
Efficient Algorithms for Distributed Snapshots
and Global Virtual Time Approximation

Friedemann Mattern

Department of Computer Science, University of Saarland,
Im Stadtwald 36, D 6600 Saarbrücken, Germany

mattern@cs.uni-sb.de

Abstract. This paper presents snapshot algorithms for determining a consistent global state of a distributed sys-
tem without significantly affecting the underlying computation. These algorithms do not require channels to be
FIFO or messages to be acknowledged. Only a small amount of storage is needed. An important application of
a snapshot algorithm is Global Virtual Time determination for distributed simulations. The paper proposes new
and efficient Global Virtual Time approximation schemes based on snapshot algorithms and distributed termi-
nation detection principles.

1 Introduction

A snapshot of a distributed system is aglobal state (consisting of the local states of the processes and
all the messages in transit) which is meaningful in the sense that it corresponds to a possible global
state where the local states of all processes and of all communication channels are recorded simulta-
neously [5]. In order to get such acausally consistent state in a system without a common clock, the
local state recording events must be coordinated: If the receipt of a message is recorded, the sending
of such message (which usually takes place at another process) must also be recorded. More generally,
all causal predecessors of a recorded event must also be recorded. Fortunately, this is possible without
freezing the whole system.

Snapshots and snapshot algorithms are fundamental paradigms of distributed computing. Important
applications are algorithms for the detection of stable properties such as termination of a distributed
computation [18] or deadlock of a distributed system [7]. More generally, snapshot algorithms can be
used to compute monotonic functions of the global state such as lower bounds on the simulation time
(the so-calledGlobal Virtual Time or GVT) to which a distributed simulation system has advanced
[13]. Other applications are checkpointing and recovery of distributed data bases [14, 24] and moni-
toring and debugging of distributed systems.

A snapshot algorithm for systems with FIFO channels was first given by Chandy and Lamport in 1985
[5]. The main idea is that immediately after recording the local state, a process sends control messages
along each of its (outgoing) channels. Whenever a process receives a control message for the first time,
it takes a local snapshot if it has not already done so "spontaneously." Causal consistency is guaranteed
due to the FIFO property of the channels because any message of the underlying application (so-called
basic messages) sent after the control messages must arriveafter the local snapshot of the receiver.
Messages in transit can easily be recorded because control messages flush the channels.

To appear in "Journal of Parallel and Distributed Computing", Vol. 18, No. 4, 1993

2

For non-FIFO systems Taylor showed that a snapshot algorithm is eitherinhibitory (i.e., possibly de-
laying actions of the underlying application to occur, in particular delaying the sending of basic mes-
sages while waiting for a control message from another process), or it relies uponpiggybacking control
information onto the basic messages [9,26]. An inhibitory snapshot algorithm for non-FIFO systems
was proposed in [12] by Hélary: After taking a local snapshot, a process does not send basic messages
to a neighboring process P until it knows that P has also taken a local snapshot. This is realized by send-
ing control messages to all neighbors after recording the local state and suspending the sending of basic
messages along a channel until a control message is received on that channel. Non-inhibitory snapshot
algorithms for non-FIFO systems relying on piggybacking a one bit status information onto basic mes-
sages were proposed by Lai and Yang in [15]. A new variant based on this principle which uses less
space will be described in Section 3 and Section 4.

2 Model and Definitions

Asynchronous distributed systems and distributed computations are modeled as follows. An asynchro-
nous distributed system consists ofprocesses which communicate solely viamessages sent through
channels. Processes and channels form a strongly connected finite graph. Messages are assumed to be
delivered correctly, with arbitrary but finite delay, but not necessarily in the order being sent. There is
no common clock or common memory, and the relative speed of processes is undetermined.

