sky Survey data
[AZV

�
02] involved, on average, 660 MB input data per CPU hour; and the

Compact Muon Solenoid [Neg94] data analysis pipeline involves from 60 MB
to 72 GB input data per CPU hour. In contrast, SETI@home moves at least
four orders of magnitude less data: a mere 21.25 KB data per CPU hour. The
reason is presumably, in part at least, better network connectivity.

The variety of Grid applications requires significant support from services.
Applications may use not only data and computational power, but also storage,
network bandwidth, and Internet-connected instruments at the same time. Un-
like in file-sharing systems such as Gnutella, this variety of resources requires
attribute-based identification (such as “Linux machine with more than 1 GB
memory”), since globally unique names are of no significant use. Also, Grid
services must provide stronger quality-of-service guarantees: a scientist that
runs data-analysis applications in a Grid is less willing to wait until data is
retrieved than is a typical P2P user in search for music files.

3. REQUIREMENTS FOR RESOURCE DISCOVERY

As we have noted, we expect Grid and P2P systems to converge in a unified
resource-sharing environment. This environment is likely to scale to millions
of resources shared by hundreds of thousands of participants (institutions and
individuals); no central, global authority will have the means, the incentive,
and the participants’ trust to administer such a large collection of distributed
resources. Participation patterns will be highly variable: there will be perhaps
a larger number of stable nodes than in today’s P2P systems, but many re-
sources will join and leave the network frequently. Resources will have highly
diverse types (computers, data, services, instruments, storage space) and char-
acteristics (e.g., operating systems, number of CPUs and speed, data of various

A Peer-to-Peer Approach to Resource Location in Grid Environments 417

sizes, services). Some resources will be shared following well-defined public
policies, such as “available to all from 6 pm to 6 am”. Other resources will par-
ticipate rather chaotically, for example, when idle. Technical support will be
variable: some participants will benefit from technical support, whereas others
will rely on basic tools provided by community (e.g., today’s Gnutella nodes
run various implementations of the protocol, each with its own particularities).

To perform efficiently in these conditions, a resource discovery mechanism
should have the following features:

Independence of central, global control. This is a departure from pre-
vious Grid solutions and a step toward the fully decentralized solutions
typical of P2P approaches.

Support for attribute-based search, a feature not found in current P2P
solutions.

Scalability, which becomes more important to the Grid community with
the increase in scale and participation.

Support for intermittent resource participation, a characteristic frequent
in today’s P2P systems but rare in current Grid solutions.

In the following sections, we propose a scheme for characterizing resource
discovery techniques. Although we are interested primarily in designing mech-
anisms that adhere to the requirements above, our characterization scheme
comprises a more general set of solutions.

4. RESOURCE LOCATION: COMPONENTS AND
SOLUTIONS

We assume that every participant in the VO—institution or individual—
publishes information about local resources on one or more local servers. We
call these servers nodes, or peers. Nodes hence provide information about
resources: some advertise locally stored files or the node’s computing power,
as in a traditional P2P scenario; others advertise all the resources shared by an
institution, as in a typical Grid scenario.

From the perspective of resource discovery, a Grid is thus a collection of
geographically distributed nodes that may join and leave at any time and with-
out notice (for example, as a result of system or communication failure). Users
send their requests to some known (typically local) node. Typically, the node
responds with the matching resource descriptions if it has them locally; other-
wise it processes the request, possibly forwarding it to one or more nodes.

418 GRID RESOURCE MANAGEMENT

4.1 Four Axes of the Solution Space

We partition a general resource discovery solution into four architectural
components: membership protocol, overlay construction, preprocessing, and
query processing. This partitioning helps us recognize the unexplored regions
in the solution space. It also provides the basis for comparing previous solu-
tions from both the P2P area and the traditional distributed computing domain,
solutions that we present in Section 4.2.

4.1.1 Membership Protocol

The membership protocol specifies how new nodes join the network and
how nodes learn about each others (we refer to the latter part of the member-
ship problem as peer discovery, although it has multiple names in the litera-
ture [KP00]).

Imagine a graph whose vertices are peers and whose edges indicate whether
vertices know of each other. Ideally, despite frequent vertex departures and
joins, this graph is a clique; that is, every member of the network has ac-
curate information about all participants. In practice, however, this situation
is impossible [CHTCB96], and different protocols have been suggested, each
involving different tradeoffs. For example, Gnutella uses an aggressive mem-
bership protocol that maintains the highly dynamic nodes in the membership
graph connected, but at a significant communication cost [RFI02]. More scal-
able with the number of nodes are membership protocols based on epidemic
communication mechanisms [GT92].

4.1.2 Overlay Construction

The overlay construction function selects the set of collaborators from the
local membership list. In practice, this set may be limited by such factors as
available bandwidth, message-processing load, security or administrative poli-
cies, and topology specifications. Hence, the overlay network often contains
only a subset of the edges of the membership graph. For example, a Gnutella
node maintains a relatively small number of open connections (the average is
less than 10, with 3.4 measured as of May 2001 [RFI02]) but knows of many
more peers (hundreds) at any given time.

The overlay topology has a significant effect on performance. For example,
Barabási and Albert [BA99] show a strong correlation between robustness and
the power-law topology; Adamic et al. [AHLP01] give a search algorithm that
exploits the power-law topology in a cost-efficient way; and Kleinberg [Kle00]
presents an optimal algorithm for search in small-world graphs with a particu-
lar topology (two-dimensional lattice) and knowledge about global properties,
such as distance between any two nodes. On the other hand, a large number of
dynamic, real networks, ranging from the Internet to social and biological net-

A Peer-to-Peer Approach to Resource Location in Grid Environments 419

works, all exhibit the same power-law and small-world patterns (as surveyed
in [AB02] and discussed in detail in [Bar02] and [Wat99]).

4.1.3 Preprocessing

Preprocessing refers to off-line processing used to enhance search perfor-
mance prior to executing requests. For example, prefetching is a preprocessing
technique, but caching is not. Another example of a preprocessing technique is
dissemination of resource descriptions, that is, advertising descriptions of the
local resources to other areas of the network for better search performance and
reliability. A third example of preprocessing is rewiring the overlay network
to adapt to changes in usage characteristics.

It is not obvious, however, that such preprocessing strategies work in the
dynamic environments that we consider, in which resources may leave the pool
and resource characteristics and user behavior may change suddenly. A recent
result [CS02] shows that, in a static environment, the optimum replication of
an item for search in unstructured networks is proportional to the square root
of the popularity of that item.

4.1.4 Request Processing

The request-processing function has a local and a remote component. The
local component looks up a request in the local information, processes aggre-
gated requests (e.g., a request for A and B could be broken into two distinct
requests to be treated separately), and/or applies local policies, such as drop-
ping requests unacceptable for the local administration.

The remote component implements the request propagation rule. Request
propagation is currently an active research topic in the P2P area [RFH

�
01,

SMK
�

01, RD01, LCC
�

02, ZKJ01, IRF02, SMZ03]. In some cases, request
propagation rules are dictated by other components of the resource discov-
ery mechanism, as with distributed hash tables [RFH

�
01, SMK

�
01, RD01,

ZKJ01], where the overlay and the propagation rules are strongly correlated.
In an unstructured network, however, there are many degrees of freedom in
choosing the propagation rule. Various strategies can be employed, charac-
terized by the number of neighbors to which a request is sent and the way in
which these neighbors are selected.

4.2 Previous Solutions to Resource Discovery

To provide a basis for our proposed characterization scheme, we discuss
here existing solutions and related work from the perspective of the four archi-
tectural components presented above.

Many solutions to resource discovery presume the existence of globally
unique names. In some cases, this naming scheme is natural (for example,

420 GRID RESOURCE MANAGEMENT

filenames used as global identifiers in P2P file-sharing systems); in others, it
is created to support discovery. In the context of Grid computing it is diffi-
cult (if even possible) to define a global naming scheme capable of supporting
attribute-based resource identification. We now present resource location solu-
tions that exploit natural naming schemes.

Domain Name Service [Moc87] is perhaps the largest such system that pro-
vides name-based location information. Its hierarchical topology dictates the
design of all four components: nodes (domains) join at a specified address in
the hierarchy, the overlay function maintains the domain-based tree structure,
requests are propagated upward in the hierarchy.

Recent contributions to name-based resource location solutions have been
proposed in the context of P2P file-sharing systems, such as Gnutella and Nap-
ster. The basic mechanism used in Gnutella is flooding. Its flooding-based
membership component manages a highly dynamic set of members (with me-
dian lifetime per node of about 60 minutes [SGG02]) by sending periodic mes-
sages. Its overlay function selects a fixed number of nodes from those alive
(in most instances, the first nodes of the membership list). Flooding is also
the core of the request-processing component: requests are propagated in the
overlay until their time-to-live expires. No preprocessing component is active
in Gnutella. Answers are returned along the same trajectory, from node to
node, to the node that initiated the request. Gnutella’s relatively good search
performance (as measured in number of hops) is achieved at the cost of inten-
sive network use [RFI02].

Napster uses a centralized approach: a file index is maintained at a central
location, while real data (files) are widely distributed on nodes. The mem-
bership component is centralized: nodes register with (and report their locally
stored files to) the central index. Hence, the request-processing component is
a simple lookup in the central index. Napster does not use a distinct overlay
function.

Distributed hash table structures such as CAN [RFH
�

01], Chord [SMK
�

01],
Tapestry [ZKJ01], and Pastry [RD01] build search-efficient overlays. All have
similar membership and request processing components, based on information
propagation in a structured overlay. Differentiating these four solutions is the
definition of the node space, and consequently the overlay function that pre-
serves that definition despite the nodes’ volatility: ring in Chord, d-coordinate
space on a torus in CAN, Plaxton mesh [PRR97] in Pastry and Tapestry.

The file location mechanism in Freenet [CSWH00] uses a request-propa-
gation component based on dynamic routing tables. Freenet includes both file
management and file location mechanisms: popular files are replicated closer
to users, while the least popular files eventually disappear.

The solutions discussed above are concerned with locating resources that in-
herently can be named. Solutions that create an artificial name have been pro-

A Peer-to-Peer Approach to Resource Location in Grid Environments 421

posed for attribute-based service location (Ninja) and as location-independent
identifiers (Globe).

In Ninja’s service location service [GBHC00, GWvB
�

01], services are
named based on a most relevant subset of their attributes. Its preprocessing
component disseminates lossy aggregations (summaries) of these names up a
hierarchy. Requests are then guided by these summaries up or down the hierar-
chy, in a B-tree search fashion. The fix overlay function (hence, the construc-
tion of the hierarchy) is specified at deployment.

The location mechanism in Globe [vSHT99] is based on a search-tree-like
structure where the search keys are globally unique names. Its naming ser-
vice [BvST00] transforms a URL into a location-independent unique identifier.

Among the few attribute-based resource location services is Condor’s Match-
maker (Chapter 9, [RLS98]). Resource descriptions and requests are sent to a
central authority that performs the matching.

Lee and Benford [LB98] propose a resource discovery mechanism based
on request propagation: nodes (called traders) forward unsolved requests to
other nodes in an unstructured overlay. The overlay function takes into ac-
count neighbors’ expertise and preference: a node connects to a node that has
useful services and/or good recommendations. This evaluation uses informa-
tion collected by the preprocessing component: traders explore the network
off-demand, whenever necessary, and disseminate state changes via flooding.

Another solution is provided by the Globus Toolkit MDS [CFFK01]. Ini-
tially centralized, this service moved to a decentralized structure as its pool
of resources and users grew. In MDS-2, a Grid consists of multiple informa-
tion sources that can register with index servers (“nodes” in our terminology)
via a registration protocol. Nodes and users can use an enquiry protocol to
query other nodes to discover entities and to obtain more detailed descriptions
of resources from their information sources. Left unspecified is the overlay
construction function, the techniques used to associate information sources to
nodes and to construct an efficient, scalable network of index servers.

5. EXPERIMENTAL STUDIES

Our objective is to observe and quantify the synergies emerging from the
interaction of the four components of resource discovery in flat, unstructured
networks. In the absence of a large-scale, deployed Grid available to test de-
sign ideas, we modeled an environment in which we experimented with a set
of resource discovery mechanisms. This emulated Grid, while specifically de-
signed to test resource location ideas, can be easily expanded to evaluate other
services on large-scale testbeds, such as resource selection and scheduling.
More important, it provides a framework for evaluating aggregations of coop-
erative services, such as resource location, resource selection, and scheduling.

422 GRID RESOURCE MANAGEMENT

5.1 Emulated Grid

Existing Grid simulators are specialized for certain services, such as schedul-
ing [LMC03] or data replication [RF02]. Others, such as the MicroGrid
[SLJ

�
00], run Grid software and applications on virtual resources. No cur-

rent simulator is appropriate for or easily extensible to evaluating generic Grid
services. We built an emulated Grid that is scalable and is suitable for resource
discovery but also is easily extensible to other purposes.

In our framework, nodes form an overlay network. Each node is imple-
mented as a process that communicates with other nodes via TCP. Each node
maintains two types of information: (1) information about a set of resources
and (2) information about other nodes in the overlay network (including mem-
bership information).

The large number of processes needed by our large-scale emulation raises
multiple problems, ranging from resource starvation to library limitations. For
the preliminary experiments (of up to 32,768 virtual nodes) presented in Sec-
tion 6, we used 128 systems (256 processors) communicating over fast Ether-
net of the Chiba City cluster of Argonne National Laboratory. With minimal
modifications, the framework could be used in real deployments.

5.2 Modeling the Grid Environment

Four environment parameters influence the performance and the design of a
resource discovery mechanism:

1 Resource information distribution and density: Some nodes share infor-
mation on a large number of resources, whereas others share just on a
few (for example, home computers). Also, some resources are common
(e.g., PCs running Linux), while others are rare or even unique (e.g.,
specific services or data).

2 Resource information dynamism: Some resource attributes are highly
variable (e.g., CPU load or availably bandwidth between two nodes),
while others vary so slowly that they can be considered static for many
purposes (e.g., operating system version, number and type of CPUs in a
computer, etc.).

3 Request popularity distribution: The popularity of users’ requests for re-
sources varies. For example, studies [BCF

�
99] have shown that HTTP

requests follow Zipf distributions. Our analysis [IR03] of a scientific
collaboration, on the other hand, reveals different request popularity pat-
terns, closer to a uniform distribution.

A Peer-to-Peer Approach to Resource Location in Grid Environments 423

4 Peer participation: The participation of peers, or nodes, varies, more
significantly in P2P systems than in current Grids. Influenced by incen-
tives, some nodes activate in the network for longer than others.

The failure rate in a large-scale system is inevitably high and hence neces-
sary to model. This factor can easily be captured by two of the parameters just
listed, namely, resource information dynamism and peer participation. The
effects of failure are visible at two levels: the resource level and the node
level. When resources fail, the nodes that publish their descriptions may need
to update their local information to reflect the change. Resource failure can
therefore be seen as yet another example of resource attribute variation and
can be treated as part of resource information dynamism. When nodes fail, not
only do their resources disappear, but they cease to participate in maintaining
the overlay and processing remote requests. Node failures can therefore be
captured in the peer participation parameter as departures. We note, however,
that node failures are ungraceful (unannounced) departures. Moreover, such
failures may not be perceived in the same way by all peers; for example, in the
case of network partitioning, a node may seem failed to some peers and alive
to others.

To isolate some of the correlations between the many parameters of our
study, we used a simplified, optimistic Grid model characterized by static re-
source attributes, constant peer participation, and no failures. Thus, we model
only the resource and request distributions.

5.2.1 Resource Distributions

In Grids and peer-to-peer environments, the total number of resources in-
creases with the number of nodes, so we model this as well. We assume that
the average number of resources per node remains constant with the increase
in the network size: in our experiments, we (arbitrarily) chose this constant
equal to 5.

New nodes often bring new types of resources, however, such as unique on-
line instruments, new data, and new, possibly locally developed, applications.
To account for these, we allowed the set of resource types to increase slowly
(5%) with the number of nodes in the system.

In this context, we experimented with two resource distributions of differ-
ent degrees of fairness, as presented in Figure 25.1: a balanced distribution,
with all nodes providing the same number of resources, and a highly unbal-
anced one, generated as a geometric distribution in which most resources are
provided by a small number of nodes.

424 GRID RESOURCE MANAGEMENT

0

10

20

30

40

50

60

1 10 100

N
um

be
r

of
 r

es
ou

rc
es

 p
er

 n
od

e

Node rank

Unbalanced (U)
Balanced (B)

Figure 25.1. Distribution of resources on nodes: balanced (all nodes have equal number of
resources) and unbalanced (a significant part of nodes have no resources).

5.2.2 Request Distributions

Although usage patterns can be decisive in making design decisions, we
faced the problem of not having real user request logs, a problem inherent in
systems during the design phase. We therefore logged, processed, and used
one week’s requests for computers submitted to the Condor [LLM88] pool at
the University of Wisconsin. This pool consists mainly of Linux workstations
and hence is a rather homogeneous set of resources. On the other hand, since
it is intensively used for various types of computations, the requests specify
various attribute values (e.g., for minimum amount of available memory or
required disk space). We processed these requests to capture their variety. We
acknowledge, however, that despite their authenticity, these traces may not
accurately represent the request patterns in a sharing environment that usually
comprises data and services in addition to computers.

We also experimented with a synthetic request popularity distribution mod-
eled as a uniform distribution. Figure 25.2 highlights the differences between
the two request distributions. The Condor traces exhibit a Zipf-like distribu-
tion, where a small number of distinct requests appear frequently in the set
of 2000 requests considered. In the pseudo-uniform distribution, on the other
hand, requests are repeated about the same number of times. We evaluated
various resource location strategies in overlay networks ranging in size frome\[

to
e �9�

nodes. In our experiments we randomly chose a fixed percentage
of nodes to which we sent independently generated sets of 200 requests. The
same sets of requests, sent to the same nodes, respectively, were repeated to
compare various request-forwarding algorithms.

A Peer-to-Peer Approach to Resource Location in Grid Environments 425

1

10

100

1000

1 10 100 1000

R
eq

ue
st

 fr
eq

ue
nc

y

Request rank

Uniform
Condor

Figure 25.2. Distribution of user requests.

5.3 Resource Discovery Mechanisms

We considered a set of simple resource discovery mechanisms constructed
by fixing three of the four components presented in Section 4.1 and varying
the fourth: the request-processing component.

For the membership protocol we use a join mechanism that is commonly
used in P2P systems: a node joins by contacting a member node. Contact ad-
dresses of member nodes are learned out-of-band. A node contacted by joining
members responds with its membership information. Membership information
is passively enriched over time: upon the receipt of a message from a previ-
ously unknown node, a node adds the new address to its membership list.

In our design, the overlay function accepts an unlimited number of neigh-
bors: hence, we allowed the overlay connectivity to grow as much as the mem-
bership information. In this way, we neutralized one more component, aiming
to understand the correlations between graph topology and discovery perfor-
mance. We generated the starting overlay by using a hierarchy-based Internet
graph generator [Doa96]. We assumed no preprocessing.

Our design of the request-processing component is based on forwarding.
We assumed simple requests, satisfiable only by perfect matches. Hence, local
processing is minimized: a node that has a matching resource responds to the
requester; otherwise, it decrements TTL and forwards it (if TTL

(
0) to some

other node. Requests are dropped when received by a node with no other
neighbors or when TTL=0.

We evaluated four request propagation strategies:

1 Random walk: the node to which a request is forwarded is chosen ran-
domly. No extra information is stored on nodes.

426 GRID RESOURCE MANAGEMENT

2 Learning-based: nodes learn from experience by recording the requests
answered by other nodes. A request is forwarded to the peer that an-
swered similar requests previously. If no relevant experience exists, the
request is forwarded to a randomly chosen node.

3 Best-neighbor: the number of answers received from each peer
is recorded (without recording the type of request answered). A request
is forwarded to the peer who answered the largest number of requests.

4 Learning-based + best-neighbor: this strategy is identical with the
learning-based strategy except that, when no relevant experience exists,
the request is forwarded to the best neighbor.

6. EXPERIMENTAL RESULTS

This section presents preliminary results in two areas: (1) quantification of
the costs of simple resource discovery techniques based on request- forwarding
(no preprocessing), and (2) effects of resource and request distributions on
resource discovery performance.

6.1 Quantitative Estimation of Resource Location Costs

A first question to answer is: What are the search costs in an unstructured,
static network in the absence of preprocessing? To this end, we considered
time-to-live infinite. The answer is presented in Figures 25.3, 25.4, and 25.5:
the learning-based strategy is the best regardless of resource-sharing charac-
teristics, with fewer than 200 hops response time per request for the largest
network in our experiment. For a network of thousands of nodes (hence, pos-
sibly thousands of institutions and individuals) the average response time is
around 20 hops. Assuming 20 ms to travel between consecutive nodes on a
path (10 ms. latency in a metropolitan area network and 10 ms. necessary for
request processing), then a path of 20 hops takes less than half a second.

Key to the performance of the learning-based strategy is the fact that it takes
advantage of similarity in requests by using a possibly large cache. It starts
with low performance until it builds its cache.

The random-forwarding algorithm has the advantage that no additional stor-
age space is required on nodes to record history. We also expect it to be the
least efficient, however, an expectation confirmed by the results shown in Fig-
ure 25.5 (Condor-based user requests, unbalanced resource distribution). For
all network sizes in our experiments, the learning-based algorithm consistently
performs well, while its more expensive version (learning-based + best neigh-
bor) proves to be rather unpredictable in terms of performance (see, for ex-
ample, the large standard error deviation for 1024 and 2048 simulated nodes
in 25.5).

A Peer-to-Peer Approach to Resource Location in Grid Environments 427

0

20

40

60

80

100

120

140

160

180

200

102 103 104 105

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

pe
r

re
qu

es
t

Number of nodes (log scale)

Condor (U)
Uniform (U)
Condor (B)
Uniform (B)

Figure 25.3. Performance (in average number of hops) of learning-based forwarding strategy
for the two request distributions (Condor and uniform), in two environments with different
resource-sharing characteristics (balanced B and unbalanced U).

0

100

200

300

400

500

600

700

800

900

102 103 104 105

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

pe
r

re
qu

es
t

Number of nodes

Condor (U)
Uniform (U)
Condor (B)
Uniform (B)

Figure 25.4. Performance (in average number of hops) of the best neighbor request forwarding
strategy under different user request and sharing characteristics.

We emphasize that these results do not advocate one strategy over another
but give a numerical estimate of the costs (in response time) involved. These
estimates are useful in at least two ways. First, they give a lower bound for the
performance of resource location mechanisms based on request propagation.
They show that more sophisticated strategies (potentially including preprocess-
ing techniques) are needed for efficient resource location in large-scale (tens of
thousands institutions) Grids. Second, they can be used in estimating the per-
formance of more sophisticated mechanisms that have a request-propagation
component (as is, for example, the solution in [IRF02]).

428 GRID RESOURCE MANAGEMENT

0

50

100

150

200

250

300

350

102 103 104 105

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

pe
r

re
qu

es
t

Number of nodes

Random
Learning

Best Neighbor
Learning+BN

Figure 25.5. Performance of all four request-forwarding strategies for a Condor request load
in the unbalanced resource-sharing environments.

6.2 Effects of the Environment

Figure 25.3 highlights the influence of user request popularity distribution
on the performance of the learning-based request forwarding strategy. (Of the
strategies we considered, this is the most sensitive to user request patterns.)
The slightly better performance in the fair-sharing environment is due to the
random component of this strategy, employed when no relevant previous in-
formation on a specific request exists: random forwarding has a better chance
of reaching a useful node when information is distributed fairly on nodes. The
learning-based strategy takes most advantage of the Condor request distribu-
tion, where a significant part of the requests are repeated (and hence can benefit
from previous experience).

The best-neighbor strategy is influenced more strongly by sharing patterns:
compared with a balanced environment, in a highly unbalanced environment
a node that had already answered a request is more likely to have answers
to other requests as well. Figure 25.4 shows the response latency in unbal-
anced and balanced environments for the two request patterns we considered:
the response latency almost doubles in the balanced sharing environment as
compared with the unbalanced one. We note that the performance of the best-
neighbor strategy is influenced by past requests: the algorithm records the
number of requests answered regardless of their type, hence it does not dis-
tinguish between nodes that answered same request n times and nodes that
answered n distinct requests. This fact explains why the algorithm performs
better under a uniform user distribution load than under the Condor traces:
since the number of distinct requests in a uniform distribution is larger, the
best neighbor identified by this strategy has indeed a larger number of distinct
resources.

A Peer-to-Peer Approach to Resource Location in Grid Environments 429

7. SUMMARY

We estimate that the characteristics and the design objectives of Grid and
P2P environments will converge, even if they continue to serve different com-
munities. Grids will increase in scale and inherently will need to address in-
termittent resource participation, while P2P systems will start to provide more
complex functionalities, integrating data and computation sharing with vari-
ous quality of service requirements. We are therefore studying the resource
discovery problem in a resource-sharing environment that combines the char-
acteristics of the two environments: the complexity of the Grids (that share a
large diversity of resources, including data, applications, computers, online in-
struments, and storage) with the scale, dynamism, and heterogeneity of today’s
P2P systems.

We have identified four components that, we believe, can define any de-
centralized resource discovery design: membership protocol, overlay function,
preprocessing, and request processing.

We have also proposed a Grid emulator for evaluating resource discovery
techniques based on request propagation. Our results give a quantitative mea-
sure of the influence of the sharing environment (i.e., fairness of sharing) on
resource discovery.

Acknowledgments

We are grateful to Daniel C. Nurmi for his help with deploying the Grid
emulator on the Chiba City cluster at Argonne National Laboratory. This
work was supported by the National Science Foundation under contract ITR–
0086044.

Chapter 26

RESOURCE MANAGEMENT IN THE
ENTROPIA SYSTEM

Andrew A. Chien,
�

Shawn Marlin,
�

and Stephen T. Elbert ��
Department of Computer Science and Engineering, University of California, San Diego,�
Science Application International Corporation,� International Business Machines

Abstract Resource management for desktop Grids is particularly challenging among Grid
resource management because of the heterogeneity in system, network, and shar-
ing of resources with desktop users. Desktop Grids must support thousands
to millions of computers with low management overhead. We describe the
resource management techniques used in the Entropia Internet and Enterprise
desktop Grids, to make the systems manageable, usable, and highly productive.
These techniques exploit a wealth of database, Internet, and traditional high per-
formance computing technologies and have demonstrated scale to hundreds of
thousands of computers. In particular, the Enterprise system includes extensive
support for central management, failure management, and robust execution.

1. INTRODUCTION

For over five years, the largest computing systems in the world have been
based on distributed computing the assembly of large numbers of PC’s over the
Internet. These Grid systems sustain multiple teraflops [SET] continuously by
aggregating hundreds of thousands to millions of machines and demonstrate
the utility of such resources for solving a surprisingly wide range of large-
scale computational problems in data mining, molecular interaction, financial
modeling, etc. These systems have come to be called distributed computing
systems and leverage the unused capacity of high performance desktop PC’s
(up to 3 GHz machines [Bre02]), high-speed local-area networks (100 Mbps to
1 Gbps switched), large main memories (256 MB to 1 GB), and large disks (60
to 100 GB). Such distributed computing systems leverage installed hardware
capability and are now gaining increased interest within Enterprises to solve

432 GRID RESOURCE MANAGEMENT

their largest computing problems. For a general background of distributed
computing [CCEB03].

In this chapter, we focus on the resource management problem for Enter-
prise Desktop Grid computing. The focus is on very capable desktops and lap-
tops, which in Enterprise systems often cross the number of tens of thousands
with sufficient network bandwidth to enable a wide range of applications. For
these PC Grids, unlike server Grids, an integral part of their functionality is to
gather unused cycles unobtrusively. Resource management for desktop Grids
is particularly challenging because of heterogeneity in system, network, and
model of sharing between Grid computations and desktop use. Desktop Grids
must exploit large numbers of resources, thousands to millions of computers, to
deliver tremendous power, and do so with modest requirements for additional
IT administration support. Furthermore, to achieve a high degree of utility,
distributed computing must capture a large number of valuable applications –
it must be easy to put applications on the platform – and secure the application
and its data as it executes on the network. We use the terms distributed com-
puting, high throughput computing, and desktop Grids synonymously to refer
to systems that tap vast pools of desktop resources to solve large computing
problems – both to meet deadlines and increase resource availability.

The Entropia system provides novel solutions to Enterprise Desktop Grid
resource management challenges. These solutions are developed in two sys-
tems: an Internet Grid and an Enterprise Desktop Grid system. The result
is a flexible, manageable system that is easily accessible to many applications.
We describe the system at three stages: the Internet Grid resource management
system (Entropia 2000), where innovations include large scale system manage-
ment, scalable client-server interaction, and flexible scheduling; the Enterprise
Grid resource management system (Entropia DCGridTM 5.0 and 5.1), where
innovations include resource pooling, batch-style scheduling , scheduling for
reliable and robust completion times, and basic data-locality scheduling; and
finally future resource management approaches, including the use of proactive
replication and more advanced data locality sensitive scheduling in network-
poor environments.

The remainder of the chapter is organized as follows. First, Section 2 de-
scribes the unique requirements and challenges for resource management in
desktop Grids. Sections 3 and 4 describe the resource management techniques
used in the Entropia 2000 Internet Desktop Grid and then the DCGrid 5.0 En-
terprise Desktop Grid systems. Section 5 explores future directions in resource
management, in particular, extensions to data-intensive applications needed for
bioinformatics. Finally, Sections 6 and 7 discuss the related work and a range
of future directions.

Resource Management in the Entropia System 433

2. RESOURCE MANAGEMENT REQUIREMENTS
FOR DESKTOP GRIDS

Large scale distributed computing using laptop and desktop systems face
challenges unlike any other form of Grid computing. A principal source of
these challenges is the scale of unreliable, heterogeneous resources: hardware,
software, and network, which must be combined to create a reliable and robust
resource. Another challenge is creating a secure resource from insecure com-
ponents. Finally, there is the challenge of matching application requirements
to the available resource in an effective manner.

2.1 Resource Management for Internet Grids

A resource manager must characterize the resource environment from hard-
ware information (e.g. processor type, free memory, processor utilization, soft-
ware configuration such as operating system and version). In general, all of
these quantities are dynamic and must be monitored continuously. The infor-
mation is tagged with an Entropia network identifier for each machine, because
system and IP names are transient.

Network characterization is also critical, including bandwidth available to
each client, whether its network connection is continuous or intermittent with
some pattern, what protocols can be used to communicate, and geographic
considerations. Geographic concerns may be performance related – shared
bandwidth (many clients at the end of a thin pipe) or legal – (restrictions on
cryptographic use, data placement, software licenses, etc.).

The resource manager not only needs to worry about the robust completion
of individual work assignments (tasks), but also the functional status of indi-
vidual clients. Malfunctioning clients must be diagnosed and removed from
the list of available clients. Failure to do so can result in sinks or “black holes”
for tasks, i.e., reporting completion of large numbers of tasks quickly without
producing results. Such behavior is very damaging to the system – preventing
other nodes from completing those tasks and resulting in the overall failure of
a job.

Once the Grid resources have been characterized, the management of the re-
sources begins as tasks are scheduled, monitored and completed. Tasks must be
matched to appropriate clients while observing any additional requirements of
priority and task association. To optimize network bandwidth usage, schedul-
ing may need to be data locality aware.

Once a task is scheduled, its progress is monitored to assure completion.
Progress monitoring responsibility is split between clients which monitor re-
source limits (memory, disk, thread counts, network activity, etc.) and the
server which is responsible for rescheduling the task if the client fails or takes
too long. For performance or reliability, tasks can be scheduled redundantly

434 GRID RESOURCE MANAGEMENT

(sent to more than one client), requiring the manager to decide which result to
accept and when to reassign clients.

2.2 Resource Management for Enterprise Grids

The issues faced in building a Desktop Grid in the Enterprise (e.g. a large
corporation, university, etc.) are similar to those on the Internet. Resources
must be characterized and tasks must be scheduled against the available re-
sources, tasks monitored and completed robustly with failures properly diag-
nosed and recovered. Enterprise Grids have one advantage in that network
management tools may provide configuration and performance information.
While Enterprises may have slightly less system heterogeneity, the reduction
is generally not enough to significantly simplify management. The typical case
– fast machines with high-speed network connections – represents valuable re-
sources, but they may present server scaling problems.

Enterprise environments do present novel challenges. One is an even greater
demand for unobtrusiveness on the desktop and the network. At the same time,
a higher degree of desktop control is possible. Obtrusive behavior from appli-
cations that use large fractions of available memory and disk may be tolerable
during non-business hours.

With always-on clients, centrally initiated scheduling and application data
transfer is not only feasible, but also desirable. The work units can be shorter
to improve turnaround time, creating corresponding increases in server load
and scalability challenges. In general, machines in an Enterprise environment
are more reliable than those on the Internet, which is factor in scheduling for
performance as well as throughput. Pools of more reliable clients may allow
applications to exploit peer-to-peer communication without the fault tolerance
concerns normally raised by this style of computing, but with additional re-
quirements to gang schedule the communicating nodes.

Data protection, through digests, and data privacy, through encryption, con-
cerns vary from one Enterprise to another. Accidental data tampering is as
much an issue in the Enterprise as it is on the Internet, but privacy issues vary
considerably. In some Enterprises the value of the data may be such that any
disclosure to unauthorized personnel is unacceptable so encryption is required
throughout the system. In other cases the Enterprise may elect to eliminate the
overhead incurred with data encryption (significant for some applications).

The administrative effort to manage the system (manageability) is not only
more critical in an Enterprise environment, but a Desktop Grid must integrate
well with existing Enterprise resource management systems, including cost-
recovering accounting systems. Central software configuration management
obviates the need for clients to support the self-upgrading used in Internet
Grids.

Resource Management in the Entropia System 435

3. ENTROPIA 2000: INTERNET RESOURCE
MANAGEMENT

Figure 26.1. Entropia 2000 system overview.

The Entropia 2000 system (see Figure 26.1), an Internet Grid computing
platform, consists of four main components; the Task Server, the File Server,
the App Server, and the Entropia Client (EC). The EC is the local resource
manager on each client and reports machine characteristics to the Task Server,
requests assignments, executes the application client specified by an assign-
ment, and ensures the unobtrusiveness of the platform on member (users do-
nating their unused computing cycles) machines. The App Server decomposes
an application job into its subcomponents, called application runs, and assigns
them to application clients. The Task Server is the heart of the Entropia 2000
system scheduling and resource management capability. The Task Server’s
main responsibilities are the registration, scheduling, and the administration
of EC’s. The Task Server database contains all of the information necessary
to describe the EC’s and the application clients in order to enable efficient
scheduling. This approach allows the grouping of online and offline resources
to be assigned to App Servers, eliminating the need for an EC to negotiate its
assignment when it becomes available.

3.1 Resource Management

The system automatically characterizes each EC (memory size, disk space,
processor speed, OS type, network speed, firewall protected, geographical lo-
cation, and availability) to enable efficient scheduling. An agent on the client
collects information from the Windows ò § registry and other local sources and

436 GRID RESOURCE MANAGEMENT

transmits the information to the Task Server periodically and upon startup.
The one exception is the EC’s geographical location, where the Task Server
employs an external service to resolve IP addresses to geographical locations.
Several resource attributes are collected from the owner of the computing re-
source, including system availability, network type/speed, and firewall pro-
tected characteristics. Availability indicates when the machine may be used.
To allow applications to employ a custom network protocol through firewalls,
proxy technology was developed to encapsulate all communications to and
from application clients.

3.1.1 Advantages and Limits of Centralized Management

A key feature of the centralized database approach is the ability to group
online and offline resources into an Application Pool to be utilized by an App
Server. Because the computing resources are not dedicated, Application Pools
are configured to provide sufficient compute power.

Another powerful feature is the ability for an administrator to stop, restart,
or remove an EC from the platform. Administrators can easily access and
analyze a work history for an EC and determine if it was stuck. Because each
EC checks in with the Task Server for assignments the EC can be informed to
upgrade itself to a specific cached application client to a newer version which
is network accessible. Therefore, the central database approach also provides
easy deployment of new versions of the EC and application clients, enabling
central version management.

Figure 26.2. Application servers are associated with pools of resources (Application Pools).

Resource Management in the Entropia System 437

3.1.2 Application Pools

Application pools (see Figure 26.2) are the key to Entropia 2000 scheduling.
Each App Server (see Figure 26.1) is associated with an application pool (a list
of EC’s allocated for a specific job , the number of assignments in the job,
the number assignments completed, and the pool priority). Pools can group
EC’s with similar capabilities to deal with heterogeneity. Pre-allocating EC’s
supports efficient task assignment because policy decisions are pre-evaluated,
not done for each task assignment.

3.2 Scheduling

The Application Pools and their priorities determine a large part of the
scheduling policy. In the normal case, an EC requests a task from the Task
Server, it will find the highest priority Pool of which that machine is a mem-
ber and send it the application client, the startup parameters needed, and the
connection information for the associated App Server.

Across the Internet, intermittent network connectivity is common. There
are two major issues: the direction of communication and duration of assign-
ments. Computing assignments must be “pulled” from the Task Server with
short-lived connections. If a request fails, the EC delays and retries with ran-
dom backoff. This supports system scalability. In addition, the amount of work
per run is adjusted to fill the useful CPU time between network connections.
Choosing the parameters for such backoff is critical for system performance.
It was shown statistically that the time between requests for tasks by an EC are
not correlated to the length of the computation performed, but instead corre-
lated to machine Internet connectivity characteristics. Empirically, we found
that the efficiency of an EC increases with the length of the task being assigned
to the EC with diminishing returns around 12 hours. App Servers use this ob-
served behavior to schedule a number of application runs at each interaction to
maximize EC efficiency.

3.3 Pitfalls

Among the most challenging issues in making Entropia 2000 work reliably
are those of scale and congestion. If requests are distributed evenly in time, the
system could handle one million EC’s. However, there were a number of cir-
cumstances that led to entrainment or convoys and scaling problems. Causes
included: server outage, network outage, EC reconfigurations, application mis-
configuration, etc. If a server outage occurred, it caused most of the EC’s to
be starved for tasks. When the Task Server came up, it gets flooded by task
requests from EC’s, and crashed again. This type of problem was cited for
SETI@Home. A careful design of the backoff scheme to include randomiza-
tion and exponential backoff achieved stability for Entropia 2000 systems.

