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1. INTRODUCTION 

We propose a methodology for the development of concurrent programs and 
apply it to an important problem. The methodology is based on a novel view of 
what a program is. We view a program as an initial condition and a set of atomic 
statements. The operation of a nonterminating program is as follows. Repeat 
forever: execute a statement selected nondeterministically, ensuring that in an 
infinite number of selections each statement is selected infinitely often. (We do 
not describe terminating programs in this paper.) 

The state of a computation is given by the values of its variables. The only 
effect of executing a statement is to change values of variables. This effect is 
achieved by a multiple assignment statement. Hence we view a program as a 
declaration of variables and their initial values, and a set of multiple assignment 
statements. 
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The key features of the methodology are 

(a) Concerns about the core problem to be solved are separated from the forms 
of concurrency available in the hardware on which the program is to be 
executed and the language in which the program is to be written. 

(b) We adopt a global view of systems when specifying and reasoning about 
them during early stages of design. 

(c) Our reasoning about systems employs predicates on system states. Our proofs 
are based on properties possessed by all states of the system that might occur 
during a computation. 

Our reasons for the above desiderata are given later. 
We present algorithms to solve a class of problems: detecting quiescent prop- 

erties in distributed systems. Such properties include termination and deadlock. 
A consequence of our derivation is that we obtain the weakest conditions under 
which the algorithms can operate. Specific instances of the quiescence detection 
problem have been studied extensively [l-lo, 12-18, 21-251. These algorithms 
have the feature that each process is observed over some interval during the 
computation, and the intervals are related in some manner-for instance, inter- 
vals of neighboring processes overlap. Our solution differs in that we derive a 
class of solutions to a collection of problems for a variety of concurrent architec- 
tures, and our algorithms permit processes to be inspected at arbitrary times and 
in arbitrary order. 

The organization of the paper is as follows. In the remainder of this section 
we explain our choice of desiderata for concurrent. programming methodologies, 
present our model of programs and our methodology, and show how our meth- 
odology achieves the desiderata. In Section 2 we specify the quiescence detection 
problem and derive solutions in a series of refinements, stopping short of giving 
a complete program. In Section 2 the specification and derivation are in terms 
of a shared-variable model; the derivation is also appropriate, however, for a 
message-passing distributed system. The partial solution obtained in Section 2 
can be extended to obtain a program suitable for concurrent architectures. We 
have chosen to extend it in Section 3 to obtain a message-passing program 
employing an asynchronous communication protocol. 

1 .l Desiderata for a Concurrent Programming Methodology 

Separating Concerns About the Core Problem from Details About Concur- 
rency. Many papers on concurrent programs lump concerns about the core 
problem to be solved, the language in which the program is to be written, and 
the hardware on which the program is to be executed into a single agglutinous 
unit. Some argue that in cases where language and hardware are specified as part 
of a concurrent systems problem, concerns about the core problem, language, and 
hardware are inseparable. For instance, programs executing on a distributed 
network of computers must employ some form of message passing; in such cases 
concerns about message passing appear inseparable from concerns about the core 
problem. Similarly, since the presence or absence of primitives (such as process 
creation and termination) in the programming language influence the program, 
it appears that language issues are inseparable from others. Despite these 
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arguments we maintain that it is possible and important to separate these 
concerns-indeed it is even more important to do so for concurrent systems than 
sequential systems because concurrency is less well understood. 

The ideas that form the foundation of good programming transcend different 
forms of concurrency employed in different implementations. Lumping all con- 
cerns together results in fundamental ideas getting lost in a welter of detail. A 
methodology should make the generality of important ideas manifest so as to 
avoid having solutions rederived from scratch for each form of concurrency. 

Programs outlive the architecture for which they were initially designed. 
Experience suggests that we should anticipate requests to modify our programs 
to keep pace with modifications in architecture-witness attempts to “parallelize” 
sequential programs. Dijkstra [ 111 points out that a modification of a program is 
really a refinement of one of its ancestors; the further removed the ancestor, the 
more difficult the modification. It is difficult to make modifications necessitated 
by changes in the form of concurrency employed in a target architecture if the 
specific form of concurrency is a primary concern early in the design cycle. 
History tells us that we should not begin to solve a problem by asking ourselves 
whether we are going to use shared variables, message passing, or sequential 
programs, any more than we begin by asking ourselves if the word size is to be 
60, 32, or 16 bits. 