A process consists of a set ofstates. Atomic actions which may change the state of a single process are
modeled byevents. They are classified into three types: send events, receive events, and internal
events. All events may change the state of the process at which they occur; send events and receive
events, however, do change the state of a channel (which is defined to be the set of messages sent but
not yet received) by inserting or removing a message. Alocal computation of a process is a sequence
of events affecting only the local state and possibly the state of its incident channels. The potential
causal dependencies between events of local computations of different processes is modeled by the
happens before relation (denoted →) introduced by Lamport in [16]. It is the smallest transitive rela-
tion satisfying the following conditions: (1) if e and e’ are events of the same local computation and e’
is the next event after e, then e→ e’; (2) if e is a send event and e’ is the corresponding receive event
(i.e., the message sent by e is received by e’), then e→ e’.

A distributed computation consists of local computations, one per process, together with a set of cor-
responding send-receive events such that the set of all its events E is left-closed with respect to→ (i.e.,
each message received was sent "earlier"). Furthermore, we require→ to be apartial order (i.e., there
are no cyclic dependencies between events). Informally, a distributed computation can be represented
by atime diagram (Fig. 1). Horizontal lines are time axes of processes, points denote events and arrows
represent messages. If e→ e’, then one can follow a "path of causality" from event e to event e’ by
moving in the direction of the arrows and from left to right on the process lines. Because→ is a partial
order, it is always possible to draw event e to the left of event e’ if e→ e’.

If a process sends messages to all other processes in order to initiate local actions, these messages will
usually be received at different time instants. Due to unpredictable message delays, it is not possible
to guarantee that all local actions triggered by messages are executed simultaneously. However, each

3

process line is cut into two parts by the receive event of the initiating message. This motivates
the notion of "cuts." Graphically, acut can be represented by a zigzag line cutting a time dia-
gram into two parts—a left part called PAST (those events that happen before the cut) and a
right part called FUTURE (those events that happen after the cut). The pseudo events where
thiscut line intersects the process lines will be calledcut events. (Cut events are invisible to the
underlying computation, and they do not change the local state of the processes with respect to
the underlying computation.) A cut isconsistent if no message arrow starts in FUTURE and
ends in PAST. This notion of consistency fits the observation that a message cannot be received
before it is sent [14]. Fig. 2 shows a consistent cut C and an inconsistent cut C’.

Formally, a consistent cut of a distributed computation is defined to be a finite subset C⊆ E
(where E is the set of all events of the computation) such that (e∈ C ∧ e’ → e) ⇒ e’ ∈ C.
Notice that a (finite) distributed computation is a "maximal" cut of itself. This motivates the
definition of a partial order on the set of all cuts of a distributed computation: A cut C’ is said
to belater than a cut C if C ⊆ C’. Informally, this means that in a time diagram the cut line of
C’ is to the right of the cut line of C. (In Fig. 2 C’ is later than C.) It can easily be shown that
with operations∩ and ∪ the set of all consistent (and all inconsistent) cuts of a distributed com-
putation forms alattice [20].

For a consistent cut the events in a time diagram can be arranged in such a way that the cut line
can be drawn as a straight vertical line and all message arrows still go "forward" in time. (This
is not possible for inconsistent cuts.) Since for a consistent cut there is a possible execution of
the computation in which all cut events occur simultaneously, it makes sense to define theglo-
bal state of a consistent cut (a so-calledcausally consistent global state). It consists of the state

FIG. 1. A time diagram with a cut.

receive event

send event
internal event

PAST

FUTURE

cut
 event

FIG. 2. Consistent (C) and inconsistent (C’) cuts.

C C’

4

of the channels (those messages that cross the cut line, i.e., which are sent in PAST and received in
FUTURE) and the set of local states, one per process, recorded at the moment the corresponding cut
event occurs (notice that cut events do not change the state). In the sense of the more formal set theo-
retic characterization of a consistent cut C given above, thestate of a process is the state after its last
local event in C (or the initial state if such an event does not exist).