438 GRID RESOURCE MANAGEMENT

4. DCGRID]_^ 5.0: ENTERPRISE RESOURCE
MANAGEMENT

The DCGridTM 5.0 software platform significantly improves upon the En-
tropia 2000 platform in the areas of resource management and scheduling ef-
ficiency. The App Servers and application clients were replaced with compo-
nents providing generalized job and subjob management capabilities, simpli-
fying both the system and applications. In DCGrid 5.0, all scheduling and fault
tolerance issues are handled generically, enabling applications to ignore most
aspects of distributed computing – generic sequential applications work fine.

One of the biggest departures between Entropia 2000 and DCGridTM 5.0
was that Entropia 2000 was an Internet based platform whereas DCGridTM 5.0
is an Enterprise based platform. This eased the requirements on resource in-
formation gathering. Because of the non –restrictive communications allowed
in Enterprise networks, firewalls separating the server side components and the
EC’s are no longer an issue and therefore become an extraneous piece of infor-
mation. The assumption of no firewalls in the Enterprise network environment
allows for a greater range of applications that assume direct connectivity, to be
deployed and allows for a number of communication protocols which could
not be deployed on the Internet.

4.1 Adapting the Internet Approach (Layered
Scheduling)

Figure 26.3. DCGridTM 5.0 components.

As can be seen in Figure 26.3, the scheduling and resource management of
DCGridTM 5.0 has three layers: the Job Management layer, the Subjob Man-
agement layer, and the Resource Management layer. The Resource Manage-
ment layer encompasses what was previously the Task Server and the functions
performed by Application Servers and Clients are now handled generically by

Resource Management in the Entropia System 439

the Job Management and Subjob Management layers.This approach cleanly
separates physical resource management, job decomposition and management,
and subjob scheduling.

Definitions of Work elements:
Job – the original work that is to be performed by a platform user.
Subjobs – a single-machine job component. Jobs are decomposed into sub-

jobs and distributed to the computing resources.
Run – an assignment of a subjob to a specific computing resource. There

may be more than one run per subjob.
Applications – the program executables used by subjobs
The Job Management layer is utilized by a platform user to submit a spe-

cific problem for the platform to solve, and its constraints. The Job Manage-
ment layer will decompose the problem to a number of independent subjobs
to be worked on by the nodes within the system. After the results of each

subjob have been acquired, the Job Management layer will compile them into
a single result an present it back to the platform user. The Job Management
layer’s primary responsibilities include decomposing a job description into the
appropriate number of subjob descriptions, submitting subjobs to the Subjob
Management layer, and retrieval and reconstitution of subjob results into a job
result. The Job Management layer is a purely server side component with an
interface with the Subjob Management server side components, the File Server,
and the user.

The Subjob Management layer’s primary responsibilities include the recep-
tion and storage of subjob descriptions and their associated files, the assign-
ment and execution of subjob runs on EC’s, individual result retrieval and re-
porting, and the handling of subjob and systemic failures with respect to subjob
scheduling. The Subjob Management layer provides a public interface for sub-
job submission that is utilized by the Job Management layer, but can be used
by any Job Management system as well as provided command line submission
utilities.

Figure 26.4. Subjob management layer.

440 GRID RESOURCE MANAGEMENT

As shown in Figure 26.4, the Subjob Management layer is decomposed
into its individual components; the Subjob Monitor server, the Entropia Batch
System (EBS) servers, and App Moms. The Subjob Monitor server provides
the submission interface for subjobs, subjob description storage in a database,
scheduling policies to route subjob runs to EBS servers, policies to handle sub-
job and EBS server failures, and subjob status reporting.

The EBS servers perform assignment of subjob runs to App Mom’s, subjob
run result reporting, subjob run heartbeat indicating that the subjob is execut-
ing, EBS server status interface, and fault tolerance policies to handle subjob
run failures effectively. The Subjob Management system provides the capabil-
ity to expand the number of EBS servers within the system and distribute the
App Mom’s appropriately across multiple EBS servers.

The App Mom provides the local resource management capabilities for a
subjob run. It manages all process created by a subjob run ensuring that they
do not run too long, too short, or create zombie processes. The App Mom
creates the execution environment specified for a subjob run before execution
begins by creating the desired sandbox directory structure, downloading neces-
sary files from the File Server , creating environment variables, and executing
the startup script specified by the subjob run description. The App Mom gen-
erates the subjob run heartbeat, which allows for quicker response time to er-
rant subjobs and non-responsive resources. At subjob run termination the App
Mom transfers the desired results to the file server and cleans up the execution
environment.

4.2 Resource Pools

DCGridTM extends Entropia 2000’s application pool abstraction into pool,
partition, and queue abstractions to support generalized scheduling. Pools are
managed by the Resource Management Server and support allocation EC’s to
a Subjob Management system – either a general purpose or single application
system. When a pool is allocated to a generic Subjob Management system,
each EC will instantiate the App Mom and the App Moms will be distributed
among the EBS Servers.

Within the Subjob Management system, resources can be partitioned to sup-
port performance guarantees. For example, a user might have exclusive access
to a partition (group of resources); each a named set of App Moms in a pool of
computing resource. Administrators organize the resources by assigning EC’s
to partitions.

Submission queues are where work is submitted. Users can submit to par-
ticular partitions by selecting appropriate submission queues. Each submission
queue has an associated priority and partition. These attributes drive schedul-

Resource Management in the Entropia System 441

ing policies. Queues also have default values for time to live (in an EBS
server), max time to run, and min time to run associated with them in case they
are not specified during submission.

4.3 Scheduling for Robust Execution and Performance

Tables 26.1 and 26.2 describe the failure modes of applications and the sys-
tem, as well as the algorithms that handle them. We discuss a range of failures,
organizing by the subsystem that handles the failure mode. The generic han-
dling of subjob failures is one of the biggest improvements between Entropia
2000 and DCGridTM 5.0. Scheduling in the DCGridTM 5.0 platform is per-
formed at each layer of the system: Resource Layer, Subjob Layer, and Job
Layer. Errors are handled by their associated subsystem with the exception of
systemic failures, which require a coordinated effort to handle them.

4.3.1 Subjob Scheduling

Subjob scheduling in the “go-path” starts with the Subjob Monitor server
finding the capacity of each EBS server and the capabilities of their associated
computing resources. The capabilities of the EC’s are binned; the Subjob Mon-
itor defines the bins. The Subjob Monitor first finds all of the third retry subjobs
(subjobs that have previously been submitted twice to an EBS Server without
successfully completing) in the highest priority queue and assigns them to an
EBS server. The monitor chooses a server with appropriate capacity and capa-
bilities but also considers load balancing. The Subjob Monitor does the same
for second retry subjobs and then first try subjobs. Subjob runs that complete
successfully are flagged complete to the submitter and subjobs that have three
failed runs are reported failed.

Within an EBS server, subjob runs are handled in FIFO with priority for
third retry subjobs, then second retry subjobs (subjobs that have previously
been submitted only once to an EBS Server without successfully completing),
and so on. Subjob run assignments are done periodically. The subjob run at the
top of the list is assigned to the least capable available client that can run the
subjob. Subjob runs are submitted to the least capable available client to allow
for maximum usage of client in a fully loaded system. When no available App
Mom’s can satisfy a run, it is saved in the queue for the next scheduling period.
When a run completes the App Mom reports this to the EBS Server, thereby
becoming available. The EBS server in turn reports the subjob status to the
Subjob Monitor server.

442 GRID RESOURCE MANAGEMENT

Table 26.1. Subjob and resource failure definitions.

Subjob Failures
Machine Usage
Failure

A subjob process receives a machine usage exception i.e.: out of
memory, disk full, etc, which fails the subjob run.

Subjob Running
Too Long

Execution time of the subjob run exceeds its “max time to run”. Pos-
sible causes include a subjob just running much longer than expected
or a real “hang” of the application.

Subjob Running
Too Short

Execution time of the subjob run violates its “min time to run”.
Common causes are errant parameters associated with a subjob or
a misbehaving computing resource.

Subjob Stuck in
EBS Server

Subjob run resides within the EBS Server without assignment for a
time greater than its “time to live”. When the Subjob Monitorserver
submits a subjob to an EBS server, it first makes sure that the EBS
server is managing an active EC with the resource capabilities to
satisfy the subjob. If that situation changes, the subjob could get
stuck waiting for appropriate resources to become available. The
EBS Server will delete the subjob and the Subjob Monitor Server
will resubmit the subjob to an appropriate EBS Server.

Zombie Process A subjob process that does not terminate before the startup script
terminates. Subjobs can spawn multiple processes in order to com-
plete their computation, but when the startup script terminates all of
its child processes should also have terminated.

File Tampering Checksums or cryptographic hashes used to ensure data integrity
have been detected as incorrect. Data corruption is likely whether
from accidental or malicious activities.

Bad App Results
in a Subjob Com-
pletion

Because a subjob completed with an un-desirable result doesn’t
mean that the subjob failed from a system perspective. The subjob
is a success if it executes within the desired constraints and behaves
in an appropriate manner. The quality of the application results of
the subjob must be handled at the Job Management layer.

Resource Failures
Resource Termi-
nation

A resource is gracefully shut down and removed from the system.

Unresponsive Re-
source

When a resource fails to respond to server communication, it is de-
clared unresponsive. This condition could be caused by someone
accidentally pulling the network plug on the computing resource, a
dirty down caused by a power failure, or a network problem causing
the computing host to be temporarily unreachable. This situation
may be temporary and upon reestablishing communication the re-
sults of a subjob that completed offline can be reported.

Black holes If subjobs complete too quickly (Subjob Running Too Short) on a
specific computing resource continuously, then the computing re-
source is termed a black hole. Unchecked, a black hole can prevent
applications from completing by preventing correctly working re-
sources from executing application subjobs. The black hole sucks
the subjobs out of the system, reporting them as completed when in
fact they are not.

Resource Management in the Entropia System 443

Table 26.2. Job and system failure definitions.

Job Failures
Incorrect Applica-
tion Parameters

During the decomposition of a job it must define the parameters for
the subjob submission string. If this happens incorrectly, the subjobs
that are created will never run correctly on the system and can have
serious impact on the platform performance handling large numbers
of failures simultaneously. An example of an incorrect parameter
might be that the OS type is specified incorrectly and the executables
used by the subjobs will not run on that OS.

System Failures
Network Segmen-
tation

With large networks a router or switch failure could cause whole
subnets to become disconnected.

Power Outages Power outages could cause server side components to fail and/or
many EC’s, and conversely App Mom’s, to become unresponsive
and executing subjob runs to fail.

EBS Server Fail-
ure

In the event of an EBS Server failure subjobs runs may become stale
and timeout as well as App Mom’s to go unused during the failure.

Priorities are only enforced on a submission queue basis; subjobs submit-
ted to high priority queue are sent to an EBS server before others. However,
subjobs submitted to a high priority queue will not necessarily be assigned to
a client. This is subject to the scheduling policy. In the EBS server, scheduling
depends on the subjobs ahead of it in the assignment list, the length of time to
run of the subjobs ahead of it, and the clients capable of satisfying the request.

Subjob failures affect scheduling through time to live. Once this subjob
timeout is reached, the subjob run is failed to the Subjob Monitor and relevant
state removed.

4.3.2 Resource Scheduling

Resources are assigned to Subjob Management systems in units of pools.
These resources are initially declared “Up”. When the Resource Management
server has received a heartbeat from an EC for a long period of time, it declares
the computing resource “Disconnected”. If the EC does not communicate with
the resource management server for some time after being declared “Discon-
nected” the computing resource is declared “Down” and removed from the
system.

When a subjob runtime is too short, meaning that its computing time was
less than its minimum computing time allowed, an error is signaled and the
App Mom notifies the local EC. If the EC has three consecutive subjobs termi-
nating with runtime too short, the EC declares itself a black hole and notifies
the resource management server, which then removes the computing resource
from the Subjob Management system.

444 GRID RESOURCE MANAGEMENT

Figure 26.5. Impact of subjob failure probability on job completion time (1-hour subjobs).

4.3.3 Job Scheduling

The Job Management system submits jobs, adjusts their attributes, can
choose which queues to submit them to, and if appropriate delete subjobs.
Thus, the Job Management system can mediate the access of multiple jobs to
a set of resources. The Job Management system periodically checks subjob
status to monitor progress. For example, the Job Manager looks for a large
number of failed runs for a job. This usually indicates that the subjobs were
malformed. In this case, the Job Manager deletes the remaining subjobs and
reports an error to the user.

4.3.4 More Aggressive Techniques

In Enterprises, an important capability is timely job completion. However,
desktop Grids are known to have unpredictable subjob failures, due to machine
shutdowns, network disconnects, etc. Empirical data from Enterprise desktop
Grids at several Fortune 500 companies using DCGridTM 5.0 shows subjob
failure rates below one-tenth of one percent. For example, in one 25,000 sub-
jobs job, only 25 failed. Figure 26.5 shows that rerunning failed subjobs pro-
duces good job completion times given the observed failure rates. This works
well because all retries are rapidly assigned. Over-scheduling , assigning the
same subjob to multiple clients, wastes resources, reducing throughput with
little benefit [KCWB02]. A better strategy is to schedule subjob retries against
the fastest clients available as necessary.

Resource Management in the Entropia System 445

Figure 26.6. Utilization of 93 clients running 25,000 subjobs.

4.4 Scheduling for Network Bandwidth Management

A major concern for Enterprises deploying distributed computing is the sys-
tem’s network usage. The major network usage occurs when downloading files
(executables and data) from the File Server for each subjob execution by the
Subjob Management layer. Often, these files are used repeatedly by subjobs
making file caching an important feature for eliminating network traffic and
improving performance. When an App Mom is setting up the execution en-
vironment for a subjob, it gets the input file list and checks in its cache if it
contains the file. If the file is contained in the cache, the App Mom will get its
checksum and will check with the file server to see if it has a different version.
If the file server has a different version than the one requested, the file will be
downloaded and the App Mom will replace the file in its cache, selecting a file
to displace by an LRU algorithm.

4.5 Sample Application Performance

Linear performance scaling of parameter sweep and data parallel applica-
tions in a distributed computing environment is well documented. Here we
highlight application performance on the Entropia 2000 platform, showing job
initiation and completion and the impact of resource volatility.

Figure 26.6 is a Gantt chart showing a Grid execution of a virtual screen-
ing application that evaluates 50,000 compounds. The Job Manager partitions
the task into 25,000 subjobs of two compounds each. Initially only 85 clients
are available but eventually 93 are used. A solid line indicates a client is do-

446 GRID RESOURCE MANAGEMENT

Figure 26.7. Detail of initial 140 subjobs.

ing useful work, and a gap that it is not. The squares indicate points where a
client disappears (25 occurrences) and the subjob must be rescheduled. The
job was started on a Sunday afternoon and the Grid performed consistently un-
til Monday morning when normal desktop user activity alters the behavior of
individual clients. For example, client 7 is known to be a laptop that is con-
nected to the Grid except during commutes on Monday morning and evening
and Tuesday morning. The laptop crashed Monday morning resulting in one of
the rescheduling events. The 93 · � client was misconfigured and after it failed
on five different subjobs it was automatically removed from the list of available
clients. Five subjobs failed three times, and then were manually resubmitted
and completed successfully. As Figure 6 shows, the overall job started and
finished in a timely manner as indicated by the nearly flat edges on the left
and right of the chart. The total CPU utilization is 95%. The tiling efficiency
(fraction of this time used for work by all clients) is 82%.

Figure 26.7 is another Gantt chart of the same job from the perspective of
each subjob near the beginning and shows the time evolution of the major
events in the processing of a subjob: transfer to the Subjob Manager, insertion
into the scheduler, arrival at the client, completion on the client, the return
of result data and being marked as complete. Before the Job Manager can
create the subjobs, the preprocessing must be completed, so the first subjob
is not created until 1093 seconds after the job is submitted and arrives in the

Resource Management in the Entropia System 447

Subjob Monitor 129 seconds later at 1222 seconds. All the charts use the job
submission as the zero time. The 100

¼�¿
subjob begins 114 seconds after the

first, a rate that is sustained through most of the job. The Subjob Monitor then
periodically sends work to the scheduler. The first batch of 27 arrives at 1255
seconds and has begun executing on clients eight to nine seconds later. Another
16 subjobs reach clients eleven seconds later and then there is a pause of 49
seconds during which the first three subjobs complete. In the next assignment
period one of the three idle clients (no. 42) receives a new subjob along with
41 new clients. At this point 85 subjobs have been started on 84 clients in 63
seconds. The two idling clients receive work during the next assignment period
and steady state has been achieved.

5. BEYOND DCGRID]_^ 5: DATA SCHEDULING

DCGridTM 5.0 has proven to be an effective way to manage applications
that have high compute to communicate ratios. Here we consider applications
where data locality is an important factor.

The first step is to understand the characteristics of applications that need
to process large amounts of data. Table 26.3 considers two applications, a
docking (virtual screening) application that is generally considered compute
intensive, and BLAST [AGM

�
90], a sequence analysis code that is generally

considered data intensive. For each application we analyze required server
bandwidth, assuming all of the data resides on the server. We consider two
cases for each application, documenting typical subjob run times, volume of
data per subjob, the server side bandwidth needed to support 1,000 clients, and
the number of clients that could be supported on a typical 100 Megabit/second
network assuming no more than 20% of the bandwidth can be used without be-
coming obtrusive. The final column is the Compute Intensiveness (CI) index.

We define the Compute Intensiveness index as

�/� <
f F

Subjob Runtime
Kilobytes to be moved per subjob

The factor of four was chosen as an arbitrary scale factor to make applications
that we considered compute-intensive have a CI

U
1 and those with a value less

than one are data intensive . Clearly, large-scale networks are currently only
feasible with compute intensive applications. Data intensive applications scale
only to small networks (
 100 clients). Data compression does not significantly
alter the situation.

6. DISCUSSION AND RELATED WORK

While a great deal of work has been published on resource management,
the scope of resources and range of applications addressed by the Entropia

448 GRID RESOURCE MANAGEMENT

Table 26.3. Characteristics of Docking and BLAST applications.

Application Subjob
Run
Time

Subjob
Data
In/Out

Server
Bandwidth
(1000 clients)

Maximum
Clients using
20 Mbits/sec

Compute
Intensiveness
(CI)

Docking 20 min. 1 Mbyte 6.67 Mbits/sec 2,998 4.8
Small Data &
Med. Run

10 min. 1 Mbyte 13.3 Mbits/sec 1,503 2.4

BLAST 5 min. 10
Mbyte

264 Mbits/sec 75 0.12

Large Data &
Long Run

20 min. 20
Mbyte

132 Mbits/sec 150 0.24

systems is broader than most previous Desktop Grid work. The majority of
work on Grids has focused on highly available server resources, not desktops.
While the work on large-scale desktop Grids has largely focused on single
application systems, the Entropia systems described in this paper combine
large-scale heterogeneous unreliable desktop resources with complex multi-
application workloads. Key novel resource management techniques aspects of
these two systems include scheduling for intermittent connectivity, resource
pooling, innovative failure management, and data management.

The idea of distributed computing has been pursued for nearly as long as net-
works have connected computers. However, most Desktop Grid systems em-
ployed simple scheduling systems as they supported only a single application
or were not operated as resources for extended periods of time. Systems falling
into this category include: GIMPS [GIM01], SETI@home [ACK

�
02], United

Devices [Unib], Parabon Computation [Para], BOINC [BOI], etc. These sys-
tems provide only rudimentary resource management, collecting resource ca-
pability information and using it only to gather statistics for the aggregate “dis-
tributed supercomputer”. In practice, scheduling of work units is done naively
to all the resources in the system, with replication/retry for lost units. Since
there is only one application (for which many pieces are available), there is no
incentive to do more sophisticated scheduling. This tradition is continued in
new open source infrastructures such as BOINC. These projects have all been
single-application systems, difficult to program and deploy, and very sensi-
tive to the communication-to-computation ratio. A simple programming error
could cause network links to be saturated and servers to be overloaded.

Another important body of related work involves batch schedulers for ded-
icated resources such as clusters, supercomputers, and mainframes. Such typ-
ically homogeneous resources, or nearly so, are managed by systems like
PBS [PBS], the Maui Scheduler [Mau] and its Grid extension Silver [Sil],
Turbo Linux [Tur], and Load-leveler [IBM01]. Because the resources man-
aged by these systems are typically highly reliable (and available), and have

Resource Management in the Entropia System 449

limited heterogeneity, these systems do little complex resource management,
and deal with resource unavailability in simple ways (as it rarely happens). The
resource management (and coordination approaches) typically assumes contin-
uous connection to resources, and doesn’t deal systematically with task failure
except signaling it. Systems supporting heterogeneous resource management
for complex mixed workloads include Condor. The Matchmaking [BL99b]
system in Condor manages complex heterogeneous resources, and jobs can
specify a “class ad” indicating their resource requirements and priorities (see
Chapter 9). However, the resource assignment does not have the same detailed
control and optimization possible in a central database system, and has no high
level understanding of collections of jobs and their relationship to application
(and user) progress.

Several commercial products address the Enterprise Desktop Grid market,
including UD’s MetaProcessor and Platform’s ActiveCluster [Pla]. Because
of the difficulty in obtaining accurate information about commercial product
capabilities and shortcomings, we omit a comparison of the Entropia system
to these other commercial systems.

Grid technologies developed in the research community have focused on is-
sues of security, interoperation, scheduling, communication, and storage. In all
cases, these efforts have focused on Unix servers. For example, the vast major-
ity of Globus [FK97] and Legion [NCWD

�
01] activity has been done on Unix

servers. Such systems differ significantly from ones developed by Entropia, as
they do not address issues that arise in a desktop environment, including dy-
namic naming, intermittent connection, untrusted users, etc. Further, they do
not address a range of challenges unique to the Windows environment, whose
five major variants are the predominant desktop operating system.

7. SUMMARY AND FUTURES

Resource management for desktop Grids is particularly challenging because
of the heterogeneity in system, network, and model of use allowed for Grid
computations. We describe the resource management techniques used in the
Entropia Internet and Enterprise desktop Grids, to make the systems manage-
able, usable, and highly productive. These techniques exploit a wealth of data-
base, Internet, and more traditional high performance computing technologies
and have demonstrated scale to hundreds of thousands of systems. Building on
the capabilities of these systems, future systems will include more advanced re-
source classification, and particularly the management of data movement and
locality-based scheduling to optimize network resource consumption.

450 GRID RESOURCE MANAGEMENT

Acknowledgments

We gratefully acknowledge the contributions of the talented engineers and
architects at Entropia to the Entropia system. We specifically acknowledge
Kenjiro Taura, Scott Kurowski, Brad Calder, and Wayne Schroeder for contri-
butions to the resource management system.

Chapter 27

RESOURCE MANAGEMENT FOR THE TRIANA
PEER-TO-PEER SERVICES

Ian Taylor,
�

Matthew Shields,
�

and Ian Wang
�

�
Department of Computer Science, Cardiff University,�
Department of Computer Science and Physics and Astronomy, Cardiff University

Abstract In this chapter we discuss the Triana problem solving environment and its dis-
tributed implementation. Triana-specific distribution mechanisms are described
along with the corresponding mappings. We outline the middleware indepen-
dent nature of this implementation through the use of an application-driven API,
called the GAT. The GAT supports many modes of operation including, but not
limited to, Web Services and JXTA. We describe how the resources are managed
within this context as Triana services and give an overview of one specific GAT
binding using JXTA, used to prototype the distributed implementation of Triana
services. A discussion of Triana resource management is given with emphasis on
Triana-service organization within both P2P and Grid computing environments.

1. INTRODUCTION

Grid Computing [FK99b] and peer-to-peer (P2P) computing [Ora01] are
both important emerging paradigms for seamless aggregation and utilization of
the ever increasing computing resources available today throughout the world.
Currently, there are one billion mobile devices worldwide and half a billion
Internet users. Further, some mobile phone companies are promising mobile
devices with processors in the GHz region and with broadband wireless net-
working capabilities within the next two years. Potential example applica-
tions of this massive distributed resource include: CPU sharing applications
and environments, such as SETI@Home [SET] and many others; file sharing
Gnutella [Gnu] and data locating services; collaborative technologies, such as
AccessGrid [AG]; and high performance scientific applications, such the Cac-
tus Worm [AAF

�
01].

452 GRID RESOURCE MANAGEMENT

Recently, there has been significant interest in the field of Grid computing.
Viewing the Grid as an infrastructure to support Virtual Organizations with
a single sign-on mechanism is a significant and important step. Further, the
recent convergence of Grid Computing and Web Services in the form of the
Open Grid Services Architecture (OGSA) citeFoster2002b has given rise to
an enormous drive in this direction by both industrial [IG02] and academic
projects, such as Globus [FK97, GLO]. In parallel, interest in P2P technology
is growing rapidly, as evidenced by the popularity of services like Gnutella and
SETI@home. Within the past few months, P2P has appeared on the covers of
the Red Herring and Wired and was crowned by Fortune as one of the four
technologies that will shape the Internet’s future. No doubt, there is a lot of
hype but in reality there is also significant substance. One recent advance has
been the introduction of architectures that support the programming of such
networks. One such architecture is project JXTA [JXT], which defines a set of
protocols that can be used to create decentralized P2P networks.

In this paper, we describe the distributed implementation of the Triana soft-
ware environment [Tri]. Triana is a distributed problem solving environment
(PSE) that allows users to graphically compose applications from a set of com-
ponents. Such applications can then be distributed onto the Grid in a variety
of ways, with resources being dynamically selected for the distributed execu-
tion. Triana is middleware independent through the use of a Grid Application
Toolkit (GAT) API [AAG

�
02]. The GAT provides an application driven API

and implements bindings to the various underlying mechanisms for the imple-
mentation of this functionality. Further, the GAT can be dynamically switched
at run time to utilize the functionality that exists on a particular platform or
environment. Current GAT implementations include Web Services (OGSA to
follow shortly), JXTA and local services for prototyping applications. The cur-
rent Triana implementation supports both P2P and Grid computing models for
prototyping its distribution mechanisms.

The next section gives a brief overview of Triana and describes the imple-
mentation of its distribution mechanisms. Section 3 gives an overview of JXTA
and it’s binding within the GAT for this current Triana.

2. TRIANA

Triana is an open source problem solving environment, written in Java,
which can be used in a variety of ways through the use of its pluggable software
architecture. Its current uses include: a workflow management system for Grid
applications; a data analysis environment for image, signal or text processing
applications; a graphical script editor for workflow composition, e.g. WSFL
and BPEL4WS formats; and it can be used as an application designer tool,
creating stand-alone application from the composition of components. Triana

Resource Management for the Triana Peer-to-Peer Services 453

Figure 27.1. A screen shot of the Triana GUI being used for an image processing application
for extracting the edges from an image.

consists of a collection of toolboxes (see left panel on Figure 27.1), containing
a variety of tools and a work surface, for composition (see right panel).

Applications are written by dragging the required tools onto the work sur-
face and then wiring them together to create a workflow or dataflow for the
specific behavior. Triana supports looping constructs (e.g. do-while and repeat-
until) and logic units (e.g. if, then etc.) that can be used to graphically control
the data-flow, just as a programmer would control the flow within a program
by writing instructions directly. In this sense, Triana is a graphical program-
ming environment. Programming units (i.e. tools) are created within specific
constraints so that they include information about which data-type objects they
can receive and which ones they output. Triana performs dynamic run-time
type checking on requested connections to ensure data compatibility between
components; this is equivalent to the checking of function call compatibility
during program compilation.

2.1 Pluggable Architecture

Triana has modularized pluggable architecture that is composed of a set
of flexible interacting components that can be used to create Triana or any
subset thereof. The Triana GUI is a light-weight thin client that connects to the
Triana engine locally or via the network (see Figure 27.2). Clients can log into
a Triana Controlling Service (TCS) via the various readers/writers, remotely
build and run a Triana network and then visualize the result on their device
(e.g. laptop or PDA) even though the visualization unit itself is run remotely.

454 GRID RESOURCE MANAGEMENT

Figure 27.2. The Triana pluggable architecture. Applications can plug into any of the insert
points (indicated by the white circles) and each Triana engine can act as a gateway to other
Triana services where the task can be distributed to in a hierarchical fashion.

There are two types of communication between the GUI and the Triana
Engine:

1 Workflow Updates: The task-graph representing the workflow can be
updated incrementally (i.e. at each addition/deletion of units/cables) or
can be updated once when the composition is complete. Triana adopts a
pluggable architecture for the reading and writing of task-graph formats.
Currently, we have implemented a BPEL4WS reader and writer and a
Triana proprietary one. Each writer accessed by a GUI implementation
has a corresponding reader on the TCS for interpretation. Reader/writers
can be switched dynamically at run time depending upon the particular
configuration.

2 Control Commands: These are commands that are used to control the
non-workflow functionality of the GUI e.g. start algorithm, stop algo-
rithm, save/open network, log on/off, security, etc.

Clients can log off without stopping the execution of the network and then
log on at a later stage to view its progress, perhaps using a different device. In
this context, Triana could be used as a visual environment for monitoring the
workflow of Grid services or as an interactive portal by running the TCS as a
servlet on the web server and by running the applet version of the Triana GUI.
Further, since any Triana network can be run with or without using the GUI,
Triana networks can be run as executables in a stand-alone mode.

Resource Management for the Triana Peer-to-Peer Services 455

Figure 27.3. Triana Services within a distributed Triana scenario where one service distributes
a task-graph to three other Triana services. Each of these Triana Services acts as a gateway and
distributes their task graphs to another two services.

Another feature of the pluggable architecture is that it allows programmers
to use the system at various levels by being able to plug in their own code at any
of the insertion points within the system (indicated in Figure 27.2 by the white
circles). At these points, the reader and writer interfaces allow the integration
of tools,task-graphs and GUI commands. For example, a programmer can use
Triana GUI as a front end to their stand alone application either on a single
machine or using the remote control facility.

2.2 Distributed Triana Services

Each TCS has a corresponding Triana engine (or a third party engine). If a
Triana engine is used then the user can take advantage of the various distribu-
tion mechanisms currently implemented in Triana. Triana implements its dis-
tributed behavior through the use of Triana services, which contain engines that
are capable of executing complete or partial task-graphs in any of the supported
task-graph formats. Each Triana engine can execute the task-graph locally or
it can distribute the code to other Triana servers (see Figure 27.2) according to
the particular distribution policy set for the supplied task-graph. Further, Tri-
ana services can communicate with each other, as indicated, to offer pipelined
work-flow distributions or they can act as gateways to distribute the task-graph
to finer levels of granularity.

For example, Figure 27.3 illustrates this conceptually using the two distri-
bution policies implemented in Triana (described in the next section). Here,
one Triana Service distributes a task-graph to three other Triana services using
the task farming distribution policy then each of these Triana services act as a
gateway and distribute their task graph to two other services using the P2P dis-
tribution policy. This has the capability of offering multiple tiers of distributed
granularity.

456 GRID RESOURCE MANAGEMENT

2.3 Distributed Triana Implementation

The distributed implementation is based around the concept of Triana group
units. Group units are aggregate tools that can contain many interconnected
units. They have the same properties as normal tools e.g. they have input/output
nodes, properties etc, and therefore, they can be connected to other Triana units
using the standard mechanism. Tools have to be grouped in order to be dis-
tributed. However, the way in which groups can be distributed is extremely
flexible.

Each group has a distribution policy which is, in fact, implemented as a
Triana unit. Such units are called control units. A distribution policy is the
mechanism for distribution within a group and therefore there is one control
unit per group. This flexible approach means that it is easy for new users to
create their own distribution policies without needing to know about the un-
derlying middleware or specifics about individual Triana units. There are two
distribution policies currently implemented in Triana, parallel and pipelined.
Parallel is a farming out mechanism (see Figure 27.3) and generally involves
no communication between hosts. Pipelined involves distributing the group
vertically i.e. each unit in the group is distributed onto a separate resource and
data is passed between them in a pipelined fashion. In practice, control units
dynamically rewire the task-graph to reroute the input data to the available
Triana services according to the particular distribution policy chosen. The dis-
tributed task-graph is created at run-time and therefore does not have to be
fixed to a specific set of resources; rather it dynamically reconfigures itself to
utilize the available services in the most effective way.

Conceptually, each Triana service shown in Figures 27.2 and 27.3 is in fact a
Triana group implemented as a service. There is a one-to one-correspondence
with the GUI representation of the group and how this appears on the Triana
service. This makes it very easy for the users to visualize the functionality of
each Triana service at any level of distribution. The actual representation of
the entire distribution can also be logged for visualization.

3. JXTA

Project JXTA [JXT] defines a set of protocols to support the development of
decentralized P2P applications. A peer in JXTA is any networked device that
implements one or more of the JXTA protocols. Peers can be sensors, phones,
PDAs, PCs, servers and even supercomputers. The JXTA protocols define the
way peers communicate with each other and are specified using XML message
formats. Such protocols are therefore programming-language independent and
current bindings include Java, C and Python. At the time of writing, the Java
implementation is the most advanced but the C implementation incorporates
full edge-peer functionality and is compatible with the Java peers. For exam-

Resource Management for the Triana Peer-to-Peer Services 457

ple, JXTA C peers can be used to implement a JXTA service (e.g. file sharing
or CPU sharing) but cannot act as rendezvous nodes (look-up servers) and re-
lays for messages. Each peer operates independently and asynchronously from
all other peers, and is uniquely identified by a peer ID. A peer group is a col-
lection of cooperating peers providing a common set of services. Groups also
form a hierarchical parent-child relationship, in which each group has single
parent.

The six JXTA protocols allow peers to cooperate to form self-organized and
self-configured peer groups independently of their positions in the network
(edges, firewalls), and without the need of a centralized management infras-
tructure. Briefly, these protocols are as follows: the Peer Resolver Protocol
(PRP) is the mechanism by which a peer can send a query to one or more
peers, and receive a response (or multiple responses) to that query. The Peer
Discovery Protocol (PDP) is the mechanism by which a peer can advertise its
own resources, and discover the resources of other peers (peer groups, services,
pipes and additional peers). The Peer Information Protocol (PIP) is the mech-
anism by which a peer may obtain status information about other peers, such
as state, uptime, traffic load, capabilities. The Pipe Binding Protocol (PBP) is
used to connect pipes between peers. The Endpoint Routing Protocol (ERP)
is used to route JXTA Messages. Finally, the Rendezvous Protocol (RVP) is
the mechanism by which peers can subscribe or be a subscriber to a propa-
gation service. Within a Peer Group, peers can be rendezvous peers, or peers
that are listening to rendezvous peers. The Rendezvous Protocol allows a peer
to send messages to all the listeners of the service. The RVP is used by the
Peer Resolver Protocol and by the Pipe Binding Protocol in order to propagate
messages.

4. TRIANA RESOURCES ON THE GRID

Triana implements its distributed functionality as Triana services and there-
fore manages its resources as such. Both in the context of JXTA and
OGSA [FKNT02] a service can be defined as a “network-enabled entity that
provides some capability” [FKNT02]. The service paradigm is similar in con-
cept to method calls or sub-routines but is more coarse grained, and there-
fore a better abstraction for Computational Grids. The recent development of
Grid Services using OGSA is an important step in this direction. A computa-
tional Grid environment is typically composed of a number of heterogeneous
resources, which may be owned and managed by different administrators. Each
computing resource may offer one or more services and each service could be a
single application or a collection of applications. Triana Services is an example
of the latter, but they not only provide access to multiple applications but allow
these applications to be connected together to form new applications. There-

458 GRID RESOURCE MANAGEMENT

fore, the interface to a Triana service needs to be flexible to allow the dynamic
advertisement of its current functionality and communication specifications.
To this end, each Triana unit (or group) has a description of its functionality
and each unit (or group) can advertise data types for communication.

Possible deployment mechanisms for Triana Services include JXTA and
OGSA, using J2EE or similar. Currently, OGSA is the most likely path for
interoperable Grid computing solutions and may indeed circumvent the need
for other architectures, such as P2P. However, we believe that P2P systems,
such as JXTA, address problems currently not incorporated into mainstream
Grid implementations and can therefore provide a useful feedback mechanism
into future research for optimum solutions. Further, some systems are already
building frameworks for accounting and managing compute power like elec-
tricity by using a JXTA-based P2P toolkit [GRIa]. Their Compute Power
Market (CPM) Project uses an economics approach for managing computa-
tional resource consumers and providers around the world in P2P computing
style. For our purpose however, extracting the useful notions from the various
underlying middleware mechanisms is key to defining the GAT application-
level interface described in the next section. We are currently exploring the
JXTA prototype with this view in mind so that the GAT can support the var-
ious mappings within the application requirements context. Below, therefore
we illustrate some differences between the JXTA P2P technology and Web
Services/OGSA.

One significant difference is the notion of a JXTA peer. A JXTA peer can
be a client, a server, a relay or a lookup server (a rendezvous node). In Web
Services, the lookup server is located on a third party machine using UDDI
or similar. Furthermore, JXTA peers can be dynamically organized as the net-
work grows in a number of ways. The organization of JXTA peers is inde-
pendent to the underlying physical devices and connectivity (see Figure 27.4).
JXTA peers are organized within a virtual network overlay which sits on top
of the physical devices. They are not required to have direct point-to-point
network connections between themselves and they can spontaneously discover
each other on the network to form transient or persistent relationships called
peer groups. A JXTA peer group is a virtual entity that typically consists of a
collection of cooperating peers providing a common set of services. Groups
can be hierarchical and therefore can be used to monitor and organize sub-
groups [VNRS02]. This allows for varied organizations of peers depending on
the particular environment. For example, there maybe a case where there is a
set of reliable servers such as web servers that can be used to monitor other
services on the network which may be much more transient, such as mobile
sensors. In this instance, the reliable server could be a Rendezvous node for a
group of transient services maintaining a decentralized federated arrangement
with centralized lookup services at the end groups. Other situations may be

Resource Management for the Triana Peer-to-Peer Services 459

Figure 27.4. The virtual network overlay used within JXTA providing the applications with a
virtual view of the physical underlying network.

more stochastic and may require a fullydecentralized solution. JXTA caters
for any combination of the above.

Current web services and OGSA specifications do not address these issues
to a comprehensive degree. Much can be learned from the P2P research in this
respect. Other difference include key JXTA features, such as: the addressing
of late binding of IP address in NAT translation systems, for example; and
the use of virtual communication channels for communication for traversing
multi-hop and multiple transport-protocol networks. Conversely, JXTA does
not address how a service is created; it simply assumes such services already
exist (as they do with file-sharing software for example). The dynamic creation
of JXTA services would not be possible without the aid of an external toolkit,
such as Globus.

