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1. Introduction 

This paper presents distributed algorithms based on 
the work of Dijkstra and Scholten [1], for solving graph 
problems using networks of communicating processes. 
The solution to one particular graph problem, that of 
finding shortest paths from a single vertex to all other 
vertices in a weighted, directed graph, in the presence of 
negative cycles, is discussed in detail. We then show how 
this solution may be applied to other graph problems 
including depth-first search in an undirected graph. 
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Our model of computation is a network of processes 
in which processes communicate only by sending and 
receiving messages; the model is presented in detail in 
Sec. 2. We describe the classical shortest path problem 
[2] and the necessary terminology from graph theory in 
Sec. 3. The distributed algorithm is given in Sec. 4 and 
its proof in See. 5. Applications to other graph problems 
are discussed in Sec. 6. 

2. Model of a Network of Communicating Processes 

A process is a sequential program which can com- 
municate with other processes by sending/receiving mes- 
sages. Two processes P and Q are said to be neighbors if 
they can communicate directly with one another without 
having messages go through intermediate processes. We 
assume that communication channels are bidirectional: 
if P can send messages to Q then Q can send messages 
to P. A process knows the identities of its neighbors; 
otherwise it is ignorant of the identities of all other 
processes and of the general structure of the network. 

We assume a very simple protocol for message com- 
munication; this protocol is equivalent to the one used 
by Dijkstra and Scholten [1]. Every process has an input 
buffer of unbounded length. If process P sends a message 
to a neighbor process Q, then the message gets appended 
at the end of the input buffer of Q after a t'mite, arbitrary 
delay. We assume that (1) messages are not lost or altered 
during transmission, (2) messages sent from P to Q arrive 
at Q's input buffer in the order sent, and (3) two messages 
arriving simultaneously at an input buffer are ordered 
arbitrarily and appended to the buffer. A process receives 
a message by removing one from its input buffer. 

The assumption of unbounded length buffers is for 
ease of exposition. We show, in Sec. 6, that for our 
problem the input buffer length of process Q can be 
bounded by the number of neighbors of Q. 

3. The Shortest Path Problem 

G = (V, E) is a directed graph in which Vis the set 
of vertices and E is the set of edges. Edge (vi, vy) has an 
associated length wij. If edge (vi, vj) exists then vi is said 
to be a successor of v~ and v~ is said to be a predecessor of 
vy. It is required to determine lengths of the shortest 
paths from a special vertex vl in V to all other vertices in 
V. 1 Since some wij may be negative, a cycle of negative 
total length (called a negative cycle) may exist in the 
graph. If a negative cycle is reachable from vl then all 
vertices reachable from that negative cycle will have a 
shortest path length of -oo. The distance of a vertex vi is 
the length of the shortest path from Vl to v~ and is denoted 
by Li. 

We assume familiarity with graph theoretic terms such as path, 
shortest path, etc. 
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4. A Distributed Algorithm for the Shortest Path 
Problem 

Consider a network of  processes corresponding to 
graph G; process pi represents vertex Vi, for all i, and pi 
and p / a r e  neighbors if edges (vi, vj) or (vj, v/) exist in 
G. pi knows the weight w~/for every outgoing edge (vi, 
v/). However, p~ may not know the weights of  incoming 
edges or the identities of  processes other than its neigh- 
bors. 

Process p~ initiates a computation to determine the 
lengths of  shortest paths from Vl to all vertices. In the 
following, we use vertex v~ and processpi interchangeably 
when no confusion can result. 

4.1 The Structure of the Algorithm 
The algorithm works in two phases, both of  which 

are initiated by pl. At the end of  phase I, every process 
pi will have the value ofLi,  ifL~ ~ -ce. I f  for some vertex 
v/, j # l, Lj = -ce  then p/wi l l  not be aware of  this fact 
at the end of  phase I; the goal of  phase II is to inform all 
such processes that they are at distances o f -oo .  

4.2. The Structure of Phase I Computation 

4.2.1 Messages Used in Phase I 
Phase I computation uses two kinds of  messages: 

(1) A length message is a two-tuple (s, p), where p is 
the identity of  the process sending the message and s is 
a number, pi sends a length message (s, p~) topi  to inform 
pj that there is a path of  length s from vl to vj in which 
vi is the prefinal vertex. 