Of particular interest for distributed computations aremonotonic functions of the global state and sta-
ble predicates. Let s(C) denote the global state of a consistent cut C and let f be a function from the set
of all global states to some partially ordered set. Function f ismonotonic if C’ later than C implies
f(s(C)) ≤ f(s(C’)). Typical examples of monotonic functions are the total number of messages sent in
a distributed computation or the simulation time to which a distributed simulation system has ad-
vanced.Stable predicates can be characterized by monotonic boolean indicator functions (wherefalse
< true). That is, a predicateφ isstable if C’ later than C impliesφ(s(C))⇒ φ(s(C’)). Since in distributed
systems cut lines (and hence cuts) are adequate substitutes for "points in global time," this means that
a stable predicate which becomes true at a point in a distributed computation is true at all later points.
For a more detailed discussion of consistent global states and stable predicates the reader is referred to
[5].

3 A Consistent Cut Algorithm

A snapshot algorithm computes a causally consistent global state of a distributed system. (Alternative-
ly, it may directly compute the value of a monotonic function or a stable predicate for consistent global
states.) Such an algorithm issuperimposed on the underlying computation, that is, it runs concurrently
with the underlying computation but should not affect it in a significant way. An important application
of a snapshot algorithm is thedetection of a stable predicate such as distributed termination or distrib-
uted deadlock. This can be achieved by repeatedly executing a (somewhat specialized) snapshot algo-
rithm until the predicate holds. This works because for a stable predicateφ it is guaranteed that (1) the
predicate is still true after the snapshot algorithm has established the truth ofφ, and (2) ifφ is true
"now," a snapshot algorithm started now or later will also establish the truth ofφ. Analogous properties
(i.e., predicates of the form f(s)≥ x) hold for monotonic functions.

In general, the cut defined by the local state recording events of a snapshot algorithm must be consis-
tent in order to be meaningful. (A noteworthy exception is GVT approximation or distributed termina-
tion detection discussed in later sections). Therefore, thedetermination of a consistent cut is central to
any general snapshot algorithm. In [15] Lai and Yang presented a simple scheme to compute a consis-
tent cut for non-FIFO systems by piggybacking a one bit status information onto basic messages:

(1) Every process is initially white and turns red while taking a local snapshot.
(2) Every message sent by a white (red) process is colored white (red).
(3) Every process takes a local snapshot at its convenience—but before a red message is possibly re-
ceived.

Obviously, the cut defined by the white events is consistent because no (red) message sent after the cut
is received (by a white process) before the cut. In order to guarantee termination, it must be assured

5

that eventually all processes take a local snapshot, and for most applications the local snapshots must
be collected and transmitted to a dedicated process.

In the sequel we assume that a single process initiates the snapshot algorithm. The initiating process
becomes red spontaneously and then starts a virtual broadcast scheme by directly or indirectly sending
(red) control messages to all processes in order to ensure that eventually all processes become red. Vir-
tual broadcast schemes can be implemented in various ways, for example by superimposing a control
computation on the underlying basic computation which uses a ring, a spanning tree, or a flooding
scheme [27].

Note that a white process can receive a red basic message before receiving a control message (see P1
in Fig. 3). Because processes do not know whether and when they will receive red basic messages, a
white process must be able to take a local snapshot at the moment it receives a red basic message. This
local snapshot must reflect the local state before the receipt of the message. In practice, this should not
be a problem. If it is not possible to "peek" at the message contents before actually receiving it in order
to determine its color, it might be possible to take a local snapshot just after receiving the message and
before changing the local state. Otherwise a white process must save relevant parts of the local state
before receiving a message in order to reproduce the state before the receipt event of a red message.

4 Catching the Messages in Transit

For some stable predicates or monotonic functions of the global state (such as GVT approximation, see
Section 6 and Section 7), the messages in transit must be taken into consideration. To catch these mes-
sages, Lai and Yang proposed that a process keeps a record of all messages sent and all messages re-
ceived along its incident channels [15]. After the local snapshots have been "assembled," the messages
in transit can be determined for each channel by computing the set theoretic difference. A serious draw-
back of this method, however, is that complete message histories must be stored and sent to other pro-
cesses which might require a large amount of space.