5. THE GAT

The majority of Grid enabled applications are very much still at the proto-
type stage with many initiatives worldwide aiming at a wide range of different
users. Proposed differing approaches to the architecture of the Grid such as
the Globus Toolkit [FK99a], OGSA and Web Services all contribute to a set of
emerging standards that overlap in places and provide different functionality.
This mix of technologies often leaves the application programmer confused
about which architecture to choose. Consequently, this slows the development

460 GRID RESOURCE MANAGEMENT

of applications for the Grid as the developers wait to see which technology
becomes dominant or the most widely accepted. The GridLab project [GL]
aims to remove this confusion by producing an application-level API called the
GAT (Grid Application Toolkit). The GAT will have two initial reference im-
plementations, written in C and Java. The GAT interface is intended to be used
by applications to access core Grid services. It provides application developers
with a middleware independent API containing the necessary functionality and
implements the necessary hooks to the underlying middleware.

The main focus of the project is to enable applications to easily use the
Grid by both abstracting the required functionality and by creating many Grid-
Lab services include monitoring, adaptive components, resource brokering,
scheduling, security and application management. High-level graphical inter-
face portals are also being developed for submitting, monitoring and viewing
progress of the user’s application on the Grid. The GAT interface effectively
provides an insulation layer between the application and emerging technolo-
gies on the Grid. GridLab uses two principal applications to extract the nec-
essary GAT functionality. These applications are Cactus [CAC] and Triana. A
number of application scenarios have been defined to identify example uses of
these applications.

5.1 The GAT JXTA Binding

JXTAServe is an API we have developed that implements the GAT bind-
ing for JXTA. It implements the basic GAT functionality and the hides JXTA
specific details from such developers. Furthermore, since JXTA is an evolv-
ing system, JXTAServe provides the stability for our implementation in Tri-
ana; although JXTA may change the interface to JXTAServe will not. JX-
TAServe also gives the GridLab project [GL] a concrete prototype implemen-
tation to work with. JXTAServe implements a service-oriented architecture
within JXTA. It conceptually looks very similar to a Triana group unit, illus-
trated in Figure 27.5.

A JXTAServe service has a control input pipe, zero or more data input
nodes, and zero or more data output nodes. The control input is used for receiv-
ing workflow control commands from the TCS, such as initialize/run workflow.
To distribute a workflow, Triana splits the workflow into subsections accord-
ing to specified distribution policy (see Section 2.3), and sends each of these
subsections to run on a remote service using that service’s control pipe. How-
ever, before the workflow subsections are distributed, each of the input and
output nodes is labeled by the distribution policy with a unique name denoting
the pipe that it will connect to. Each JXTAServe service advertises its input
and output nodes as JXTA pipes using their specified name, and, using the
JXTA discovery service, a virtual communication channel is established be-

Resource Management for the Triana Peer-to-Peer Services 461

Figure 27.5. An illustration of how JXTAServe maps a Triana group. There is a one to one
correspondence between a Triana group unit, a Triana service and a JXTAServe service.

tween the corresponding input and output nodes. In JXTA, the communication
channel adapts to a particular communication protocol (e.g. TCP/IP or Blue-
tooth) depending on the current operating environment. Although our current
implementation uses JXTA protocols, the unique labeling of pipes is done by
the distribution policy independently of JXTA and is applicable to workflow
implementation using other GAT implementations. When the communication
pipes between the services are established the connected workflow subsections
together form a complete distributed workflow.

As a test case, we integrated a Java galaxy formation code into Triana, which
was successfully demonstrated recently [TSP02]. Briefly, galaxy and star for-
mation simulation codes generate a binary data file that represents a series of
particles in three dimensions and their associated properties as snap shots in
time. The user would like to visualize this data as an animation in two di-
mensions with the ability to vary the point of view and project specific two
dimensional slices and re-run the animation. We used the Triana parallel dis-
tribution (task-farming) policy to distribute this simulation temporally on our
prototype Grid by splicing up the data into visual frames that could be com-
puted independently from each other.

6. CONCLUSION

In this chapter we have outlined the open source Triana problem solving en-
vironment and its applications which include signal analysis, text processing
and graphical workflow composition. In particular we discussed how Triana
has been extended to enable the graphical creation of workflow-based Grid ap-
plications by using a middleware independent Grid Application Toolkit (GAT).
The use of a middleware independent GAT enables Triana to seamlessly switch
between Grid protocols, such as web services and JXTA, and to be extended

462 GRID RESOURCE MANAGEMENT

to new technologies, such as OGSA. As distributed Triana is currently based
on a JXTA GAT binding, we outlined the salient features of the JXTA model
and discussed how P2P concepts in JXTA could influence future Grid architec-
tures. We showed how Triana distributes sub-sections of a workflow to JXTA
services and establishes virtual communication channels to reconnect the dis-
tributed workflow.

The Triana system is an ongoing project based at Cardiff University; the
latest version can be downloaded from http://www.trianacode.org/ . For those
interested in further discussion of this topic, please see [TSP02, AAG

�
02] and

[Ora01].

VIII

ECONOMIC APPROACHES AND
GRID RESOURCE MANAGEMENT

Chapter 28

GRID RESOURCE COMMERCIALIZATION

Economic Engineering and Delivery Scenarios

Chris Kenyon and Giorgos Cheliotis
IBM Zürich Research Lab

Abstract In this chapter we consider the architectural steps needed to commercialize Grid
resources as technical focus shifts towards business requirements. These re-
quirements have been met for conventional utilities resources through commodi-
tization, a variety of market designs, customized contract design, and decision
support. Decision support is needed to exploit the flexibility provided by Grids
in the context of uncertain and dynamic user requirements and resource prices.
We provide a detailed example of how the decision support for users can be for-
mulated as a multi-stage stochastic optimization problem. We derive required
architectural features for commercialization using inspiration from conventional
utilities and considering the delivery context of Grid resources. We consider two
basic delivery scenarios: a group of peers and a group with an external provider.
In summary, we provide a conceptual framework for Grid resource commercial-
ization including both the understanding of the underlying resource commodity
characteristics and also the delivery context.

1. INTRODUCTION

Current Grid computing technology enables aggregation of resources from
across many budget boundaries. Sharing those resources dynamically in a
commercial environment requires an appropriate business model. One busi-
ness model for Grid computing is commercialization at the resource level. Re-
source commercialization means that decisions about resources are made on
an economic basis. That is, price is a key deciding factor in resource use.
Thus price dynamics must be understood and appropriate decision support en-
abled, complementing support at the traditional systems level. We use the term
economic engineering to describe these elements related to decision support
and design of price dynamics. Economic engineering, i.e. understanding and
design of economic elements for Grid resources, complements traditional sys-
tems engineering.

466 GRID RESOURCE MANAGEMENT

In this chapter we first concentrate on the basics of economic engineering
for Grid resources and compare Grid resource commercialization to that of ex-
isting commercialized resources. We then describe architecture requirements
for resource commercialization in two basic delivery scenarios in terms of eco-
nomic and systems needs: a closed group of peer entities and a group of entities
with a provider. Table 28.1 gives a list of some useful economic and financial
terminology.

To understand Grid resource commercialization, or utility computing, it
is worth looking at conventional utilities and business practices. Conven-
tional utilities, e.g. electricity and gas, are based on open standards and on
commodities. The open standards aspect has been well understood and vig-
orously proposed in the Grid space but the lessons from conventional (re-
source) commodities are generally missing except for a few significant ex-
ceptions [BGA01, KC02a, KC03] although the comparison with electricity is
widely made [CB02]. Certain aspects of commodities, e.g. resource prices
for immediate use, have been used but this is only a small part of what can be
applied from an understanding of conventional commodities and markets.

Perhaps the two most significant omissions in the Grid literature on com-
mercialization are an explicit derivation of price dynamics from the nature of
the underlying commodity resources and the elucidation of a decision sup-
port layer for the exploitation of these commodities by users. We start with
these aspects in Section 2. To support industrial scale commercial deployment
equivalently robust decision support must be provided. This demands serious
technical depth in the economic engineering, just as the systems engineering
builds on deep foundations. We provide the reader with an example that de-
tails the level of available and appropriate economic technology. In Section 3
we describe an appropriate comprehensive architecture. This architecture also
includes many supporting functions around resource contract handling.

When implementing a Grid for resources the most important economic ques-
tion is whether the Grid will be run on a cost-recovery basis or as a profit
center. Many details follow from this decision. However, we expect that the
adoption of commercial Grids will not start with public Grids but from within
individual companies, with providers, and between closed groups of compa-
nies. These partners will need to make this high level decision. In practice,
different partners may make different decisions and the logical structure of the
resource delivery will have a large influence on the resulting outcome. This
interplay between delivery method, economics and architecture is described in
Section 4.

We conclude in Section 5 with a short perspective of how Grid resources
may commercialize over the next few years in terms of the development and
blending of economic and systems engineering.

Grid Resource Commercialization 467

2. ECONOMIC ENGINEERING FOR
GRID RESOURCES

2.1 Motivation

We have stated above that Grid resource commercialization will start within
companies and not at the public level. Thus the use of economics for resource
sharing, or acquisition on a utility basis, is an explicit choice by the company
or companies over other possibilities. It is worth describing here, briefly, why
we expect some companies to make this choice because these reasons provide
design criteria. An economic basis for resource sharing can provide flexibility,
efficiency, scalability, and feedback for budget and investment decisions:

Flexibility: Resources can be obtained by users when they need them: the
degree of need expressed is under user control and can be described with
high precision for resource use now and for future times of interest, like
before deadlines.

Efficiency: Resource price reflects resource value.

Scalability: New budget entities and users can be added easily, preserving
flexibility and efficiency.

Feedback: Prices for resource use and value of resource uses over time can
be used to guide management decisions in terms they are familiar with,
i.e. money and Net Present Value.

Management of resources using policies provide these attributes very poorly
as compared to management of resources using economics. In fact policies
scale badly, are difficult to maintain in a dynamic organization, and provide no
linkage with investment decisions. They also provide no means of obtaining
or providing feedback on any timescale, and users have no ability to express
their urgency or lack of it. Using priorities is only slightly better that policies
in these respects. Hence we expect economics to become the dominant Grid
resource management method.

2.2 Resource Commodity Characteristics and Price
Dynamics

Grid resources can be packaged as commodities: provided that resource
technicalities, including security, QoS guarantees, reliability and credit-worthi-
ness are met, the ownership of different resources is not important. For max-
imum convenience of use, commodities also need to be uniformly assembled
into interchangeable packages. This is also typical in the development of a
commodity: first the base good is introduced, then grades are standardized in

468 GRID RESOURCE MANAGEMENT

Table 28.1. Financial and economic terminology.

Commodity A commodity is a good that, once technical specifications are met, is
supplier neutral.

Derivative A contract that depends on, or is derived from, another contract
Portfolio A set of contracts owned and managed as a whole
OTC Contract An Over-The-Counter contract is one specially designed for a particular

customer requirement
Spot,

é g � l Contract bought now for immediate (time now is �) use
Forward,

' g �kÛ ß l ,
or Futures

Contract bought now for use of resources at a later time,
ß

. A Futures
contract is the name for a Forward contract traded on an exchange.

Call Option on a
Forward

Contract bought now, agreeing on a price for use at a given later time if
the option is exercised. The owner can make the decision only at timeß

if option is European style, or decide at any time up to and includingß
for American style options

Figure 28.1 Relationship of
current prices and reservation
(forward) prices. Price for
resources now (currently) isé g¿Ñ l , (

é g � l , jagged line).
Reservation prices now
(currently) for use later are' g¿ÑqÛ ß l , (

' g �_Û ß l , smooth
curves).

t2

T

F(O,T)

t1

F(t 2,T)
F(t 1,T)

0

S(t)

t

C

order to permit trading, then markets and derivatives appear to meet the various
needs of producers, consumers and intermediaries.

Grid resources are capacity-type resources and so are non-storable com-
modities. That is, unused capacity from yesterday is worthless today. Thus fu-
tures contracts (reservations) markets will be the basic building blocks in Grid
environments, not spot (use now) markets. (For terminology see Table 28.1).
Spot markets will be present but only as the shortest-dated futures contract.
For all types of planning the curve of futures prices (Figure 28.1), however
processed into appropriate application-style contracts, will be basic.

The recent deregulation of many electricity markets has driven an upsurge
in models for price dynamics of non-storable commodities [CS00, Pil98]. The
start of deregulation in bandwidth has also prompted development of new mod-
els that deal with Non-storability and also with the inherently distributed nature
of network capacity [KC01, KL01, KC02b]. Price modeling in both these new
markets tend to be built on interest rate models, particularly those that model
the forward price curve directly [HJM92]. Thus there is an excellent basis from
which to build models for Grid resource prices.

Grid Resource Commercialization 469

In markets, uncertainty plays a large part: what will be available when, and
for what price? Hence the growth of structured contracts to provide certainty
and control from the buyer’s point of view. The most basic of these are the
forward contract and options on forward contracts. New variations are contin-
ually being developed as particular business needs come up [Hul03, KC02b].
A single contract, however structured, is not a scalable solution to resource
planning needs although particular designs are be useful building blocks. For
industrial scale resource planning by users decision support tools are needed.

2.3 Decision Support

A glance at Figure 28.1 gives a hint of the potential size of resource planning
problems for users. Note that while Forward prices � ���dQ y & and option prices
may be available, a set of contracts must still be assembled to match users (ap-
plication) needs. Users already have day jobs, they do not want to be traders,
and they want the ability to have the same level of surety about resource access
as when they had the computer boxes in their offices. Users also want to pay
for resources only as and when they need them. There are also several different
user groups, users that: run applications (i.e. normal users); manage budgets
(these users themselves or their managers); manage Grid resources (i.e. IT
managers). This is a rough sketch of the problems that a decision support sys-
tem, or architecture layer, must solve for users to benefit from the flexibility
provided at the systems level by Grids. Decision support is not an optional
extra for Grid exploitation in a commercial environment.

Manager decisions in a commercial Grid are often similar to portfolio prob-
lems in finance that express asset-liability models [ZM98]. These generally
lead to multi-stage stochastic optimization problems. The book by
Birge [BL97] provides a good introduction to the large body of research that
addresses solving such systems.

More detailed decision problems faced by managers relate to offering and
pricing application-specific resource packages. This is analogous to the OTC
contract market in financial derivatives whereby specific offerings are made
in response to customer needs. Again there is an extensive literature in this
area [Hul03, BR96, Reb96, CS00].

The general reader with a computer science background is already aware of
just how much technology is embodied in systems engineering but what may
not have seen is just how much economic technical machinery is available to
address the decision support problems in Grid resource management. In Fig-
ure 28.2 we give an insider view of an example formulation of the multi-stage
Stochastic,optimization problem that expresses a particular user problem. In

this problem a user needs to complete a project before a deadline within a
given budget. Prices for resources are stochastic as are the day-by-day re-

470 GRID RESOURCE MANAGEMENT

Data: Uncertainty

`
: sample space of all events over time (i.e. all scenarios)a : sample point, i.e. a single scenarioÞcb : probability mass function for scenario adfe
: classes of equivalent scenarios at time �

Data: Parameters

-
: initial budget;ø b e : amount of money spent so far, �6Ð¹ÔhÛ�Ò�Ò�Ò�Û ß ;Ì
: required amount of work to finish project;g
: unit penalty for missed project;j b e : amount of work done so far, ��ÐíÔdÛ�ÒkÒ�Ò�Û ß ;h : unit penalty for missed work;h b e : unit spot price of computation, �6Ð¹ÔhÛ�Ò�Ò�Ò�Û ß ;å b e : amount of work needing to be done, �6Ð¹ÔhÛ�Ò�Ò�Ò�Û ß ;

Decision variables

% b e : amount to spend in time period � in scenario a
Formulation

minimize + b\ikj Þ b e g g�j b Ú�l Ì lqm + e t Úe t � + b\i=j Þ b e h g å b e l % b enm h b e l
subject to

(keep track of project) j b e Ð½j b o eqp vqr m % b o eqp vqr m h b o eqp vqrts avu ` Ûw��Ð#Õ2ÛkÒ�Ò�Ò�Û ß
(can’t overdo day)

% b enm h b e4w å b e s avu ` Ûw��ÐíÔdÛkÒ�Ò�Ò�Û ß(keep track of budget) ø b e Ð¾ø b o eqp vqr m % b o eqp vqr s avu ` Ûw��Ð#Õ2ÛkÒ�Ò�Ò�Û ß
(can’t overdo budget) ø b e m % b exw - s avu ` Ûw��ÐíÔdÛkÒ�Ò�Ò�Û ß
(non-anticipativity)

% b e Ð % bYye s a Û a�z{u d e(non-negativity)
% b ex| Ñ s avu ` Ûw��ÐíÔdÛkÒ�Ò�Ò�Û ß(spent starts at zero) ø b v Ð#Ñ s avu `

Figure 28.2. User problem formulation as a stochastic optimization problem. User has a
project due by

ß
and a budget

-
. The amount of work each day and resource prices are both

stochastic. There are penalties for not accomplishing the work required each day and missing
the project deadline. The user’s objective is to minimize the penalties, i.e. accomplish the work
needed each day and finish the project on time. The user decides each day what to spend on
resources.

Grid Resource Commercialization 471

quirements of the project up to completion. This formulation and its solution
method would be contained in the decision support tools that the users have
available to them. The decision for the user to optimize is how much to spend
on resource each day to minimize the potential penalties for missing the re-
quirements of each day and the overall deadline for the project. This formula-
tion is quite simple in that it does not take into account reservations but should
provide a hint as to the level of available economic technology available.

In summary, the decision support problem, while complex, is tractable. The
cost of suitable tools in the infrastructure can be amortized over the (large) user
population. The building of such tools is practical in business terms.

2.4 Assessment of Current Status

2.4.1 Grid versus Conventional Commodities

Conventional commodity markets, over the past 100 or so years, have evolv-
ed into highly successful and effective businesses for efficient transfer, pricing
and allocation of resources. They have also succeeded in accommodating many
new commodities (e.g. live cattle, government and corporate debt, gas, electric-
ity) with a wide variety of characteristics. Few other businesses have been so
adaptable.

Today the allocation of Grid resources to computational tasks and the execu-
tion of these tasks resembles the Internet world. It is often based on best-effort
service, which means that there is little support for hard QoS guarantees that
are the basis of resource surety for users. Typically commercial load-balancing
products support job preemption based on a hierarchy of execution priorities.
This is similar again to attempts in broadband networking, such as the Diff-
Serv initiative, whereby statistical QoS guarantees are supported for premium
traffic, based often on priority queues [FH98, DCB

�
01, SPG97]. In fact, the

networking research community as well as telcos and ISP’s have made sig-
nificant progress in defining Service-Level Agreements (SLA), a step forward
from current Grid practices (see [CFK

�
02], or in this book Chapters 23, 8,

and 24). An SLA describes in detail the service offered to the customer with
a focus on those factors that influence a user’s experience the most (response
time, downtime, etc).

Most conventional commodities are deterministic, e.g. a barrel of oil has no
uncertainty in its description, its just 42 US gallons (with defined composition,
at given temperature and pressure, for delivery at specified location on a given
date, etc.). However, some commodities are stochastic, e.g. Random Length
Lumber (RLL), in that their definition includes a specification of a probabil-
ity distribution function (pdf). Figure 28.3 shows the guaranteed pdf of the
lengths of the lumber contained in a single contract on the Chicago Mercantile
Exchange (CME) [CME]. Kenyon [KC03] has shown how similar guarantees

472 GRID RESOURCE MANAGEMENT

Figure 28.3 Definition of
a conventional stochastic
commodity: Random Length
Lumber. The probability dis-
tribution function of lumber
lengths under CME rules is
shown (min/max percentages
in each category and also for
the 16’+18’+20’ combined
category).

0

10

20

30

40

50

60

8' 10' 12' 14' 16' 18' 20'

Length

P
er

ce
n

t

can be supported in the Grid world for cycle-harvested resources. Once again
the reader should take note of the sophistication that can be brought from com-
plementary fields to address resource management issues for Grids.

In order to move from the sharing of computing resources to commercial-
ized computing on-demand we need to build support for combined QoS of
network, storage and computation with clear guarantees.

2.4.2 Economic Engineering

Several Grid-related initiatives include economic aspects in their design or
deliverables with some idea of market-based valuation (e.g. Mari-
posa [SDK

�
94], Popcorn [RN98], Economy Grid initiative [BGA01]). These

market-based projects have demonstrated the basic viability of the approach
but have had some limitations to date (lack of dynamic prices, no guaranteed
QoS, no reservations, etc.). Additionally the economic designs did not start
from commercial requirements.

A number of start-up companies have attempted to commercialize spare cy-
cles on commodity machines but have not addressed the market aspects of
valuation. Using spare cycles, or cycle-scavenging, is the subject of non-profit
initiatives such as SETI@Home or ZetaGrid, and commercial ventures such as
Platform Computing (see Chapter 12), Parabon [Para], UnitedDevices [Unib],
Entropia (see Chapter 26) and Avaki [Ava] whose main business is selling
(scheduling, clustering and distributed load-balancing) middleware for Grid
computing. Quite apart from Grid-related research, the idea of managing com-
puter resources using economics has received much attention and harks back
to the 60’s and 70’s (e.g. [Sut68]) when time-sharing of mainframes was the
dominant means of computation and prices were somewhat variable. Not that
this has ceased at least as far as supercomputers is concerned. Decision support
as described above is basically missing from Grid initiatives to date.

Grid Resource Commercialization 473

3. REQUIREMENTS FOR A COMMERCIALIZED
GRID ARCHITECTURE

Here we describe architecture requirements for Grid commercialization deal-
ing particularly with those elements that are needed from the point of view of
economic engineering. In this respect comparison with, and understanding of,
conventional commodity markets is very useful ([KC02a] goes into depth).

In Figure 28.4 we present a simplified view of a commercialized Grid com-
puting architecture using three stacks. The Execution stack is where jobs are
taken over by local or Grid-level schedulers and executed. It also provides
a common interface for discovering, querying and using basic Grid Services.
The inclusion of proper QoS mechanisms at this level is one of the require-
ments for commercialization. We then assume that Grid-enabled applications
will access the virtualized infrastructure through the use of application-specific
portals that will in effect provide different views of the Grid, depending on
particular application needs (thus creating virtual application-specific Grids on
top). This is shown in the Application stack.

The main focus of Grid commercialization efforts will be in the development
of the Commercialization stack, where computing capabilities are turned into
tradable products. It is also here that the decision support for enabling the
use of these products is found. As shown in the figure, we envision this stack
as independent from the application stack, i.e. as an extra management stack
that communicates with lower layers using standard (OGSA) [FKNT02]) calls
and whose development does not need to interfere with the Grid-enabling of
applications.

3.1 The Execution Stack

A basic requirement in all commodity markets is clear property rights. Prop-
erty rights imply ownership (appropriately defined for the resource) for the du-
ration of the contract. This is a strong requirement but without it attempts to
build an economically functioning market for Grid resources or services will
encounter serious commercial resistance. Best effort, or queuing priorities, are
insufficient to support wide-scale commercialization.

For Grid resources, commercialization means support for hard quality of
service (QoS) guarantees as well as careful attention to the time dimension and
an appropriate granularity with respect to application use. Time granularity,
i.e. quantization of the time attribute, is also vital for planning: resources for
peak use can be bought in advance and idle resources offered on the market
exactly when they are not needed. Resource blocks in the Grid context will
also have a quantized location attribute.

Hard QoS is not required for every application. Statistical QoS is sufficient
for some specific cases (notably in the Life Sciences where a long and uncer-

474 GRID RESOURCE MANAGEMENT

Execution Stack

Application Stack

Grid-Enabled
Application

Application
Portal

creates Virtual Grid

Heterogeneous IT Resources
HPC, Linux clusters, cycle-harvested desktops, storage, databases, networks

Grid Dispatchers
Superscheduling, Load-balancing,

Reporting

Best-Effort
Schedulers

Common Virtualization Middleware
Discovery, Access, Monitoring of Grid Services

QoS-enhanced schedulers
(Statistically) Guaranteed Allocations

Commercialization Stack

Clearing, Accounting & Billing

Product Construction

Contract Management

Trading Support

Price Formation

Decision Support

Figure 28.4. Commercialized Grid architecture stacks and layers.

tain processing time is acceptable for a few important applications). However,
perhaps paradoxically, in a commercial context even statistical guarantees must
be hard, as in the random-length lumber example. That is, the expected QoS as
defined by statistical means (e.g. the distribution of available processing times
on a set of PC’s) must occur in practice. Uncharacterized, non-guaranteed re-
sources have no value. Even poor QoS provided it is precisely characterized
can have value. Clearly there will be a premium between statistical and deter-
ministic guarantees as determined by market supply and demand.

Commoditized resources are like a set of children’s building blocks: from
a dozen standard shapes a vast array of structures, all with different attributes,
can be built. A basic block in the Grid context starts from a resource with a
hard quality of service guarantee and a set of quantized time attributes.

3.2 The Commercialization Stack

This stack embodies the main features required for commercial exploitation
of Grid resources. Generally one does not need to implement all the layers of
this stack to achieve business advantage from Grid technology. We will first
discuss the main point of every layer in this stack and in the next section we
will show different Grid delivery configurations where some layers are more
important than others.

Grid Resource Commercialization 475

3.2.1 Product Construction and Reservations

First and foremost, commercialization means turning a service or capability
into a product, something that can be bought and sold for a price. Resource
virtualization and the transformation of resource control using Web Services
interfaces with OGSA [FKNT02] are two welcome developments that provide
for a consistent and flexible means of accessing Grid capability. But these
developments fall short of turning capabilities into useful commercial services,
in fact they were never intended to do so.

We need a layer whose sole responsibility is the packaging of capability into
units of commercial value. Value is determined by user needs and budgets. A
commercial service should adhere to — and comply with — a strictly defined
usage profile, including hard QoS guarantees. Also, typically some service
parameters will be flexible, allowing the user to modify them in accordance
with changes in needs/budgets. Moreover, certain events may be triggered
automatically, for example a commercial service may define that for every hour
of downtime in any of its components a certain amount of compensation should
be granted to the user. Such features distinguish a product that can be sold and
resold from a computing capability.

3.2.2 Contract Management

Any party in the Grid space, besides perhaps some end-users, will be entitled
to — or liable for — multiple contracts regarding commercial Grid capability
products. These contracts need to be managed at the contract level, not at
the level of their computational components. This is similar to the concept of
SLA (Service-Level Agreement) management that originated in the world of
commercial telecom services. Traditionally, resource management deals with
system configuration, monitoring and reporting at the level of raw resources
and basic services. But a commercial offering comprises many such elements
and a great deal of information regarding all of them needs to be collected,
updated, stored and processed to provide users or providers with an accurate
view of end-to-end service performance.

3.2.3 Clearing, Accounting and Billing

The Grid market clearing mechanism is the part of the system that actually
initiates the actions contained in a contract. A transaction agreed to on a Grid
futures market is an event that is intended to happen in the future. A contract on
a Grid futures market states that a certain resource will be made available at a
future time given in the contract for an amount of money that is also specified.
The contract does not result in any action on signing. It is the responsibility of
a clearing mechanism to ensure that all the actions agreed in the contract are
carried out.

476 GRID RESOURCE MANAGEMENT

When the event specified in the contract occurs, the clearing mechanism
informs both the accounting systems of the respective parties and the access
control system (or other appropriate mechanism) of the transaction to take
place. The clearing mechanism also checks at the point specified in the re-
source contract whether the actions specified have taken place and initiates
error or penalty routines if necessary.

A particular Grid resource contract may change hands several times before
initiation. The clearing mechanism must support this. This will, generally,
imply transacting accounting actions and change of ownership and/or liability
actions because the commitment to perform, or the commitment to pay, may be
sold. Billing will have to follow in the event of consumption (any initialization
fees and then unit fees, etc).

3.2.4 Trading Support

In some cases, e.g. inside a single company, financial settlements for ser-
vice consumption may be rare, but generally we can assume that in many con-
texts Grid resources will be exchanges across budget boundaries (within or
between organizations). If this occurs relatively often it is clear that a market-
place for Grid capacity will emerge, not so much unlike traditional commodity
and financial markets (only smaller in transaction volume, at least in the early
stages). In order to carry such transactions electronically an e-marketplace
infrastructure is needed.

Basic support for trading includes negotiation/auction protocols (dealt with
separately in the next layer) and mechanisms for exchanging bid/ask data re-
liably and securely. Also, in the case of complex products or when multiple
bids/asks need to be matched in real time specialized matching engines will
be used that can deal well with the load and complexity of some situations.
The marketplace can be mostly centralized (core functions in one place, at the
server, with simple trading interface on client side), mostly distributed (feder-
ation of local marketplaces with synchronization mechanism), or perhaps even
entirely distributed (peer-to-peer), in decreasing order of likelihood.

3.2.5 Price Formation

Moving on to this layer, the exchange of bids and asks and the results of
matching engines need to be translated into market prices that will be commu-
nicated to all participants and form the base for decision support tools.

Prices are generally the combined result of supply and demand, so a price
formation mechanism for matching these is required. A large body of research
in auctions for a wide variety of goods is available [WWW01, Kle99, Kri02]
but for every new market a new mechanism is needed or an older one must be
adapted to fit the idiosyncrasy of this market. Extensive work on auction of

Grid Resource Commercialization 477

bundles is available [San02, PU00, CDS01]; in a Grid environment this would
be a combination of storage capacity, CPU cycles, and network bandwidth.

A corollary to futures markets being basic is that prices must be transparent
to all market participants. What this means in practice is that a significant
number of trades must go through the futures markets so that these are credible
reference sources for other deals. (In many financial markets roughly 5% of all
deals are done through the futures markets but this is still a sufficient volume.)

3.2.6 Decision Support

This is the layer that users interact with for the management of resources
and their use for satisfying application needs. The details have been described
above in Section 2.3.

4. DELIVERY SCENARIOS

In order to illustrate the dependency of commercialization requirements on
organizational structures, we will briefly describe two basic examples of possi-
ble Grid deployments: a closed group of entities and a group of entities with a
service provider. By entity we mean an organization with a budget. This could
range from an individual to a whole company. Many variations on these two
basic themes are possible.

We stated earlier that one advantage of the management of Grid resource
using economics was that resource price reflected resource value. This is true
provided the market is structured to be competitive. The two delivery scenarios
we describe can satisfy this requirement: the key is to have a sufficient number
of competing elements to enable a valid price signal to be observed.

We can envision a group of entities forming a closed Grid where resources
can be exchanged for money between the members (see Figure 28.5 left panel).
In such a case a non-public marketplace will be naturally formed. Most layers
of the Commercialization stack will be needed to produce a scalable and reli-
able e-market infrastructure, as shown in Figure 28.5 right panel. Actually, a
3rd party or a prominent member of the group may take over the marketplace,
in which case that party can also take over clearing, accounting and billing du-
ties as well, thus easing the load on the other parties which only need to keep
track of what they’re actually using. This e-business model has been relatively
successful in procurement situations.

The second situation is where a service provider is attached to a group of en-
tities that consume the provider’s capacity but also participate in a marketplace
with their own spare resources. The main challenge in this scenario lies in
the implementation of the decision support layers for the provider and for the
partnering entities. The provider may not actually be a full market participant
but only provide capacity. Even if this capacity is not priced competitively, the

478 GRID RESOURCE MANAGEMENT

Closed Group e-Market

Company Asset Mgmt

Decision Support
depends on User Role

Contract Management
Private Pool of Usage Rights

and Commitments

Clearing, Accounting
& Billing
for Money

Price Formation
Futures & OTC prices

Trading Support
Negotiation Protocols

Contract Management
Pool of Market-traded

Contracts

Accounting
for Service Units provided/

consumed

Company B

Company A

Figure 28.5. Group of entities exchanging Grid resources and architecture requirements.

choice of whether to use that capacity can be decided by a comparison with the
competitive prices between the entities participating in the marketplace.

5. CONCLUSIONS

Economic engineering of Grid deployments, complementing technical sys-
tems engineering, is fundamental to their business success. To advance Grid re-
source commercialization we need architecture layers implementing business-
type functionality, i.e. layers corresponding to the Commercialization Stack
proposed here. There are many similarities with conventional commodity mar-
kets and management but specifics depend on the details of the resource deliv-
ery scenario. Significant steps toward Grid resource commercialization have
indeed already been taken. Combining these steps with utility computing ini-
tiatives from industry indicates that resource commercialization is now under-
way. We have presented here a conceptual framework for the next steps as
technical focus shifts to business enablement.

Chapter 29

TRADING GRID SERVICES WITHIN THE
UK E-SCIENCE GRID

Steven Newhouse,
�

Jon MacLaren,
�

and Katarzyna Keahey ��
London e-Science Centre, Imperial College London�
Manchester Computing, The University of Manchester� Mathematics and Computer Science Division, Argonne National Laboratory

Abstract
The Open Grid Services Architecture (OGSA) presents the Grid community

with an opportunity to define standard service interfaces to enable the construc-
tion of an interoperable Grid infrastructure. The provision of this infrastructure
has, to date, come from the donation of time and effort from the research com-
munity primarily for their own use. The growing involvement of industry and
commerce in Grid activity is accelerating the need to find business models that
support their participation. It is therefore essential that an economic infrastruc-
ture be incorporated into the OGSA to support economic transactions between
service providers and their clients. This chapter describes current standardiza-
tion efforts taking place with the Global Grid Forum and the implementation of
such an architecture within the UK e-Science Programme through the Compu-
tational Markets project.

1. INTRODUCTION
The term computational Grid is an intended analogy to electrical power

grids: a vision of computational power available on tap, without the user need-
ing to really care about precisely where and how the power was generated. For
this vision to become a reality, Grid users, or consumers, must be able to access
appropriate computational power; similarly, resource providers must be able to
receive payment for the use of their resources.

Resource brokering is the process of discovering suitable resources for the
consumer’s purpose. By definition, resource brokering is the act of an inter-
mediary responding to the immediate needs of its consumers, while collating
information from the resources it represents. The provision of a brokering ser-
vice is predicated on the existence of an interoperable standards-driven infras-
tructure for representing resources and their corresponding services, as well as
on standard payment protocols. Without these capabilities there is no economic
incentive to provide a resource brokering service, since different resource in-

480 GRID RESOURCE MANAGEMENT

frastructures have to be abstracted within the broker and, without standard pay-
ment mechanisms, there is no generated revenue for the organization providing
that service.

The recent moves within the Grid community through the Open Grid Ser-
vices Architecture (OGSA) [FKNT02] to standardize on a framework speci-
fication as opposed to a service implementation has provided a generic mech-
anism for resource virtualization that will enable resource brokering. Due to
the steady increase in Internet trading, or e-commerce, a number of reputable
organizations already provide secure on-line payment services (e.g., World-
Pay [Wor]).

With standardized schemes to describe electronic money and to virtualize
the underlying resource as services through OGSA, the outstanding require-
ment is to provide standardized mechanisms to describe the protocols needed
to set the cost of using the service. Currently, this requirement is the focus of
the Grid Economic Services Architecture Working Group (GESA-WG) within
the Global Grid Forum [GES] (of which we are the chairs).

This chapter outlines a set of motivating use cases for the provisioning of
services either through direct invocation or through a resource broker. We then
examine how the demands of such an infrastructure could be met by the emerg-
ing Open Grid Services Architecture by extending its standard Grid Services
with interfaces to support economic activity. We also describe activity taking
place within the U.K.’s e-Science Programme to build such an infrastructure
using the OGSA.

2. ECONOMY-BASED GRIDS
The marketing of computational services for economic reward has been the

subject of much research activity over the past decade as the availability and
power of distributed computing resources have evolved. One example of early
work in exploiting distributed computing infrastructures was Spawn, which
demonstrated how different funding ratios could be used to guide resource al-
location and usage [WHH

�
92]. The growth of Grid infrastructures, such as the

Globus Toolkit R
�

[FK97, GLO], UNICORE [UNIa], and Condor [LLM88],
has promoted further discussion as to how economic paradigms may be used
not only as an approach to resource allocation but as a means for making
money. For instance, Nimord/G has shown how historical execution times
and heterogeneous resource costs can be used for the deadline scheduling of
multiple tasks within a fixed budget [ASGH95].

The key to trading in the real world is a medium of exchange that is deemed
to have value and goods whose value can be assessed for exchange. Bringing
an economic model into Grid computing presents two opportunities: using
an economic paradigm to drive effective resource utilization, and motivating
service provisioning for real economic gain by third-party service providers.

Trading Grid Services within the UK e-Science Grid 481

3. MOTIVATING USE CASES

The availability of flexible charging mechanisms that are fully integrated
into the Grid infrastructure presents many commercial opportunities for inde-
pendent service suppliers. One of the many architectural possibilities offered
by OGSA is that of service provisioning through hierarchical encapsulation
of service workflow and offering the encapsulated service as a single service
to the user. The infrastructure provided by OGSA, when coupled with an eco-
nomic mechanism, offers considerable scope for new service-oriented markets.
These have recently been explored in a series of use cases being developed
within the Global Grid Forum’s GESA-WG [GES].

3.1 Coordination Between Services

User

Software
ApplicationComputational

Resource

1 2

3

Figure 29.1. Coordinated use of application software on hardware.

Consider a simple scenario (shown in Figure 1.1) of a user wishing to use a
commercial third-party application to analyze a self-generated dataset by using
a computational resource. (We set aside for the moment the important factors
that drive the selection of these services.) The user must obtain a quotation and
reservation on the computational resource provider (1) before approaching the
application software provider(2) to obtain a quotation for the use of that par-
ticular software on the computational resource. Once an acceptable quotation
has been found from the compute and application providers—and this may be
an iterative process because the cost of the software may depend on the class
of computational resource and the time the data may take to process—the quo-
tations and reservations are confirmed, and the computational resource may
download and install the application software as required (3).

This process has already placed several requirements on the Grid infrastruc-
ture from both an economic and a general usage perspective. These require-
ments include a multiphase commitment to a resource reservation (one such ap-
proach using service-level agreements is described in Chapter 8) and iterative
negotiation to converge on an acceptable pricing for the resource reservation.
Additional requirements such as authentication, authorization, and imperson-
ation (of the user by the computational resource provider in order to retrieve
the application software) should be met through the basic core middleware.