(2) An acknowledgment message or ack has no other 
data associated with it. A process p / sends  an ack to a 
process pi in response to a length message sent by pi. 
Intuitively, an ack denotes that the length sent by pi to 
pj has been (or will be) taken into consideration by all 
processes reachable from pj. 

A processpi, i ~ 1, maintains a local variable d which 
denotes the length of  the shortest path received so far by 
pi. Upon receiving a length s from a predecessor, if s < 
d, pi sets d to s and in this case it sends a length message 
(s + w~/,p~) to every successor pj. It may seem that acks 
are superfluous. Clearly length messages can be used to 
compute successively shorter paths. However, the pres- 
ence of  negative cycles means that this will be a nonter- 
minating computation. Acks are used to terminate phase 
I computation as described below. 

4.2.2 Local Data Used by a Process pi During Phase ! 
Each process pi uses three local variables: 

d This is the shortest length of  paths from vl to vi 
known to this process at this point in the computa- 
tion; d = ce if no length message has been received. 
This is the predecessor from which the length d 
was received; this is the prefmal vertex on the 

pred 
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n u m  

shortest path to vi computed so far. pred is unde- 
fined if d = oo or i = 1. 
This is the number of  unacknowledged messages, 
that is, the number of  messages sent by this 
process for which no ack has been received so far. 

4.2.3 Phase I Algorithm for Process pj, j ~ 1 
Initialization 

{no length message has  been received; there are no unacknowledged 
messages} 

begin d := oo; pred is undefined; num := 0 end; 

Upon receiving a length message (s, pi) 

i f s  < d then 
begin 

{send an ack to pred, the prefinal vertex on the previous shortest 
path, if it has  not been sent already} 

if hum > 0 then send an ack to pred; 
{update d, pred} 

pred := pi; d := s; 
{send length messages to all successors o f  b and increment num 
appropriately and then return ack to pred i f  n u m =  0} 

send a length message (d + w/~, Pi) to every successor pk; 
num := hum + the number  of  successors o f  vj; 
if  hum = 0 then send an ack to pred 

end 
else {s _> d} {new length does not  denote a shorter path} 

send ack to pi. 

Upon receiving an ack f rom process pk 

begin 
{decrement number  o f  unacknowledged messages} 

hum l= hum - -  1; 
{send acknowledgement  to pred i f  acks have been received for all 
messages} 

if  n u m =  0 then send ack to pred 
end. 

Note. I f  n u m >  0 at any time, then a process has 
exactly one message to which it has not sent an ack, and 
this ack should go to pred. 

4.2.4 Initiation of Phase I 

4.2.4.1 Phase I algorithm for process pl 

Initialization 
d := 0; pred is undefined; 
send (wlk, pl) to all successors pk; num := number  o f  successors o f  v~. 

Upon receipt o f  a length message (s, pi) 
{start phase II i f  a negative cycle is detected } 

if  s < 0 then terminate phase I and start phase II 
else return ack to pi 

Upon receiving an ack 
{update num; start phase II i f  there is no unacknowledged message 
remaining} 

hum := hum -- 1; 
if n u m =  0 then terminate phase I and  start phase II. 

4.2.5 Example 
Consider the graph shown in Figure 1. Four  feasible 

snapshots of  the network showing possible values for d, 
pred, and num for the six processes in this example are 
shown below. Since transmission delays are arbitrary, 
network computation is nondeterministic. Hence the four 
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snapshots shown below form only one of  many  sequences 
which may  arise. The question mark  denotes an unde- 
fined value for pred. 

S n a p s h o t  1. px has sent one message to each of p2 and 
pa which have not yet been received. 

1 2 3 4 5 6 

d 0 o0 o0 oo Qo o0 

pred ? ? ? ? ? ? 

num 2 0 0 0 0 0 

Snapshot 2. p2, p3 have received length messages (3, 
p l ) ,  (4,  p l ) ,  respectively, pa has sent (10, p3) to p4, which 
p4 has received. 