The Process-Eye View versus a Global Perspective. It may be more natural for 
a human being to “identify with” a single sequential process than with a system 
in which many actions happen “simultaneously” in different places. This iden- 
tification results in arguments based on what each process “sees,” “knows,” and 
“learns” at specific points in the computation rather than on unvarying facts 
about the system. Reasoning about a system from the point of view of what is 
observable to each process and denying oneself a global perspective is to handicap 
oneself to no purpose. Therefore, we avoid arguments based exclusively on a 
collection of process eye-views. This view of reasoning has been strongly advo- 
cated by Lamport [19] and also appears in Manna and Pnueli [20]. 

Postulating subsystems to implement a desired system is an important part of 
program development. In the initial stages of program development we may not 
know what processes we are going to employ; we must perforce take a global 
perspective at this stage. 

Reasoning About Unchanging System Properties versus Operational Reason- 
ing. Operational arguments are about process behaviors unfolding over time. 
These arguments have the following flavor: “when process u receives a token it 
knows no other process is in its critical-section, and so it enters its critical- 
section and then, when it gets out, it sends the token and then, . . .“. This form 
of reasoning specifies one or more sequences of actions for system execution and 
derives properties of the system from these action sequences. There is evidence 
that such arguments are error-prone. Operational reasoning is more difficult 
than reasoning about system properties because most of us find it more difficult 
to comprehend unfolding histories of actions than unchanging properties. This 
is especially important when dealing with nondeterministic systems because 
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nondeterminism leads to a combinatorial explosion in the number of possible 
histories. A danger with operational arguments is that some possible sequence of 
actions may be overlooked, while a proof must cover all possible sequences. 

Specifications 

Specifications are given in terms of predicates on system states. Let u, u be 
predicates on system states and let t be a statement in the program. We use 

(4 t @I 

to denote that if u holds immediately before execution oft, then the execution of 
t terminates and u holds upon termination. 

A predicate I is an invariant means I is true initially and (I) t (I), for all 
statements t in the program. We define a binary relation +- (read “leads to”) 
between predicates, with respect to a given program, as follows: 

U-U holds for a program = 

(la) for all statements t in the program: (U and not u) t (U or u) and 
(lb) there exists a statement t in the program such that 

(uandnotu) t(u), or 

(2) for some predicate w, 

(u--*w) and (w-u). 

From (la) it follows that if u holds at any point d in a computation, then (1) u 
holds at point d, or (2) u and not u holds continuously from d onwards until 
eventually u holds, or (3) u and not u holds at d and continuously thereafter; the 
third case is ruled out by our rule of program execution and (lb). The + relation 
is transitive from (2). 

Hence, u + u holds for a given program means that if u holds, then within 
finite time (i.e., within a finite number of executions of program statements), u 
holds. 

Heuristics for Stepwise Refinement 

In this paper we focus attention on three heuristics. 

(1) During early stages of design we give ourselves the freedom of using 
whatever variables are necessary to formulate a solution. Concerns about the 
distributed implementation of such variables are postponed to a later stage of 
design. 

(2) We often generalize predicates on systems to predicates on subsystems. 
For instance, the predicate “system P is idle” may be generalized to “subsystem 
S of P is idle.” This form of generalization often suggests how the next refinement 
step is to be carried out. 

(3) We exploit locality of interactions in distributed systems by replacing in 
predicates “there exist processes p, q” by “there exist processes p, q which 
interact,” when appropriate. 
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Consequences of Using the Model 

We suggest that the methodology as outlined has the desirable features discussed 
in Section 1.2. Specifications are in terms of (constant) system properties: 
invariants and the relation +. The focus on constant system properties facilitates 
the derivation of programs hand-in-hand with their proofs [13]. The uniform 
view of programs, independent of architecture, encourages the separation of 
concerns of the core problem from the form of concurrency employed in the 
target architecture and language. By focusing attention on the total system being 
considered at a refinement step, the model discourages reasoning based on the 
process eye-view. By employing nondeterminism to the limit and avoiding all 
forms of sequencing, the model inhibits operational reasoning. 

Though the target architecture in this paper is a distributed system, the model 
and methodology (with additional heuristics) have been used to derive programs 
for diverse architectures including systolic arrays, PRAMS (parallel random 
access memory machines), and uniprocessors. 