482 GRID RESOURCE MANAGEMENT

3.2 Service Aggregation

The process just described exposes the user to the potential complexity of
negotiating and reserving resources between different service providers. Al-
ternatively, an organization can provide this combined functionality directly to
the user (see Figure 1.2). This form of resource broker can be described as an
application service provider because it provides a complete service—running
the user’s data using application implementation on an arbitrary resource.

Software
ApplicationComputational

Resource

Application
Service Provider

User

Application
Service Provider

Figure 29.2. Service aggregation and virtualization.

Whereas previously the user was exposed to the full complexity of the un-
derlying resource, in this scenario the application service provider had aggre-
gated the services to supply a complete package. Two mechanisms can be
used for providing this package. The application service provider can provide
the computational infrastructure and application software through off-line pur-
chases of the relevant equipment and software, as would normally be expected.
In this case, the service provider has full control of the costs and can offer a
service directly to the user. Alternatively, the application service provider can
dynamically acquire these resources in much the same way as the user did in
the earlier scenario.

A natural question is, “What are the economic benefits to the user?” The
answer rests in part with the fact that the application service provider is able
to derive potential economies of scale through the bulk purchase of computer
resources and software licenses, by using the economic Grid infrastructure.
These economies of scale can be passed on to the user as reduced costs, while
the service provider still retains a profit margin for the service aggregation.
Moreover, the service aggregator has the flexibility to switch suppliers as long
it continues to deliver any contracted service levels. From the user’s perspec-
tive, then, the service aggregator may be able to offer better pricing, faster
discovery (since only a single aggregated service needs to be discovered, as
opposed to several compatible services), and faster service delivery (as soft-
ware may be pre-installed).

Trading Grid Services within the UK e-Science Grid 483

3.3 Service Brokering

In addition to these direct benefits, service aggregation can be viewed as a
form of service (or resource) brokering that offers a convenience function—all
the required services are grouped under one roof. But how does a user de-
termine which of several application service providers should be selected for
a particular application? The user could retain the right to select an applica-
tion service provider service based on those that have been discovered from
a registry service. Alternatively, this decision could be delegated to a service
broker, which maintains an index of available application service providers.

The service broker is able to add value to its registry of application service
providers by providing extra information about the services. This information
may be as simple as cost, or it may include information about the reliability,
trustworthiness, quality of service or service-level agreements, and possible
compensation routes. Much like a financial consultant, the broker does not
provide this added value service for free. Indeed, it may have a role in the
financial transaction to provide an escrow account, acting as a trusted third
party and holding the fee until the job is complete.

4. ARCHITECTURAL REQUIREMENTS

The preceding example of application service provision does not illustrate
all of the features that may be required from an economic Grid services archi-
tecture. Indeed, many of the requirements from the scenario are a feature of
a service-oriented architecture rather than that of an economic pricing mech-
anism. The emergence of the Open Grid Services Architecture from the Grid
community is providing a service infrastructure upon which a variety of eco-
nomic models may be developed and explored.

In this section we outline the basic mechanisms required to support such
an infrastructure. We assume that economic models, dealing with issues such
as price setting and Grid Services market creation, will be provided by other
work in this area (see Chapter 28). Our goal is to define an open infrastructure
to enable the application of these pricing models to generic Grid Services.

4.1 Exploiting the Open Grid Services Architecture

The OGSA builds on the established Web Services infrastructure provided
through the eXtensible Markup Language (XML) [XML], the Simple Object
Access Protocol (SOAP) [BEK

�
00], and the Web Services Description Lan-

guage (WSDL) [CCMW01]. It provides an infrastructure to securely create,
manage, interact with, and destroy transient Web Service instances within dis-
tributed hosting environments [FKNT02].

484 GRID RESOURCE MANAGEMENT

The Grid Service Specification defines the interface and the semantic be-
havior that must be supported by the Web Service for it to classed as a Grid
Service [TCF

�
03]. This specification is under development and is being stan-

dardized within the Open Grid Services Infrastructure Working Group (OGSI-
WG) of the Global Grid Forum [TCF

�
03].

A Grid Service has three features of interest in constructing an economic
framework to trade resources:

The Grid Service Handle (GSH) provides a unique identifier to a service
instance running in a service environment.

Each Grid Service has a service data element(SDE)—an XML document—
that describes the internal state of the service. The Grid Service provides
standard ports to support updating, searching, and so forth of the SDE
by other entities.

A Grid Service may support a factory port (or interface) that allows new
service interfaces to be instantiated within the hosting environment.

The GESA-WG [GES] is analyzing the architectural requirements of an eco-
nomic infrastructure within the context of the OGSA.

4.1.1 Grid Service Handle

The GSH is used by the client-side code to contact the specified service or
factory instance. By assuming that the economic architecture is able to embed
the cost of a transient Grid Service as one of the SDEs of a service factory (not
an unreasonable assumption), the GSH effectively provides an identifier to a
cost quotation for the use of the service. This price can also be advertised by
other Grid advertising mechanisms; however, we assume here that the factory
is a reliable source of such quotations. This service price quote may vary
depending on factors such as the time the service will be performed, the time
the quote is requested, the identity of the requestor, the level of Quality of
Service (QoS) factors with which the service should be performed, and the
guarantee with which those QoS representation can be delivered.

4.1.2 Service Data Elements

The application service provider scenario has illustrated that many of the is-
sues relating to the selection of services within an economic architecture con-
cern service rather than function:

Does this service offer any bulk purchase discounts?

Can I trust this service to deliver on its commitments?

Trading Grid Services within the UK e-Science Grid 485

Is my data secure while it is residing on the remote server?

Will I be compensated if anything goes wrong?

Such service metadata is encapsulated within the SDE structure provided
by OGSA and may be collected from many service instances for presentation
within an advertising service. This metadata may be static (extracted from the
Grid Services Description Language document that defines the service inter-
face) or dynamic (generated by the service or inserted from other authorized
services). Standardization of the required and optional elements of this meta-
data that is one of the challenges now facing the community.

4.1.3 Factory Ports and Service Level Agreements

The factory model of service generation used within the OGSA provides
a powerful abstraction to deal with pricing of Grid Services. We encapsulate
the cost of using the service within the instance produced by the service fac-
tory (which can be referenced by the user through the GSH). This approach
strengthens the link between the GSH acting as a quotation to the cost of in-
voking a service. Every quotation is created with an expiration time that puts
time limits on its use.

The Chargeable Grid Service contains additional port types (to set prices,
etc.), thereby extending the capability of the Grid Service being offered for
sale. This approach enables existing client-side code to use the economic Grid
Service without having to regenerate these interfaces.

In addition to providing quotes on service prices, the factory needs to sup-
port the negotiation for services with concrete QoS specifications as well as the
creation of such services. Extending the concept of the OGSA factory to allow
negotiation of service-level agreement (SLAs), as shown in [KM03], provides
this capability. As a result of the negotiation process, concrete and well-defined
SLAs are issued to concrete clients.

An SLA is a bilateral agreement [KKL
�

02] between the client and the ser-
vice provider (represented by the factory) specifying the level of QoS with
which the service will be provided (including the price or a pointer to price-
generating mechanisms if the price should change during the lifetime of the
contract), monitoring mechanisms that can determine whether the QoS require-
ments are met, and corrective actions to be taken if the requirements are not
being met. Corrective actions may include adaptive scheduling, such as pre-
emption of other executions, or QoS adjustments, such as price cuts or other
kinds of compensation. Furthermore, the QoS conditions listed in the SLA
should specify exhaustively the actions taken to provide overall QoS. For ex-
ample, it is not enough to say that data will be secure; the composition of dif-
ferent security mechanisms used throughout the process should be specified.
The SLA will usually be digitally signed by both parties agreeing to it.

486 GRID RESOURCE MANAGEMENT

A typical scenario might look like the following. Having obtained from the
factory (or other advertising mechanisms) a quotation for the use of a transient
Grid Service, a client negotiates with the factory for an SLA based on this
quotation. If the conditions have not changed, the SLA requested by the client
is issued. If the conditions have changed (the price of the service changed,
or resources on which the QoS was predicated became unavailable), the SLA
is renegotiated. At the time and manner specified in the SLA, the service is
provided. If the QoS promised in the SLA is not provided according to the
agreed-upon monitoring mechanisms, corrective actions are taken.

4.1.4 An Example: Application Service Provider

We continue with our motivating example of the coordinated use of a com-
putational resource and an application software services. The user searches a
community registry for service instances that support these capabilities. The
user may specify additional nonfunctional requirements, such as a certain re-
fund policy, or a particular architecture. The user’s client contacts the factory
port on each service and requests a particular level of resource use from both
services (e.g., 16 processors with an interconnect greater than 100 Mbs run-
ning a Solaris 2.8 operating system and a compatible version of the application
software) and a minimum termination time of the reservation.

The factory generates a new service instance for each requested service use
and returns these to the user. By querying the SDEs of the newly created
services, the user can obtain the agreed price for using the service and the
agreed terms and conditions. The SDE of the newly created service may differ
from that of the original because the latter may support multiple approaches
to setting the price of the software while the created service describes only the
agreed-upon protocol. If the user is unhappy with the offered reservation, the
GSH may be discarded (or retained until it expires) and the process restarted
from the original service. Alternatively, the price-setting protocol may allow
the price to be adjusted through the newly created service, which will again
generate a new GSH for use in further negotiation steps.

These transient service reservations will be destroyed when their lifetime
expires. If the user takes up the reservation, by invoking part of the underlying
Grid Service, then the reservation will be confirmed, any subsequent resource
consumption will be monitored and recorded in a Resource Usage Service, and
charging will then take place when the service invocation is complete.

4.2 The Grid Economic Services Architecture

The constructs provided by OGSA enable a Chargeable Grid Service to be
built that can encapsulate an existing Grid Service with the mechanisms needed
to set the cost of using a service and to offer it for sale. This approach exploits

Trading Grid Services within the UK e-Science Grid 487

Grid Economic
Service Interface

Service InterfaceService Data

Contract
Negotation

Contract
Verification

Service
Charging

Service
Economic

Data

Service Data Service Interface

OGSA Grid
Banking
Service

OGSA Grid
Reource
Usage
Service

Grid
User/Actor

Record
Resource

Usage

OGSA Grid Service

OGSA Chargeable
Grid

Service

Figure 29.3. The current Grid economic economic architecture.

the basic infrastructure within OGSA for transient Grid Services while retain-
ing considerable flexibility as to the eventual economic model that is used to
set the cost of using the service.

Figure 29.3 shows the internal structure within a Chargeable Grid Service.
The service data elements are composed from those contained by the underly-
ing Grid Service and from the additional elements generated by the Chargeable
Grid Service to describe the economic state of the service. This information
is accessible through the standard Grid Service ports. An invocation by an au-
thorized client on the service interface is verified and passed to the underlying
service. On completion of the service invocation, the resources used by the
service are recorded in an external service—the Resource Usage Service. The
resources consumed during the service invocation (e.g., memory, disk space,
CPU time) may be charged per unit of consumed resource rather than per ser-
vice invocation. The cost of using the service is passed to an external service—
the Grid Banking Service—for later reconciliation.

5. BUILDING THE U.K.’S COMPUTATIONAL
MARKETPLACE

The UK e-Science Programme started in April 2001 as an ambitious £120M
three-year effort to change the dynamic of the way science is undertaken by
exploiting the emerging Grid infrastructures to enable global collaborations in
key areas of science [Tay02]. Within this multidisciplinary activity a core pro-

488 GRID RESOURCE MANAGEMENT

gram focused on developing the key middleware expertise and components that
would be needed by the U.K. science and business communities to encourage
adoption.

As the global Grid infrastructure started to emerge and its commercial adop-
tion started to become a reality, the lack of an economic infrastructure to mo-
tivate the provision of Grid Services started to become a barrier to adoption.
This situation was recognized within the U.K.’s e-Science Core Programme,
and in response the Computational Markets project [MAR] was formed to de-
velop and explore the potential of such an infrastructure within the academic
and commercial Grid communities. Project participants include the regional
e-science centers in London (lead site), the North West, and Southampton; a
variety of commercial partners including hardware vendors, application soft-
ware vendors, and service providers; and end users within the engineering and
physics communities. The U.K.’s Grid Support Centre will deploy the infras-
tructure developed through the project throughout the UK e-Science Grid.

The project has two main goals: to develop an OGSA infrastructure that sup-
ports the trading of Grid Services, and to explore a variety of economic models
within this infrastructure through its deployment across a testbed between the
e-science centers involved in the project. This will include the instantiation of
the Chargeable Grid service, the Resource Usage Service, and the Grid Bank-
ing Service, as outlined previously.

One possible long-term outcome from the project is to change the model of
resource provisioning within the U.K. for computational, and implicitly data,
services. Currently, investigators requiring use of the U.K.’s high- performance
computing resources (after passing a peer review) are awarded a budget for the
use of the service. This budget is tied to a particular set of resources at a cen-
ter and cannot be used to purchase general compute or data capability from
other providers. Future models for resource provisioning could see this bud-
get available for expenditure on the resources at university computing centers
or through the provision of local compute clusters. The ability of researchers
to flexibly acquire the most appropriate resources as they are needed would
ensure transparent use of these resources and reduce the barriers to new en-
trants in the provisioning of these resources within the UK community. Key to
any form of economic activity is a trustworthy medium of exchange. Within
this project this capability is encapsulated in the Grid Banking Service, which
records financial transactions and checks that the customer has the ability to
pay. In reality we expect this service abstraction to be implemented by trusted
third parties such as credit card companies, since we consider the development
of an e-currency to be outside the scope of this project. The banking service
will also be able to define a conversion mechanism between different curren-
cies if required.

Trading Grid Services within the UK e-Science Grid 489

A key goal within the Computational Markets project, and within the wider
U.K. e-Science Programme, is that the project’s activity contribute to building
international standards within the Grid community. It is envisaged that the
project will produce a reference implementation of the economic architecture
defined through various activities within the Global Grid Forum.

6. ACTIVITY WITH THE GLOBAL GRID FORUM

We focus here on three working groups within the Global Grid Forum’s
Scheduling and Resource Management area that are actively contributing to
the definition of the economic architecture described earlier.

The Grid Economic Services Architecture Working Group (GESA-WG) is
capturing a set of motivating use cases to identify the requirements for the
underlying economic service architecture defined earlier in this chapter. A key
element within the overall architecture is the consumption of resources. The
Resource Usage Service within GESA exposes the consumption of resources
within an organization by a user. Many of these resources (e.g., CPU and
memory) might be used to determine the cost of having used the service.

The controlled sharing of resource usage information that has been captured
by the underlying service infrastructure is becoming an increasing priority with
virtual organizations around the world. A service interface is being defined by
the Resource Usage Service Working Group (RUS-WG) [RUS] that will en-
able the secure uploading of consumed resource information and the extraction
from the service by authorized clients.

An assumption with the RUS-WG activity is a standard mechanism to in-
terchange data between different Grid entities. The resource information (its
values, quantities, and structure) that may need to be exchanged between dif-
ferent centers is being defined within the Usage Records Working Group (UR-
WG) [UR]. Several possible interchange formats (including XML) are envis-
aged for this information.

7. THE FUTURE

The past few years have seen the early adoption of Grid infrastructures
within the academic and business community. While the use of Grid mech-
anisms is not yet widespread, their adoption will certainly be accelerated by
the Open Grid Services Architecture and its use of Web Services as its service
infrastructure. Future Grid environments may therefore comprise thousands
of Grid Services exposing applications, software libraries, compute resources,
disk storage, network links, instruments, and visualization devices for use by
their communities. Nevertheless, while this vision of a pool of Grid Services
available for general use is appealing, we emphasize that it is not realistic, as
such a service infrastructure would have to be paid for by its users.

490 GRID RESOURCE MANAGEMENT

We foresee, instead, the emergence of resource brokers that add value to the
basic service infrastructure by finding annotating services with information re-
lating to their capability and trustworthiness. Users will be able to obtain their
required services from these brokers, who may offer a guarantee as to their
capability. Alternatively, users may seek out and discover their own services.
These services need not be provided for free; indeed, for widespread accep-
tance of the Grid paradigm, organizations must have a mechanism for defining
and connecting revenue from service provision.

The Internet has brought us ubiquitous access to data and simple services
for little or no cost. The Grid offers the possibility of ubiquitous access to
more complex services, but their appearance will be predicated on the service
provider receiving an income for its provision. The proposed economic archi-
tecture is in its early stages of development but will build upon OGSA to be
open and extensible across many deployment scenarios and economic models,
thereby providing an infrastructure that will enable utility computing. Within
this architecture we can see the speculative purchase of resources by services
for later resale (a futures market), customer-dependent pricing policies (Grid
miles), and other mechanisms to encourage the maximum utilization of re-
sources by maximizing revenue generation.

Acknowledgments

This work is being supported in part by the Computational Markets project
funded under the UK e-Science Core Programme by the Department of Trade
and Industry and the Engineering and Physical Sciences Research Council
(http://www.lesc.ic.ac.uk/markets/), and by the Mathematical,
Information, and Computational Sciences Division subprogram of the Office
of Advanced Scientific Computing Research, U.S. Department of Energy, un-
der contract W-31-109-Eng-38.

Chapter 30

APPLYING ECONOMIC SCHEDULING
METHODS TO GRID ENVIRONMENTS

Carsten Ernemann and Ramin Yahyapour
Computer Engineering Institute, University Dortmund

Abstract Scheduling becomes more difficult when resources are geographically distribut-
ed and owned by individuals with different access and cost policies. This chapter
addresses the idea of applying economic models to Grid scheduling. We describe
a scheduling infrastructure that implements a market-economy approach, and
we evaluate the efficiency of this approach using simulations with real workload
traces. Our evaluation shows that this economic scheduling algorithm provides
average weighted response-times as good or better than a common scheduling
algorithm with backfilling. Our economic model has the additional advantages
of supporting different price models, different optimization objectives, varying
access policies, and Quality of Service demands.

1. INTRODUCTION

Online job scheduling for parallel computers and parallel jobs is a complex
task, but scheduling for the Grid is made even harder by the fact that different
participants will likely have different preferences. Resource owners must be
allowed to have local control and to define their own objective functions for
the use of their resources, while users will also have individual preferences.

Many installations of parallel computers use scheduling algorithms such
as first-come first-served and backfilling [FRS

�
97, Lif96]. These conven-

tional algorithms are well known in terms of worst-case behavior and com-
petitive analysis, and some have been adapted and analyzed for Grid comput-
ing [EHS

�
02, HSSY00]. However, these approaches do not take into account

the different scheduling and management preferences of users and resource
owners. In this area, a market economy approach can provide support for in-

492 GRID RESOURCE MANAGEMENT

dividual access and service policies, both to the resource owners and to Grid
users, which is very important for future Grids.

Several additional problems occur in Grid computing that can be solved by
market methods (also referred to as market-oriented programming in computer
science). Examples for those important problems are as follows [CFK

�
98b]:

Site autonomy problem

Heterogeneous substrate problem

Policy extensibility problem

Co-allocation problem

Cost management problem

Various optimization objectives problem

A supply-and-demand mechanism can enable a system to optimize different
objectives for different participants. An economic-based system can be ex-
pected to provide a robust and flexible approach to handle failures, as well as
allow adaptivity during changes. The underlying definitions of market, market
methods, agents, and auctions can be found in [TB96, WWWMM98, Ygg98].
Additional infor-
mation on the background of market economic ap-
proaches to Grid scheduling can be found in Chapters 28 and 29 and
in [BAGS02, EHY02].

In comparison with other economic systems [WHH
�

92, SAWP95], our
model uses individual utility functions for the different Grid participants. In
addition, the model is not restricted to single parallel computers but is able to
establish co-allocations of resources from different sites without violating re-
mote policy rules. Our model is similar to the Enterprise system [MFGH88],
in which machines create offers for jobs to use their resources, jobs describe
their own requirements, and then a job selects the best offer. However, the En-
terprise model is limited to a single user preference in which the offer with the
shortest response time is chosen.

2. INFRASTRUCTURE MODEL

Our economic scheduling model has been implemented within the NWIRE
(Net-Wide-Resources) management infrastructure [SY99]. Within this struc-
ture, the local management provides remote access to resources that are rep-
resented by CORBA objects. Resources in a domain are locally controlled
by a MetaManager that acts as a broker or trader with MetaManagers from
other domains; see Figure 30.1. Site-autonomy is maintained because the lo-
cal MetaManager is responsible only for the corresponding domain and can

Applying Economic Scheduling Methods to Grid Environments 493

be set up according to local policy rules. The MetaManager is able to explore
its neighborhood using a directory service or peer-to-peer strategies. Local re-
quests are answered by the MetaManager and, if necessary, forwarded to other
domains.

The main advantages of this approach are the independence of each domain,
increased reliability and fault tolerance. A failure at one site will have only
local impact if the overall network is still intact. Within the system, different
scheduling implementations at different sites are possible using local policies.
The information exchange between the different sites is implemented using
requests and offers in a description language, described in Section 3.2. This
enables the use of any scheduling implementations locally.

3. ECONOMIC SCHEDULING

This section describes the market-oriented scheduling algorithm that has
been implemented for the presented scheduling infrastructure. We introduce
the concepts of a user request and offer, in order to provide the necessary back-
ground for the information exchanges between different sites and the potential
specification of job requests and the corresponding offers.

3.1 General Flow of the Scheduling Process

The application flow is presented in Figure 30.1. In contrast to [BGA00],
our scheduling model is not restricted to a single central scheduling instance.
Moreover, each domain can act independently and may have individual ob-
jective policies. Also, each job request can include an individual objective
function. We have defined a description language to formulate objective func-
tions that are then evaluated to scalar values at run time. The scheduling sys-
tem combines the different objective functions to find the equilibrium between
supply and demand. More details about equilibration and the existence of
the general equilibrium is given by Ygge [Ygg98]. His model is a deriva-
tion of the previously mentioned Enterprise approach as well as the WALRAS
model [Bog94].

All users submit their jobs to their local MetaManager. This MetaManager
is responsible for the whole equilibration process. During job submission, the
user may specify requirements for a job, such as a special operating system
or the amount of memory needed to run the job. The specifications can be
described within the request-and-offer description presented in the next sec-
tion. In our model, each job request specifies an estimated run time, earliest
start time, and a latest completion time for the job execution. Most current job
scheduling systems already require the specification of a maximum run time
by the user, since this information is required for some scheduling strategies,

494 GRID RESOURCE MANAGEMENT

4) Allocation is done
for maximizing the
objective for the
whole schedule,
which is the
combined objective
of all allocations

Meta
Manager

Meta
Manager

Meta
Manager

Meta
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Meta
Manager

Meta
Manager

ApplicationApplication

Request
Request

Request Request Request

Offer

Schedule

Allocation _1
Allocation _2
Allocation _3

Offer

Attributes
ObjectiveFunction

Request

Requirements
Job Attributes
ObjectiveFunction

1) User or client
sends a
request

2) Scheduler asks
other MetaManagers
for offers

3) MetaManager generates
local offers or queries
other Domains.
The query is limited and
directed by search
parameters

5) The MetaManager
can reallocate the
schedule to optimize
the objective or to
recover from system
changes

6) The client gets
feedback on the
resource allocation

7) Execution of a
job can be
initiated by the
MetaManager

Local Domain

Remote Domains

4) Allocation is done
for maximizing the
objective for the
whole schedule,
which is the
combined objective
of all allocations

Meta
Manager

Meta
Manager

Meta
Manager

Meta
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Resource
Manager

Meta
Manager

Meta
Manager

ApplicationApplication

Request
Request

Request Request Request

Offer

Schedule

Allocation _1
Allocation _2
Allocation _3

Schedule

Allocation _1
Allocation _2
Allocation _3

Offer

Attributes
ObjectiveFunction

Offer

Attributes
ObjectiveFunction

Request

Requirements
Job Attributes
ObjectiveFunction

Request

Requirements
Job Attributes
ObjectiveFunction

1) User or client
sends a
request

2) Scheduler asks
other MetaManagers
for offers

3) MetaManager generates
local offers or queries
other Domains.
The query is limited and
directed by search
parameters

5) The MetaManager
can reallocate the
schedule to optimize
the objective or to
recover from system
changes

6) The client gets
feedback on the
resource allocation

7) Execution of a
job can be
initiated by the
MetaManager

Local Domain

Remote Domains

Figure 30.1. Market economy scheduling architecture.

for example backfilling. If the job finishes earlier than estimated, the idle re-
sources can be used by other submitted jobs.

After the local MetaManager has received a new job, the local domain
scheduler first analyzes the requirements of the job. Next, local offers are gen-
erated if the local resources match the job specifications. Only the best local
offers are kept for further processing. The job is forwarded to other connected
domains. To prevent the system from permanently forwarding job request, a
user can restrict the number of hops made or specify a time-to-live for the re-
quest forwarding. In addition, none of the domains answers a request a second
time if the same request has been received before. The remote domains create
new offers and send their best offers back to the original domain. In order to
prevent a live-lock of the system, the original request includes a deadline after
which no offer will be accepted. Finally, the best of all incoming and all locally
generated offers is selected as the final offer.

Note that this process is an auction with neither a centralized nor a decen-
tralized auctioneer. Moreover, the objective functions of all participants are
put into equilibrium. During this process, the utility value,

÷ ¯� � ô , for each
potential offer

�
corresponding to the job

7
is evaluated and returned to the

originating domain with the offer. The utility value
÷ is calculated by the

user-supplied utility function,
÷ �»� , for the job

7
. We define the parameter set

Applying Economic Scheduling Methods to Grid Environments 495}Á Ô to be the possible request and offer settings. Additionally, we define
3 c� � �

to be the machine value for job
7

on machine
ð
.

÷ � � ô < ÷ � � � }Á Ô Q�3 � � � & (30.1)3 '� � � < 3 �Z� � }Á � & (30.2)

The machine value results from the machine objective function
3 ��� � }Á � &

that depends on the parameter set
}Á � , as shown in Figure 30.6, later in the

chapter.

3.2 Request-and-Offer Description

A basic component of an economically driven approach is a description lan-
guage that is used to specify requests, resources, and offers. It is essential
that requests for offers be flexible. Our description language allows arbitrary
attributes that are specified as nested key-value pairs in combination with the
ability to specify several cases and constraints. Only a few keys (or attributes)
are specific for the management and scheduling environment, but additional
keys can be used.

The description language can be used for requests as well as for offers and
resource descriptions. The syntax is similar in all cases. We allow complex
statements in the formulation of the values. These can include expressions and
conditions to allow parameterized attribute specification that can be evaluated
at run time. Examples are the utility function and the job length, both of which
may be derived from other attributes such as the job cost or the number of
available processors and their speed.

An important feature of this language is the ability to describe resources,
requests, and offers, as well as individual objective functions, with the same
basic statements. The description language is not limited to a certain resource
type, so new resource classes can be added easily. The list of parameters that
are available for the request formation is presented in Table 30.1. The descrip-
tion language allows arbitrary key-value pairs not only as a list but as part of
complex statements such as expressions and conditions.

Values of a key can be represented by numbers, strings, or mathematical
expressions that can include other keys. The evaluation of a key is possible
only if all included keys can be evaluated. Operators such as addition, subtrac-
tion, multiplication, division, and other more complex mathematical operations
(modulo, square-root, exponents, logs, etc.) are also allowed. The resulting
expression can be used for mathematical calculations, for example, as part of
the objective function for the schedule. Moreover, the logic operators AND,
OR, and NOT are available, as well as the conditional statements ISDEF and
ISNDEF that check for the existence of attributes. These are commonly used

496 GRID RESOURCE MANAGEMENT

Table 30.1. Scheduling parameters.

Parameter Description

Hops This attribute limits the query depth to remote domains.
RequestID This is a unique number that denotes the current request.
MaxOfferNumber This is the maximum number of offers a user wants to receive. A

value of 0 specifies that the MetaManager should automatically
select the best offer according to the UtilityValue.

OfferBudget This specifies the budget that is available for offer generation.
ReservationTime This is the time until which the available resources should be re-

served.
StartTime A job must not be started before this date.
EndTime A job must not end after this date.
SearchTime The scheduling system can search for offers until this time in-

stance.
JobBudget This parameter specifies the maximum execution cost.
ReservationBudget This parameter specifies the maximum reservation cost.
RunTime This parameter specifies the execution time of a job.
UserName This parameter specifies uniquely the submitting user.
Memory This is the memory requirement per processor (in kBytes).
NumberOfProcessors This is the number of requested resources.
UtilityValue This value denotes the marginal gain from the user’s point of view.

to allow the presence of a variable to specify when a different utility function
should be used.

To better illustrate the description language, we give a brief example for a
request formulation in Figure 30.2. This example request includes assignments
for a set of keys (Hops, MaxOfferNumber,

 � �
, JobBudget) and a utility func-

tion. The utility value depends on two conditions: the operating system and the
number of available processors. The system tries to maximize the UtilityValue,
which for our example means that the job should be started as soon as possible
and that the job costs are minimized.

3.3 Local Offer Creation

In Figure 30.3 we describe how local offers are generated. In step 1, an
incoming job request is made. In step 2, the request is checked by first deciding
whether the local resources can meet the job’s requirements and then whether
the user’s budget is sufficient to process the job locally.

As an additional part of step 2, the necessary scheduling parameters are
extracted from the job request, including the run time, the earliest start time,
the latest end time, the needed number of resources, and the maximum search
time. Also extracted is the utility function, which is evaluated in later steps.

Applying Economic Scheduling Methods to Grid Environments 497

If the local domain does not have enough resources to fulfill the job re-
quirements, a co-allocation process is initiated that may result in a multisite
scheduling in step 3. Additional details on co-scheduling are in Section 3.4.

In step 4, we search for free intervals within the schedule. The scheduler
tries to find all potential time intervals that satisfy the needs of the job. Fig-
ure 30.4 (1) shows a small example for a parallel computer with seven dedi-
cated processors. The black areas are already allocated to other jobs. Assume
that for our example we have a new job request that requires three processors,

REQUEST "Req001" {
KEY "Hops" {VALUE "HOPS" {2}}
KEY "MaxOfferNumber" {VALUE "MaxOfferNumber" {5}}
KEY "StartTime" {VALUE "StartTime" {900000}}
KEY "EndTime" {VALUE "EndTime" {900028}}
KEY "SearchTime" {VALUE "SearchTime" {899956}}
KEY "JobBudget" {VALUE "JobBudget" {900.89}}
KEY "Utility" {

ELEMENT 1 {
CONDITION{ (OperatingSystem EQ "Linux")

&& ((NumberOfProcessors >= 8)
&& (NumberOfProcessors <= 32))}

VALUE "UtilityValue" {-StartTime}
VALUE "RunTime" {43*NumberOfProcessors}

}
ELEMENT 2 {

CONDITION{(OperatingSystem EQ "AIX")
&& ((NumberOfProcessors >= 8)
&& (NumberOfProcessors <= 64))}

VALUE "UtilityValue" {-JobCost}
VALUE "RunTime" {86*NumberOfProcessors}

}
}

}

Figure 30.2. Request description example.

3. Decide
Co−Allocation

[no]

[yes]

Request

Of An IntervalOf An IntervalOffer Intervals Within
The Schedule

6. Fine Selection 5. Coarse Selection 4. Search For Free

2. Check Request1. Receive

7. Create

Figure 30.3. Local offer creation.

498 GRID RESOURCE MANAGEMENT

has a runtime smaller than (C-B), an earliest start time of A, and a latest end
time of D.

First, the free-time intervals for each single resource are evaluated, and the
potential solutions are created by combining the free-time intervals of the sin-
gle resources. The result is a list of triples in the form {time, processor number,
free/not free}. We then apply the algorithm given in Figure 30.5 to this list to
try to find potential solutions.

At this point it remains to be shown how the offers are created from the
elements in the used tempList, the temporary list that is the result of the pseudo-
code in Figure 30.5. Step 4 searches for free intervals within the schedule. The
goal is to find a set of combined time intervals with sufficient resources for the
application to run. During the combination process, the earliest starttime and
latest endtime of the corresponding job are dynamically adjusted. We use a
derivation of bucket sort to combine the intervals. In the first step, all intervals
with the same start time are collected in the same bucket. In the second step, for
each bucket, we collect the elements with the same end time into new buckets.
As a result, each bucket contains a list of resources available between the same
starttime and endtime. In our example, this algorithm creates three buckets as
shown in Figures 30.4 (2), 30.4 (3), and 30.4 (4) where, for example, bucket
one represents resources 1, 2, 5, and 6 with a start-time of A and an end-time
of C.

After the creation of these buckets the suitable offers are generated. If there
are enough resources in a single bucket to run the application, we use these
resources build a solution. If no bucket can meet the application request indi-
vidually, we must combine buckets. In our example, bucket 1 can fulfill the

~~~~~
~~~
�����
���

�����
���
�����
���

1 2 3 4 5 6 7
A

C
D

time

B

processors
(1)

�$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$�
�$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$�

�$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$�
�$�$�$�$�$�$�$��$�$�$�$�$�$�$��$�$�$�$�$�$�$��$�$�$�$�$�$�$��$�$�$�$�$�$�$��$�$�$�$�$�$�$��$�$�$�$�$�$�$��$�$�$�$�$�$�$��$�$�$�$�$�$�$��$�$�$�$�$�$�$�

1 2 3 4 5 6 7

time

A

D

processors
(2)�$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$�

�$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$��$�$�$�$�$�$�$�$�time

1 2 3 4 5 6 7

D

A

processors
(3)

�$�$�$�$��$�$�$�$��$�$�$�$��$�$�$�$��$�$�$�$��$�$�$�$��$�$�$�$��$�$�$�$��$�$�$�$��$�$�$�$��$�$�$�$��$�$�$�$�

�$�$�$��$�$�$��$�$�$��$�$�$��$�$�$��$�$�$��$�$�$��$�$�$��$�$�$��$�$�$��$�$�$��$�$�$�
time

1 2 3 4 5 6 7

D

A

processors
(4)

Figure 30.4. Buckets (1)-(4).

Applying Economic Scheduling Methods to Grid Environments 499

requirements alone, and therefore an offer can be built using resources 1, 2 and
5.

To consider combinations of buckets, we modify the contents of the buckets
that consist of enough resources to generate a solution alone to contain one re-
source less than the required number of resources. We then examine additional
solutions that are generated by combining elements from different buckets.

Care must be taken if solutions are created by combining resources from dif-
ferent buckets. The free-time intervals of the buckets can differ in start and end
time. Therefore, the resulting start time of a combination is the maximum of
all the start times of the combined buckets. Similarly, the end time is assigned
as the minimum of all the end times of the combined buckets. The resulting
time window of free resources must be sufficient for the request. In our ex-
ample, the full set of possible solutions is {{1,2,5}, {1,2,3}, {1,2,4}, {1,2,7},
{1,3,4}, {1,3,7}, {1,4,7}, {2,3,4}, {2,3,7}, {3,4,7}}.

Given a set of intervals, we now need to select one. Step 5 involves making
a coarse selection of intervals. The best solution can be found only when all
possible time steps are considered; however, in practice this is not practiced
because of the long running time of the algorithm.

A heuristic is used to reduce the number of combinations to be examined.
To this end, we evaluate the earliest start time for each of the resource com-
binations and select the solution with the highest utility value. However, the
actual start time in the time interval is not yet determined at this point because

list tempList; LOOP:while(generatedList not empty)
{

get the time t of the next element in the generatedList;

test for all elements in tempList whether the difference
between the beginning of the free interval and the time t
is greater or equal to the run time of the job;

if(number of elements in tempList that fulfill the time
condition, is greater or equal the needed number of
processors){

create offers from the elements of the tempList;
}
if(enough offers found){
finish LOOP;

}
add or subtract the elements of the generatedList to or
from tempList that have time entry t;

}

Figure 30.5. Pseudo-code to find potential solutions.

500 GRID RESOURCE MANAGEMENT

�2�2�2�2�2�2�2�2��2�2�2�2�2�2�2�2��2�2�2�2�2�2�2�2��2�2�2�2�2�2�2�2��2�2�2�2�2�2�2�2��2�2�2�2�2�2�2�2��2�2�2�2��2�2�2�2��2�2�2�2��2�2�2�2��2�2�2�2��2�2�2�2��2�2�2�2�
�2�2�2�2��2�2�2�2��2�2�2�2��2�2�2�2��2�2�2�2��2�2�2�2��2�2�2�2�

�8�8��8�8��8�8��8�8�
�8�8��8�8��8�8��8�8�

����

�����������������������������2�2�2�2�2�2�2�2�2�2�2�2�2�2��2�2�2�2�2�2�2�2�2�2�2�2�2�2��2�2�2�2�2�2�2�2�2�2�2�2�2�2��2�2�2�2�2�2�2�2�2�2�2�2�2��2�2�2�2�2�2�2�2�2�2�2�2�2��2�2�2�2�2�2�2�2�2�2�2�2�2� �2�2�2�2��2�2�2�2��2�2�2�2�
�2�2�2�2��2�2�2�2��2�2�2�2�

�2��2��2��2��2��2�
������������
�2��2��2��2�

1 2 3 4 5 6 7 8 9

time

15 16 17

job or the end of the schedule (over)

processors

(left_right)start (under)

already allocated jobs

free area before job

free area after the job end until the next

10 11 12 13 14

new job

free area left and right

Figure 30.6. Parameters for the calculation of the owner utility function.

the intervals are equal to or larger than the requested allocation time. There-
fore, different start times are examined to maximize the utility value in the
step 6 of Figure 30.3. For this process, a parameter can be defined to spec-
ify the number of different start times to be considered within the given time
interval. Note that we did not pose any requirements on the type of utility
function (e.g. monotonic or continuous). However, the selection of a time in-
terval is much simpler when the utility functions are restricted to be monotonic
and continuous. After this phase the algorithm finishes and possible offers are
generated.

The machine owner and the user can define their own utility functions as
part of our economic model. Our implementation supports any mathematical
formula that uses valid time and resource variables. Overall, we minimize the
resulting value for the user’s utility function, but the minimization problem can
be transformed into a maximization problem and vice versa if needed.

The link between the objective functions of the user and the machine owner
is created by the price for the machine use that is equal to the machine owner’s
utility function. The price may be included in the user’s utility function as well.

The owner of the machine can specify additional variables in the utility func-
tion in our implementation, as shown in Figure 30.6. The variable under spec-
ifies the quantity of resources (processors) that are unused before the job is
allocated. The variable over determines the quantity of unused resources after
the job runs until the next job is started on the resources, or until the end of
the temporarily schedule. The variable left right specifies the idle resources
during the run of the job. The variable utilization specifies the utilization of the
machine if the job is allocated, as defined by the sum of the utilized resources

Applying Economic Scheduling Methods to Grid Environments 501

in relation to the available resources from the current time instance to the end
of the schedule.