1 2 

d 0 3 

pred ? 1 

num 2 ! 0 

3 4 5 6 

4 10 Qo oo 

1 3 ? ? 

l 0 0 0 

Snapshot 3. p~, p6 receive (11, p4), (12, p4) ,  respec- 
tively, fromp4, p6 sends an ack top4; this ack is received 
by p4. p4 receives (5, p2). Next p4 sends an ack to p3, 
which is received, and sends (6, p4) ,  (7,  p 4 )  t o  p5 and p6, 
respectively, which they both receive, p5 sends an ack to 
p4 which is received by p4. 

1 2 3 4 5 6 

d 0 3 4 ~ 5 6 : 7 

pred ? 1 1 2 4 4 

num 2 1 0 2 0 0 

Snapshot 4. pn sends an ack to pl  since p3's num is 
zero. p5 sends (2, p~) to p2, thus causing p2 to send an ack 
to pl. The acks are received since pt  has no further 
unacknowledged messages it terminates phase I. 

1 2 3 4 5 6 

d 0 2 4 5 6 7 

pred ? 5 1 2 4 4 

num 0 1 0 i 2 1 0 

4.3 The Structure of Phase II Computation 
4.3.1 Messages Used in Phase H 

Phase II  employs two kinds of  messages: over? and 
over-. An over- message is sent by process j to all its 
successors if  process j  has determined that phase I is over 
and Lj = -oo; an over- message orders the recipient to 
halt all phase I computation (if it has not done so 
already), set its d to -oo and propagate the over- message 
to its successors. I f  a process already has its d = -oo 
when it receives an over- message, it takes no action. An 
over? message is sent by process j to all its successors 
when it has determined that phase I is over, but has not 
determined whether Lj = -oo. An over? message orders 
the recipient to halt all phase I computation. I f  the 
recipient p~ has n u m =  0 it sends over? messages to its 
successors; otherwise (ifpi has num > O) it can be shown 
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Fig. 1. A Network  with Weighted Edges. 

4 
3 

() 
~ 2 6 

- 4  

that Li = - ~ ,  and thereforepi sets its d := - ~  and sends 
over- to its successors. Note that it is redundant for any 
process pi to send duplicate messages to a process p / o r  
to send over? after over-. Every process other thanpl  will 
receive an over? or an over- message. 

4.3.2 Detailed Algorithm for Phase H 

4.3.2.1 Initiation of Phase H by Process pl 

if pl  receives a message (s, p),  with s < 0, during phase I 
then (pl  detects that  it is in a negative cycle} 

send an  over- message to all its successors 
else {hum = 0 fo rp l  at the end of  phase I} 

send over? message to all successors. 

4.3.2.2 Phase 11 Algorithm for Process pj, j # 1 with 
n u m j  > 0 

Upon receiving a phase I1 message (over- or over?) 
if d # - ~  then 

begin d := -oo; 
send over- to all successors 

end. 

4.3. 2.3 Phase I I  Algorithm for Process p j, j # 1 with 
numj = 0 

Upon receiving an over- message 
if d # -oo then 

begin d := -oo; 
send over- to all successors 

end. 

Upon receiving an over ? message 

if d # -oo then send over? to all successors w h o  have not  been sent 
such a message. 

5. Proof of Correctness 

We define vi to be a finite vertex if Li # -oo; vi is an 
infinite vertex if Zi ~- --co. 

LEMMA 1. For any j,  L~ <_ dj at all times. 

PROOF. We observe that every d/ is the length of  
some path from vl to vj. 
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LEMMA 2. I f  there is a finite path of  length d~ to a 
vertex vj, then from some point onward in the computation 
dy _< d~, if  phase I does not terminate. 

PROOF. Proof  is by induction on the number of  edges 
on the path. Lemma 2 is trivial when the number of  
edges in the path is zero. Now assume Lemma 2 holds 
for all paths with k or fewer edges. Consider a path with 
k + 1 edges from Vl to vj in which vi is the prefmal vertex 
and the path length to vi is d~ = d 7 - wij. From the 
induction hypothesis eventually, di _< d? = d 7 - w~y; 
therefore pj will eventually receive (di + wij, pi) which 
guarantees that di -< di + wij _< d~. It follows from the 
algorithm that dj can never increase. Therefore, dy _< dfl 
from that point onward in the computation. 

LEMMA 3. I f  phase I does not terminate then from 
some point onward in the computation, every infinite vertex 
vj will have an infinite vertex for  predj and every finite 
vertex vy will have a finite vertex for  predy, j ~ 1. 