We propose a different method to catch the messages in transit which does not suffer from this draw-
back. Obviously, the messages in transit are precisely the white messages which are received by red
processes. Therefore, whenever a red process gets a white message it can send a copy of it to the snap-
shot initiator. (This message may be sent directly to the initiator or routed on a superimposed control

FIG. 3. The receipt of a red message by a white process.

white red

Receipt of the first control message

P1

P2

P3

P4

6

topology.) After the snapshot initiator has received the last copy of all in-transit messages (and the lo-
cal snapshots of all processes) it knows the complete snapshot. Fig. 4 illustrates this principle.

A problem with the method described so far, however, is termination detection. The initiator gets cop-
ies of all messages in transit but it cannot determine when it has received the last one. In principle, the
problem can be solved by anydistributed termination detection algorithm for non-FIFO systems [18]
where only white messages are considered. (For that purpose, a process is considered to beactive iff
it is white, andpassive otherwise. Then, the "white computation" has terminated if no process is white
and no white messages—which include the control messages sent towards the initiator—are in transit.
Note, however, that since passive processes are never reactivated this is a special case of the general
distributed termination detection problem.) Adeficiency counting termination detection method is par-
ticularly attractive in this case. In this method, each process is equipped with acounter being part of
the process state which counts the number of basic messages the process has sent to any process minus
the number of basic messages it has received from any process. By collecting and accumulating these
counters together with the local snapshots, the initiating process gets a consistent view of the message
counters. It hence knows how many basic messages have been in transit for the cut (i.e., it knows how
many copies it will get) and can thus determine the end of the snapshot algorithm.

Because after termination of the snapshot algorithm all processes are red and no white messages are in
transit, it is easy to repeatedly execute the snapshot algorithm. For that, one introduces a third color
such that the three colors (denoted "0", "1", and "2") are used cyclically. A process whose color is
"(i+1) mod 3" can then receive messages with the same color "(i+1) mod 3", or messages with color
"i mod 3" (these are messages sent before the previous cut of which copies have to be forwarded to the
initiator) or messages with color "(i+2) mod 3" (these are messages sent after the next cut). In the latter
case, the process takes a local snapshot before actually receiving it and switches its color to "(i+2) mod
3". Note that the message counters are "color-blind"—they count sent and received messages of any
color.

If it is not appropriate that processes inform the initiator every time an in-transit message is received
(because, for example, the message contents can be processed locally or because some messages are
not relevant to the snapshot) another termination detection method should be considered. By using the
vector counter principle [18, 19] a scheme that guarantees termination after two control rounds can be
devised. Acontrol round started by the initiator can be realized by any virtual broadcast scheme (e.g.,
a so-called wave algorithm) which guarantees that every process is visited by a control message and

FIG. 4. The snapshot principle.

local snapshots copy of messages
in transit

Initiator

Start End

7

which collects distributed information stored by the processes and returns it to the initiator [27]. For
ease of illustration we assume here that the processes send control messages along a ring.

In the vector counter method every process Pi counts the number of white messages it has sent to pro-
cess Pj (i≠j) on the j-th component of a local vector Vi of length n (where n is the number of processes).
It decrements its own component (Vi[i] := V i[i]-1) every time it receives a white message from some
process. A control message with a control vector C circulating on the ring accumulates the local vectors
and resets them to zero (C:= C+Vi; Vi := 0; all operations are performed component-wise). During the
first round, it also colors processes red if they are still white and collects the local snapshots. After
completion of the first round C[i] indicates the number of white messages that are in transit to Pi for
the cut induced by the control round. (This is obvious since with respect to the white messages the cut
is consistent.) If at the end of the first round C[i] > 0 for some i, a second round is necessary. In the
second round the control message waits at each process Pi until all (white) in-transit messages have
been received (Vi[i]+C[i] ≤ 0; notice that after the first round no new white messages have been gen-
erated). During the second round the relevant information contained in the in-transit messages is col-
lected.