Notation. We use s I] t where s and t are statements to denote their parallel 
execution. Where s, t are assignments statements, s I] t is a multiple assignment 
statement. The only form of conditional we use is, if b then s else t (and where 
s, t are assignment statements this is equivalent to a multiple assignment 
statement with conditional expressions in the right-hand side). We also use send 
m along c, receive m along c to denote sending and receiving (respectively) of 
message m along channel c; again, these may be viewed as assignment statements 
to channel state variable SC of channel c where SC is a queue of messages: send m 
along c is equivalent to 

SC := SC; m (; denotes concatenation) 

receive m along c is equivalent to 

(SC := tuil(sc) 11 m := head( if SC # empty 

2. SPECIFICATION OF DETECTION PROBLEMS 

We first specify the general form of detection problems and later narrow the 
specification to quiescence detection. 

We are given a program called the underlying program and a predicate W on 
the underlying program such that W is preserved by the underlying program (i.e., 
once W holds it continues to hold). It is required to “superpose” a program on 
the underlying program where the superposed program has a boolean variable 
claim satisfying: 

Invariant: W or not claim 
Progress : W + claim 

The invariant means that if claim holds, then so does W. The progress condition 
means that if W holds, then claim holds in finite time. 

The superposed program can record but not affect the underlying computation. 
The superposed program can employ variables not named in the underlying 
program; for instance, claim is such a variable. 
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Example. Let W be given by W = the number of statement executions in the 
underlying program exceeds 10. 

We superpose a program by transforming the underlying program as follows. 
Introduce superposed variables count, claim of types integer, boolean and initial 
values 0, fake, respectively. Transform each statement s in the underlying 
program to 

(s 11 count := count + 1) 

and add a statement t to the program where 

t: claim := (count > 10). 

We specify W in terms of count as follows: W = (count > 10). 
The invariant (count > 10 or not claim) is easily proved. The progress condition 

(count > 10) + claim follows from: for all statements s in the transformed 
program: 

(count > 10 and not claim) s (count > 10 or claim) 

and, there exists a statement, namely t, in the transformed program: 

{count > 10 and not claim1 t {claim). 

This little example illustrates what we mean by superposition. 

We have specified detection problems in general. We now turn our attention 
to a subclass of detection problems: quiescence detection. 

Quiescence detection deals with a specific property W and a specific class of 
underlying programs. The underlying program is a concurrent program consisting 
of a fixed set P of processes. In our notation, a concurrent program is an initial 
condition and a set of statements; a process is a subset of statements, and the 
union of all processes together with the initial conditions forms the program. In 
the following, p, q are processes, and all propositions about p, q are universally 
quantified unless stated otherwise. We are given a binary relation affects between 
processes, and associated with eachp is a predicatep.qui. The underlying program 
satisfies the following local quiescence property: for all statements t in the 
underlying program: 

{p.qui and [V q such that q affects p: q.qui]) t (p.qui). 

This property means that p can transit from quiescence (p.qui) to nonquiescence 
(not p.qui) only if it has a nonquiescent affector. 

The W to be detected is 

W = [V p: p.qui]. 

From the local quiescence property, it follows that W is preserued (i.e., once true 
it remains true). 

At this point in program development, we do not interpret p.qui except to 
require that transitions from p.qui to not p.qui take place only if p has a 
nonquiescent affector. In particular, we do not specify whether p.qui is a local 
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variable of p. (Later we shall find that there are some architectures in which 
p.qui is not local to p.) 

Deriving a Program Skeleton 

For convenience in reading we repeat the specifications: 

W 3 [If p: p.qui] 

Invariant: W or not claim 
Progress: W + claim 

A superposed program (added to the underlying program) that meets the speci- 
fication is 

initially: claim = false; 
statement set: claim := W 

Though this is a satisfactory program for a sequential machine, we cannot 
implement it directly on a distributed system because it is not possible to evaluate 
the conjunction W (all processes are quiescent) in an atomic statement, so we 
now add to our initial specification the constraint that each atomic statement in 
the superposed program can only access variables named in a single component 
process. We now turn our attention to evaluating the conjunction, given 
this constraint. 

Refinement Step 

Processes are inspected one-at-a-time, and a process is added to a set checked of 
processes if the process satisfies some condition (and we postpone consideration 
of what this condition should be). We postulate that 

claim = (checked = P) where P is the set of all processes. 