PROOF. The following holds for all j ,  j # 1, at all 
times: 

di + wij _< dj i f  i = pret6. 

From Lemma 1, Li _< &, for all i. Therefore, 

Li + wij --< dj, if  i = predj. 

I f  vj is infinite then from Lemma 2, eventually dj gets 
arbitrarily small. In particular, from some point onward 
in the computation, for every finite vi, 

dj < L~ + wii. 

Hence from that point onward pre~. will be an infinite 
vertex. 

From Lemmas 1 and 2, if phase I does not terminate 
then eventually every t'mite vi will have di = L~ and predi 
will be the prefmal vertex on this path; pred~ must 
therefore be a f'mite vertex. 

THEOREM 1. Phase I terminates. 

PROOF. Assume phase I never terminates. Then dj 
= Lj for every finite vertex vj from some point in phase 
I computation and hence no f'mite vertex sends a length 
message from then on. From Lemma 3, finite vertices 
eventually form a rooted directed tree where pre~ is the 
father of  vj, j ~ 1, and v~ is the root. A leaf vertex vj, 
j ~ 1, in this tree cannot be thepred for any finite vertex 
(since it is a tree) nor can it be the pred for any infinite 
vertex, from Lemma 3; therefore eventually numi = 0 
and vj will send an ack to predi. Induct on the height of  
the tree to show that every finite vertex will eventually 
have num= 0. Ifp~ is a finite vertex it will then terminate 
phase I computation. I f  pl is an in/mite vertex, from 
Lemma 2, it will eventually detect that it is in a negative 
cycle and hence terminate phase I. Hence phase I will 
terminate! Contradiction! 
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THEOREM 2. At  the termination of  phase I, 

(1) if  vj is a finite vertex, dj = Lj and numj = 0; 
(2) if  vj is an infinite vertex, then and only then, there is 

some vi such that there is a path from vl to vj through 
vi, in the graph, and numi > O. 

PROOF. (1) For  a finite vertex vi, we defme e ( j )  to 
be the number of  edges on a shortest path from Vl to vj 
(if there are several shortest paths we choose the shortest 
loop-free path with maximum number of  edges). The 
result follows by induction on aU vertices vj with e ( j )  _< 
k, f o r k = 0 , 1 , 2  . . . .  

(2) Assume the contrary that for an in/mite vertex vj, 
every vertex vi on a path from v~ to vj has numi = 0, at 
the end of  phase I. Even if  pl did not terminate phase I 
computation, vj will never receive a length message and 
thus dj will not decrease. This contradicts Lemma 2. The 
other part of  the proof  follows by similar arguments. 

THEOREM 3. Phase H terminates and at that point 
d i = Lj for  every vertex v i. 

PROOF. Phase II terminates since any process sends 
at most 2 messages: over? followed by an over- message. 

N o  i'mite vertex receives an over- message because there 
cannot be an infinite vertex on a path from Vl to a tinite 
vertex. Therefore dj remains unchanged during phase II 
for a finite vertex; and from Theorem 2, dj = Lj at the 
beginning of  phase II. For  an infinite vertex vj, there is 
a path from vl to vj through vi, where num~ > 0 at the 
end of  phase I. Therefore pi will propagate an over- 
message once it receives any phase II message, and 
therefore dj = -co = L i eventually. 

6. Notes  on the Algorithm 

6.1 Unbounded Buffers 
A process pi sends (strictly) monotone decreasing 

lengths in every length message to any other process pj. 
Therefore any length message sent by pi can overwrite 
any earlier message sent by pi which is still in the buffer. 
Hencepj  need only store one message (the latest message) 
from each predecessor. The space requirement for acks 
can be reduced by storing the number of  acks sent from 
pj to pi, which are still in the buffer; this number  is 
incremented by 1 each time pj sends an ack to pi. pi can 
remove multiple acks from the buffer and reduce numi 
accordingly. Hence we need space for at most one mes- 
sage and one ack count for every neighbor of  a process 
pj in the input buffer ofpi .  