Note that networks have not been explicitly considered. However, our model
can be easily extended to include network dependencies in the selection and
evaluation process similar to the co-allocation process.

3.4 Co-Allocation (Multisite Scheduling)

When no single machine can meet the resource request by itself, we must
consider multisite scheduling in order to generate a co-allocation between sev-
eral machines. To accomplish this, a MetaManager requests resources from
other remote MetaManagers. This process is initiated only if no domain is
able to generate a solution using a single machine. We do not limit the co-
allocation process to resources in a single domain; therefore, several aspects
within the Grid must be taken into account, for instance, the site-autonomy, co-
allocation, and cost management. For example, because sites are autonomous,
an outside agent may not be able to discover the full state of nonlocal resources.
Therefore, missing resources are queried by the scheduler (which is at another
domain) for more limited information, namely, a fixed time frame.

During the initiation process two heuristics are used: one to fix a job part
size and one to estimate start times. We divide the job into several smaller parts
as specified by using two parameters, the minimum and maximum number of
resources a job part may be allowed to use. These parameters can be specified
by each domain. The second heuristic estimates the start times for the entire
job. All job parts must be executed at the same time, but the initiating scheduler
may have only limited information about the schedules on the other resources.
Therefore several different start times are tried within the possible time interval
given the job request. The number of tries can be specified for each domain
separately. This process ends when a solution is found. As we do not have
complete information about all local schedules, a solution may exist but not be
found by our approach.

4. PERFORMANCE EVALUATION

In this section we evaluate the performance of our approach and compare it
to the performance of a conventional scheduler with backfilling adapted to a
Grid environment [EHS

�
02, EHSY02].

4.1 Resource Configuration

For our simulation experiments we define four different resource configu-
rations, each with 512 processors, but with the processors distributed to the
simulated sites in different ways, as shown in Table 30.2. These resource con-
figurations are compatible to those used in [EHS

�
02, EHSY02].

502 GRID RESOURCE MANAGEMENT

Table 30.2. Examined resource configurations.

Maximum
Identifier Configuration Size Sum

m128 × �hÔSÕ¢¡ 128 512
m256 Õ_��ÕdÓ¢£ 256 512
m384 Ô��SÖ¢¡h× m Ô��3£h× m × �dÔ3£ 384 512
m512 Ô.��Ó2ÔSÕ 512 512

The m128 and m256 configurations are an example of cooperation between
several equally sized sites. In contrast, the m384 configuration represents a
central processing center that is connected with several smaller client sites.
The m512 configuration represents a single parallel machine for contrast.

In addition to the number of processors at each site, a local objective func-
tion is necessary for the equilibration process. We use six different objective
functions in our experiments. Further research is needed to evaluate other uti-
lization functions.æ¤' v Ð g è�% á ø¥#bç$¦ ä Ì ç¨§ â #{h{h0§{ç�h�� Ö_% å ß ä¿á4# m §¢©�#bç m % åÛj�#bç m«ª # ä � çhä ÏY¬1� l �g�Ô l ª # ä � ç�ä ÏY¬1� ç¢# ª l (30.3)æ¤' ` Ð è�% á ø¥#bç$¦ ä Ì ç¨§ â #{h{h0§{ç�h�� Ö_% å ß ä¿á4# m §¢©�#bç m % åÛj�#bç mª # ä � çhä ÏY¬1� (30.4)æ¤' æ Ð g è�% á ø¥#bç$¦ ä Ì ç¨§ â #{h{h0§{ç�h�� Ö_% å ß ä¿á4# m §¢©�#bç m % åÛj�#bç l �g�Ô l ª # ä � ç�ä ÏY¬1� ç¢# ª l (30.5)æ¤' é±Ð g è�% á ø¥#bç$¦ ä Ì ç¨§ â #{h{h0§{ç�h�� Ö_% å ß ä¿á4# m«ª # ä � çhä ÏY¬1� l �g�Ô l ª # ä � ç�ä ÏY¬1� ç¢# ª l (30.6)æ¤' � Ð g è�% á ø¥#bç$¦ ä Ì ç¨§ â #{h{h0§{ç�h�� Ö_% å ß ä¿á4# m §¢©�#bç m«ª # ä � ç�ä¿ÏY¬q� l �g�Ô l ª # ä � ç�ä ÏY¬1� ç¢# ª l (30.7)æ¤'& Ð g è�% á ø¥#bç$¦ ä Ì ç¨§ â #{h{h0§{ç�h�� Ö_% å ß ä¿á4# m % åÛj�#êç m®ª # ä � ç�ä ÏY¬1� l �g�Ô l ª # ä � ç�ä ÏY¬1� ç¢# ª l (30.8)

We derive objective functions 30.4 through 30.8 from Equation 30.3, so we
use this basic formula for discussion.

The first term

� ���".��� ³ IZÁx�%�%M�� H�H �1� H � `È��O y 7	�"�
describes the resource consumption by the job.

The second term �1¬w��� A ��OcRN��� A « �1IJ� ��7	[�'�
represents the remaining idle resource time before and after the job on the
same processors, as well as the concurrent idle times on the other resources
(see Figure 30.6).

Applying Economic Scheduling Methods to Grid Environments 503

The last term of the first objective function� | « �1IJ� ��7	[�'� �-� «
describes the relationship between the concurrent idle times and the resources
consumption of the job itself, where« �1IJ� ��7	[�'� �C� « < ö�� ° ¼ ·��°¯ ¿�¼Ð Ô � ò � � �R± ò Ô � � � · Ò °k² · ô �o� v_v ô · v .
A small value of

« �qIJ� �%7�[�6� �-� «
indicates that this assignment will leave few

resources idle.

4.2 Job Configuration

The main problem when running simulations for Grid environments is the
lack of real workloads for Grid computing. We derive a workload from real
parallel machine traces from the Cornell Theory Center (CTC) IBM
RS6000/SP parallel computer with 430 nodes. The workload is available from
the standard workload archive maintained by Feitelson [Fei]. One of the rea-
sons for choosing this workload was the existence of detailed analysis for the
trace and the configuration by Hotovy [Hot96].

One of the problems when adapting the workload traces from a parallel
computer to a Grid environment is the assignment of the jobs to the different
sites. We use a round robin assignment of the jobs to the different machines
in order to simulate local job submissions. In the CTC workload trace, node
requirements with a power of two are favored, so when we adapted the traces
to a Grid configuration we defined the number of nodes of each simulated
machine to be a power of two.

Our configuration has a total of 512 processors, and there were only 430
nodes in the original configuration. The jobs in the trace still proved to be
more than adequate for the conventional scheduling system to take advantage
of backfilling, which needs a sufficient backlog of jobs in order to use idle
resources [HSSY00].

Four workload sets, as shown in Table 30.3, are used in our experiments.
The first three workload sets are extracts from the real CTC workload, each

Table 30.3. The used workloads.

Identifier Description

10 20k org An extract of the original CTC traces from job 10000 to 20000.
30 40k org An extract of the original CTC traces from job 30000 to 40000.
60 70k org An extract of the original CTC traces from job 60000 to 70000.
syn org The synthetically generated workload derived from the CTC workload

traces.

504 GRID RESOURCE MANAGEMENT

consisting of 10,000 jobs, or approximately three months in real time. The last
workload set is synthetically generated [KSY99] in order to avoid any singular
effects, for example caused by machine down time.

In addition to the information from the CTC workloads, each job must have
a utility function associated with it to represent the user preferences. We define
five user utility functions (UF) for our experiments:

³_' v Ð g l é ��â¢çS� ß ä¿á4# l (30.9)³_' ` Ð g l_´ § ø í §�hk� l (30.10)³_' æ±Ð g l g é ��â¢çS� ß ä¿á4# m ´ §{ø í §÷hk� lql (30.11)³_' é Ð g l g é ��â¢çS� ß ä¿á4# m Õ_� ´ §{ø í §÷hk� lql (30.12)³_' � Ð g l g Õµ� é ��â�ç�� ß ä á�# m ´ §{ø í §÷hk� lql (30.13)

The first user utility function (30.9) indicates a preference to start a job ex-
ecution as soon as possible, so the start time is minimized and the processing
costs are ignored. In contrast, the second user utility function considers only
the costs of using the resource to run the job caused by the job and ignores the
start time completely. The other three user utility functions are combinations
of the first two with different weights.

4.3 Results

We used discrete event-based simulations on the configurations and settings.
Combinations of all the user utility functions and machine functions were used
in conjunction with the set of workloads and resource configurations defined
in the previous section. In this section we present only the best results for the
conventional first-come first-serve/backfilling approach with the best results
for the economic model in this section. A more detailed analysis of our results
can be found in [EHY02].

To compare approaches, we use the average weighted response time, defined
as the sum of the corresponding run and wait times weighted by the resource
consumption (the number of resources multiplied with the job execution time).
The resource consumption weight prevents any preferring of smaller to larger
jobs with respect to the average weighted response time [SY98]. For the eval-
uation we assume that a smaller average weighted response time is anticipated
from the user. Note that the user utility functions as well as the owner ma-
chine functions in the figure may vary between configurations and workloads.
In some cases, good results have been achieved by using the user utility func-
tion

÷ � � (30.9) (fastest start time) in combination with machine function
3 � �

(30.3) (the combination of earliest start time, minimizing idle time and mini-
mizing resources).

Applying Economic Scheduling Methods to Grid Environments 505

Figure 30.7. Comparison between Economic and Conventional scheduling.

Figure 30.7 shows that the economic scheduling outperforms the conven-
tional first-come first-served/backfilling strategy. This is because the economic
model can place jobs without regard to the submission order. In [EHY02] a
much deeper analysis of the results can be found with additional analysis of
the effects of the chosen resource configurations and the user objective/owner
machine functions.

5. CONCLUSION

In this chapter we introduced an economic scheduling approach to Grid en-
vironments. We described the architecture and scheduling process, and we
presented an evaluation of the strategy. The results of the simulations for dif-
ferent workload sets, different resource configurations, and several different
parameter settings for the objective functions show that our economic schedul-
ing system is competitive with the conventional scheduling systems in terms
of the average weighted response time.

The economic approach provides several additional advantages over con-
ventional approaches, such as allowing for site autonomy and the ability to use
heterogeneous resources. The utility/objective functions for each Grid user
and resource owner can be defined separately for each job request. The util-
ity/objective functions we used were only first attempts, so additional work in
defining objective functions may improve our results. However, the achieved
results readily motivate the use of economic-based scheduling systems.

In future research, data and network management will be integrated to allow
network data to be considered. This integration is especially important since
the network is a limited resource especially during the execution of multisite

506 GRID RESOURCE MANAGEMENT

jobs. In addition, the scheduler will be able to automatically transfer the needed
data over the network. QoS features and advance reservations may be exploited
for network and storage resources as well.

For those interested in further discussion of this topic, please see Chap-
ters 28 and 29. Additional information can be found in [EHY02, BAGS02,
MFGH88, TB96].

References

[AAD
�

92] A. Abramovici, W. Althouse, R. Drever, Y. Gursel, S. Kawa-
mura, F. Raab, D. Shoemaker, L. Sievers, R. Spero,
K. Thorne, R. Vogt, R. Weiss, S. Whitcomb, and
M. Zucker. LIGO: The Laser Interferometer Gravitational-
wave Observatory (in large scale measurements). Science,
256(5055):325, 1992.

[AAF
�

01] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu,
T. Radke, E. Seidel, and J. Shalf. The Cactus worm: Ex-
periments with dynamic resource discovery and allocation in
a Grid environment. International Journal of High Perfor-
mance Computing Applications, 15(4):345–358, 2001.

[AAG
�

02] G. Allen, D. Angulo, T. Goodale, T. Kielmann, A. Merzky,
J. Nabrzyski, J. Pukacki, M. Russell, T. Radke, E. Seidel,
J. Shalf, and I. Taylor. GridLab: Enabling applications on
the Grid. In Proceedings of the Third International Workshop
on Grid Computing (Grid2002), November 2002.

[AB02] R. Albert and A. L. Barabasi. Statistical mechanics of com-
plex networks. Reviews of Modern Physics, 74:47–97, 2002.

[ABB
�

02a] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Fos-
ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel,
and S. Tuecke. Data management and transfer in high-
performance computational Grid environments. Parallel
Computing Journal, 28(5):749–771, 2002.

[ABB
�

02b] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Lim-
ing, S. Meder, and S. Tuecke. GridFTP protocol specifica-
tion. Technical report, Global Grid Forum GridFTP Working
Group, September 2002.

[ABC
�

01] Andy Adamson, Giovanni Bennini, Phil Chimento, Larry
Dunn, Reinhard Frank, Rüdiger Geib, Hermann Granzer,

508 GRID RESOURCE MANAGEMENT

Sue Hares, Haci Mantar, Will Murray, Rob Neilson, Ibrahim
Okumus, Francis Reichmeyer, Alain Roy, Volker Sander,
Dave Spence, Ben Teitelbaum, Andreas Terzis, and Jerr
Wheeler. QBone signaling design team final report,
2001. Available from http://qos.internet2.
edu/wg/documents-informational/
20020709-chimento-e%tal-qbone-signaling.

[Abd00] T. F. Abdelzaher. An automated profiling subsystem for QoS-
aware services. In Proceedings of IEEE Real-Time Technol-
ogy and Applications Symposium, June 2000.

[ABG02] D. Abramson, R. Buyya, and J. Giddy. A computational
economy for Grid computing and its implementation in the
Nimrod-G resource broker. Future Generation Computer Sys-
tems, 18(8), October 2002.

[ABGL02] K. Anstreicher, N. Brixius, J.-P. Goux, and J. T. Linderoth.
Solving large quadratic assignment problems on computa-
tional Grids. Mathematical Programming, 91(3):563–588,
2002.

[ABH
�

99] G. Allen, W. Benger, C. Hege, J. Masso, A. Merzky, T. Radke,
E. Seidel, and J. Shalf. Solving Einstein’s equations on su-
percomputers. IEEE Computer Applications, 32(12):52–58,
1999.

[ABL
�

95] Jose Nagib Cotrim Arabe, Adam Beguelin, Bruce Lowekamp,
Erik Seligman, Mike Starkey, and Peter Stephan. Dome:
Parallel programming in a heterogeneous multi-user environ-
ments. Technical Report CMU-CS-95-137, Carnegie Mellon
University, School of Computer Science, 1995.

[AC02] G. Aloisio and M. Cafaro. Web-based access to the Grid using
the Grid Resource Broker Portal. Concurrency and Compu-
tation: Practice and Experience, Special Issue on Grid Com-
puting Environments, 14:1145–1160, 2002.

[ACK
�

02] D. P. Anderson, J. Cobb, E. Korpella, M. Lebofsky, and
D. Werthimer. SETI@home: An experiment in public-
resource computing. Communications of the ACM, 45:56–61,
2002.

[ACK
�

04] Malcolm Atkinson, Ann Chervenak, Peter Kunszt, Inderpal
Narang, Norman Paton, Dave Pearson, Arie Shoshani, and

REFERENCES 509

Paul Watson. Data access, integration, and management. In
Ian Foster and Carl Kesselman, editors, The Grid: Blueprint
for a New Computing Infrastructure (Second Edition). Mor-
gan Kaufmann, 2004.

[ACPtNt95] Thomas E. Anderson, David E. Culler, David A. Patterson,
and the NOW team. A case for Networks of Workstations
(NOW). IEEE Micro, February 1995.

[ADAD01] Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau.
Information and control in gray-box systems. In Proceed-
ings of the 18th Symposium on Operating Systems Principles
(SOSP), October 2001.

[ADD
�

03] Gabrielle Allen, Kelly Davis, Konstantinos N. Dolkas, Niko-
laos D. Doulamis, Tom Goodale, Thilo Kielmann, Andre
Merzky, Jarek Nabrzyski, Juliusz Pukacki, Thomas Radke,
Michael Russell, Ed Seidel, John Shalf, and Ian Taylor. En-
abling applications on the Grid: A GridLab overview. Inter-
national Journal of High Performance Computing Applica-
tions: Special issue on Grid Computing: Infrastructure and
Applications, August to appear, 2003.

[ADF
�

01] G. Allen, T. Dramlitsch, I. Foster, N. Karonis, M. Ripeanu,
E. Seidel, and B. Toonen. Supporting efficient execution in
heterogeneous distributed computing environments with Cac-
tus and Globus. In Proceedings of SuperComputing (SC’01),
2001.

[ADF
�

03] Daniel E. Atkins, Kelvin K. Droegemeier, Stuart I. Feld-
man, Hector Garcia-Molina, Michael L. Klein, David G.
Messerschmitt, Paul Messina, Jeremiah P. Ostriker, and
Margaret H. Wright. Revolutionizing science and engi-
neering through cyberinfrastructure: Report of the National
Science Foundation blue ribbon advisory panel on cyberin-
frastructure. Technical report, NSF, 2003. Available from
http://www.communitytechnology.org/nsf_
ci_report/report.pdf.

[Adv93] Vikram S. Adve. Analyzing the Behavior and Performance
of Parallel Programs. PhD thesis, University of Wisconsin-
Madison, December 1993. Also available as University of
Wisconsin Computer Sciences Technical Report #1201.

[AFF
�

01] Karen Appleby, Sameh Fakhouri, Liana Fong, German Gold-
szmidt, Michael Kalantar, Srirama Krishnakumar, Donald

510 GRID RESOURCE MANAGEMENT

Pazel, John Pershing, and Benny Rochwerger. Oceano: SLA
based management of a computing utility. In Proceedings
of the Seventh IFIP/IEEE International Symposium on Inte-
grated Network Management, 2001.

[AG] AccessGrid. http://www-fp.mcs.anl.gov/fl/
accessgrid/.

[AGK00] D. Abramson, J. Giddy, and L. Kotler. High performance
parametric modeling with Nimrod/G: Killer application for
the global Grid? In Proceedings of the International Parallel
and Distributed Processing Symposium (IPDPS), May 2000.

[AGM
�

90] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman.
Basic local alignment search tool. Journal of Molecular Biol-
ogy, 215:403–410, 1990.

[AH00] E. Adar and B. A. Huberman. Free riding on Gnutella.
First Monday, 5, 2000. Also available from http://www.
firstmonday.dk/issues/issue5_10/adar/.

[AHLP01] L. Adamic, B. Huberman, R. Lukose, and A. Puniyani. Search
in power law networks. Physical Review E, 64:46135–46143,
2001.

[AJF
�

04] Jim Austin, Tom Jackson, Martyn Fletcher, Mark Jessop, Pe-
ter Cowley, and Peter Lobner. Predictive maintenance: Dis-
tributed aircraft engine diagnostics. In Ian Foster and Carl
Kesselman, editors, The Grid: Blueprint for a New Com-
puting Infrastructure (Second Edition). Morgan Kaufmann,
2004.

[AK97] J. L. Ambite and C. A. Knoblock. Planning by rewriting:
Efficiently generating high-quality plans. In Proceedings of
the Fourteenth National Conference on Artificial Intelligence,
1997.

[AK02] D. P. Anderson and J. Kubiatowicz. The worldwide computer.
Scientific American, March 2002.

[AKvL97] E. H. L. Aarts, J. H. M. Korst, and P. J. M. van Laarhoven.
Simulated annealing. In E. H. L. Aarts and J. K. Lenstra,
editors, Local Search in Combinatorial Optimization. Wiley,
1997.

[AL97] E. H. L. Aarts and J. K. Lenstra, editors. Local Search in
Combinatorial Optimization. Wiley, 1997.

REFERENCES 511

[AMS97] C. Atkeson, A. Moore, and S. Schaal. Locally weighted learn-
ing. Artificial Intelligence Review, 11:11–73, 1997.

[ARC] GGF Architecture Area (ARCH). http://www.ggf.
org/5_ARCH/arch.htm.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In Proceedings of the Twentieth International
Conference on Very Large Databases (VLDB’94), 1994.

[AS04] Gabrielle Allen and Ed Seidel. Collaborative science: Astro-
physics requirements and experiences. In Ian Foster and Carl
Kesselman, editors, The Grid: Blueprint for a New Comput-
ing Infastructure (Second Edition). Morgan Kaufmann, 2004.

[ASGH95] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nimrod: A tool
for performing parameterized simulations using distributed
workstations. In Proceedings of the Fourth IEEE Interna-
tional Symposium on High-Performance Distributed Comput-
ing (HPDC-4), August 1995.

[AV93] Vikram Adve and Mary Vernon. The influence of random de-
lays on parallel execution times. In Proceedings of Sigmetrics
’93, 1993.

[Ava] Avaki. http://www.avaki.com.

[AVD01] D. C. Arnold, S. Vadhiyar, and J. Dongarra. On the conver-
gence of computational and data Grids. Parallel Processing
Letters, 11(2-3):187–202, September 2001.

[AY97] C. C. Aggarwal and P. S. Yu. On disk caching of Web objects
in proxy servers. In Proceedings of the Internationals Con-
ference Info and Knowledge Management (CIKM’97), pages
238–245, 1997.

[AZV
�

02] James Annis, Yong Zhao, Jens Voeckler, Michael Wilde,
Steve Kent, and Ian Foster. Applying Chimera virtual data
concepts to cluster finding in the Sloan Sky Survey. In Pro-
ceedings of SuperComputing (SC’02), 2002.

[BA99] A. L. Barabási and R. Albert. Emergence of scaling in random
networks. Science, 286:509–512, 1999.

[BAG00] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An archi-
tecture for a resource management and scheduling system in

512 GRID RESOURCE MANAGEMENT

a global computational Grid. In Proceedings of the Fourth In-
ternational Conference on High Performance Computing in
Asia-Pacific Region (HPC Asia 2000), 2000.

[BAGS02] R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Eco-
nomic models for resource management and scheduling in
Grid computing. Special Issue on Grid Computing Environ-
ments, The Journal of Concurrency and Computation: Prac-
tice and Experience (CCPE), 14(13-15):1507–1542, Novem-
ber - December 2002.

[BAJZ98] J. Bonkalski, R. Anderson, S. Jones, and N. Zaluzec. Bringing
telepresence microscopy and science collaboratories into the
class room. TeleConference Magazine, 17(9), 1998.

[Bar78] B. Austin Barry. Errors in Practical Measurement in Science,
Engineering and Technology. John Wiley & Sons, 1978.

[Bar02] A. L. Barabási. Linked: The New Science of Networks.
Perseus Publishing, 2002.

[BBADAD02] Nathan C. Burnett, John Bent, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Exploiting gray-box knowl-
edge of buffer-cache management. In Proceedings of
USENIX, 2002.

[BBC
�

98] S. Blake, D. Black, M. Carlson, M. Davies, Z. Wang, and
W. Weiss. An architecture for differentiated services. Tech-
nical Report RFC 2475, Internet Engineering Task Force
(IETF), 1998.

[BBH
�

99] Jon Bakken, Eileen Berman, Chih-Hao Huang, Alexander
Moibenko, Don Petravick, Ron Rechenmacher, and Kurt
Ruthmansdorfer. Enstore technical design document. Tech-
nical Report JP0026, Fermi National Accelorator Laboratory,
June 1999.

[BC96] Azer Bestavros and Carlos Cunha. Server-initiated document
dissemination for the WWW. IEEE Data Engineering Bul-
letin, 19, 1996.

[BCC
�

97] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Dem-
mel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Pe-
titet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK
Users’ Guide. Society for Industrial and Applied Mathemat-
ics, 1997.

REFERENCES 513

[BCC
�

01] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster,
D. Gannon, L. Johnsson, K. Kennedy, C. Kesselman, D. Reed,
L. Torczon, and R. Wolski. The GrADS project: Software
support for high-level Grid application development. Interna-
tional Journal of High-Performance Computing Applications,
15(4):327–344, 2001.

[BCF
�

98] Sharon Brunett, Karl Czajkowski, Steven Fitzgerald, Ian Fos-
ter, Andrew Johnson, Carl Kesselman, Jason Leigh, and
Steven Tuecke. Application experiences with the Globus
toolkit. In Proceedings of the Seventh IEEE International
Symposium on High-Performance Distributed Computing
(HPDC-7), pages 81–89, 1998.

[BCF
�

99] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and Zipf-like distributions: Evidence and implica-
tions. In Proceedings of InfoCom, 1999.

[BCS94] R. Braden, D. Clark, and S. Shenker. Integrated services in
the Internet architecture: an overview. Technical Report RFC
1633, Internet Engineering Task Force (IETF), 1994.

[BDG
�

98] S. Brunett, D. Davis, T. Gottschalk, P. Messina, and
C. Kesselman. Implementing distributed synthetic forces sim-
ulations in metacomputing environments. In Proceedings of
the Heterogeneous Computing Workshop, pages 29–42, 1998.

[BDG
�

03] Jim Blythe, Ewa Deelman, Yolanda Gil, Carl Kesselman,
Amit Agarwal, Gaurang Mehta, and Karan Vahi. The role
of planning in Grid computing. In Proceedings of the Inter-
national Conference on Automated Planning and Scheduling,
2003.

[BDGK03] Jim Blythe, Ewa Deelman, Yolanda Gil, and Carl Kesselman.
Transparent Grid computing: A knowledge-based approach.
In Proceedings of the Innovative Applications of Artificial In-
telligence Conference, 2003.

[BDM
�

99] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch.
Resource-constrained project scheduling: Notation, classifi-
cation, models and methods. European Journal of Opera-
tional Research, 112:3–41, 1999.

[BEK
�

00] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Lay-
man, Noah Mendelsohn, Henrik Frystyk, Satish Thatte, and

514 GRID RESOURCE MANAGEMENT

Dave Winer. Simple Object Access Protocol (SOAP) 1.1.
Technical Report Note 08, World Wide Web Consotium
(W3C), May 2000. Available from http://www.w3.
org/TR/SOAP/.

[Ber99] F. Berman. High performance schedulers. In Ian Foster
and Carl Kesselman, editors, The Grid: Blueprint for a New
Computing Infrastructure, chapter 12, pages 279–309. Mor-
gan Kaufmann, 1999.

[BFIK99] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
The KeyNote trust-management system version 2. Technical
Report RFC 2704, Internet Engineering Task Force (IETF),
September 1999.

[BGA00] R. Buyya, J. Giddy, and D. Abramson. An evaluation of
economy-based resource trading and scheduling on compu-
tational power Grids for parameter sweep applications. In
Proceedings of the Second Workshop on Active Middleware
Services (AMS 2000), conjunction with the Ninth IEEE Inter-
national Symposium on High-Performance Distributed Com-
puting (HPDC-9), August 2000.

[BGA01] R. Buyya, J. Giddy, and D. Abramson. A case for econ-
omy Grid architecture for service-oriented Grid computing.
In Proceedings of the Heterogeneous Computing Workshop,
April 2001.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley Longman, 1987.

[BHK01] Ian Bird, Bryan Hess, and Andy Kowalski. Building the mass
storage system at Jefferson Lab. In Proceedings of the Eigh-
teenth IEEE Mass Storage Systems Conference, 2001.

[BHKL00] B. Bode, D. M. Halstead, R. Kendall, and Z. Lei. The Portable
Batch Scheduler and the Maui scheduler on Linux clusters. In
Proceedings of USENIX, 2000.

[BHL
�

99] A. Bayucan, R. L. Henderson, C. Lesiak, N. Mann, T. Proett,
and D. Tweten. Portable Batch System: External reference
specification. Technical Report Release 2.2, MRJ Technology
Solutions, November 1999.

REFERENCES 515

[BJB
�

00] Judy Beiriger, Wilbur Johnson, Hugh Bivens, Steven
Humphreys, and Ronald Rhea. Constructing the ASCI
Grid. In Proceedings of the Ninth IEEE International Sympo-
sium on High-Performance Distributed Computing (HPDC-
9), 2000.

[BKKW96] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff. Charlotte:
Metacomputing on the Web. In Proceedings of the Ninth In-
ternational Conference on Parallel and Distributed Comput-
ing Systems, 1996.

[BL97] J. Birge and F. Louveaux. Introduction to Stochastic Pro-
gramming. Springer, 1997.

[BL98] S. Berson and R. Lindell. An architecture for advance reser-
vations in the Internet. Technical report, Information Sciences
Institute, University of Southern California, 1998. Available
from www.isi.edu/~berson/advance.ps.

[BL99a] J. Basney and M. Livny. Deploying a high throughput com-
puting cluster. In High Performance Cluster Computing: Ar-
chitectures and Systems. Prentice Hall, 1999.

[BL99b] J. Basney and M. Livny. Improving goodput by co-scheduling
CPU and network capacity. International Journal of High
Performance Computing Applications, 13, 1999.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The se-
mantic Web. Scientific American, 284(5):34–43, 2001.

[BLM00] J. Basney, M. Livny, and P. Mazzanti. Harnessing the capacity
of computational Grids for high energy physics. In Proceed-
ings of the International Conference on Computing in High
Energy and Nuclear Physics (CHEP 2000), 2000.

[BLRK83] J. Błażewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan.
Scheduling subject to resource constraints. Discrete Applied
Mathematics, 5, 1983.

[BMRW98] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC
Storage Resource Broker. In Proceedings of the Eighth An-
nual IBM Centers for Advanced Studies Conference (CAS-
CON ’98), 1998.

[Bog94] N. Bogan. Economic allocation of computation time with
computation markets. Master’s thesis, Department of Elec-

516 GRID RESOURCE MANAGEMENT

trical Engineering and Computer Science, Massachusetts In-
stitute of Technology, May 1994.

[BOI] The Berkeley Open Infrastructure for Network Computing
(BOINC). http://boinc.berkeley.edu.

[Bou96] J.-Y. L. Boudec. Network calculus made easy. Technical Re-
port epfl-di 96/218, Ecole Polytechnique Federale, Lausanne
(EPFL), 1996.

[bpr] Bproc: Beowulf distributed process space. http://
bproc.sourceforge.net/bproc.html.

[BR96] M. Baxter and A. Rennie. Financial Calculus: An Introduc-
tion to Derivative Pricing. Cambridge University Press, 1996.

[Bre02] B. Brewin. Intel introduces 3Ghz desktop chip. Computer-
World, November 2002.

[BS98] L. Breslau and S. Shenker. Best-effort versus reservations: A
simple comparative analysis. ACM Computer Communica-
tion Review, 28(4):3–16, September 1998.

[BSST96] T. Brecht, H. Sandhu, M. Shan, and J. Talbot. ParaWeb: To-
wards world-wide supercomputing. In Proceedings of the
Seventh ACM SIGOPS European Workshop on System Sup-
port for Worldwide Applications, 1996.

[BT00] J.-Y. L. Boudec and P. Thiran. Network Calculus A Theory
of Deterministic Queuing System for the Internet. Springer
Verlag, 2000.

[Bur00] E. Burger. Mastering the Art of Magic. Kaufman and Com-
pany, 2000.

[BvST00] G. Ballintijn, M. van Steen, and A. S. Tanenbaum. Scalable
naming in global middleware. In Proceedings of Thirteenth
International Conference on Parallel and Distributed Com-
puting Systems (PDCS-2000), 2000.

[BW96] F. Berman and R. Wolski. Scheduling from the perspective
of the application. In Proceedings of the Fifth IEEE Interna-
tional Symposium on High-Performance Distributed Comput-
ing (HPDC-5), 1996.

[BW99] B. C. Barish and R. Weiss. LIGO and the detection of gravi-
tational waves. Physics Today, 52(10):44, 1999.

REFERENCES 517

[BWC
�

03] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail,
M. Faerman, S. Figueira, J. Hayes, G. Obertelli, J. Schopf,
G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov.
Adaptive computing on the Grid using AppLeS. IEEE Trans-
actions on Parallel and Distributed Systems, 14(4), April
2003.

[BWF
�

96] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application-level scheduling on distributed heterogeneous
networks. In Proceedings of SuperComputing (SC’96), 1996.

[BZB
�

97] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin.
Resource reservation protocol (RSVP) – version 1 functional
specification. Technical Report RFC 2205, Internet Engineer-
ing Task Force (IETF), 1997.

[CAC] Cactus. http://www.cactuscode.org/.

[CAS] Castor: the CERN advanced storage manager - Castor ar-
chitecture. http://castor.web.cern.ch/castor/
DOCUMENTATION/ARCHITECTURE.

[Cat92] Charlie Catlett. In search of gigabit applications. IEEE Com-
munications Magazine, 30(4):42–51, April 1992.

[CB97] M. Crovella and A. Bestavros. Self-similarity in World Wide
Web traffic: Evidence and possible causes. IEEE/ACM Trans-
actions on Networking, 5, December 1997.

[CB00] A. Charny and J.-Y. L. Boudec. Delay bounds in a network
with aggregate scheduling. In Proceedings of the Interna-
tional Workshop on Quality of Future Internet Services (QoS
2000), 2000.

[CB02] M. Chetty and R. Buyya. Weaving electrical and computa-
tional Grids: How analogous are they? Computing in Science
and Engineering, 4(4):61–71, July/August 2002.

[CBB
�

02] A. Charny, J. C. R. Bennett, K. Benson, J. Y. Le Boudec,
A. Chiu, W. Courtney, S. Davari, V. Firoiu, C. Kalmanek, and
K. K. Ramakrishnan. Supplemental information for the new
definition of the EF PHB (expedited forwarding per-hop be-
havior). Technical Report RFC 3247, Internet Engineering
Task Force (IETF), 2002.

518 GRID RESOURCE MANAGEMENT

[CCEB03] Andrew Chien, Bradley Calder, Stephen Elbert, and Karan
Bhatia. Entropia: Architecture and performance of an En-
terprise desktop Grid system. Journal of Parallel and Dis-
tributed Computing, to appear, 2003.

[CCF
�

01] P. Chandra, Y. Chu, A. Fisher, J. Gao, C. Kosak, T. S. Eu-
gene Ng, P. Steenkiste, E. Takahashi, and H. Zhang. Darwin:
Customizable resource management for value-added network
services. IEEE Network Magazine, 15(1), 2001.

[CCI88] CCITT. Recommendations X.509 - the directory-
authentication framework. Technical report, Consultations
Committee International Telephone and Telegraph, Interna-
tional Telecommunications Unison, 1988.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana.
Web Services Description Language (WSDL) 1.1. Techni-
cal report, W3C, 2001. Available from http://www.w3.
org/-TR/-wsdl/.

[CCO
�

03] Shane Canon, Steve Chan, Doug Olson, Craig Tull, and Von
Welch. Using CAS to manage role-based VO sub-groups. In
Proceedings of the International Conference for Computing
in High Energy and Nuclear Physics (CHEP-2003), 2003.

[CDF
�

01] B. Coghlan, A. Djaoui, S. Fisher, J. Magowan, and M. Oevers.
Time, information services and the Grid. In Proceedings of
the British National Conference on Databases, 2001.

[CDF
�

02] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek,
A. Iamnitchi, C. Kesselman, P. Kunst, M. Ripeanu,
B. Schwartzkopf, H. Stockinger, K. Stockinger, and B. Tier-
ney. Giggle: A framework for constructing scalable replica lo-
cation services. In Proceedings of SuperComputing (SC’02),
2002.

[CDK
�

02] Ann Chervenak, Ewa Deelman, Carl Kesselman, Laura Pearl-
man, and Gurmeet Singh. A metadata catalog service
for data intensive applications. Technical report, GriPhyN,
2002. Also available from http://www.isi.edu/
~deelman/mcs.pdf.

[CDO
�

00] L. Childers, T. Disz, R. Olson, M. E. Papka, R. Stevens, and
T. Udeshi. Access Grid: Immersive group-to-group collabora-
tive visualization. In Proceedings of the Fourth International
Immersive Projection Technology Workshop, 2000.

REFERENCES 519

[CDS01] C. Courcoubetis, M. Dramitinos, and G. Stamoulis. An auc-
tion mechanism for bandwidth allocation over paths. In Pro-
ceedings of the Seventeenth International Teletraffic Congress
(ITC), December 2001.

[CE] S. Cantor and M. Erdos. Shibboleth-architecture draft
v05. http://shibboleth.internet2.edu/
draft-internet2-shibboleth-arch-v05.html.

[Čer85] V. Černy. Thermodynamical approach to the traveling sales-
man problem: An efficient simulation algorithm. Journal of
Optimization Theory and Applications, 45:41–51, 1985.

[CFFK01] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman.
Grid information services for distributed resource sharing. In
Proceedings of the Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), Au-
gust 2001.

[CFG02] A. Chien, I. Foster, and D. Goddette. Grid technologies em-
powering drug discovery. Drug Discovery Today, 7(20):176–
180, 2002.

[CFHB99] Mark Crovella, Robert Frangioso, and Mor Harchol-Balter.
Connection scheduling in Web servers. In Proceedings of
USENIX Symposium on Internet Technologies and Systems,
1999.

[CFK
�

98a] Prashant Chandra, Allan Fisher, Corey Kosak, T. S. Eugene
Ng, Peter Steenkiste, Eduardo Takahashi, and Hui Zhang.
Darwin: Resource management for value-added customizable
network service. In Proceedings of the Sixth IEEE Interna-
tional Conference on Network Protocols (ICNP’98), 1998.

[CFK
�

98b] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Mar-
tin, W. Smith, and S. Tuecke. A resource management
architecture for metacomputing systems. In D. Feitelson
and L. Rudolph, editors, Job Scheduling Strategies for Par-
allel Processing (Proceedings of the Fourth International
JSSPP Workshop; LNCS #1459), pages 62–82. Springer-
Verlag, 1998.

[CFK99] K. Czajkowski, I. Foster, and C. Kesselman. Co-allocation
services for computational Grids. In Proceedings of the
Eighth IEEE International Symposium on High Performance
Distributed Computing (HPDC-8), August 1999.

520 GRID RESOURCE MANAGEMENT

[CFK
�

02] K. Czajkowski, I. Foster, C. Kesselman., V. Sander, and
S. Tuecke. SNAP: A protocol for negotiating service level
agreements and coordinating resource management in dis-
tributed systems. In D. Feitelson and L. Rudolph, editors, Job
Scheduling Strategies for Parallel Processing (Proceedings
of the Eighth International JSSPP Workshop; LNCS #2537),
pages 153–183. Springer-Verlag, 2002.

[CGD] Climate and Global Dynamics Division, National Center
for Atmospheric Research (NCAR). http://www.cgd.
ucar.edu.

[CGS] GGF CIM-based Grid Schema Working Group (CGS-WG).
http://www.isi.edu/~flon/cgs-wg/index.
htm.