In other words, “all processes are in checked” means claim holds. For brevity, 
processes in checked are called checked processes, and those not in checked are 
called unchecked processes. The idea of inspecting processes one-at-a-time and 
“checking them off” until all are checked off is an obvious way of satisfying the 
constraint that it is not possible to inspect all processes “simultaneously”; let us 
see where the idea leads. Eliminating claim from the specification, we get 

Invariant: W or (checked # P) 
Progress : W + (checked = P) 

Predicate W is a system-wide property. Our next refinement is obtained by 
generalizing W to obtain a subsystem property w defined on process sets S where 
S C P, such that 

w(P) = w 

We use the obvious definition: w(S) = [V p in 5’: p.qui]. 
The reason that we replace system-wide properties by their generalizations is 

that we want the specifications to give us guidance about the variables of our 
program. In particular, we want the specifications to give us more guidance 
about checked. 
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1986. 



Stepwise Refinement of Distributed Programs 333 

Refinement Step 

We rewrite the specification in terms of the generalization w as 

Invariant: w(checked) or checked # P 
Progress: w(P) --j (checked = P) 

The equivalence of the invariant predicates in the previous and the current 
refinement steps follows from: if checked # P, then both predicates evaluate to 
true (since the second terms of the disjunction hold), and if checked = P, then 
both predicates evaluate to W (since the second terms of the disjunction do not 
hold, and W = w(P)). 

Refinement Step 

In sketching out the algorithm in the first refinement step we said that an 
unchecked process is added to checked only if it satisfies some condition, and we 
postponed consideration of what that condition should be. Let us call the 
condition for p, p.inc or the “inclusion condition for p.” The inclusion condition 
is a boolean predicate on system states. We postpone consideration of the precise 
definition and implementation of the inclusion condition. 

We postulate the following statements (one for each p) in the superposed 
program: 

if p.irzc then checked := {p] U checked 

Process p can be added to checked only by execution of the above statement. 
Suppose w (checked) does not hold prior to executing the above statement and 

suppose p is the only unchecked process. After executing the statement 
w(checked) continues to remain fake (see the definition of w). Therefore, for the 
invariant to hold we must have checked # P, and hence p must remain unchecked. 
Therefore, a precondition to the above statement is that if w(checked) does not 
hold, then there is at least one unchecked process q for which not q.inc holds. 
This argument suggests that we strengthen the invariant to 

Invariant: w (checked) or [ 3 unchecked q : not q.inc] 

We elaborate our progress condition to 

Progress : 

(a) w(P) +- [Vp:p.inc] and 
(b) [V p :p.inc] + checked = P 

Refinement Step 

We propose a stronger invariant by exploiting the “locality” of the relation affects. 

Invariant: w(checked) or 

[ 3 unchecked q, checked p : (not q.inc) and (q affects p)] 

The reasons for the stronger invariant are as follows: Suppose w (checked) does 
not hold. Consider the latest point d at which w (checked) became false. From the 
definition of w, not w(checked) means that there exists a nonquiescent checked 
process. A quiescent process becomes nonquiescent only if it has a nonquiescent 
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affector. Hence at d there exists an unchecked nonquiescent q, checked p, and 
q affects p. Intuition suggests that the process q that causes w (checked) to become 
false should have its own inclusion condition set false. This argument leads us to 
propose the above stronger invariant. 

Refinement Step 

From the definition of w it follows that the invariant of the previous step is 
equivalent to 

Invariant: [t/ checked p :p.qui] or 

[ 3 unchecked q, checked p : (not q.inc) and (q affects p)] 

We propose to strengthen it to 

Invariant I: [V checked p:p.qui and p.inc] or 

[ 3 unchecked q, checked p : (not q.inc) and (q affects p)] 

Our reasons for the stronger invariant are as follows. A process is added to 
checked only if its inclusion condition holds. If at some point in the computation 
the system is quiescent and a process’ inclusion condition holds, then we expect 
it to continue to hold. A checked process changes its inclusion condition from 
true to false only when the system is nonquiescent, in which case (we design our 
algorithm so that) the second term in the disjunction holds. 

What we are doing by strengthening the invariant is capturing intuitive, 
temporal, behavioral arguments by means of formal, invariant, system properties. 