Fig. 5 illustrates the method. Various optimizations and variants are possible. For example, it is only
necessary to revisit those processes Pi for which C[i] > 0 holds after the first round. Vectors can be
coded in such a way that only non-zero components are stored and transmitted. It is also possible to
use a scalar counter si (where si =Σj Vi[j]) instead of a vector counter. This, however, is merely a vari-
ant of the deficiency counting method described earlier and might require more than two rounds. If the
snapshot algorithm is repeatedly executed, two local vectors should be used—one counting the white
messages, the other one counting the red messages. By swapping the meaning of the two colors, the
algorithm can then be executed again. An adaptation of this algorithm for GVT approximation will be
presented in Section 7.

FIG. 5. The vector counter method.

P1

P2

P3

P4

0
0
0
0

0
1
0
0

0
2
-1
0

0
0
0
1

0
0
1
1

0
0
1
0

0
0
0
0

accumulated
control vector C

8

5 DMC — a Distributed Monotonic Computation Scheme

In general, the global state determined by a snapshot algorithm (such as the algorithm presented
in the previous section) is out of date and no longer valid. For monotonic functions of the global
state, however, even an outdated snapshot is often of interest since it yields a lower bound on
the "current" value of the function.

In this section we consider a particular distributed computation scheme we call DMC (Distrib-
uted Monotonic Computation) which computes a monotonic function of the global state. In the
next section we will see that this scheme has many interesting applications, for example it is
used in distributed simulations to represent simulation time. Specialized snapshot algorithms,
so-called GVT algorithms, can be used to compute approximations of the monotonic function;
such algorithms will be presented in Section 7 and Section 8. The notions in this section are
due to Tel [27, Chapter 4].

Let X be a partially ordered set where every finite non-empty subset has an infimum. Each pro-
cess Pi maintains a variable xi whose domain is X, and all basic messages are "stamped" with
a value of X. A send event stamps the message with a value greater than or equal to the current
value of xi. An internal event may only increase xi. A receive event may also change xi; the
new value of xi, however, must be greater than or equal to the value of xi before the receive
eventor it must be greater than or equal to the X-stamp of the message received. (In [27] Tel
generalizes this to the requirement that the new value be at least theinfimum of the current val-
ue and the value of the X-stamp.) Fig. 6 gives an example of a computation which behaves ac-
cording to those rules.

It is often interesting to know how "far" the computation has proceeded. This is formalized by
the definition of aglobal infimum function f on the set of all cuts which computes the "current"
infimum. For a cut C we define f(C) as the infimum of all local values xi (taken at the moment
of the local cut event) and all X-stamps of messages which cross the cut line, i.e., which are in
transit. (Notice that in Section 2 we did only define the global state of aconsistent cut; it will
shortly become clear, however, that messages from FUTURE to PAST do no harm.)

In order to prove that the global infimum function f is monotonic, we consider a cut C and an-
other cut C’ which is later than C (see Fig. 7). To simplify the proof we concentrate on the mes-
sages in transit (i.e., we assume that an event sends avirtual message to its locally next event
stamped with the current value of xi). Without loss of generality we can assume that a special

FIG. 6. A distributed monotonic computation.

7

54

9 83

8

11 14

5
5

5

9

5

6

98

5

2 4

9

internal initialization event is in the past of every cut. Therefore, for each message that crosses cut C’
from the PAST of C’ to the FUTURE of C’, it is possible to construct a finite backward chain of di-
rectly related events that ends in the PAST of C and therefore also crosses C. Let "value of an event"
denote the value of the local variable xi immediately after the event. Send events and internal events
(different from initialization events) always have directly preceding events with a value which is small-
er than or equal to their own value; for receive events it is always possible to choose one of the two
directly preceding events (i.e., the corresponding send event or the previous local event) in such a way
that this holds. By induction on the length of such a monotonic backward chain, it easily follows that
the X-stamps of its messages which cross C’ (messages a and d, but also message c in Fig. 7) are greater
than or equal to the X-stamps of the messages on the chain that cross C (message b in Fig. 7). Since
such a construction is possible forall messages that cross C’, this applies to the infimum, and hence
f(C) ≤ f(C’). The reader may prove Tel’s generalization of the scheme in a similar way (see also [27]).