[Che01] Lap-Sun Cheung. A fuzzy approach to load balancing in a
distributed object computing network. In Proceedings of the
First IEEE International Symposium of Cluster Computing
and the Grid (CCGrid’01), pages 694–699, 2001.

[Chi] ChicSim: The Chicago Grid Simulator. http://people.
cs.uchicago.edu/~krangana/ChicSim.html.

[Chi04] A. Chien. Massively distributed computing: Virtual screening
on desktop computers. In Ian Foster and Carl Kesselman, edi-
tors, The Grid: Blueprint for a New Computing Infrastructure
(Second Edition). Morgan Kaufmann, 2004.

[CHTCB96] T. D. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost.
On the impossibility of group membership. In Proceedings of
the Fifteenth Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC’96), 1996.

[CI97] Pei Cao and Sandy Irani. Cost-aware WWW proxy caching
algorithms. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems, 1997.

[CJ89] Dah-Ming Chiu and Raj Jain. Analysis of the in-
crease/decrease algorithms for congestion avoidance in com-
puter networks. Journal of Computer Networks and ISDN,
17(1):1–14, June 1989.

[CKKG99] S. J. Chapin, D. Katramatos, J. F. Karpovich, and A. S.
Grimshaw. Resource management in Legion. Future Gen-
eration Computing Systems, 15:583–594, October 1999.

REFERENCES 521

[CME] Chicago Mercantile Exchange. http://www.cme.com.

[CMPT04] Jon Crowcroft, Tim Moreton, Ian Pratt, and Andrew Twigg.
Peer-to-peer technologies. In Ian Foster and Carl Kesselman,
editors, The Grid: Blueprint for a New Computing Infrastruc-
ture (Second Edition). Morgan Kaufmann, 2004.

[CMS] Compact Muon Solenoid (CMS). http://cmsinfo.
cern.ch/Welcome.html/.

[CN99] H. Chu and K. Nahrstedt. CPU service classes for multimedia
applications. In Proceedings of IEEE International Confer-
ence on Multimedia Computing and Systems, 1999.

[COBW00] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The Ap-
pLeS parameter sweep template: User-level middleware for
the Grid. In Proceedings of SuperComputing (SC’00), 2000.

[Cof76] E. G. Coffmanm, editor. Computer and Job-Shop Scheduling
Theory. John Wiley and Sons, New York, 1976.

[CON] Condor project. http://www.cs.wisc.edu/condor.

[Cro58] G. A Croes. A method for solving traveling salesman prob-
lems. Operations Research, 6:791–812, 1958.

[CS92] C. Catlett and L. Smarr. Metacomputing. Communications of
the ACM, 35(6):44–52, 1992.

[CS00] L. Clewlow and C. Strickland. Energy Derivatives: Pricing
and Risk Management. Lacima Publications, 2000.

[CS02] E. Cohen and S. Shenker. Replication strategies in unstruc-
tured peer-to-peer networks. In Proceedings of the SIG-
COMM, 2002.

[CSWH00] I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A
distributed anonymous information storage and retrieval sys-
tem. In Proceedings of the ICSI Workshop on Design Issues
in Anonymity and Unobservability, 2000.

[DAG] The Condor Directed-Acyclic-Graph Manager (DAGMan).
http://www.cs.wisc.edu/condor/dagman/.

[Dah99] M. Dahlin. Interpreting stale load information. In Proceed-
ings of the Ninteenth International Conference on Distributed
Computing Systems, 1999.

522 GRID RESOURCE MANAGEMENT

[Dai01] H. J. Dail. A modular framework for adaptive scheduling in
Grid application development environments. Technical Re-
port CS2002-0698, Computer Science Department, Univer-
sity of California, California, San Diego, 2001.

[DAM] GGF Discovery and Monitoring Event Data Working
Group (DAMED-WG). http://www-didc.lbl.gov/
damed/.

[DAP] Dap scheduler. http://www.cs.wisc.edu/condor/
dap.

[DBC03] H. Dail, F. Berman, and H. Casanova. A decoupled schedul-
ing approach for Grid application development environments.
Journal of Parallel and Distributed Computing, to appear,
2003.

[DBG
�

03a] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman,
Gaurang Mehta, Karan Vahi, Kent Blackburn, Albert Laz-
zarini, Adam Arbee, Richard Cavanaugh, and Scott Koranda.
Mapping abstract complex workflows onto Grid environ-
ments. Journal of Grid Computing, 1, 2003.

[DBG
�

03b] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman,
Gaurang Mehta, Karan Vahi, Scott Koranda, Albert Lazzarini,
and Maria Alessandra Papa. From metadata to execution
on the Grid: The Pegasus pulsar search. Technical Report
2003-15, GriPhyN, 2003. Available from http://www.
griphyn.org/documents.

[DCB
�

01] B. Davie, A. Charney, J. C. R. Bennett, K. Benson, J. Y. Le
Boudec, W. Courtney, S. Davari, V. Firoiu, and D. Stiliadis.
An expedited forwarding PHB. Technical Report RFC 3246,
Internet Engineering Task Force (IETF), 2001.

[DFJ
�

96] S. Dar, M. Franklin, B. Jonsson, D. Srivastava, and M. Tan.
Semantic data caching and replacement. In Proceedings of
the Twenty-second Conference on Very Large Data Bases
(VLDB’96), 1996.

[DH77] W. Diffie and M. E. Hellman. New directions in cryptog-
raphy. IEEE Transactions on Information Theory, IT-22(6),
June 1977.

[DI89] Murthy Devarakonda and Ravishankar Iyer. Predictability
of process resource usage: A measurement-based study on

REFERENCES 523

UNIX. IEEE Transactions on Software Engineering, 15, De-
cember 1989.

[Din99] P. A. Dinda. The statistical properties of host load. Scientific
Programming, 7:3–4, Fall 1999.

[Din01] P. Dinda. Online prediction of the running time of tasks. In
Proceedings of the Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), 2001.

[Din02] P. A. Dinda. Online prediction of the running time of tasks.
Cluster Computing, 5(3), 2002.

[DKM01] Ewa Deelman, Carl Kesselman, and Gaurang Mehta. Trans-
formation catalog design for GriPhyN, prototype of trans-
formation catalog schema. Technical Report 2001-17, Gri-
PhyN, 2001. Available from http://www.griphyn.
org/documents.

[DKM
�

02] Ewa Deelman, Carl Kesselman, Gaurang Mehta, Leila
Meshkat, Laura Pearlman, Kent Blackburn, Phil Ehrens, Al-
bert Lazzarini, Roy Williams, and Scott Koranda. GriPhyN
and LIGO: Building a virtual data Grid for gravitational wave
scientists. In Proceedings of the Eleventh IEEE Interna-
tional Symposium on High-Performance Distributed Comput-
ing (HPDC-11), 2002.

[DKPS97] M. Degermark, T. Kohler, S. Pink, and O. Schelen. Advance
reservations for predictive service in the Internet. Multimedia
Systems, 5(3):177–186, 1997.

[DL03] A. Dittmer and I. Lumb. Building a complete resource man-
agement solution: Solaris SRM and Platform LSF. In Pro-
ceedings of the Sun User Performance Group, May 2003.

[DM90] C. Darken and J. Moody. Fast adaptive k-means clustering:
Some empirical results. In Proceedings of the International
Joint Conference on Neural Networks, volume II, pages 233–
238. IEEE Neural Networks Council, 1990.

[DO00] P. A. Dinda and D. R. O’Hallaron. Realistic CPU workloads
through host load trace playback. In Proceedings of the Fifth
Workshop on Languages, Compilers, and Run-time Systems
for Scalable Computers (LCR 2000), 2000.

[Doa96] M. Doar. A better model for generating test networks. IEEE
Global Internet, 1996.

524 GRID RESOURCE MANAGEMENT

[DOEa] DOE Grids CA. http://www.doegrids.org/.

[DOEb] DOE Science Grid. http://doesciencegrid.org/.

[Dow97] A. Downey. Predicting queue times on space-sharing paral-
lel computers. In Proceedings of the International Parallel
Processing Symposium (IPPS), 1997.

[DP96a] Jay Devore and Roxy Peck. Statistics: The Exploration and
Analysis of Data, page 88. Duxbury Press, 1996.

[DP96b] Jay Devore and Roxy Peck. Statistics: The Exploration and
Analysis of Data, page 567. Duxbury Press, 1996.

[DR99] T. Dierks and E. Rescorla. The TLS Protocol, version 1.1.
Technical Report RFC 2246, Internet Engineering Task Force
(IETF), January 1999.

[DRM] GGF Distributed Resource Management Application API
Working Group (DRMAA-WG). http://www.drmaa.
org/.

[DS81] N. R. Draper and H. Smit. Applied Regression Analysis (Sec-
ond Edition). John Wiley and Sons, 1981.

[EDGa] European DataGrid Project. http://www.
eu-datagrid.org.

[EDGb] European DataGrid CA. http://marianne.in2p3.
fr/datagrid/ca/ca-table-ca.html.

[EH99] Thomas Eickermann and Ferdinand Hommes. Metacomput-
ing in a gigabit testbed west. In Proceedings of the Work-
shop on Wide Area Networks and High Performance Com-
puting, Lecture Notes in Control and Information Sciences,
pages 119–129. Springer-Verlag, 1999.

[EHS
�

02] C. Ernemann, V. Hamscher, U. Schwiegelshohn, A. Streit,
and R. Yahyapour. On advantages of Grid computing for par-
allel job scheduling. In Proceedings of the Second IEEE In-
ternational Symposium on Cluster Computing and the Grid
(CCGrid’02), pages 39–46, 2002.

[EHSY02] C. Ernemann, V. Hamscher, A. Streit, and R. Yahyapour. On
effects of machine configurations on parallel job scheduling
in computational Grids. In Proceedings of the International

REFERENCES 525

Conference on Architecture of Computing Systems, (ARCS
2002), pages 169–179, April 2002.

[EHY02] C. Ernemann, V. Hamscher, and R. Yahyapour. Eco-
nomic scheduling in Grid computing. In D. Feitelson and
L. Rudolph, editors, Job Scheduling Strategies for Parallel
Processing (Proceedings of the Eighth International JSSPP
Workshop; LNCS #2537), pages 129–152. Springer-Verlag,
2002.

[EJ01] D. Eastlake and P. Jones. US Secure Hash Algorithm 1
(SHA1). Technical Report RFC 3174, Internet Engineering
Task Force (IETF), 2001.

[Ell99] C. Ellison. SPKI requirements. Technical Report RFC 2692,
Internet Engineering Task Force (IETF), 1999.

[EMC] EMC Corporation. http://www.emc.com.

[EP04] M. Ellisman and S. Peltier. Medical data federation: The
biomedical informatics research network. In Ian Foster and
Carl Kesselman, editors, The Grid: Blueprint for a New Com-
puting Infrastructure (Second Edition). Morgan Kaufmann,
2004.

[EUR] Eurogrid. http://www.eurogrid.org.

[FAS] FASTA package of sequence comparison programs. ftp:
//ftp.virginia.edu/pub/fasta.

[FB96] S.M. Figueira and F. Berman. Mapping parallel applica-
tions to distributed heterogeneous systems. Technical Report
UCSD CS Tech Report # CS96-484, University of California,
San Diego, June 1996.

[FC90] R. F. Freund and D. S. Conwel. Superconcurrency: A form of
distributed heterogeneous supercomputing. Supercomputing
Review, 3(10):47–50, October 1990.

[Fei] D. G. Feitelson. Parallel workloads archive. http://www.
cs.huji.ac.il/labs/parallel/workload/.

[Fei95] D. Feitelson. A survey of scheduling in multiprogrammed
parallel systems. Technical Report RC 19790, IBM T. J. Wat-
son Research Center, October 1995.

526 GRID RESOURCE MANAGEMENT

[FFR
�

02] I. Foster, M. Fidler, A. Roy, V. Sander, and L. Winkler. End-
to-end quality of service for high-end applications. Computer
Communications, Special Issue on Network Support for Grid
Computing, 2002.

[FG03] I. Foster and D. Gannon. Open Grid Services Archi-
tecture: A roadmap. Technical report, Open Grid Ser-
vices Architecture Working Group, Global Grid Forum,
February 2003. Available from http://www.ggf.org/
ogsa-wg/ogsa_roadmap.0.4.pdf.

[FGM
�

99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. Technical Report RFC 2616, Internet Engineering
Task Force (IETF), June 1999.

[FGN
�

96] I. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke.
Software infrastructure for the I-WAY high-performance dis-
tributed computing experiment. In Proceedings of the Fifth
IEEE International Symposium on High-Performance Dis-
tributed Computing (HPDC-5), pages 562–571, 1996.

[FGT96] I. Foster, J. Geisler, and S. Tuecke. MPI on the I-WAY: A
wide-area, multimethod implementation of the Message Pass-
ing Interface. In Proceedings of the 1996 MPI Developers
Conference, pages 10–17, 1996.

[FGV97] D. Ferrari, A. Gupta, and G. Ventre. Distributed advance
reservation of real-time connections. Multimedia Systems,
5(3), 1997.

[FH98] P. Ferguson and G. Huston. Quality of service on the Internet:
Fact, fiction or compromise? In Proceedings of Inet ’98, 1998.

[FH02] S. Farrell. and R. Housley. An Internet attribute certificate
profile for authorization. Technical Report RFC 3281, Inter-
net Engineering Task Force (IETF), 2002.

[FI03] I. Foster and A. Iamnitchi. On death, taxes, and the conver-
gence of peer-to-peer and Grid computing. In Proceedings of
the Second International Workshop on Peer-to-Peer Systems
(IPTPS), 2003.

[Fid03] M. Fidler. Extending the network calculus pay bursts only
once principle to aggregate scheduling. In Proceedings of the

REFERENCES 527

Proceedings of the Second International Workshop on QoS in
Multiservice IP Networks (QoS-IP), 2003.

[FJL
�

88] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K.
Salmon, and D. W. Walker. Solving Problems on Concurrent
Processors. Prentice-Hall, 1988.

[FK97] I. Foster and C. Kesselman. Globus: A metacomputing in-
frastructure toolkit. International Journal of Supercomputer
Applications, 11(2):115–129, 1997.

[FK98a] I. Foster and C. Kesselman. The Globus Project: A status
report. In Proceedings of the Seventh Heterogeneous Com-
puting Workshop, 1998.

[FK98b] S. Frolund and J. Koistinen. QML: A language for quality of
service specification. Technical Report HPL-98-10, HP Labs,
February 1998.

[FK99a] Ian Foster and Carl Kesselman. The Globus Toolkit. In Ian
Foster and Carl Kesselman, editors, The Grid: Blueprint for
a New Computing Infrastructure, chapter 11, pages 259–278.
Morgan Kauffmann, 1999.

[FK99b] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint
for a New Computing Infrastructure. Morgan Kauffmann,
1999.

[FK04] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint
for a New Computing Infrastructure (Second Edition). Mor-
gan Kaufmann, 2004.

[FKH
�

99] A. J. Ferrari, F. Knabe, M. A. Humphrey, S. J. Chapin, and
A. S Grimshaw. A flexible security system for metacomput-
ing environments. In Proceedings of High Performance Com-
puting and Networking Europe (HPCN Europe ’99), 1999.

[FKK96] A. Frier, P. Karlton, and P. Kocher. The SSL 3.0 Proto-
col. Technical report, Netscape Communications Corpora-
tion, November 1996.

[FKNT02] I Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid ser-
vices for distributed systems integration. IEEE Computer,
35(6):37–46, 2002.

528 GRID RESOURCE MANAGEMENT

[FKT01] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. Interna-
tional Journal of High Performance Computing Applications,
15(3):200–222, 2001. Also available from http://www.
globus.org/research/papers/anatomy.pdf.

[FKTT98] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A secu-
rity architecture for computational Grids. In Proceedings of
the Fifth ACM Conference on Computer and Communications
Security Conference, 1998.

[Fla98] Gary W. Flake. The Computational Beauty of Nature: Com-
puter Explorations of Fractals, Chaos, Complex Systems, and
Adaptation. MIT Press, Cambridge, MA, 1998.

[FN95] D. G. Feitelson and B. Nitzberg. Job characteristics of a
production parallel scientific workload on the NASA Ames
iPSC/860. In D. Feitelson and L. Rudolph, editors, Job
Scheduling Strategies for Parallel Processing (Proceedings
of the First International JSSPP Workshop; LNCS #949).
Springer-Verlag, 1995.

[FNA] Fermi National Accelerator Laboratory. http://www.
fnal.gov.

[For94] MPI Forum. MPI: A Message-Passing Interface stan-
dard. Technical Report CS-94-230, University of Tennessee,
Knoxville, 1994.

[FR01] D.G. Feitelson and L. Rudolph, editors. Job Scheduling
Strategies for Parallel Processing (Proceedings of the Sev-
enth International JSSPP Workshop; LNCS #2221). Springer
Verlag, 2001.

[FRS
�

97] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sev-
cik, and P. Wong. Theory and practice in parallel job
scheduling. In D. Feitelson and L. Rudolph, editors, Job
Scheduling Strategies for Parallel Processing (Proceedings
of the Third International JSSPP Workshop; LNCS #1291).
Springer-Verlag, 1997.

[FRS00] I. Foster, A. Roy, and V. Sander. A quality of service ar-
chitecture that combines resource reservation and application
adaptation. In Proceedings of the International Workshop on
Quality of Service, 2000.

REFERENCES 529

[FTF
�

02] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor-G: A computation management agent for multi-
institutional Grids. Cluster Computing, 5(3):237–246, 2002.

[Fus] Fusion Grid. http://www.fusiongrid.org/.

[FV90] D. Ferrari and D. Verma. A scheme for real-time channel es-
tablishment in wide-area networks. IEEE Journal on Selected
Areas in Communications, 8(3), 1990.

[FVWZ02] Ian Foster, Jens Vockler, Michael Wilde, and Yong Zhao.
Chimera: A virtual data system for representing, querying,
and automating data derivation. In Proceedings of the Four-
teenth International Conference on Scientific and Statistical
Database Management (SSDBM’02), 2002.

[FW98] Dror Feitelson and Ahuva Weil. Utilization and predictabil-
ity in scheduling the IBM SP2 with backfilling. In Proceed-
ings of Twelfth International Parallel Processing Symposium
and Ninth Symposium on Parallel and Distributed Process-
ing, 1998.

[FWM94] G. C. Fox, R. D. Williams, and P. C. Messina. Parallel Com-
puting Works. Morgan Kaufmann, 1994.

[GAL
�

03] T. Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke,
E. Seidel, and J. Shalf. The Cactus framework and toolkit:
Design and applications. In Proceedings of Vector and Paral-
lel Processing (VECPAR), 2003.

[GBE
�

98] Amin (Grid2001)Vahdat, Eshwar Belani, Paul Eastham, Chad
Yoshikawa, Thomas Anderson, David Culler, and Michael
Dahlin. WebOS: Operating system services for wide area
applications. In Proceedings of the Seventh IEEE Interna-
tional Symposium on High-Performance Distributed Comput-
ing (HPDC-7), 1998.

[GBHC00] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, distributed data structures for Internet service con-
struction. In Proceedings of the Fourth Symposium on Op-
erating Systems Design and Implementation (OSDI 2000),
2000.

[GCC
�

04] Greg Graham, Richard Cavanaugh, Peter Couvares, Alan
DeSmet, and Miron Livny. Distributed data analysis: Fed-
erated computing for high energy physics. In Ian Foster and

530 GRID RESOURCE MANAGEMENT

Carl Kesselman, editors, The Grid: Blueprint for a New Com-
puting Infrastructure (Second Edition). Morgan Kaufmann,
2004.

[GCP] GGF Grid Certificate Policy Working Group (GCP-WG).
http://www.gridforum.org/2_SEC/GCP.htm.

[GDM] Grid Data Mirroring Package (GDMP). http://
project-gdmp.web.cern.ch/project-gdmp/.

[GDRSF04] Carole A. Goble, David De Roure, Nigel R. Shadbolt, and
Alvaro Fernandes. Enhancing services and applications with
knowledge and semantics. In Ian Foster and Carl Kesselman,
editors, The Grid: Blueprint for a New Computing Infrastruc-
ture (Second Edition). Morgan Kaufmann, 2004.

[Gen04] Wolfgang Gentzsch. Enterprise resource management: Ap-
plications in research and industry. In Ian Foster and Carl
Kesselman, editors, The Grid: Blueprint for a New Com-
puting Infrastructure (Second Edition). Morgan Kaufmann,
2004.

[GES] GGF Grid Economic Services Architecture Working Group
(GESA-WG). http://www.gridforum.org/3_SRM/
gesa.htm.

[GFKH99] A. S. Grimshaw, A. J. Ferrari, F. Knabe, and M. A. Humphrey.
Wide-area computing: Resource sharing on a large scale.
IEEE Computer, 32(5), May 1999.

[GGF] Global Grid Forum (GGF). http://www.ggf.org.

[Gib97] R. Gibbons. A historical application profiler for use by par-
allel schedulers. Lecture Notes on Computer Science, 1297,
1997.

[Gib02] W. Gibbs. Ripples in spacetime. Scientific American, April
2002.

[GIM01] Entropia, researchers discover largest multi-million-digit
prime using Entropia distributed computing Grid. Press re-
lease, Entropia, Inc., December 2001.

[GKTA02] Sven Graupner, Vadim Kotov, Holger Trinks, and Artur An-
drzejak. Control architecture for service Grids in a federation
of utility data centers. Technical Report HPL-2002-235, HP
Labs, 2002.

REFERENCES 531

[GL] GridLab project. http://www.gridlab.org.

[GL97] F. Glover and M. Laguna. Tabu Search. Kluwer Academic
Publishers, 1997.

[GLM] GridLab monitoring. http://www.gridlab.org/
WorkPackages/wp-11/index.html.

[GLO] Globus Project. http://www.globus.org.

[Glo86] F. Glover. Future path for integer programming and links to
artificial intelligence. Computers & Operations Research, 13,
1986.

[Glo89] F. Glover. Tabu search - part 1. ORSA Journal of Computing,
1, 1989.

[Glo90] F. Glover. Tabu search - part 2. ORSA Journal of Computing,
2, 1990.

[GLS94] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface.
MIT Press, 1994.

[GLU] GLUE schema. http://www.hicb.org/glue/
glue-schema/schema.htm.

[GMR
�

98] S. D. Gribble, G. S. Manku, D. Roselli, E. A. Brewer, T. J.
Gibson, and E. L. Miller. Self-similarity in file systems. In
Proceedings of SIGMETRICS ’98, 1998.

[GMS01] S. Greco, B. Matarazzo, and R. Slowinski. Rough sets the-
ory for multicriteria decision analysis. European Journal of
Operational Research, 129(1):1–47, 2001.

[GN02] X. Gu and K. Nahrstedt. Dynamic QoS-aware multimedia
service configuration in ubiquitous computing environments.
In Proceedings of the IEEE Second International Conference
on Distributed Computing Systems (ICDCS 2002), 2002.

[Gnu] Gnutella. www.gnutellanews.com/information.

[GNY
�

02] X. Gu, K. Nahrstedt, W. Yuan, D. Wichadakul, and D. Xu. An
XML-based quality of service enabling language for the Web.
Journal of Visual Language and Computing, Special Issue on
Multimedia Language for the Web, 13(1), 2002.

532 GRID RESOURCE MANAGEMENT

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley, 1989.

[GP01] F. Giacomini and F. Prelz. Definition of architecture,
technical plan and evaluation criteria for schedul-
ing, resource management, security and job descrip-
tion. Technical Report DataGrid-01-D1.4-0127-1 0,
European DataGrid Project, 2001. Available from
http://server11.infn.it/workload-grid/
docs/DataGrid-01-D1.4-0127-1_0.doc.

[GPS
�

02] F. Giacomini, F. Prelz, M. Sgaravatto, I. Terekhov, G. Gar-
zoglio, and T. Tannenbaum. Planning on the Grid: A sta-
tus report. Technical Report PPDG-20, Particle Physics Data
Grid Collaboration, October 2002.

[GPS04] Carole Goble, Steve Pettifer, and Robert Stevens. Knowledge
integration: In silico experiments in bioinformatics. In Ian
Foster and Carl Kesselman, editors, The Grid: Blueprint for
a New Computing Infrastructure (Second Edition). Morgan
Kaufmann, 2004.

[GR94] J. Gray and A. Reuter. Transaction Processing: Techniques
and Concepts. Morgan Kaufmann, 1994.

[GR96] J. Gehring and A. Reinefeld. Mars: A framework for minimiz-
ing the job execution time in a metacomputing environment.
Future Generation Computer Systems, 12(1):87–99, 1996.

[GRAa] GGF Grid Resource Allocation Agreement Protocol Working
Group (GRAAP-WG). http://www.fz-juelich.de/
zam/RD/coop/ggf/graap/graap-wg.html.

[Grab] GrADS runtime support for Grid applications.
http://hipersoft.cs.rice.edu/grads/
runtime_description.htm.

[GRAc] Globus Resource Allocation Manager (GRAM). http://
www.globus.org/gram/.

[GRBK98] E. Gabriel, M. Resch, T. Beisel, and R. Keller. Distributed
computing in a heterogenous computing environment. In Pro-
ceedings of EuroPVM/MPI’98, 1998.

[GRIa] Gridbus. http://www.gridbus.org/.

REFERENCES 533

[GRIb] GriPhyN: The Grid Physics Network. http://www.
griphyn.org.

[GS95] J. Gwertzman and M. Seltzer. The case for geographical push
caching. In Proceedings of the Fifth IEEE Workshop on Hot
Topics Operating Systems (HotOS’95), 1995.

[GS99] Roch Guérin and Henning Schulzrinne. Network quality of
service. In Ian Foster and Carl Kesselman, editors, The Grid:
Blueprint for a New Computing Infrastructure, pages 479–
503. Morgan Kaufmann, 1999.

[GT92] R. A. Golding and K. Taylor. Group membership in the
epidemic style. Technical Report UCSC-CRL-92-13, Jack
Baskin School of Engineering, University of California, Santa
Cruz, 1992.

[GTJ
�

02] D. Gunter, B. Tierney, K. Jackson, J. Lee, and M. Stoufer.
Dynamic monitoring of high-performance distributed appli-
cations. In Proceedings of the Eleventh IEEE Interna-
tional Symposium on High-Performance Distributed Comput-
ing (HPDC-11), July 2002.

[Gue99] D. Guerrero. Caching the Web, part 1. Linux Journal, 57,
January 1999.

[GW97] A. S. Grimshaw and W. A. Wulf. The Legion vision of a
worldwide virtual computer. Communications of the ACM,
40(1):39–45, January 1997.

[GWvB
�

01] S. D. Gribble, M. Welsh, R. von Behren, E. A. Brewer,
D. Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill,
A. D. Joseph, R. H. Katz, Z. Mao, S. Ross, and B. Zhao.
The Ninja architecture for robust Internet-scale systems and
services. Special Issue of Computer Networks on Pervasive
Computing, 35(4):473–497, 2001.

[GWWL94] A. Grimshaw, J. Weissman, E. West, and E. Lyot. Metasys-
tems: An approach combining parallel processing and hetero-
geneous distributed computing systems. Journal of Parallel
and Distributed Computing, 21(3):257–270, 1994.

[GY93] A. Ghafoor and J. Yang. A distributed heterogeneous super-
computing management system. IEEE Computer, 26(6):78–
86, June 1993.

534 GRID RESOURCE MANAGEMENT

[Har98] S. Hartmann. A competitive genetic algorithm for resource-
constrained project scheduling. Naval Research Logistics, 45,
1998.

[Haw] Hawkeye: A monitoring and management tool for distributed
systems. http://www.cs.wisc.edu/condor/
hawkeye.

[HB99] M. Harchol-Balter. The effect of heavy-tailed job size distri-
butions on computer system design. In Proceedings of ASA-
IMS Conference on Applications of Heavy Tailed Distribu-
tions in Economics, Engineering and Statistics, 1999.

[HBD96] M. Harchol-Balter and A. Downey. Exploiting process life-
time distributions for dynamic load balancing. In Proceedings
of the 1996 ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems, 1996.

[HBM02] Phillip Hallam-Baker and Eve Maler. Assertions
and protocol for the OASIS Security Assertion
Markup Language (SAML). Technical Report cs-
sstc-core-01, OASIS, May 2002. Available from
http://www.oasis-open.org/committees/
security/docs/cs-sstc-core-01.pdf.

[Hen95] Robert L. Henderson. Job scheduling under the Portable
Batch System. In D. Feitelson and L. Rudolph, editors, Job
Scheduling Strategies for Parallel Processing (Proceedings of
the First International JSSPP Workshop; LNCS #949), pages
178–186. Springer-Verlag, 1995.

[HFB
�

99] J. Heinanen, T. Finland, F. Baker, W. Weiss, and J. Wro-
clawski. Assured forwarding PHB group. Technical Report
RFC 2597, Internet Engineering Task Force (IETF), 1999.

[HFPS02] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509
public key infrastructure certificate and certificate revocation
list (CRL) profile. Technical Report RFC 3280, Internet En-
gineering Task Force (IETF), 2002.

[HJM92] D. Heath, R. Jarrow, and A. Morton. Bond pricing and the
term structure of interest rates: A new methodology for con-
tingent claim valuation. Econometrica, 60, 1992.

[HKL
�

00] M. Hadida, Y. Kadobayashi, S. Lamont, H.W. Braun, B. Fink,
T. Hutton, A. Kamrath, H. Mori, and M.H. Ellisman. Ad-

REFERENCES 535

vanced networking for telemicroscopy. In Proceedings of the
Tenth Annual Internet Society Conference, 2000.

[HLM94] D. Hitz, J. Lau, and M. Malcolm. File system design for an
NFS file server appliance. In Proceedings of the USENIX
Winter 1994 Technical Conference, pages 235–246, 1994.

[Hol75] J. H. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, 1975.

[Hol01] K. Holtman. CMS requirements for the Grid. In Proceedings
of International Conference on Computing in High Energy
and Nuclear Physics (CHEP 2001), 2001.

[Hor01] P. Horn. The IBM vision for autonomic computing. Technical
report, IBM, 2001. Available from www.research.ibm.
com/autonomic/manifesto.

[Hot96] S. Hotovy. Workload evolution on the Cornell Theory Cen-
ter IBM SP2. In D. Feitelson and L. Rudolph, editors, Job
Scheduling Strategies for Parallel Processing (Proceedings
of the Second International JSSPP Workshop; LNCS #1162).
Springer-Verlag, 1996.

[How] Anthony C. Howe. Bandwidth and request throttling for
Apache 1.3. http://www.snert.com/Software/
Throttle.

[HPS] HPSS: High Performance Storage System. http://www.
sdsc.edu/hpss.

[HSSY00] V. Hamscher, U. Schwiegelshohn, A. Streit, and
R. Yahyapour. Evaluation of job-scheduling strategies
for Grid computing. In Proceedings of the Seventh In-
ternational Conference of High Performance Computing,
2000.

[Hul03] J. Hull. Options, Futures, & Other Derivatives. Prentice Hall,
Fifth edition, 2003.

[HvBD98] A. Hafid, G. von Bochmann, and R. Dssouli. A quality of
service negotiation approach with future reservations (NA-
FUR): a detailed study. Computer Networks and ISDN Sys-
tems, 30(8):777–794, 1998.

[IBM01] IBM. Using and administering LoadLeveler for AIX 5L.
Technical Report IBM Document #SA22-7881-00, IBM,

536 GRID RESOURCE MANAGEMENT

2001. Available from http://publibfp.boulder.
ibm.com/epubs/pdf/a2278810.pdf.

[ID01] Sitaram Iyer and Peter Druschel. Anticipatory scheduling:
A disk scheduling framework to overcome deceptive idleness
in synchronous I/O. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles (SOSP), Octo-
ber 2001.

[IEE94] IEEE. IEEE Standard for Information Technology, POSIX
1003.2D. IEEE, 1994.

[IG02] IBM and Globus. IBM and Globus announce Open Grid
Services for commercial computing, 2002. Available from
http://www.ibm.com/news/be/en/2002/02/
211.html.

[IM98] H. Ishibushi and T. Murata. A multi-objective genetic local
search algorithm and its application to flowshop scheduling.
IEEE Transactions on Systems, Man and Cybernetics, 28(3),
1998.

[IM02] IBM and Microsoft. Security in a Web services world: A
proposed architecture and roadmap: A joint white paper
from IBM Corporation and Microsoft Corporation, version
1.0. Technical report, MSDN, April 2002. Available from
http://msdn.microsoft.com/webservices/
default.aspx?pull=/library/en-us/
%dnwssecur/html/securitywhitepaper.asp.

[IMT96] H. Ishibushi, T. Murata, and H. Tanaka. Multi-objective ge-
netic algorithm and its application to flowshop scheduling.
Computer and Industrial Engineering, 30(4), 1996.

[IOP99] M. Iverson, F. Ozguner, and L. Potter. Statistical prediction
of task execution times through analytic benchmarking for
scheduling in a heterogeneous environment. In Proceedings
of the Heterogeneous Computing Workshop, 1999.

[IR03] A. Iamnitchi and M. Ripeanu. Myth and reality: Usage pat-
terns in a large data-intensive physics project. Technical Re-
port TR2003-4, GriPhyN, 2003.

[IRF02] A. Iamnitchi, M. Ripeanu, and I. Foster. Locating data in
(small-world?) peer-to-peer scientific collaborations. In Pro-
ceedings of the First International Workshop on Peer-to-Peer
Systems (IPTPS’02), 2002.

REFERENCES 537

[ISP] GGF Information Systems and Performance Area (ISP).
http://www.ggf.org/1_GIS/GIS.htm.

[iVD] iVDGL: International Virtual-Data Grid Laboratory. http:
//www.ivdgl.org.

[Jaca] Scott M. Jackson. Allocation management with Qbank.
http://www.emsl.pnl.gov:2080/docs/mscf/
Allocation_Management_with_QBank%.html.

[Jacb] Scott M. Jackson. Gold allocation manager specification
document. http://www.csm.ornl.gov/~geist/
cgi-bin/enote.cgi?nb=rmwg\&action=view\
&page=-3.

[Jac02] K. Jackson. pyGlobus: a Python interface to the Globus
toolkit. Concurrency and Computation: Practice and Experi-
ence, 14(13-15):1075–1084, 2002.

[Jac03a] David B. Jackson. Maui administrators guide.
http://supercluster.org/maui/docs/
mauiadmin.html, 2003.

[Jac03b] David B. Jackson. Silver administrators guide.
http://supercluster.org/silver/docs/
silveradmin.html, 2003.

[Jas98] A. Jaszkiewicz. Genetic local search for multiple objective
combinatorial optimisation. Technical Report Technical Re-
port RA014 /98, Institute of Computing Science, Poznan Uni-
versity of Technology, 1998.

[JGN99] William E. Johnston, Dennis Gannon, and Bill Nitzberg.
Grids as production computing environments: The engineer-
ing aspects of NASA’s Information Power Grid. In Proceed-
ings of the Eighth IEEE International Symposium on High-
Performance Distributed Computing (HPDC-8), 1999.

[JMR
�

01] J. Józefowska, M. Mika, R. Różycki, G. Waligóra, and
J. Węglarz. Simulated annealing for multi-mode resource-
constrained project scheduling problem. Annals of Opera-
tions Research, 102:137–155, 2001.

[Joh99] William Johnston. Realtime widely distributed instrumenta-
tion systems. In Ian Foster and Carl Kesselman, editors, The

538 GRID RESOURCE MANAGEMENT

Grid: Blueprint for a New Computing Infrastructure, chap-
ter 4, pages 75–103. Morgan Kaufmann, 1999.

[Jon96] James Patton Jones. The NASA Metacenter. In Proceed-
ings of the NASA High Performance Computing and Commu-
nications Program / Computational Aerosciences Workshop
(HPCCP/CAS), August 1996.

[Jon97a] James Patton Jones. Implementation of the NASA Metacen-
ter: Phase 1 report. Technical Report NAS-97-027, NASA
Ames Research Center, October 1997.

[Jon97b] James Patton Jones. PBS technology transfer to Department
of Defense sites. Technical Report NASA Ames Quarterly
Report, NASA Ames Research Center, October 1997.

[Jon98] James Patton Jones. Designing a metacenter: Recommen-
dations to DoD MSRC ASC and CEWES. Technical Re-
port Technology Transfer Whitepaper, NASA Ames Research
Center, March 1998.

[Jon03a] James Patton Jones, editor. PBS Pro 5.3 Administrator Guide.
Altair Grid Technologies, 2003.

[Jon03b] James Patton Jones, editor. PBS Pro 5.3 User Guide. Altair
Grid Technologies, 2003.

[JXT] JXTA. http://www.jxta.org/.

[Kar96] J. F. Karpovich. Support for object placement in wide area
distributed systems. Technical Report CS-96-03, University
of Virginia, 1996.

[KBC
�

00] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: An archi-
tecture for global-scale persistent storage. In Proceedings of
the Ninth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS 2000), 2000.

[KC00a] J. D. Knowles and D. W. Corne. A comparison of diverse ap-
proaches to memetic multiobjective combinatorial optimiza-
tion. In Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO-2000), Workshop On Memetic
Algorithms, July 2000.

REFERENCES 539

[KC00b] J. D. Knowles and D. W. Corne. M-PAES: A memetic algo-
rithm for multiobjective optimization. In Proceedings of the
2000 Congress on Evolutionary Computation CEC00, 2000.

[KC01] C. Kenyon and G. Cheliotis. Stochastic models for telecom
commodity prices. Computer Networks, 36(5-6), 2001.

[KC02a] C. Kenyon and G. Cheliotis. Architecture requirements
for commercializing Grid resources. In Proceedings of
the Eleventh IEEE International Symposium on High-
Performance Distributed Computing (HPDC-11), 2002.

[KC02b] C. Kenyon and G. Cheliotis. Forward price dynamics and
option prices for network commodities. In Proceedings of the
Bachelier Finance Society, Second World Congress, 2002.

[KC03] C. Kenyon and G. Cheliotis. Creating services with hard guar-
antees from cycle-harvesting systems. In Proceedings of the
Third IEEE Symposium on Cluster Computing and the Grid
(CCGrid’03), pages 224–231, 2003.

[KCWB02] D. Kondo, H. Casanova, E. Wing, and F. Berman. Models and
scheduling mechanisms for global computing applications.
In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), April 2002.

[KDB02] S. Kumar, S. K. Das, and R. Biswas. Graph partitioning for
parallel applications in heterogeneous Grid environments. In
Proceedings of International Parallel and Distributed Pro-
cessing Symposium (IPDPS), 2002.