Pause to Review Stepwise Refinement 

Before we proceed with stepwise refinement we pause to take stock of what we 
are doing. We have proceeded without concerning ourselves too much with the 
target architecture. For instance, we cannot implement checking-off statements 
directly on distributed architectures because checked is a global variable, and 
distributed architectures do not admit global variables. But that is not a serious 
concern at this level of program development; if a distributed system is a target 
architecture, then we shall concern ourselves later with implementing checking- 
off statements on that architecture. 

Our understanding of the program is embodied in specifications at an appro- 
priate level of detail and in a program skeleton. The skeleton takes the form of 
initial conditions and a set of (possibly nonimplementable) atomic statements. 

The elaborated specifications can be used to develop apparently dissimilar 
algorithms. This suggests that the detailed specifications obtained in stepwise 
refinement are valuable quite apart from the algorithms. 

Viewing a program as an initial condition and a set of atomic statements gives 
our methodology focus. We know that all statements must satisfy the same set 
of pre- and postconditions to ensure safety. Statements differ only in their 
contributions to progress. To derive a statement we postulate its contribution to 
progress (for instance, the purpose of checking-off statements is to increase the 
size of checked), and then to deduce the form of the statement from system-wide 
pre- and postconditions. In deriving a program we may find that our invariant 
needs strengthening. Thus the development of the program is an interplay 
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between system-wide safety properties and each individual statement whose 
purpose is to ensure some aspect of progress. The disadvantage of this approach 
is that by denying oneself the luxury of different contexts for different statements 
we require our global invariant to be strong enough to capture all contexts. (An 
apparent, but not real, disadvantage is that we must specify subsystems in terms 
of system-wide properties; compositional proofs are indeed possible, but there is 
insufficient space here to describe them.) 

We can continue the refinement for a variety of target architectures; however, 
in the interest of brevity, we limit ourselves to only one: static, fault-free 
distributed systems with asynchronous sending/receiving of messages and point- 
to-point, directed, first-in-first-out channels with unbounded buffers. By “static” 
and “fault-free” we mean that processes and channels in the underlying system 
are given: they are not created, nor do they disappear or fail. A channel is directed 
from precisely one process to precisely one process. There are no restrictions on 
when processes send messages. The only restriction on when a process may 
receive a message along a channel is the obvious one: the channel must contain 
a message. (Of course, we are obliged to prove that the number of messages in 
each channel is indeed bounded-but it is helpful to separate concerns: assume 
a simple protocol with unbounded buffers and postpone proofs about bounds). A 
channel is a shared variable between two processes in the sense that the process 
sending and the process receiving along a channel may change the state of the 
channel; however, neither process can determine the state of a channel directly. 
This aspect of channels makes detection problems in asynchronous distributed 
systems particularly interesting. 

We leave to the reader the problems of refining the program for shared-variable 
concurrent systems, distributed systems with synchronous communication, and 
distributed systems with asynchronous multiway channels (connecting many 
processes to many processes). 

3. REFINEMENT FOR DISTRIBUTED SYSTEM ARCHITECTURE 

We now continue refinement for the distributed system architecture described 
in the previous section. 

Each process and each message has a boolean attribute: stable. A stable process 
can become unstable (i.e., not stable) only by receiving an unstable message. All 
messages sent by stable processes are stable. The problem is to detect the 
(preserved) property W, given by 

W = all processes and all messages in all channels are stable. 

We define process quiescence so as to ensure W = [V p :p.qui]. We propose 

p.qui = p&able and [V p’s input channels c : c.stable] 

where 

c&able = c contains no unstable message 

(Note: We could have used other definitions for p.qui, for instance, 

p.qui = p.stable and [V p’s output channels c : cstuble] 

Different definitions lead to slightly different programs.) 
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In a distributed system q affects p means there is a channel from q top. Neither 
p nor q can access the state of channel (q, p) directly; q and p must cooperate to 
determine the state of channel (q, p). The algorithms differ in how the cooperation 
is achieved. 