Fig. 7 also illustrates that it does not matter whether a message that crosses an inconsistent cut from
FUTURE to PAST (message c) is taken into consideration: For each of those messages there exists a
message with an equal or smaller X-stamp (message d in Fig. 7) which goes from PAST to FUTURE,
therefore the X-stamp of message c is not relevant to the infimum.

As is the case for general snapshot computation, it is generally not possible to compute the "current"
value of a monotonic function f. However, it is possible to approximate that value (i.e., to determine a
lower bound) by calculating f for a "recent" cut C. Interestingly, for global infimum functions of DMC
schemes this can be donewithout coordinating the local cut events. Fig. 8 explains why this is the case.
For an inconsistent (or consistent) cut C we can define itsconsistent prefix closure C* = C ∪ {e’∈ E |
∃ e ∈ C : e’ → e}. Graphically this means that we adjust the cut line by pushing it somewhat to the
right in order to include those events which happened before in the FUTURE. By construction, C* is
later than C and hence f(C*)≥ f(C). (Notice that f(C) is well-defined for any global state function f if
the messages coming from FUTURE are ignored.) However, C* is still "earlier" than a virtual consis-
tent cut C’ depicted by a vertical cut line through the rightmost cut event of cut C in the diagram. There-
fore, f(C)≤ f(C*) ≤ f(C’) which signifies that f(C) is a lower bound on the value of function f at the
moment f(C) is determined. For DMC schemes, this works even if C is inconsistent1 and even if we
do not care about messages coming from the FUTURE. We will make use of this result in Section 7
where we develop algorithms for GVT approximation.

1. This generalizes the notions ofstrongly and weakly stable properties introduced by Lai and Yang in [15].

FIG. 7. Construction of a monotonic backward chain.

a
b

c

d

C C’

initialization
events

10

There exist several examples of DMC schemes for which good lower bounds on the current value of
the global infimum function are important. Among the most important applications aredistributed sim-
ulation schemes (with the problem of GVT approximation) andmessage-driven distributed computa-
tions (with the problem of distributed termination detection). Other examples comprise approxima-
tions of logical time defined by Lamport clocks [16] or vector clocks [10, 20].

6 Distributed Simulation

A particular interesting application of DMC schemes can be found in the theory of distributed simula-
tion. Here, the global infimum function is calledGlobal Virtual Time (GVT) and algorithms to com-
pute lower bounds are of great practical importance.

A distributed discrete simulation system consists of a set of sequential event-driven simulators imple-
mented by autonomous processes which interact by so-called event messages. (See Fujimoto’s excel-
lent survey [11] on parallel and distributed simulation which also contains further references.) Each
simulator has its own simulation clock and simulates its part of the model independently from the other
simulators. However, a simulator can schedule an event for execution by another simulator at a simu-
lation time later than or equal to its own local simulation time. This remote event scheduling feature is
implemented by sending anevent message to the other simulator which contains among other things a
timestamp that determines the simulation time at which the event is to occur.

A fundamental requirement to guarantee the correctness of a simulation is that events be executed
chronologically, i.e., in the order of the simulation times. In general, however, event messages need
not arrive at a simulator ordered by simulation time. Notice that this can also be the case if message
transmission is FIFO because event messages need not begenerated with monotonically increasing
timestamps and because usually event messages are received from different sources along different
channels. A central problem of distributed simulation theory is to guarantee by some decentralized
control mechanism that each simulator executes its events in chronological order.