[Kel63] J. E. Kelley. The critical path method: Resource planning
and scheduling. In J. F. Muth and G. L. Thompson, editors,
Industrial Scheduling, pages 347–365. Prentice-Hall, 1963.

[KFB99] N. Kapadia, J. Fortes, and C. Brodley. Predictive application
performance modeling in a computational Grid environment.
In Proceedings of the Eighth IEEE International Sympo-
sium on High-Performance Distributed Computing (HPDC-
8), 1999.

[KGJV83] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimiza-
tion by simulated annealing. Science, 220, 1983.

[KHDC01] O. Kornievskaia, P. Honeyman, B. Doster, and K. Coffman.
Kerberized credential translation: A solution to Web access

540 GRID RESOURCE MANAGEMENT

control. Technical Report 01-5, Center for Information Tech-
nology Integration, University of Michigan, 2001. Also avail-
able from http://downloads.securityfocus.
com/library/citi-tr-01-5.pdf.

[Kin92] B. A. Kingsbury. The Network Queueing System (NQS).
Technical report, Sterling Software, 1992.

[KKL
�

02] A. Keller, G. Kar, H. Ludwig, A. Dan, and J. L. Hellerstein.
Managing dynamic services: A contract based approach to
a conceptual architecture. In Proceedings of 8th IEEE/IFIP
Network Operations and Management Symposium (NOMS
2002), April 2002.

[KL01] J. Keppo and J. Lassia. Pricing options. Telecoms Capacity,
1(4), 2001.

[Kle86] S. Kleiman. Vnodes: An architecture for multiple file system
types in Sun UNIX. In Proceedings of USENIX, pages 151–
163, 1986.

[Kle99] P. Klemperer. Auction theory: A guide to the literature. Jour-
nal of Economic Surveys, 13(3), 1999.

[Kle00] J. Kleinberg. The small-worlds phenomenon: an algorithmic
perspective. In Proceedings of the Thirty-Second ACM Sym-
posium on Theory of Computing, 2000.

[KM03] K. Keahey and K. Motawi. Taming of the Grid: Virtual appli-
cation services. Technical report, Argonne National Labora-
tory, Mathematics and Computer Science Division Technical
Memorandum ANL/MCS-TM-262, 2003.

[KMC
�

00] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The Click modular router. ACM Trans-
actions on Computer Systems, 18(3):263–297, August 2000.

[KMMC
�

02] K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper,
L. Torczon, F. Berman, A. Chien, H. Dail, O. Sievert, D. An-
gulo, I. Foster, R. Aydt, D. Reed, D. Gannon, J. Dongarra,
S. Vadhiyar, L. Johnsson, C. Kesselman, and R. Wolski. To-
ward a framework for preparing and executing adaptive Grid
programs. In Proceedings of NSF Next Generation Systems
Program Workshop, International Parallel and Distributed
Processing Symposium, 2002.

REFERENCES 541

[KNP00] K. Kurowski, J. Nabrzyski, and J. Pukacki. Predicting job
execution times in the Grid. In Proceedings of the SGI Users
Conference, October 2000.

[KNP01] K. Kurowski, J. Nabrzyski, and J. Pukacki. User preference
driven multiobjective resource management in Grid environ-
ments. In Proceedings of the First IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGrid’01), May
2001.

[Kol95] R. Kolisch. Project scheduling under resource constraints -
efficient heuristics for several problem classes. Physica, 1995.

[KP00] S. Kutten and D. Peleg. Deterministic distributed re-
source discovery. In Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Distributed Computing
(PODC’02), 2000.

[KPF04] C. Kesselman, T. Prudhomme, and I. Foster. Distributed
telepresence: The NEESgrid earthquake engineering collab-
oratory. In Ian Foster and Carl Kesselman, editors, The Grid:
Blueprint for a New Computing Infrastructure (Second Edi-
tion). Morgan Kaufmann, 2004.

[Kri02] V. Krishna. Auction Theory. Academic Press, 2002.

[KSW02] P. Keyani, N. Sample, and G. Wiederhold. Scheduling under
uncertainty: Planning for the ubiquitous Grid. In Proceedings
of the Fifth International Conference on Coordination Models
and Languages (COORD’02), 2002.

[KSY99] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour. On
the design and evaluation of job scheduling systems. In
D. Feitelson and L. Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing (Proceedings of the Fifth In-
ternational JSSPP Workshop; LNCS #1659), pages 17–42.
Springer-Verlag, 1999.

[KTF03] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-
enabled implementation of the message passing interface.
Journal of Parallel and Distributed Computing, to appear,
2003.

[KTN
�

03] Gaj Kris, El-Ghazawi Tarek, Alexandridis Nikitas, Vroman
Frederic, Jacek R. Radzikowski, Preeyapong Samipagdi, and

542 GRID RESOURCE MANAGEMENT

Suboh A. Suboh. An empirical comparative study of job man-
agement systems. Concurrency: Practice and Experience, to
appear, 2003.

[KW02] K. Keahey and V. Welch. Fine-grain authorization for re-
source management in the Grid environment. In Proceed-
ings of the Third International Workshop on Grid Computing
(Grid2002), 2002.

[LAP] Liberty Alliance Project. http://www.
projectliberty.org/.

[LB98] O. Lee and S. Benford. An explorative approach to federated
trading. Computer Communications, 21(2), 1998.

[LB01] K. Lai and M. Baker. Nettimer: A tool for measuring bottle-
neck link bandwidth. In Proceedings of the Third USENIX
Symposium on Internet Technologies and Systems, 2001.

[LBS
�

98] J. P. Loyall, D. E. Bakken, R. E. Schantz, J. A. Zinky, D. A.
Karr, R. Vanegas, and K. R. Anderson. QoS aspect languages
and their runtime integration. In Proceedings of the Fourth
Workshop on Languages, Compilers, and Run-time Systems
for Scalable Computers (LCR’98) (LNCS #1511). Springer-
Verlag, 1998.

[LCC
�

02] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. In Proceed-
ings of the Sixth Annual ACM International Conference on
Supercomputing (ICS), 2002.

[LDM
�

01] K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, and
T. Spencer. End-user tools for application performance anal-
ysis using hardware counters. In Proceedings of the Inter-
national Conference on Parallel and Distributed Computing
Systems, August 2001.

[LF03] C. Liu and I. Foster. A constraint language approach to Grid
resource selection. Technical Report TR-2003-07, Computer
Science Department, The University of Chicago, 2003.

[LFH
�

03] M. J. Lewis, A. J. Ferrari, M. A. Humphrey, J. F. Karpovich,
M. M. Morgan, A. Natrajan, A. Nguyen-Tuong, G. S. Was-
son, and A. S. Grimshaw. Support for extensibility and site
autonomy in the Legion Grid system object model. Journal
of Parallel and Distributed Computing, to appear, 2003.

REFERENCES 543

[Lif96] D. A. Lifka. The ANL/IBM SP scheduling system. In D. Fei-
telson and L. Rudolph, editors, Job Scheduling Strategies for
Parallel Processing (Proceedings of the First International
JSSPP Workshop; LNCS #949). Springer-Verlag, 1996.

[LIG] LIGO: The Laser Interferometer Gravitational-wave Obser-
vatory. http://www.ligo.caltech.edu.

[LIT92] P. Langley, W. Iba, and K. Thompson. An analysis of
Bayesian classifiers. In Proceedings of AAAI-92, 1992.

[LJD
�

99] Jason Leigh, Andrew E. Johnson, Thomas A. DeFanti, Max-
ine Brown, Mohammed Dastagir Ali, Stuart Bailey, Andy
Banerjee, Pat Banerjee, Jim Chen, Kevin Curry, Jim Cur-
tis, Fred Dech, Brian Dodds, Ian Foster, Sarah Fraser, Kartik
Ganeshan, Dennis Glen, Robert Grossman, Randy Heiland,
John Hicks, Alan D. Hudson, Tomoko Imai, Mohammed Ali
Khan, Abhinav Kapoor, Robert V. Kenyon, John Kelso, Ron
Kriz, Cathy Lascara, Xiaoyan Liu, Yalu Lin, Theodore Ma-
son, Alan Millman, Kukimoto Nobuyuki, Kyoung Park, Bill
Parod, Paul J. Rajlich, Mary Rasmussen, Maggie Rawlings,
Daniel H. Robertson, Samroeng Thongrong, Robert J. Stein,
Kent Swartz1, Steve Tuecke, Harlan Wallach, Hong Yee
Wong, and Glen H. Wheless. A review of tele-immersive col-
laboration in the CAVE research network. In Proceedings of
IEEE VR99, 1999.

[LL90] M. Litzkow and M. Livny. Experience with the Condor dis-
tributed batch system. In Proceedings of the IEEE Workshop
on Experimental Distributed Systems, 1990.

[LLM88] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - a hunter
of idle workstations. In Proceedings of the 8th International
Conference on Distributed Computing Systems, pages 104–
111, 1988.

[LM86] Richard J. Larsen and Morris L. Marx. An Introduction to
Mathematical Statistics and Its Applications. Prentice-Hall,
1986.

[LMC03] A. Legrand, L. Marchal, and H. Casanova. Scheduling dis-
tributed applications: The SimGrid simulation framework. In
Proceedings of the Third IEEE International Symposium on
Cluster Computing and the Grid (CCGrid’03), 2003.

544 GRID RESOURCE MANAGEMENT

[LMN94] C. Lai, G. Medvinsky, and B. C. Neuman. Endorsements, li-
censing, and insurance for distributed system services. In Pro-
ceedings of the Second ACM Conference on Computer and
Communication Security, 1994.

[LN00] B. Li and K. Nahrstedt. QualProbes: Middleware QoS pro-
filing services for configuring adaptive applications. In Pro-
ceedings of the IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middle-
ware 2000), 2000.

[Loh02] Steve Lohr. Supercomputing and business move closer. New
York Times Business/Financial Desk, February 19, 2002.

[LP] lp solve. ftp.es.ele.tue.nl/pub/lp_solve.

[LR01] Larry Lancaster and Alan Rowe. Measuring real world data
availability. In Proceedings of the LISA 2001 Fifteenth Sys-
tems Administration Conference, pages 93–100, 2001.

[LRM96] C. Lee, R. Rajkumar, and C. Mercer. Experiences with pro-
cessor reservation and dynamic QoS in Real-Time Mach. In
Proceedings of Multimedia Japan, 1996.

[LS92] Michael Litzkow and Marvin Solomon. Supporting check-
pointing and process migration outside the UNIX kernel. In
Proceedings of USENIX, January 1992.

[LSF] Platform computing technical documentation for Plat-
form LSF. http://www.platform.com/services/
support/docs/LSFDoc51.asp.

[Lum01] I. Lumb. Linux clustering for high-performance computing.
In Proceedings of USENIX, August 2001. Also available
from http://www.usenix.org/publications/
login/2001-08/pdfs/lumb.pdf.

[LW04] David Levine and Mark Wirt. Interactivity with scalabil-
ity: Infrastructure for multiplayer games. In Ian Foster and
Carl Kesselman, editors, The Grid: Blueprint for a New Com-
puting Infrastructure (Second Edition). Morgan Kaufmann,
2004.

[LWW03] David Levine, Mark Wirt, and Barry Whitebook. Practical
Grid Computing for Massively Multiplayer Games. Charles
River Media, 2003.

REFERENCES 545

[LYFA02] C. Liu, L. Yang, I. Foster, and D. Angulo. Design and evalua-
tion of a resource selection framework for Grid applications.
In Proceedings of the Eleventh IEEE International Sympo-
sium on High-Performance Distributed Computing (HPDC-
11), 2002.

[MAR] DTI e-Science Core Technology Programme Computa-
tional Markets project. http://www.lesc.ic.ac.uk/
markets/.

[Mau] Maui scheduler. http://www.supercluster.org/
maui.

[MBHJ98] D. Marinescu, L. Boloni, R. Hao, and K. Jun. An alternative
model for scheduling on a computational Grid. In Proceed-
ings of the Thirteenth International Symposium on Computer
and Information Sciences (ISCIS’98), pages 473–480, 1998.

[MDS] Globus Monitoring and Discovery System (MDS2). http:
//www.globus.org/mds.

[Mes99] Paul Messina. Distributed supercomputing applications. In
The Grid: Blueprint for a New Computing Infrastructure,
pages 55–73. Morgan Kaufmann, 1999.

[MFGH88] T. W. Malone, R. E. Fikes, K. R. Grant, and M. T. Howard.
Enterprise: A market-like task scheduler for distributed com-
puting environments. In B. Huberman, editor, The Ecology of
Computation: Volume 2 of Studies in Computer Science and
Artificial Intelligence, pages 177–255. Elsevier Science Pub-
lishers, 1988.

[Mic92] Z. Michalewicz. Genetic Algorithms + Data Structures =
Evolution Programs. Springer Verlag, 1992.

[MIS96] A. Mehra, A. Indiresan, and K. Shin. Structuring communica-
tion software for quality-of-service guarantees. In Proceed-
ings of Seventeenth Real-Time Systems Symposium, Decem-
ber 1996.

[MLH95] Shikharesh Majumdar, Johannes Lüthi, and Günter Haring.
Histogram-based performance analysis for computer systems
with variabilities or uncertainties in workload. Technical Re-
port SCE-95-22, Department of Systems and Computer En-
gineering, Carleton University, Ottawa, Canada, November
1995.

546 GRID RESOURCE MANAGEMENT

[MMCS
�

01] M. Mazina, J. Mellor-Crummey, O. Sievert, H. Dail,
and G. Obertelli. GrADSoft: A program-level ap-
proach to using the Grid. Technical Report GrADS
Working Document 3, GrADS, March 2001. Available
from http://hipersoft.cs.rice.edu/grads/
publications_reports.htm.

[MNO
�

96] C. Martin, P. S. Narayan, B. Ozden, R. Rastogi, and A. Sil-
berschatz. The Fellini multimedia storage server. In S. M.
Chung, editor, Multimedia Information Storage and Manage-
ment. Kluwer Academic Publishers, 1996.

[MNSS87] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer.
Kerberos authentication and authorization system, section
e.2.1. Technical Report Project Athena Technical Plan, MIT,
1987.

[Moc87] P. Mockapetris. Domain names–concepts and facilities. Tech-
nical Report RFC 1034, Internet Engineering Task Force
(IETF), 1987.

[MOJ] MojoNation. http://www.mojonation.net.

[MOP] MOP: A system for monte carlo distributed produc-
tion. http://www.ppdg.net/pa/ppdg-pa/mop/
mop.pdf.

[MRR
�

53] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and
E. Teller. Equation of state calculations by fast computing
machines. Journal of Chemical Physics, 21, 1953.

[MSH
�

01] K. Myers, S. Smith, D. Hildum, P. Jarvis, and R. de Lacaze.
Integrating planning and scheduling through adaptation of re-
source intensity estimates. In Proceedings of the Sixth Euro-
pean Conference on Planning (ECP-01), 2001.

[Nab99] Jarek Nabrzyski. Knowledge-based schedul-
ing method for Globus. In Proceedings of the
1999 Globus Retreat, 1999. Also available from
http://www.man.poznan.pl/metacomputing/
ai-meta/globusnew/index.htm.

[Nab00] J. Nabrzyski. User Preference Driven Expert System for Solv-
ing Multiobjective Project Scheduling Problems. PhD thesis,
Poznan University of Technology, 2000.

REFERENCES 547

[Nap] Napster. http://www.napster.com.

[NBBB98] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the
differentiated services field (DS field) in the IPv4 and IPv6
headers. Technical Report RFC 2474, Internet Engineering
Task Force (IETF), 1998.

[NC01] K. Nichols and B. Carpenter. Definition of differentiated ser-
vices per-domain behaviors and rules for their specification.
Technical Report RFC 3086, Internet Engineering Task Force
(IETF), 2001.

[NCN98] K. Nahrstedt, H. Chu, and S. Narayan. QoS-aware resource
management for distributed multimedia applications. Jour-
nal on High-Speed Networking, Special Issue on Multimedia
Networking, 8(3-4):227–255, December 1998.

[NCWD
�

01] A. Natrajan, M. Crowley, N. Wilkins-Diehr, M. A. Humphrey,
A. D. Fox, A. S. Grimshaw, and C. L. Brooks III. Studying
protein folding on the Grid: Experiences using CHARMM
on NPACI resources under Legion. In Proceedings of the
Tenth IEEE International Symposium on High-Performance
Distributed Computing (HPDC-10), August 2001.

[Neg94] M. D. Negra. CMS collaboration. Technical Report LHCC
94-38, CERN, 1994.

[NeS] NeST storage appliance. http://www.cs.wisc.edu/
condor/nest.

[NHG02] A. Natrajan, M. A. Humphrey, and A. S. Grimshaw. The Le-
gion support for advanced parameter-space studies on a Grid.
Future Generation Computer Systems, 18(8):1033–1052, Oc-
tober 2002.

[NI01] K. Nonobe and T. Ibaraki. Formulation and tabu search al-
gorithm for the resource constrained project scheduling prob-
lem. In P. Hansen and C. Ribeiro, editors, Essays and Surveys
in Metaheuristics. Kluwer Academic Publishers, 2001.

[Nov02] J. Novotny. The Grid Portal Development Kit. Concurrency
and Computation: Practice and Experience, 14(13-15):1145–
1160, 2002.

[NRW03] J. Novotny, M. Russell, and O. Wehrens. GridSphere: A portal
framework for building collaborations. In Proceedings of The

548 GRID RESOURCE MANAGEMENT

First International Workshop on Middleware for Grid Com-
puting, 2003.

[NS78] R. Needham and M. Schroeder. Using encryption for authen-
tication in large networks of computers. Communications of
the ACM, 21(12), December 1978.

[NS96] K. Nahrstedt and J. M. Smith. Design, implementation and
experiences of the OMEGA end-point architecture. IEEE
Journal on Selected Areas in Communications (JSAC), Spe-
cial Issue on Distributed Multimedia Systems and Technol-
ogy, 14(7):1263–1279, September 1996.

[NSZ02] K. Neumann, C. Schwindt, and J. Zimmermann. Project
Scheduling with Time Windows and Scarce Resources.
Springer, 2002.

[OAS] OASIS. http://www.oasis-open.org.

[OGSa] GGF Open Grid Services Architecture Working Group
(OGSA-WG). http://www.ggf.org/ogsa-wg/.

[OGSb] Open Grid Services Architecture Database Access and In-
tegration (OGSA-DAI). http://umbriel.dcs.gla.
ac.uk/NeSC/general/projects/OGSA_DAI/.

[OGSc] GGF Open Grid Service Interface Working Group (OGSI-
WG). http://www.gridforum.org/ogsi-wg/.

[OK96] I. H. Osman and J. P. Kelly. Metaheuristics: Theory and Ap-
plications. Kluwer Academic Publishers, 1996.

[OOS02] Ekow J. Otoo, Frank Olken, and Arie Shoshani. Disk cache
replacement algorithm for storage resource managers in data
Grids. In Proceedings of SuperComputing (SC’02), 2002.

[Ope02] OASIS Open. Oasis extensible access control markup lan-
guage (XACML). Technical report, OASIS, December
2002. Available from http://www.oasis-open.org/
committees/download.php/1642/oasis.

[Ora01] A. Oram, editor. Peer-to-Peer. Harnessing the Power of Dis-
ruptive Technologies. O’Reilly & Associates, 2001.

[PAD
�

02] Norman W Paton, Malcolm P Atkinson, Vijay Dialani,
Dave Pearson, Tony Storey, and Paul Watson. Data-
base access and integration services on the Grid. Tech-

REFERENCES 549

nical report, U.K. National eScience Center, 2002. Avail-
able from http://umbriel.dcs.gla.ac.uk/Nesc/
general/technical_papers/dbtf.pdf.

[Para] The Parabon distributed frontier distributed computing sys-
tem. http://www.parabon.com.

[PARb] Parsec: Parallel simulation environment for complex systems.
http://pcl.cs.ucla.edu/projects/parsec.

[PAS] Microsoft .net Passport. http://www.passport.net/
Consumer/.

[Pat02] David A. Patterson. Availability and maintainability
(x(

per-
formance: New focus for a new century. Key Note Lecture at
the First USENIX Conference on File and Storage Technolo-
gies (FAST ’02), January 2002.

[Paw82] Z. Pawlak. Rough sets. International Journal of Information
& Computer Sciences, 11, 1982.

[PBB
�

01] J. Plank, A. Bassi, M. Beck, T. Moore, M. Swany, and R. Wol-
ski. Managing data storage in the network. IEEE Internet
Computing, 5(5), September/October 2001.

[PBD
�

01] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg,
K. Roche, and S. Vadhiyar. Numerical libraries and the Grid.
In Proceedings of SuperComputing (SC’01), 2001.

[PBS] PBS: The Portable Batch System. http://www.
openpbs.org/.

[PDZ99] V. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient
and portable Web server. In Proceedings of the USENIX Tech-
nical Conference, 1999.

[PF02] S. R. Ponnekanti and A. Fox. SWORD: A developer toolkit
for building composite Web services. In Proceedings of the
Eleventh World Wide Web Conference, 2002.

[PFS] The Pluggable File System. http://www.cs.wisc.
edu/condor/pfs.

[PG] Platform Globus. http://www.platform.com/
products/globus/index.asp.

[Pil98] D. Pilipović. Energy Risk: Valuing and Managing Energy
Derivatives. McGraw-Hill, 1998.

550 GRID RESOURCE MANAGEMENT

[PKF
�

01] T. Prudhomme, C. Kesselman, T. Finholt, I. Foster, D. Par-
sons, D. Abrams, J.-P. Bardet, R. Pennington, J. Towns,
R. Butler, J. Futrelle, N. Zaluzec, and J. Hardin. NEESgrid:
A distributed virtual laboratory for advanced earthquake
experimentation and simulation: Scoping study. Techni-
cal report, NEESgrid, Technical Report, 2001. Available
from http://www.neesgrid.org/documents/
NEESgrid_TR.2001-01.pdf.

[pki] IETF public-key infrastructure (X.509) (pkix) working
group. http://www.ietf.org/html.charters/
pkix-charter.html.

[PL88] W. R. Pearson and D. J. Lipman. Improved tools for bio-
logical sequence comparison. In Proceedings of the National
Academy of Sciences of the United States of America, 1988.

[PL95] J. Pruyne and M. Livny. Parallel processing on dynamic re-
sources with CARMI. In D. Feitelson and L. Rudolph, edi-
tors, Job Scheduling Strategies for Parallel Processing (Pro-
ceedings of the First International JSSPP Workshop; LNCS
#949). Springer-Verlag, 1995.

[Pla] Platform Computing. The Platform ActiveCluster desk-
top computing system. http://www.platform.com/
products/wm/ActiveCluster/.

[PLL
�

03] S. T. Peltier, A. W. Lin, D. Lee, S. Mock, S. Lamont,
T. Molina, M. Wong, L. Dai, M. E. Martone, and M. H. El-
lisman. The telescience portal for tomography applications.
Journal of Parallel and Distributed Computing, 2003.

[PPD] PPDG: Particle Physics Data Grid. http://www.ppdg.
net.

[PR85] J. Postel and J. Reynolds. File transfer protocol (FTP).
Technical Report RFC 959, Internet Engineering Task Force
(IETF), October 1985.

[PRR97] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed environ-
ment. In Proceedings of the ACM Symposium on Parallel
Algorithms and Architectures (SPAA), 1997.

[PRY99] Carmen Pancerella, Larry Rahn, and Christine Yang. The
diesel combustion collaboratory: Combustion researchers

REFERENCES 551

collaborating over the Internet. In Proceedings of SuperCom-
puting (SC’99), 1999.

[PU00] D. Parkes and L. Ungar. Iterative combinatorial auctions:
Theory and practice. In Proceedings of the 17th National
Conference on Artificial Intelligence, (AAAI-00), 2000.

[PWF
�

02] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and
S. Tuecke. A community authorization service for group col-
laboration. In Proceedings of the IEEE Third International
Workshop on Policies for Distributed Systems and Networks,
2002.

[pyG] Python GMA. http://sourceforge.net/
projects/py-gma/.

[Qba] Qbank: A CPU Allocations Bank. http://www.emsl.
pnl.gov:2080/capabs/mscf/?/capabs/mscf/
software/listjob%mgt_qbank.html.

[Qui86] J. R. Quinlan. Induction of decision trees. Machine Learning,
pages 81–106, 1986.

[RA99] M. Rabinovich and A. Aggarwal. RaDaR: A scalable archi-
tecture for a global Web hosting service. In Proceedings of
the Eighth International World Wide Web Conference, 1999.

[RAD
�

02] M. Russell, G. Allen, G. Daues, I. Foster, E. Seidel,
J. Novotny, J. Shalf, and G. von Laszewski. The astrophysics
simulation collaboratory: A science portal enabling commu-
nity software development. Cluster Computing, 5(3):297–
304, 2002.

[Ram00] R. Raman. Matchmaking Frameworks for Distributed Re-
source Management. PhD thesis, University of Wisconsin-
Madison, 2000.

[RD01] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. In Proceedings of Middleware ’01, 2001.

[Reb96] R. Rebonato. Interest Rate Option Models. John Wiley &
Sons, 1996.

[Ree93] C. R. Reeves, editor. Modern Heuristic Techniques for Com-
binatorial Problems. Blackwell Scientific Publications, 1993.

552 GRID RESOURCE MANAGEMENT

[RF01] K. Ranganathan and I. Foster. Identifying dynamic replica-
tion strategies for a high-performance Data Grid. In Proceed-
ings of the Second International Workshop on Grid Comput-
ing (Grid2001), 2001.

[RF02] K. Ranganathan and I. Foster. Decoupling computation and
data scheduling in distributed data intensive applications. In
Proceedings of the Eleventh IEEE International Symposium
on High-Performance Distributed Computing (HPDC-11),
2002.

[RF03] K. Ranganathan and I. Foster. Simulation studies of compu-
tation and data scheduling algorithms for DataGrids. Journal
of Grid Computing, to appear, 2003.

[RFH
�

01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In Pro-
ceedings of SIGCOMM 2001, 2001.

[RFI02] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the
Gnutella network: Properties of large-scale peer-to-peer sys-
tems and implications for system design. Internet Computing,
6, 2002.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
representations by back propagating errors. Nature, 323:533–
536, 1986.

[RIF01a] M. Ripeanu, A. Iamnitchi, and I. Foster. Cactus application:
Performance predictions in a Grid environment. In Proceed-
ings of European Conference on Parallel Computing (Eu-
roPar), 2001.

[RIF01b] M. Ripeanu, A. Iamnitchi, and I. Foster. Performance predic-
tions for a numerical relativity package in Grid environments.
International Journal of High Performance Computing Appli-
cations, 15(4):375–387, 2001.

[RIK] RIKEN Institute of Physical and Chemical Research, Compu-
tational Science Division. http://atlas.riken.go.
jp/en/index.html.

[Riv92] R. Rivest. The MD5 message-digest algorithm. Technical
Report RFC 1321, Internet Engineering Task Force (IETF),
April 1992.

REFERENCES 553

[RK03] B. Raman and R. H. Katz. An architecture for highly available
wide-area service composition. Computer Communications
Journal, special issue on Recent Advances in Communication
Networking, May 2003.

[RLS98] R. Raman, M. Livny, and M. Solomon. Matchmaking: Dis-
tributed resource management for high throughput comput-
ing. In Proceedings of the Seventh IEEE International Sympo-
sium on High-Performance Distributed Computing (HPDC-
7), 1998.

[RLS99] R. Raman, M. Livny, and M. Solomon. Matchmaking: An
extensible framework for distributed resource management.
Cluster Computing, 2(2), 1999.

[RLS03] R. Raman, M. Livny, and M. Solomon. Policy driven het-
erogeneous resource co-allocation with gang matching. In
Proceedings of the Twelfth IEEE International Symposium on
High Performance Distributed Computing (HPDC-12), June
2003.

[RN98] O. Regev and N. Nisan. The Popcorn market online mar-
kets for computational resources. In Proceedings of the First
International Conference On Information and Computation
Economies, 1998.

[RN99] T. Ryutov and C. Neuman. Generic authorization and ac-
cess control application program interface c-bindings. Tech-
nical report, Internet Engineering Task Force (IETF), 1999.
Available from http://www.globecom.net/ietf/
draft/draft-ietf-cat-gaa-cbind-01.html.

[Roy01] A Roy. End-to-End Quality of Service for High-End Applica-
tions. PhD thesis, The University of Chicago, 2001.

[RS96] V. J. Rayward-Smith, editor. Modern Heuristics Search Meth-
ods. John Wiley & Sons Ltd, 1996.

[RS02] A. Roy and V. Sander. Advance Reservation API. Technical
Report GFD-E.5, Global Grid Forum (GGF), 2002.

[RTF
�

01] E. Rosen, D. Tappan, G. Fedorkow, Y. Rokhter, D. Farinacci,
T. Li, and A. Conta. MPLS label stack encoding. Technical
Report RFC 3032, Internet Engineering Task Force (IETF),
2001.

554 GRID RESOURCE MANAGEMENT

[RUS] GGF Resource Usage Service Working Group (RUS-WG).
http://www.gridforum.org/3_SRM/rus.htm.

[RVC01] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label
switching architecture. Technical Report RFC 3031, Internet
Engineering Task Force (IETF), 2001.

[RVSR98] R. L. Ribler, J. S. Vetter, H. Simitci, and D. A. Reed. Autopi-
lot: Adaptive control of distributed applications. In Proceed-
ings of the Seventh IEEE International Symposium on High-
Performance Distributed Computing (HPDC-7), 1998.

[SAFR01] V. Sander, W. Adamson, I. Foster, and A. Roy. End-to-end
provision of policy information for network QoS. In Proceed-
ings of the Tenth IEEE International Symposium on High-
Performance Distributed Computing (HPDC-10), 2001.

[San99] Thomas W. Sandholm. Distributed rational decision making.
In Gerhard Weiss, editor, Multiagent Systems: A Modern Ap-
proach to Distributed Artificial Intelligence, pages 201–258.
MIT Press, 1999.

[San02] T. Sandholm. Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence, 135, 2002.

[San03] V. Sander. Design and evaluation of a bandwidth broker
that provides network quality of service for Grid applica-
tions. Technical Report Volume 16 of NIC-series, ISBN 3-00-
010002-4, John von Neumann Institute for Computing, 2003.

[SAWP95] I. Stoica, H. Abdel-Wahab, and A. Pothen. A microeco-
nomic scheduler for parallel computers. In D. Feitelson
and L. Rudolph, editors, Job Scheduling Strategies for Paral-
lel Processing (Proceedings of the First International JSSPP
Workshop; LNCS #949). Springer-Verlag, 1995.

[SB98] J. Schopf and F. Berman. Performance prediction in pro-
duction environments. In Proceedings of Fourteenth Inter-
national Parallel Processing Symposium and the Ninth Sym-
posium on Parallel and Distributed Processing, 1998.

[SB99] J. Schopf and F. Berman. Stochastic scheduling. In Proceed-
ings of SuperComputing (SC’99), 1999.

[SC03] O. Sievert and H. Casanova. A simple MPI process swapping
architecture for iterative applications. International Jour-

REFERENCES 555

nal of High Performance Computing Applications, to appear,
2003.

[Sch97] J. Schopf. Structural prediction models for high performance
distributed applications. In Proceedings of the 1997 Cluster
Computing Conference, 1997.

[Sch99] Jennifer M. Schopf. A practical methodology for defining
histograms in predictions. In Proceedings of ParCo ’99, 1999.

[SD03] GGF Scheduling Disctionary Working Group (SD-WG).
http://www.fz-juelich.de/zam/RD/coop/
ggf/sd-wg.html, 2003.

[SDK
�

94] M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pfef-
fer, A. Sah, and C. Staelin. An economic paradigm for query
processing and data migration in mariposa. In Proceedings of
Third International Conference on Parallel and Distributed
Information Systems, 1994.

[SET] SETI@home: The Search for Extraterrestrial Intelligence.
http://setiathome.berkeley.edu.

[SF02] V. Sander and M. Fidler. A pragmatic approach for service
provisioning based on a small set of per-hop behaviors. In
Proceedings of IEEE International Conference on Computer
Communications and Networks (ICCCN), 2002.

[SFRW00] V. Sander, I. Foster, A. Roy, and L. Winkler. A differentiated
services implementation for high-performance TCP flows.
The International Journal of Computer and Telecommunica-
tions Networking, 34, 2000.

[SFT98] W. Smith, I. Foster, and V. Taylor. Predicting application
run times using historical information. In D. Feitelson and
L. Rudolph, editors, Job Scheduling Strategies for Parallel
Processing (Proceedings of the Fourth International JSSPP
Workshop; LNCS #1459). Springer-Verlag, 1998.

[SFT02] W. Smith, I. Foster, and V. Taylor. Scheduling with advanced
reservations. In Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS), May 2002.

[SG01] Alexander Szalay and Jim Gray. The world-wide telescope.
Science, 293:2037–2040, 2001.

556 GRID RESOURCE MANAGEMENT

[SG04] A. Szalay and J. Gray. Scientific data federation: The world
wide telescope. In Ian Foster and Carl Kesselman, edi-
tors, The Grid: Blueprint for a New Computing Infrastructure
(Second Edition). Morgan Kaufmann, 2004.

[SGE] Sun Grid Engine. http://wwws.sun.com/
software/gridware.

[SGG02] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-
ment study of peer-to-peer file sharing systems. In Proceed-
ings of SPIE Multimedia Computing and Networking 2002
(MMCN’02), 2002.

[SGM02] R. Slowinski, S. Greco, and B. Matarazzo. Axiomatization
of utility, outranking and decision-rule preference models for
multiple-criteria classification problems under partial incosis-
tency with the dominance principle. Control and Cybernetics,
31(4), 2002.

[Sha99] Richard Sharpe. Just what is SMB? samba.org/cifs/
docs/what-is-smb.html, 1999.

[Shi00] C. Shirky. What is P2P...and what isn’t? http:
//www.openp2p.com/pub/a/p2p/2000/11/
24/shirky1-whatisp2p.html, 2000.

[SHK95] B. A. Shirazi, A. R. Husson, and K. M. Kavi. Scheduling and
Load Balancing in Parallel and Distributed Systems. IEEE
Computer Society Press, 1995.

[SIF03] V. Sander, F. Imhoff, and M. Fidler. Path Allocation
in Backbone Networks Project. http://www.pab.
rwth-aachen.de, 2003.

[Sil] Silver scheduler. http://www.supercluster.org/
silver.

[SK01] Y. Saito and C. Karamanolis. Autonomous and decentralized
replication in the Pangaea planetary-scale file service. Tech-
nical report, HP, HPL-TR-2001-323, 2001.

[SKT
�

00] A. S. Szalay, P. Z. Kunszt, A. Thakar, J. Gray, D. Slutz, and
R. J. Brunner. Designing and mining multi-terabyte astron-
omy archives: the Sloan Digital Sky Survey. In Proceedings
of ACM SIGMOD, pages 451–462, 2000.

REFERENCES 557

[SL94] S. F. Smith and O. Lassila. Toward the development of mixed-
initiative scheduling systems. In Proceedings of the ARPA-
Rome Laboratory Planning Initiative Workshop, 1994.

[SLJ
�

00] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang,
K. Taura, and A. Chien. The MicroGrid: A scientific tool
for modeling computational Grids. In Proceedings of Super-
Computing (SC’00), 2000.

[SM00] J. Schneider and A. Moore. A locally weighted learning tu-
torial using Vizier 1.0. Technical report, CMU-RI-TR-00-18,
Robitics Institute, Carnegie Mellon University, 2000.

[Smi99] W. Smith. Resource Management in Metacomputing Environ-
ments. PhD thesis, Northwestern University, 1999.

[Smi01] W. Smith. A framework for control and observation in dis-
tributed environments. Technical Report NAS-01-006, NAS
NASA Ames, June 2001.

[SMK
�

01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
Internet applications. In Proceedings of ACM SIGCOMM
2001, 2001.

[SMZ03] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient con-
tent location using interest-based locality in peer-to-peer sys-
tems. In Proceeding of INFOCOM, 2003.

[SN02] Jennifer M. Schopf and Bill Nitzberg. Grids: The top ten
questions. Scientific Programming, Special Issue on Grid
Computing, 10(2):103–111, August 2002.

[SOHL
�

98] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-
garra. MPI: The Complete Reference. MIT Press, 1998.

[SP98] O. Schelen and S. Pink. Resource sharing in advance reserva-
tion agents. Special issue on Multimedia Networking, 7(3-4),
1998. Also available from http://www.cdt.luth.se/
~olov/publications/JHSN-98.pdf.

[SPG97] S. Schenker, C. Partridge, and R. Guerin. Specification of
guaranteed quality of service. Technical Report RFC 2212,
Internet Engineering Task Force (IETF), 1997.

558 GRID RESOURCE MANAGEMENT

[SRM] Global Grid Forum Scheduling and Resource Manage-
ment Area (SRM). http://www.mcs.anl.gov/~jms/
ggf-sched.

[SSA
�

02] H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman,
and B. Tierney. File and object replication in Data Grids.
Journal of Cluster Computing, 5(3):305–314, 2002.

[SSG02] A. Shoshani, A. Sim, and J. Gu. Storage resource managers:
Middleware components for Grid storage. In Proceedings of
the Nineteenth IEEE Symposium on Mass Storage Systems
(MSS ’02), 2002.

[SSS] DOE Scalable Systems Software for terascale computer cen-
ters. http://www.scidac.org/ScalableSystems.

[Sta01] Federal Information Processing Standards. Advanced en-
cryption standard (AES). Technical Report Publication 197,
National Institute of Standards and Technology, Novem-
ber 2001. Available from http://csrc.nist.gov/
CryptoToolkit/aes/.

[Ste04] Rick Stevens. Group-oriented collaboration: The Access Grid
collaboration system. In Ian Foster and Carl Kesselman, edi-
tors, The Grid: Blueprint for a New Computing Infrastructure
(Second Edition). Morgan Kaufmann, 2004.

[Sun] Sun. Sun ONE Grid Engine 5.3 administration and user’s
guide. http://www.sun.com/gridware.

[Sun90] V. Sunderam. PVM: A framework for parallel distributed
computing. Concurrency: Practice & Experience, 2(4):315–
339, 1990.

[Sut68] I. Sutherland. A futures market in computer time. Communi-
cations of the ACM, 11(6), June 1968.