Marker Algorithm 

Cooperation between q and p to determine the state of channel (q, p) is achieved 
by q sending p a special message, which has no effect on the underlying compu- 
tation; this message is called a marker. For channel c from q to p, process q 
maintains a local variable c.sm (for send marker) and p maintains local variable 
c.rm (for receive marker), with the following meaning. Variable c.sm takes on 
values pre, pos, and neg-where its value is pre means the marker has not been 
sent along c; its value is pos means the marker has been sent along c, and all 
postmarker messages sent along c are stable; and its value is neg means the 
marker has been sent along c, and an unstable postmarker message has been 
sent along c. Variable c.rm is boolean-where c.rm holds means the marker has 
been received along c. These arguments lead us to postulate invariant: 

(c.rm and c.sm # neg) + c.sm = pos and c.stable 

This gives us a clue about the inclusion condition: we propose that 

p.inc = p.stable and 

[V p’s incoming channels c: c.rm] and 
[V p’s outoing channels c: c.sm # neg] 

We now postulate invariants for the marker algorithm. Using Invariant I, 
definitions of p.qui and p.inc, we postulate 

Invariant K: [V p in checked :p.stable] and 

[V channels c to checked processes: c.rm] and 
[V channels c to, or from, checked processes: c.sm # neg] 

or 

[ 3 channels c from an unchecked to a checked process: c.sm = neg] 

Also, from our description about the movement of markers, we postulate an 
invariant relating, for each channel c, c.rm, c.sm, and marker in c. Let c.num be 
the number of markers in c. 

Invariant L: 

and 

(c.num I 1) and not (c.rm and c.num = 1) 

and 

(c.sm = pre) + (c.num = 0 and not c.rm) 

c.sm = pos =$ [V messages m in c: m is stable or 
there is a marker following m in c] 

Invariants K and L imply invariant I. 
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We now postulate the progress conditions, taking into account marker trans- 
mission and the values of c.rm, c.sm. The first two progress conditions, given 
below, are easy to see, The next two describe progress with reference to 
c.sm and c.rm. 

Progress Conditions for the Marker Algorithm 

For all channels c: 

(1) c.sm = pre + c.sm = pos and c.num = 1, 
(2) c.num = 1 + c.rm, 
(3) W * W and [V c: c.sm = pos and c.rm], 
(4) W and [V c : c.sm = pos and c.rm] + checked = P. 

Progress conditions require that if W holds, then no c.sm remains neg forever. 
Therefore, we add an additional progress condition to guarantee that c.sm which 
is neg will be set to pre within finite time. 
For all channels c: 

(5) c.sm = neg ---, c.sm = pre 

The marker algorithm follows from the invariant and progress condition. Each 
statement implements a progress condition. Each statement must also preserve 
invariants. For instance, changing c.sm from neg to pre (see progress condition 
5) when c is from an unchecked to a checked process may violate invariant K; 
we preserve this invariant by setting checked to empty. 

The Marker Algorithm 

Initially: checked = empty, 

[V c : c.rm = false and c.sm = pre] 

Set of Statements. 

Marker sending along c: 

if c.sm = pre then begin send marker along c 11 c.sm := pos end 

Upon receiving marker along c: 

if marker is received along c then c.rm := true 

Upon sending unstable message along c: 

if c.sm = pos and unstable message sent along c then c.sm := neg 

Reinitializing c: 

if c.sm = neg and c.rm and c is from an unchecked to an unchecked process 
then begin c.sm := pre 11 c.rm := false end 

Reinitializing c and checked: 

if c.sm = neg and c.rm and c is from an unchecked to a checked process 
then begin checked := empty 1) c.sm := pre 11 c.rm := false end 
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Adding q to checked: 

if qstable and 

[V input channels c of q : c.rm] and 
[V output channels c of q: c.sm # neg] 

then checked := (q) U checked 

Refinement Step 

We now have the program in hand, except for the distributed implementation of 
checked. Also, variables (c.sm, c.rm) of different processes appear in a single 
statement. To implement a global variable on a concurrent system we need only 
ensure that every process needing to access the variable does so in finite time, at 
most one process accesses the variable at any time, and atomicity constraints are 
preserved. In this instance we are dealing with only one global variable- 
checked-and hence the problem reduces to that of mutual exclusion. An obvious 
way of implementing mutual exclusion is to have a single token in the system at 
all times, and to allow a process to execute its critical section (i.e., access checked) 
only upon holding the token. The information checked is carried by the token. 

We assume that there are n processes indexed i where 0 5 i < n. We employ a 
boolean variable holdstoken with each process, where i.holdstoken = i holds the 
token. 