In conservative distributed simulation schemes [22] a simulator is only allowed to advance its simula-
tion clock to the simulation time of the earliest event in its local event scheduling list (in order to exe-
cute that event) if it can be assured that no event message with a timestamp in the past will ever arrive.
In optimistic distributed simulation schemes (such as Time Warp [13]) a simulator may directly exe-
cute the earliest event (if any) in its event scheduling list. If an event message with an earlier timestamp

FIG. 8. Construction of the consistent prefix closure of a cut.

C C* C’

11

subsequently arrives, the simulatorrolls back to an earlier simulation time, cancelling all intermediate
side effects, and re-executes from that point now including the event that arrived late. The rollback op-
eration therefore requires that the state of each simulator process be saved regularly.

It should be clear that the handling of simulation time conforms to the distributed monotonic compu-
tation scheme defined in Section 5. For optimistic schemes a simulation clock may be set back when
an event message is received, but it is never set to a value earlier than the timestamp value of the mes-
sage. (For technical reasons it is necessary to go back to the most recent local recovery point before
that instant in time and replay the computation; this is a transparent mechanism, however.) In [13] Jef-
ferson defines Global Virtual Time (GVT) at real time t as the minimum of all local clocks at real time
t and of the timestamps of all event messages that are in transit at real time t. Clearly, GVT is a global
infimum function in the sense defined in Section 5. The determination of a tight lower bound on the
current GVT value is important for conservative as well as for optimistic distributed simulation sys-
tems.

For conservative schemes (which often suffer from deadlock situations [6]), GVT approximation al-
lows "accelerating" the simulation time by directly advancing all local clocks to the calculated lower
bound. (In this case, however, GVT should be defined to consist of the minimum of the message time-
stamps only.) After that, some simulators may be able to give new model specificguarantees (i.e., low-
er bounds on the timestamps of event messages they will generate) to other simulators, and conse-
quently several simulators may be able to proceed by executing events in parallel. In any case, when a
conservative distributed simulation is globally deadlocked, GVT approximation yields the simulation
time of the next event which can be safely executed [6].

For optimistic distributed simulation schemes, GVT approximation is important for memory manage-
ment and output commitment: GVT serves as a floor of the simulation times to which any simulator
can ever roll back. Thus, for each simulator there must exist at least one checkpoint that is older than
GVT. Only the most recent of all checkpoints older than GVT must be kept, however. All other check-
points are obsolete and should be removed to save memory. In case of interactive and animated simu-
lation it is necessary to present to the outside world a consistent and chronological view of what is go-
ing on inside the simulation system. Since physical output cannot be undone, animation events can
only be released when GVT exceeds their timestamp values.

7 GVT Approximation

Several algorithms for GVT approximation (ordistributed infimum approximation as it is called by Tel
[27]) are known. In principle, existing general distributed snapshot algorithms can be used—it is a
straightforward exercise to apply those algorithms [5, 15] or the variants described in Section 4 for
GVT approximation. However, specialized and therefore potentially more efficient solutions are pref-
erable. In [27] Tel gave several wave based solutions for different communication models. For the
asynchronous model two solutions are suggested. The first solution relies on sending an acknowledg-
ment for every received message and maintaining a data structure to represent the timestamp of unac-
knowledged messages. (Note that a message may still be in transit if the message is received after the
cut but the acknowledgment is receivedbefore the cut, Fig. 9 illustrates this situation which is handled
correctly in [27].) Basically the same algorithm was presented by Samadi et al. [23]. The second solu-

12

tion keeps a list of received messages and a list of sent messages for each process. After having col-
lected and accumulated all local lists, the messages in transit are determined by taking the appropriate
difference. (Notice that for an inconsistent cut it is possible that the receipt of a message is reported,
but not its sending.) This is the same principle used by Lai and Yang in their general snapshot algo-
rithm [15] and it suffers from the same drawback that control messages are rather long and that a large
amount of space is used for keeping the message lists.