6.2 Applications to Other  Graph Problems 
A number of  other graph problems can be formulated 

as shortest path problems using a more general notion of  
path length. We defme a path length function 2( a real 
valued function on paths, starting from vl, as follows: 
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/ [ p a t h  with no edges] = 0 

/ [ e i ;  ( i ,y ) ]  = g i ( / ( e i ) ,  wij), 

where Pi is any path from vl to vi, Pi; (i, j )  is the path Pi 
followed by edge (vi, vj), gi is any arbitrary computable 
function which is monotone in the first argument, and 
wij is some given real number denoting the "length" of  
edge (vl, vj). 

The shortest path algorithm of Sec. 4 can be used to 
compute 

dj = r a in ( / (P j )  I P1 is a path from vl to vj), for allj. 

The only change is in phase I computation in the 
content of the length message sent; instead ofpj  sending 
(dj + wjk, pj) to a successorpk, it now sends (gj(d~, wjk), 
pj)). Monotonicity of g in the first argument is essential, 
since it guarantees that every process sends monotone 
decreasing path lengths, if it receives monotone decreas- 
ing path lengths. 

We list some graph problems and show how they can 
be solved under this shortest path formulation. 

(1) Find all vertices reachable from vi. We wish to set 
dj to 0 if vj is reachable from v~; else set dj to oo. We use 
the following function, 

gi(x,  y )  = x .  

(2) Find all vertices which can reach v~. This is the 
same as (1), except length messages are sent to predeces- 
sors. 

(3) Find the maximum strongly connected compo- 
nent. Determine if  a given vertex Vl is in a nontrivial 
strongly connected component: use both (1) and (2). A 
separate computation is then needed to determine 
whether there is a vertex which has its d set to 0 in both 
computations. 

(4) Construct a depth-first search tree. Consider an 
undirected graph G. For each vertexj  label all the edges 
incident on j with 1, 2, 3 . . . . .  In a depth-first search we 
would normally label the "left-most" edge on j with 1, 
the next left-most edge 2, and so on. (However, for 
purposes of  proof the labeling is arbitrary.) Note that 
edge (i, j )  may be the rth left-most edge incident on i 
and the sth left-most edge incident on j and it is not 
necessary that r = s. An example is shown below. 

In a depth-first search starting from a vertex (say 
vertex 1), the vertices of the graph are traversed begin- 
ning with a depth-first search of the left-most successor 
of vertex 1. The collection of paths traversed to reach 
each vertex for the f irst  time forms a tree called the 
depth-first search tree. In the above example the depth- 
first search tree has edges (1, 2), (2, 3), and (3, 4). Our 
goal is to determine the depth-first search tree; in partic- 
ular we want to determine the path leading to every 
vertex in the depth-first search tree. 

F~. 2. An Undirected Graph with Labe~d Edges: An Apphcation of 
Depth-First Search. 

3 1 " ~ edge (1,4) has label 2 at vertex 1 

1 2 

1 2 3k-----edge (1,4) has label 
4~ 3 at vertex 4 

Let P be a path (/1 . . . . .  ik). Then d e / m e / ( P )  = 
(jl . . . .  jk-1), where in,  m ---- 1 . . . . .  k - 1, is the label 
assigned to edge (ira, ira+l) at vertex i~. In our example, 
i f P  = (1, 2, 3, 4) t h e n / ( P )  = (1, 1, 2). 

L e t / ( P )  = (jx . . . . .  jm) a n d / ( e ' )  = (kl  . . . . .  k ,) .  W e  
d e / m e / ( P )  < / ( P ' )  if and only if either 

(i) for some r, jr < k ,  and ji  = ki for i = 1 . . . . .  r - 1, or 

(ii) n > m and j i  = ki for i = 1 . . . . .  m. 

Thus (1, 2, 3) < (3) and (1) < (1, 1, 2, 2). 
It is evident that dj = ra in{/ (Pj )  I PJ is a path from 

vl to vj} denotes the path in the depth-first search tree 
up to vj. 

6.3 Earlier Work 
The algorithm suggested in this paper is a modifica- 

tion of an algorithm proposed by Dijkstra and Scholten 
[1] for termination detection of a class of  distributed 
computations, called diffusing computations. In their 
algorithm predj does not change as long as numj > 0; the 
algorithm terminates when numj = 0 for every Pi- We 
allow predj to change while numj > O; this allows us to 
terminate the phase I algorithm even when some numj 
> O. This is critical for identifying infinite vertices since 
those are the ones which are reachable from a vertex 
with n u m  > O. 
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