[SW98] N. Spring and R. Wolski. Application level scheduling: Gene
sequence library comparison. In Proceedings of ACM Inter-
national Conference on Supercomputing (ICS), July 1998.

[SW02] W. Smith and P. Wong. Resource selection using execution
and queue wait time predictions. Technical report, NAS02-
003, NASA Ames Research Center, 2002.

REFERENCES 559

[SWDC97] R. Stevens, P. Woodward, T. DeFanti, and C. Catlett. From
the I-WAY to the national technology Grid. Communications
of the ACM, 40(11):50–61, 1997.

[SY98] U. Schwiegelshohn and R. Yahyapour. Analysis of first-come
first-served parallel job scheduling. In Proceedings of the
Ninth SIAM Symposium on Discrete Algorithms, 1998.

[SY99] U. Schwiegelshohn and R. Yahyapour. Resource allocation
and scheduling in metasystems. In Proceedings of the Dis-
tributed Computing and Metacomputing Workshop at High
Performance Computing and Networking Europe (HPCN Eu-
rope ’99), 1999.

[SY01] U. Schwiegelshohn and R. Yahyapour. Attributes for
communication between scheduling instances, scheduling
attributes working group. Technical Report GFD-I.6,
Global Grid Forum (GGF), December 2001. Also avail-
able from http://ds.e-technik.uni-dortmund.
de/~yahya/ggf-sched/WG/sa-wg.html.

[TAG
�

03] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Tay-
lor, and R. Wolski. A Grid Monitoring Architecture. Techni-
cal Report GFD-I.7, Global Grid Forum (GGF), 2003.

[Tay02] John Taylor. Plenary keynote, GGF 5. http://www.
gridforum.org/Meetings/ggf5/plenary/Mon/,
July 2002.

[TB96] P. Tucker and F. Berman. On market mechanisms as a soft-
ware technique. Technical Report CS96-513, Computer Sci-
ence and Engineering Department, University of California,
San Diego, December 1996.

[TBAD
�

01] D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau,
and M. Livny. Gathering at the well: Creating communities
for Grid I/O. In Proceedings of SuperComputing (SC’01),
November 2001.

[TBSL01] Douglas Thain, Jim Basney, Se-Chang Son, and Miron Livny.
The Kangaroo approach to data movement on the Grid. In
Proceedings of the Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), Au-
gust 2001.

560 GRID RESOURCE MANAGEMENT

[TCF
�

03] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman, D. Snelling, and P. Vanderbilt. Open Grid
Services Infrastructure (OGSI) 1.0 draft. Technical report,
Global Grid Forum (GGF), March 2003. Available from
http://www.gridforum.org/ogsi-wg/.

[TEF
�

02] S. Tuecke, D. Engert, I. Foster, M. Thompson,
L. Pearlman, and C. Kesselman. Internet X.509
public key infrastructure proxy certificate profile.
Technical Report draft-ietf-pkix-proxy-01.txt, Inter-
net Engineering Task Force, 2002. Available from
http://www.ietf.org/internet-drafts/
draft-ietf-pkix-proxy-06.txt.

[TL02] D. Thain and M. Livny. Error scope on a computational Grid:
Theory and practice. In Proceedings of the Eleventh IEEE
International Symposium on High-Performance Distributed
Computing, 2002.

[TMB00] M. P. Thomas, S. Mock, and J. Boisseau. Development of
Web toolkits for computational science portals: The NPACI
HotPage. In Proceedings of the Ninth IEEE International
Symposium on High-Performance Distributed Computing
(HPDC-9), 2000.

[TMB
�

01] M. Thomas, S. Mock, J. Boisseau, M. Dahan, K. Mueller,
and S. Sutton. The GridPort toolkit architecture for build-
ing Grid portals. In Proceedings of the Tenth IEEE Interna-
tional Symposium on High-Performance Distributed Comput-
ing (HPDC-10), 2001.

[TMEC02] M. Thompson, S. Mudumbai, A. Essiari, and W. Chin. Au-
thorization policy in a PKI environment. In Proceedings of
the First Annual NIST workshop on PKI, 2002.

[TNS
�

02] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura, and
S. Matsuoka. Ninf-G: A reference implementation of RPC
based programming middleware for Grid computing. Journal
of Grid Computing, 2002.

[Tri] Triana. http://www.trianacode.org/.

[TSC00] H. Turgeon, Q. Snell, and M. Clement. Application placement
using performance surface. In Proceedings of the Ninth IEEE
International Symposium on High-Performance Distributed
Computing (HPDC-9), 2000.

REFERENCES 561

[TSP02] I. Taylor, M. Shields, , and R. Philip. GridOneD: Peer to peer
visualization using Triana: A galaxy formation test case. In
Proceedings of the UK eScience All Hands Meeting, 2002.

[Tur] TurboLinux. The Enfuzion system. http://www.
turbolinux.com/.

[TWG
�

01] Valerie Taylor, Xingfu Wu, Jonathan Geisler, Xin Li, Zhiling
Lan, Mark Hereld, Ivan Judson, and Rick Stevens. Proph-
esy: Automating the modeling process. In Proceedings of the
Third International Workshop on Active Middleware Services,
2001.

[UNA] National Autonomous University of Mexico, The Department
of Gravitation and Field Theory. http://www.nuclecu.
unam.mx/~gravit/.

[UNIa] Unicore. http://www.unicore.org/.

[Unib] United Devices. http://www.ud.com.

[UR] GGF Usage Record Working Group (UR-WG). http://
www.gridforum.org/3_SRM/ur.htm.

[USC] US Compact Muon Solenoid (US-CMS) collaboration.
http://www.uscms.org.

[UT] University of Texas at Austin, The Center for Relativity.
http://wwwrel.ph.utexas.edu/.

[VAMR01] F. Vraalsen, R. A. Aydt, C. L. Mendes, and D. A. Reed. Per-
formance contracts: Predicting and monitoring Grid applica-
tion behavior. In Proceedings of the Second International
Workshop on Grid Computing (Grid2001), 2001.

[VD02] S. Vadhiyar and J. Dongarra. A metascheduler for the Grid.
In Proceedings of the Eleventh IEEE International Sympo-
sium on High-Performance Distributed Computing (HPDC-
11), 2002.

[VD03a] S. Vadhiyar and J. Dongarra. SRS - a framework for de-
veloping malleable and migratable parallel applications for
distributed systems. Parallel Processing Letters, to appear,
2003.

[VD03b] S. Vadhiyar and Jack J. Dongarra. A performance oriented
migration framework for the Grid. In Proceedings of the Third

562 GRID RESOURCE MANAGEMENT

IEEE International Symposium on Cluster Computing and the
Grid (CCGrid’03), 2003.

[vLA87] P. J. M. van Laarhoven and E. H. L. Aarts. Simulated Anneal-
ing: Theory and Applications. Reidel, 1987.

[VNRS02] J. Verbeke, N. Nadgir, G. Ruetsch, and I. Sharapov. Frame-
work for peer-to-peer distributed computing in a heteroge-
neous, decentralized environment. Technical report, Sun Mi-
crosystems, 2002.

[VOM] VOMS: Virtual Organization Management System. http:
//grid-auth.infn.it/docs/VOMS-v1_1.pdf.

[VS02] S. Vazhkudai and J. M. Schopf. Predicting sporadic Grid data
transfers. In Proceedings of the Eleventh IEEE Symposium on
High-Performance Distributed Computing (HPDC-11), 2002.

[VS03] S. Vazhkudai and J. Schopf. Using regression techniques to
predict large data transfers. Journal of High Performance
Computing Applications - Special Issue on Grid Computing:
Infrastructure and Application, to appear, 2003.

[vSHT99] M. van Steen, P. Homburg, and A. Tanenbaum. Globe: A
wide-area distributed system. IEEE Concurrency, 7(1):70–
78, January 1999.

[W3C] W3C architecture domain. http://www.w3.org/
2002/ws/.

[WASB95] R. Wolski, C. Anglano, J. Schopf, and F. Berman. Developing
heterogeneous applications using Zoom and HeNCE. In Pro-
ceedings of the Heterogeneous Computing Workshop, April
1995.

[Wat99] D. J. Watts. Small Worlds: The Dynamics of Networks Be-
tween Order and Randomness. Princeton University Press,
1999.

[WCB01] Matt Welsh, David Culler, and Eric Brewer. SEDA: An ar-
chitecture for well-conditioned, scalable Internet services. In
Proceedings of the Eighteenth Symposium on Operating Sys-
tems Principles (SOSP-18), October 2001.

[Węg99] J. Węglarz, editor. Project Scheduling - Recent Models, Algo-
rithms and Applications. Kluwer Academic Publishers, 1999.

REFERENCES 563

[Wei95] J. Weissman. Scheduling Parallel Computations in a Het-
erogeneous Environment. PhD thesis, University of Virginia,
August 1995.

[WFP
�

96] F. Wang, H. Franke, M. Papaefthymiou, P. Pattnaik,
L. Rudolph, and M.S. Squillante. A gang scheduling design
for multiprogrammed parallel computing environments. In
D. Feitelson and L. Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing (Proceedings of the Second In-
ternational JSSPP Workshop; LNCS #1162). Springer-Verlag,
1996.

[WG98] D. Wischik and A. Greenberg. Admission control for book-
ing ahead shared resources. In Proceedings of IEEE INFO-
COM’98, 1998.

[WGN02] D. Wichadakul, X. Gu, and K. Nahrstedt. A programming
framework for quality-aware ubiquitous multimedia applica-
tions. In Proceedings of ACM Multimedia 2002, 2002.

[WHH
�

92] C. A. Waldspurger, T. Hogg, B. Huberman, J. O. Kephart,
and W. S. Stornetta. Spawn: A distributed computational
economy. IEEE Transactions on Software Engineering,
18(2):103–117, 1992.

[WKN
�

92] M. C. Wang, S. D. Kim, M. A. Nichols, R. F. Freund, H. J.
Seigel, and W. G. Nation. Augmenting the optimal selection
theory for superconcurrency. In Proceedings of the Heteroge-
neous Computing Workshop, pages 13–22, 1992.

[WLS
�

85] D. Walsh, B. Lyon, G. Sager, J. M. Chang, D. Goldberg,
S. Kleiman, T. Lyon, R. Sandberg, and P. Weiss. Overview of
the Sun network file system. In Proceedings of the USENIX
Winter Conference, pages 117–124, 1985.

[WM97] D. R. Wilson and T. R. Martinez. Improved heterogeneous
distance functions. Journal of Artificial Intelligence Re-
search, 6, 1997.

[WNGX01] D. Wichadakul, K. Nahrstedt, X. Gu, and D. Xu. 2KQ+:
An integrated approach of QoS compilation and component-
based, runtime middleware for the unified QoS management
framework. In Proceedings of IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware 2001),
2001.

564 GRID RESOURCE MANAGEMENT

[WO02] B. Wilcox-O’Hearn. Experiences deploying a large-scale
emergent network. In Proceedings of the First International
Workshop on Peer-to-Peer Systems (IPTPS’02), 2002.

[Wol97] R. Wolski. Forecasting network performance to support dy-
namic scheduling using the Network Weather Service. In
Proceedings of the Sixth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-6), 1997.

[Wol98] R. Wolski. Dynamically forecasting network performance us-
ing the Network Weather Service. Journal of Cluster Com-
puting, 1:119–132, January 1998.

[Wor] WorldPay UK. http://www.worldpay.co.uk/.

[Wro97] J. Wroclawski. The use of RSVP with IETF integrated ser-
vices. Technical Report RFC 2210, Internet Engineering Task
Force (IETF), 1997.

[WS97] L. C. Wolf and R. Steinmetz. Concepts for reservation in
advance. Kluwer Journal on Multimedia Tools and Applica-
tions, 4(3), May 1997.

[WSF
�

03] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Ca-
jkowski, J. Gawor, C. Kesselman, S. Meder, L. Pearlman,
and S. Tuecke. GSI: Security for Grid services. In Proceed-
ings of the Twelfth IEEE International Symposium on High-
Performance Distributed Computing (HPDC-12), 2003.

[WSH99a] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A distributed resource performance forecasting ser-
vice for metacomputing. Future Generation Computer Sys-
tems, 15(5–6):757–768, 1999.

[WSH99b] R. Wolski, N. Spring, and J. Hayes. Predicting the CPU avail-
ability of time-shared Unix systems. In Proceedings of the
Eighth IEEE International Symposium on High-Performance
Distributed Computing (HPDC-8), 1999.

[WW95] Carl A. Waldspurger and William E. Weihl. Stride schedul-
ing: Deterministic proportional-share resource mangement.
Technical Report MIT/LCS/TM-528, Massachusetts Institute
of Technology, June 1995.

[WWW01] P. Wurman, M. Wellman, and W. Walsh. A parameterization
of the auction design space. Games and Economic Behavior,
35, 2001.

REFERENCES 565

[WWWMM98] W. Walsh, M. Wellman, P. Wurman, and J. MacKie-Mason.
Some economics of market-based distributed scheduling. In
Proceedings of the Eighteenth International Conference on
Distributed Computing Systems, 1998.

[WZ98] J.B. Weissman and X. Zhao. Scheduling parallel applica-
tions in distributed networks. Journal of Cluster Computing,
1:109–118, 1998.

[XHLL04] Ming Xu, Zhenhua Hu, Weihong Long, and Wayne Liu. Ser-
vice virtualization: Infrastructure and applications. In Ian
Foster and Carl Kesselman, editors, The Grid: Blueprint for
a New Computing Infrastructure (Second Edition). Morgan
Kaufmann, 2004.

[XML] W3 Consoritium XML: eXtensible Markup Language.
http://www.w3c.org/XML.

[XN02] D. Xu and K. Nahrstedt. Finding service paths in a media
service proxy network. In Proceedings of SPIE/ACM Multi-
media Computing and Networking Conference (MMCN’02),
2002.

[Xu01] M. Xu. Effective metacomputing using LSF MultiCluster.
In Proceedings of the First IEEE International Symposium of
Cluster Computing and the Grid (CCGrid’01), 2001.

[Yan03] Lingyun Yang. Load traces. http://cs.uchicago.
edu/~lyang/Load, 2003.

[YD02] Asim YarKhan and Jack J. Dongarra. Experiments with
scheduling using simulated annealing in a Grid environment.
In Proceedings of the Third International Workshop on Grid
Computing (Grid2002), 2002.

[YFS03] L. Yang, I. Foster, and J. M. Schopf. Homeostatic and
tendency-based CPU load predictions. In Proceedings of In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), 2003.

[Ygg98] F. Ygge. Market-Oriented Programming and Its Applica-
tion to Power Load Management. PhD thesis, Department
of Computer Science, Lund University, 1998.

[Zad65] L. A. Zadeh. Fuzzy sets. Information and Control, 8, 1965.

566 GRID RESOURCE MANAGEMENT

[ZDE
�

93] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D Zappala.
Rsvp: A new resource reservation protocol. IEEE Networks
Magazine, 31(9):8–18, September 1993.

[ZFS03] Xuehai Zhang, Jeffrey Freschl, and Jennifer M. Schopf. A
performance study of monitoring and information services for
distributed systems. In Proceedings of the IEEE Twelfth Inter-
national Symposium on High-Performance Distributed Com-
puting (HPDC-12), 2003.

[Zho92] S. Zhou. LSF: Load sharing in large-scale heterogeneous dis-
tributed systems. In Proceedings of the Workshop on Cluster
Computing, December 1992.

[ZKJ01] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and rout-
ing. Technical Report CSD-01-1141, Berkeley, 2001.

[ZM98] W. Ziemba and J. Mulvey, editors. Worldwide Asset and Lia-
bility Modeling. Cambridge University Press, 1998.

[ZWZD93] S. Zhou, J. Wang, X. Zheng, and P. Delisle. Utopia: A load
sharing facility for large, heterogeneous distributed computer
systems. Software Practice and Experience, 23(2), 1993.

Index

Abstract Application Resource and Topology
(AART), 82

Access control, 350
Access Grid, 7
Access to tentative schedule, 45
Accounting, 39, 475
Advance reservation, 47, 120, 163, 167, 173, 183,

186, 248, 382
Advanced networking, 3
Agent, 121
Aggregate predictions, 226
Akenti, 64
Allen, Gabrielle, 25
Allocation

cost, 47
offer, 167
offers, 46
properties, 48
revocation, 48

Angulo, Dave, 73
Apache Web server, 347
Application, 25, 28

deployment, 31
frameworks, 38
level scheduling, 276
requirements, 19, 28, 82

compute-related, 28
data-related, 29
network-related, 30

software provider, 481
Arpaci-Dusseau, Andrea C., 340
Arpaci-Dusseau, Remzi H., 340
Artificial intelligence, 3

AI-based planner, 113
Authentication, 53, 57
Authorization filtering, 18
Authorization, 53
Autocorrelation structure, 208
Available occupancy percentage, 203
Backfill, 243
Bandwidth broker, 386
Benefit-driven peer clustering, 410
Bent, John, 340
Best effort space, 331

Billing, 475
Binder, 75
Binding Service Level Agreements (BSLA), 120,

127
Bioinformatics, 6
Biomedical Informatics Research Network (BIRN),

6
Black hole, 433, 442–443
Blythe, James, 99
Broker, 33, 120–121

adaptive brokering, 33
Business Process Execution Language for Web

Services (BPEL4WS), 452
Butterfly.net, 7
Cache-aware scheduling, 347
Cactus, 7, 34–35, 78, 229

flesh, 36
thorns, 36

Casanova, Henri, 73
CERN Advanced Storage Manager (CASTOR),

336
Chargeable Grid Service, 485
Checkpointing, 51, 176
Cheliotis, Giorgos, 465
ChicagoSim, 360, 367
Chien, Andrew A., 431
Chirp, 343
Class object, 148
ClassAds, 77, 82, 255, 343, 350

abstract syntax, 257, 259, 261
attribute reference resolution, 257
canonical unparsing, 263
concrete native syntax, 257, 261–262
concrete XML syntax, 257
constants, 257, 259, 264
evaluation, 264
lazy evaluation, 268
matchmaking (candidate and access), 259
matchmaking (requirements and rank), 258
matchmaking, 77
non-strict operators, 265
operators, 261
reserved words, 260
strict functions, 268

568 GRID RESOURCE MANAGEMENT

strict operators, 265
undefined and error, 257, 264
using SELECT on a list, 267
using SUBSCRIPT on a record, 267
value identity, 266

Clearing, 475
Client-server, 341
Co-allocation, 120, 132, 174, 180, 501
Co-reservation, 383
Co-scheduling, 174, 180, 189
Collection database, 159
Commercialization stack, 474
Community Authorization Service (CAS), 64
Community scheduler, 121–122
Compact Muon Solenoid (CMS), 36

Monte Carlo Production (MOP), 36
Compilers, 98
Composed application service model, 397
Compromise solution, 274
Computational economies, 479
Computational resource provider, 481
Compute intensiveness index, 447
Concurrency models, 347
Condor, 63, 135, 255, 480

claiming, 139
ClassAds, 77, 82, 255, 343, 350
Condor-G, 38
DAGMan, 351
matchmaker, 138–139, 143, 255, 258, 270

multilateral matchmaking, 270
preemption, 143

NeST, 341
storage management, 341
storage, 341

Configurable Object Program (COP), 75, 81
Conservative scheduling, 215–216
Consistency, 21
Constraint satisfaction, 129
Contract, 119, 475

monitoring, 92
CPU, 217

load prediction, 217
sensing, 201

active, 201
passive, 201

Credentials, 53
Criteria, 279
Cycle harvesting, 186
Cycle stealing, 186
Czajkowski, Karl, 119
DAGMan, 351
Dail, Holly, 73, 217
Data

intensive, 447
locality, 85, 432–433, 447
management, 25, 341, 359
placement, 329

tier architecture, 326
privacy, 434
protection, 434
resource, 322
transfer, 341

Data Grid, 322
Data-parallel, 73
Dataset scheduler, 365–366

policy, 366
Deallocation policy, 47
Decentralized, 459
Decision support, 469
Deelman, Ewa, 99
Delegated credentials, 59
Delivery, 477
Deregulation, 468
Description parameter, 495
Desktop Grid, 432, 434, 448–449
Differentiated services (Diffserv), 386
Dinda, Peter, 217
Direct neighbors, 405
Disk Resource Manager (DRM), 321
Distributed Aircraft Maintenance Environment

(DAME), 5
Distributed service path instantiation, 403
Distributed simulations, 32
Distribution

long-tailed, 194, 222
multimodal, 223
normal, 219

Dome, 217
Dongarra, Jack, 73
Drug screening, 6
Durable file, 330
Durable space, 331
Dynamic data, 20

replication, 359
Dynamic Soft Real-Time (DSRT), 382
Economic engineering, 465, 472
Economy-based Grids, 480
Elbert, Stephen T., 431
Electricity, 466
EMC Corporation, 354
Enactor, 151
Encryption, 55
End-users, 274
Enstore, 337
Enterprise Grid, 179, 354

security, 179
job types, 179
monitoring and discovery, 179
scheduling policies, 179
storage, 354

Enterprise
resource management, 7

Entropia, 432, 435, 437–438, 440–441, 445
Entropia 2000, 438

INDEX 569

Batch System (EBS), 440
App Server, 435–437
batch system server, 440–443
client, 435–443
DCGrid, 432, 438, 440–441, 444, 447
File Server, 435, 439–440, 445
Task Server, 435–438

Ernemann, Carsten, 491
European Data Grid (EDG), 37, 340
Event

management, 166
notification, 46

Event-driven server, 347
Exclusive allocation, 50
Exclusive control, 45, 177
Execution stack, 473
Execution time prediction, 238
Exponential smoothing, 208
Extensible Markup Language (XML), 483
External scheduler, 364
Factory port, 484–485
FASTA, 79
Fault tolerance, 493
Fermi Laboratory, 373
Figueira, Silvia, 217
File, 123, 329

pinning, 325
release (unpin), 325
replication, 337
staging, 187
transfer service, 121, 123
types, 329

durable file, 330
permanent file, 329
volatile file, 329

First-Come First-Served (FCFS), 243
Fish, 79
Forecasting techniques, 208
Foster, Ian, 3, 73, 119, 359, 413
Full-plan-ahead, 105
Game of Life, 79
Gantt chart, 445–446
Genetic algorithm, 240, 311
Gigabit testbeds, 3
Gil, Yolanda, 99
Global Grid Forum (GGF), 183, 480, 489

Grid Economic Services Architecture (GESA)
Working Group, 480, 484, 489

Grid Resource Allocation Agreement Protocol
(GRAAP) Working Group, 131Open Grid
Services Architecture (OGSA) Working
Group|458 Global Grid Forum (GGF),Open
Grid Services Architecture (OGSA)
Working Group|473 Global Grid Forum
(GGF),Open Grid Services Architecture
(OGSA) Working Group|480 Global Grid
Forum (GGF),Open Grid Services

Architecture (OGSA) Working Group|483
Global Grid Forum (GGF),Open Grid
Services Infrastructure (OGSI) Working
Group,,,

Global Grid Forum (GGF)
Open Grid Services Architecture (OGSA)

Working Group|030 Global Grid Forum
(GGF)

Open Grid Services Architecture (OGSA)
Working Group|131 Global Grid Forum
(GGF), 484

Resource Usage Service (RUS) Working Group,
489

Usage Records (UR) Working Group, 489
GlobeXplorer, 7
Globus toolkit, 32, 168, 171, 180, 392, 480

Community Authorization Service (CAS), 64
Dynamically Updated Request Online

Co-allocator (DUROC), 120
Globus Architecture for Reservation and

Allocation (GARA), 120, 377
Globus Resource Allocation Manager (GRAM),

120, 180
GRAM-2, 120, 131
Grid File Transfer Protocol (GridFTP), 38, 77,

187, 339
Grid Security Infrastructure (GSI), 345
MDS2, 17, 77, 102, 181
Platform Globus, 180
replica catalog, 38
Replica catalog, 334
Replica Location Service (RLS), 102, 334
Resource Specification Language (RSL), 181
security, 63
Service Negotiation and Acquisition Protocol

(SNAP), 120
Globus Architecture for Reservation and Allocation

(GARA), 120, 377
Local Resource Manager (LRAM), 380

Gold, 167
Goodale, Tom, 25
Grid, 3

applications, 25
architecture, 473
comparison with P2P, 414
definition of, 4
deployed, 416
economics, 465
emulator, 413, 422
reservation, 21
scheduling, 15
services, 479
user communities, 414

Grid Application Development Software (GrADS),
28, 34, 73

Grid Application Toolkit (GAT), 36, 451–452, 459
Grid Data Mirroring Package (GDMP), 38

570 GRID RESOURCE MANAGEMENT

Grid File Transfer Protocol (GridFTP), 38, 77, 187,
339

Grid Information Services (GIS), 16, 20, 181
Grid Monitoring Architecture (GMA), 17
Grid Physics Network (GriPhyN), 28, 99
Grid Physics Network Project (GriPhyN), 37
Grid Security Infrastructure (GSI), 392
Grid Service Handle (GSH), 484
GridLab, 28, 278, 293
GridSphere, 36
Grimshaw, Andrew S., 145
Guaranteed completion time, 49
Gu, Junmin, 321
Gu, Xiaohui, 395
Hard constraints, 278
Heartbeat, 440, 443
Hierarchical Resource Manager (HRM), 321
High Energy Physics (HEP), 6
High Performance Storage System (HPSS), 337
Host, 151

object, 152
properties, 151

Humphrey, Marty A., 145
Iamnitchi, Adriana, 413
Implementation object, 155
In-time global scheduling, 105
In-time local scheduling, 105
Indirect neighbors, 405
Instance-based learning, 241
International Virtual Data Grid Laboratory

(iVDGL), 373
Internet Backplane Protocol (IBP), 345, 354
Internet Grid, 431–435, 438
Iterative, 79
Jackson, David B., 161
Jackson, Keith R., 53
Jacobi, 79
JASMine, 337
Job, 15, 435, 437–439, 444

checkpointing, 169
configuration, 503
dependencies, 48
dependency, 169
dynamic, 165
execution, 21
forwarding, 179
management, 439, 442, 444
migration, 169–170
preemption, 169
restart, 52, 170
scheduling, 275
staging, 121, 124
state mapping, 181
state, 181
submission, 21
types, 179

Jones, James Patton, 183

Just a Bunch Of Servers (JBOS), 345
JXTA, 451, 456
Keahey, Katarzyna, 479
Kenyon, Chris, 465
Kerberos, 58
Kesselman, Carl, 3, 99, 119
Kurowski, Krzysztof, 271
Least work first (LWF), 243
Legion, 145, 354

protocol stack, 156
scheduling process, 157
security, 63

LeRoy, Nick, 340
Liberty Alliance, 60
Linear systems, 78
Liu, Chuang, 73, 217
Livny, Miron, 135, 255, 340
Load balancing, 217, 395
Local scheduler, 365–366
Local search, 309
Locking, 335
Logical File Name (LFN), 334
Loosely synchronous iterative applications, 219
Lots, 350
Lowest Common Denominator (LCD) tendency,

180
Lumb, Ian, 171
MacLaren, Jon, 479
Makespan, 295
Malleable allocation, 50
Manageability, 341
Mapper, 84
Market equilibrium, 493
Marlin, Shawn, 431
Mars, 217
Master schedule, 153
Matchmaker, 138, 143, 255, 258

multilateral matchmaking, 270
preemption, 143

Maui scheduler, 161
Maximum allocation length, 47
Mean absolute error, 209
Mean absolute prediction error, 209
Mean square error, 209
Message digest, 55
Message Passing Interface (MPI), 32, 77, 94, 174

MPICH-G2, 32, 77
Metacomputing, 32
Metadata service, 112
Metaheuristics, 309
Metascheduling, 73, 95, 121, 158
Migration, 51, 92, 176
Mika, Marek, 295
Miller, Lawrence J., 193
Monitoring, 22, 179
Monte Carlo Production (MOP), 38

INDEX 571

Multi-Mode Resource-Constrained Project
Scheduling Problem (MRCPSP), 302

Multi-Mode Resource-Constrained Project
Scheduling Problem with
Schedule-Dependent Setup Times
(MRCPSP-SDST), 303

Multi-process server, 347
Multi-threaded server, 347
Multicriteria decision problem, 271–272
Multicriteria optimization, 282
Multiplayer games, 7
MultiProtocol Label Switching (MPLS), 392
MyGrid, 6
N-hop service path, 398
Nabrzyski, Jarek, ix, 25, 271, 282
Nahrstedt, Klara, 395
Natrajan, Anand, 145
NEESgrid Earthquake Engineering Collaboratory, 6
Negotiation, 151, 153, 157, 160

transfer protocol, 333
NeST, 341

access control, 350
cache-aware scheduling, 347
Chirp, 343
ClassAds, 343, 350
concurrency models, 347
example scenario, 351
example usage, 353
installing, 353
lots, 350
proportional-share scheduling, 347
quality of service, 347
quotas, 350
related work, 354
storage guarantees, 350
storage management, 350
virtual protocol, 345

Network appliance, 341, 354
Network reservation, 385
Network Weather Service (NWS), 77, 193,

217–218, 227
Newhouse, Steven, 479
NimrodG, 480
Nitzberg, Bill, 183
Non-storability, 468
Normal distribution, 220

arithmetic, 220
Numerical relativity, 34
NWIRE, 492
Obertelli, Graziano, 193
Objective function, 493, 502
Offer creation, 496
Offer description, 495
Oleksiak, Ariel, 271
Open Grid Services Architecture (OGSA), 30, 131,

171, 182, 458, 473, 480, 483

Open Grid Services Architecture Distributed
Access and Integration (OGSA-DAI), 30

Open Grid Services Infrastructure (OGSI), 484
Grid Service Handle (GSH), 484
Service Data Element (SDE), 484

Optimization, 465
Over-scheduling, 444
Owner preemption, 142
Parameter-space studies, 158
Particle Physics Data Grid (PPDG), 37
Partner Grid, 179–180
Passport, 60
Peer clustering, 396
Peer scheduling, 187
Peer-to-Peer, 395, 413, 451, 456, 477

applications, 416
characterization, 414
comparison with Grids, 414
scheduling, 187
systems, 420
user communities, 414

Pegasus, 100, 107
Performance characteristics, 194
Performance

contract, 75, 92
evaluation, 501
modeling, 83
prediction, 195, 237

Permanent file, 329
Permanent space, 331
Physical File Name (PFN), 334
Pin, 325

two-phase pinning, 336
Pin file, 325
Pin lifetime, 325
Pin lock, 336
Planning, 99
Platform Globus, 180

MDS, 181
Platform LSF

advance reservation, 173
checkpointing, 176
event notification, 172
exclusive control, 177
job dependencies, 174
migration, 176
preemption, 176
restart, 176
tentative-schedule access, 176

Platform MultiCluster, 179
co-allocation, 174, 180
co-scheduling, 174, 180
job forwarding, 179
job types, 179
Message Passing Interface (MPI), 174
monitoring and discovery, 179
resource leasing, 180

572 GRID RESOURCE MANAGEMENT

scheduling policies, 179
security, 179

Pluggable architecture, 453
Pluggable File System (PFS), 354
Point value, 219
Policy, 187, 366

application, 119
community, 121, 126
distribution, 455
domain bridging, 126
intermediaries, 126
mapping, 126, 131
resource owner, 119

Pool, 432
application, 436–437, 440
resource, 432, 434, 440, 443, 448

Portable Batch System (PBS), 183, 382
PortType, 131
Prediction, 33, 215, 238

CPU load, 217
execution time, 238
load interval, 228
load variance, 229
queue wait time, 242
run time, 238
techniques, 291
tendancy-based, 227

Preemption, 51, 135, 143, 176
matchmaker, 143
owner, 142
user, 142

Preemptive resume scheduling, 135
Preparation tasks, 22
Price, 467–468, 476

dynamics, 467
formation, 476
forward, 468
model, 468

Pricing, 481
Primary predictor, 208
Priority, 164
Process swapping, 94
Products, 475
Proportional-share scheduling, 347
Provisioning, 128
Public key cryptography, 58
Push caching, 361
QBank, 167
Quality of Service (QoS), 347, 377, 395, 473

consistency, 397
Quality-of-information, 17
Queue wait time prediction, 242
Quotas, 350
Raman, Rajesh, 255
Ranganathan, Kavitha, 359
Reliability, 99, 493
Replacement policy, 326

Replica catalog, 334
Replica Location Service (RLS), 102, 334
Replication, 366

algorithms, 366
policies, 366
Web, 361

Request
description, 495

example, 497
manager, 327
planner, 327

Rescheduling, 89
process swapping, 94

Reservation, 161, 465, 481
advance, 47, 120, 163, 167, 173, 183, 186, 248,

382
bandwidth, 125
courtesy, 167
disk space, 125

Resource, 11, 15
administrators, 274
commercialization, 465
configuration, 501
coordination, 119
description language, 278
discovery, 17, 75

components, 418
definition, 413
mechanisms, 419, 425
requirements, 416

leasing, 180
location, 413
monitoring, 196
owners, 274
tuple, 401
virtualization, 125

Resource Service Level Agreement (RSLA), 120,
127

Resource Specification Language (RSL), 278, 381
Resource-Constrained Project Scheduling Problem

(RCPSP), 295, 302
Restart, 176
Robust file replication, 337
Round-robin scheduler, 158–159
Roy, Alain, 135, 255, 340, 377
Rule-based system, 281
Run time prediction, 237–238
Run-to-completion, 49
Russell, Michael, 25
Sander, Volker, 377
Satisfiability, 98
Scalability, 21
ScaLAPACK, 78
Schedule, 86, 166

search procedure, 86
tentative, 166

Scheduler, 41, 121, 365, 483

INDEX 573

dataset, 365
architecture, 483
higher-level, 41
intermediary, 121
lower-level, 41
round-robin, 158–159

Scheduling, 73, 246, 432–435, 437–441, 443–445,
447–448, 491

algorithms, 366
architecture, 364
attributes, 41, 171–172, 183

allocation-property attributes, 174
available-information attributes, 172
manipulating allocation-execution attributes,

175
resource-requesting attributes, 173

co-allocation, 120, 132, 174, 180, 501
co-scheduling, 48
data locality, 85
decentralized, 364
decision maker, 272

preferences, 272
economic, 491, 493
infrastructure, 492
launch-time, 80
mapper, 84
metascheduling, 95
migration, 92
objective, 47
parameter, 495
performance modeling, 83
policies, 179
policy, 366, 443, 493
problems, 492
rescheduling, 89
simulated annealing, 88

Schema, 17
Schopf, Jennifer M., ix, 15, 183, 215
Schwiegelshohn, Uwe, 41
Search procedure, 86
Secondary predictor, 210
Security, 39, 179

authentication, 53, 57
authorization, 53
credentials, 53
Grid Security Infrastructure (GSI), 345, 392
Kerberos, 58
policy, 53
public key cryptography, 53, 58
X.509 certificates, 58, 185

Seidel, Ed, 25
Selection, 20
Server, 347

event-driven, 347
multi-process, 347
multi-threaded, 347

Service, 11, 479

aggregation, 482
brokering, 483
composition model, 398
composition, 395
Grid, 479
integration, 11
path instantiation, 395
path selection, 395
policy, 326
provider, 477
virtualization, 7

Service Data Element (SDE), 484
Service Level Agreements (SLA), 119, 127, 218,

481, 485
bind, 120
commitment, 129
linkage, 125
ordering, 127–128
resource, 120
satisfaction, 130–131
task, 120
three kinds, 127
violation, 129

Service Negotiation and Access Protocol (SNAP),
182

Shibboleth, 60
Shields, Matthew, 451
Shoshani, Arie, 321
Sievert, Otto, 73
Silver Grid scheduler, 161
Simple Object Access Protocol (SOAP), 483
Simulated annealing, 88, 295, 310
Simulation, 359, 367, 504

ChicagoSim, 360, 367
Simulator, 360
Sim, Alexander, 321
Site URL, 335
Sliding window, 208
Smith, Chris, 171
Smith, Warren, 237
Soft constraints, 278
Software application development, 73
Solomon, Marvin, 255
Space, 331

quota, 326
reservation, 330
types, 331

best effort space, 331
durable space, 331
permanent space, 331
volatile space, 331

Stanley, Joseph, 340
Static vs dynamic data, 20
Stochastic, 469

optimization, 469
scheduling, 215
value, 220

574 GRID RESOURCE MANAGEMENT

Storage, 341
appliances, 341
elements, 321
guarantees, 341, 350
management, 321, 341, 350
resources, 321
scheduling, 329

Storage Resource Broker (SRB), 354
Storage Resource Manager (SRM), 321, 350–351,

354
Subjob, 439–440, 443–446

failure, 440–444, 446
management, 438–440, 443, 445
monitor, 440–443, 447
retry, 441
timeout, 443

Superscheduler, 120–121
Swany, Martin, 193
Tabu search, 295, 311
Tape Resource Manager (TRM), 321
Task Service Level Agreements (TSLA), 120, 127
Task-graph, 455
Taylor, Ian, 451
Temporal locality, 224
Tentative schedule, 45
Thompson, Mary R., 53
Tier architecture, 326
Time balancing, 217
Time series, 208
Tradable Grid services, 479
Trading, 476
Transfer protocol negotiation, 333
Triana, 451–452, 456
Triumvirate, 137
Tuecke, Steven, 119
Two-phase pinning, 336
UK E-Science Computational Markets Project,

487–488
UK E-Science Core Programme, 488
UNICORE, 480

Unix load average, 200
Unpin, 325
URL, 327, 334
Use cases, 481
User, 16

dynamic account, 124
preemption, 142
preferences, 40, 271

Utility function, 502, 504
Utility value, 494
Vadhiyar, Sathish, 73
Variance, 215
Venkataramani, Venkateshwaran, 340
Virtual, 11

observatory, 6
organization, 4, 39, 180, 359

administrators, 274
protocol, 345

Volatile file, 329
Volatile space, 331
Wait time prediction, 237
Waligóra, Grzegorz, 295
Walltime, 168
Wang, Ian, 451
Web service, 65
Web Service Description Language (WSDL), 483
Web Services Flow Language (WSFL), 452
Węglarz, Jan, ix, 271, 295
Weissman, Jon, 217
Wolski, Rich, 193, 217
Workflow, 451–452, 454, 460

generation, 104
management, 99, 295

Workload, 503
management, 183

World Wide Telescope, 6
WorldPay, 480
X.509 certificates, 58, 185
Yahyapour, Ramin, 41, 491
Yang, Lingyun, 73, 215
YarKhan, Asim, 73