We now give the invariant and progress conditions for the token-passing 
algorithm given below. We weaken invariant K to 

Invariant K: 

[V p in checked :p.stable] and 
[V c between checked processes : c.stable] and 
[V c from checked processes : c.sm = pos] 

[ 3 c from unchecked to checked process: c.sm = neg] 

Invariant L is as before. 

Define “token is between j, k” to mean “token is in channel (i, i + 1 mod n)” 
or (i + l).holdstoken for some i in 1 j, j + 1 mod n, . . . , k - 1 mod n). Invariant 
M describes the properties of markers and c.rm with respect to the position of 
the token. For all channels (j, k): 

Invariant M: Token is between j, k = (j, k).rm or (j, k).num = 1. 

Progress conditions describe how processes are added to checked as the token 
moves. 

Progress Condition. For all sets of channels C and all processes i: 

W and i.holdstoken and [V c in C:c.sm = pos] + 
W and (i + l).hoZdstoken and [V c in C’ : c.sm = pos] 

where C’ = C U (c 1 c is an output channel of process il. 
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Progress Condition. For all sets of processes Q and all processes i: 

Wand i.holdstoken and [V c : c.sm =pos] and [V q in Q : q E checked] + 
Wand (i + l).hoZdstoken and [V c : c.sm =pos] and [V q in Q’ : q E checked] 

where Q’ = Q U (i). 
From the first progress condition: 

W+ Wand [V c:c.sm =pos] 

From the second progress condition: 

W and [V c : c.sm = pos] + W and checked = P 

Hence W + checked = P. 
We now give the algorithm for a process. Note that this is the first time that 

we have written our algorithm in terms of statements in component processes. 
Up to this point we have presented our algorithm as a set of statements and 
ignored questions of how the set is partitioned among component processes. 

Algorithm for Process i, 0 5 i < n: 

if i.holdstoken and i.stable and [V input channels c of i: c.rm] 
then begin 

send token to (i + 1) mod n with checked as follows: 
if [V channels (i, j) to checkedj: (i, j).sm # neg] 
then checked := checked U ii) else checked := empty 

11 i.holdstoken := false 
11 [for all input channels c of i: c.rm := false] 

e/k[for all output channels c of i: send marker along c II c.sm := pos] 

Upon process i receiving the token: 

if i receives the token then i.holdstoken := true 

Upon process i receiving marker along c: 

if marker is received along c then c.rm := true 

Upon process i sending unstable message along c: 

if c.sm = pos and unstable message sent along c then c.sm = neg 

Deriving Initial Conditions for the Algorithm 

Invariant K is ensured by having checked initially empty. Invariant L is ensured 
initially by having for all c: (c.sm = neg) and c.num = 0. Invariant M is ensured 
by choosing any initial position of the token and then having (j, k).rm = the 
token is between (j, k). We choose to place the token at process 0 initially. 
Initially: 

-i.holdstoken = (i = 0) {token is at process 0); 
-for a channel c from a process i to a process j, for all i, j: c.rm = (i > j); 
-no channel contains a marker (i.e., for all c: c.num = 0); 
-for all channels c : c.sm = neg; 
-checked = empty. 
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Note. In the algorithm we require that each process send the token to the next 
process in a cycle. We do not require that there be a channel from each process 
to the next one in the cycle. The token can be sent from one process to another 
via intermediate processes. 

Refinement Steps for Optimization 

We now refine the program to improve its efficiency. This final refinement also 
results in a simpler program. 

Reducing the Volume of Information Carried by the Token. Recall that the 
token carries the value of checked. The volume of information carried by the 
token may be large because checked may contain many processes; we now seek 
ways of reducing this volume. By sending the token in a cycle, numbering 
processes O..(n - 1) so that the token is passed from process i to (i + 1) mod n, 
and postulating that checked consists of a sequence of processes ending in the 
process holding the token, we can determine checked by keeping track of the 
identity of the first process in the sequence. Therefore, we postulate that the 
token has a field init containing the identity of a process and having the following 
meaning. In the interval between the token leaving j and its processing by 
(j + 1) mod n: 

init = j = checked = empty and 
init#j=checked=((init+l)modn,...,jJ 

Keeping Track of Output Channels. The only purpose of c.sm is to determine 
if c.sm = neg for a channel c to a checked process, The sequential numbering of 
processes allows us to implement c.sm for all output channels c of a process by 
means of a single local variable, farthest (for farthest negative), of the process, 
where i.farthest is the index of the process farthest from i, for which c.sm = neg. 
The sequence of processes ranked farther from i is 

(i + 1) mod n, (i + 2) mod n, . . . , (i - 1) mod n 

When the token is at i, the statement “there is a negative channel from i to a 
checked process” means i.farthest is in (init + 1) mod n, . . . , (i - 1) mod n; in 
particular, i.farthest = i means all of process i’s output channels are positive. 

Keeping Track of Input Channels. The variables c.rm are used only to deter- 
mine if a process has received markers on all its input channels. This observation 
allows us to replace variables c.rm by a count nmr for each process where nmr is 
the number of markers received by the process (since the token last left the 
process). In particular, nmr = number of input channels, means a marker has 
been received along each input channel since the token last left the process. 

We leave the derivation of the optimized program using init, farthest, nmr in 
place of checked, sm, rm to the reader. 

A Note on Optimization 

In the algorithms we have given, if there is a channel from an unchecked q to 
checked p such that not q.inc, then when we change the value of qinc we 
reinitialize the algorithm by setting checked to empty, thus maintaining the 
invariant: w(checked) or there exists a channel from an unchecked to a checked 
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process where the sender along the channel does not satisfy the inclusion 
condition. It is not always necessary to set checked to empty when the value of 
q.inc is changed. It is sufficient to remove from checked the set of processes that 
have received unstable messages from q and that may in turn have sent unstable 
messages to other checked processes, and so on. The algorithm for removing all 
processes from checked that may have been (indirectly) affected by q’s sending 
of an unstable message is straightforward. We invite the reader to develop such 
an algorithm using the invariant as the foundation of the development. 

4. EXTENSIONS 

Acknowledgment Algorithm 

Our primary purpose in presenting another algorithm is to show how stepwise 
refinement leads to a class of solutions. A secondary purpose is that the algorithm 
we present is efficient, particularly in distributed systems in which all messages 
are acknowledged. Messages may be acknowledged (ack’d) for several reasons; 
for instance, the communication protocol may be based on acks. If the system on 
which we are to impose a detection algorithm acks messages, we may as well 
employ the acks to our advantage. We shall not develop the algorithm in detail 
but merely present an outline. The algorithm is based on invariant I. 

Each ack has two attributes checked and stable where checked processes send 
checked acks, unchecked processes send unchecked acks, and acks for stable 
messages are stable acks and acks for unstable messages are unstable acks. We 
define q.inc as 

q.inc = q.stable and 
acks have been received by q for all unstable messages sent by q and 
all acks received by q for unstable messages sent by q are unchecked acks. 

The algorithm is reinitialized (i.e., checked is set to empty) if an unchecked 
process receives a checked, unstable ack. We leave the derivation of elaborated 
specifications and the program to the reader. 

Comparison with Other Algorithms 

Our algorithms differ from most others in one important aspect. In most other 
algorithms, if a nonquiescent process is detected, the algorithm is reinitialized 
because the presence of the nonquiescent process means that W does not hold. 
If the algorithm determines that W does not hold, then why not restart the 
algorithm? Efficiency suggests that the algorithm be continued rather than 
restarted where possible. Our algorithm is reinitialized only if an unchecked to 
checked channel is unstable. Algorithms based on global snapshots [7], and on 
overlapping intervals of observation at processes, are reinitialized if the snapshot 
or the observation shows that W does not hold. 

5. CONCLUSION 

Our model of programs (a set of statements) helped us to focus on the appropriate 
level of detail of architecture at each step of refinement. The model allows us to 
develop pieces of the program given only the invariant, independent of other 
pieces. This encouraged concentration of attention on one concern at a time. Our 
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model of a program (a set of multiple assignments) may appear unduly austere; 
however, our experience suggests that the model is adequate. Nondeterminism 
captures the essence of various forms of concurrent programming. An ongoing 
project, UNITY, has the goal of determining whether programs in diverse areas 
may be developed systematically by viewing them as sets of multiple assignment 
statements (and initial condition specifications). 

The program was not derived in one pass as might be suggested here. We 
backtracked several times, and we derived two less efficient algorithms. Ideally, 
a description of program derivation should include a description of wrong turns, 
consequent backtracking, and what was learned from the mistakes. Backtracking 
is not described here in the interests of brevity. 
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