In [17] Lin and Lazowska proposed an algorithm which is similar to Samadi’s algorithm but which
does not use an acknowledgment message for every single message. The idea is that every message
carries a sequence number and when a process P gets a control message it sends to every neighboring
process Q the smallest sequence number which is missing from that process (thereby implicitly ac-
knowledging all messages with a smaller sequence number). Q assumes that this message and all mes-
sages with larger sequence numbers are still in transit. For the messages in transit, Q is able to compute
a lower bound on the timestamps because, for unacknowledged messages, it keeps the local minima
(and the corresponding sequence numbers) of the timestamps as a function of sequence numbers. The
algorithm works in asynchronous systems without explicit acknowledgments, but it has two draw-
backs: First, the approximated GVT value is not optimal, and second, space is needed for the data
structures which keep the missing sequence numbers and the local minima of sent timestamp values.
Other solutions to the GVT approximation problem were given by Baldwin et al. [2], by Bauer et al.
[3], and by Bellenot [4].

We propose a different and rather simple solution whose main idea is easily explained using Fig. 10.
We determine two cuts C and C’ such that C’ is later than C. (This can be realized, e.g., by two control
waves or by two rounds of a control message on a ring.) Our goal is to compute a GVT approximation
along cut C’. For that, we have to determine the minimum of all local clock values (which is easy) and
the minimum of the timestamps of all messages that cross cut C’. As has been shown in Section 5, mes-
sages sent after C’ that are received before C’ can be ignored. The remaining set of messages that cross
C’ can be divided into a set of messages that are sent between C and C’ and a set of messages that are
sent before C. However, by "pushing" C’ to the right, the algorithm guarantees that the second set is
empty, i.e., the algorithm makes sure that a message sent before C is received before C’. For the first
set a lower bound on the smallest timestamp can easily be determined.

Let M denote the set of all messages that cross C’ from PAST to FUTURE (conceptually, we can again
include the virtual messages introduced in Section 5, therefore M≠ ∅), and let M’ denote the set of all
messages sent between C and C’. Because M⊆ M’ (the algorithm descibed below guarantees that no
message crosses both cuts), min{timestamps of M’} ≤ min{timestamps of M}. Hence, if we determine

FIG. 9. Acknowledgment for in-transit message.

ack

2

5

9

2

2 2
3

3

13

at C’ the minimum of all timestamps of messages sent after C, we get alower bound on the timestamps
of messages that are in transit at C’. To get a good approximation, C and C’ should be "close together."

The algorithm assumes that processes and messages are colored in a similar way as described in Sec-
tion 3 and Section 4. Initially, every process is white. A process is colored red to the right of cut C.
Every process counts the number of white messages it sends and it receives. After cut C (i.e., after be-
coming red) every process remembers the minimum of the timestamp values of all (red) messages it
sends. Since C is consistent with respect to white messages, it is possible to determine the number of
white messages that are in transit for this cut. Ifno messages are in transit, the minimum of the local
variables computed along C is already a valid GVT approximation (i.e., a lower bound). Otherwise, a
second control round yielding cut C’ is initiated. Here, the global minimum of all local variables and
of all timestamps of sent red messages can be determined.

By collecting and accumulating the counters of received white messages, it can be checked whether
all white messages have been received before cut C’. If this is not the case, the (possibly invalid) result
is ignored and another control round is started—this can be repeated until eventually the counters sig-
nal that the last white message was received. If vector counters are used (see Section 4) at most one
round C’ after the first control round C is needed, since it is possible to wait for slow white messages.
For a ring topology, this solution will now be presented in a more formal way.

Processes are denoted by P1,...Pn; the index of the unique initiator is denoted byinit. Each process
Pi has the following local variables:

T : the local simulationclock
tmin: the minimal timestamp of red messages
V: vector counter for white messages
color: the color of the process (white or red), initialized to white
GVT_approx: the result of the algorithm (only for the initiator)

Each basic message has a header with two fields to represent the color of the message and the time-
stamp. (The timestamp is equal to or greater than the value of the local simulation clock at the moment
of sending the message.) Whensending a message, the following actions take place:

FIG. 10. The GVT approximation principle.

C’C

can be ignored
virtual message

does not exist

∈M’ ∈M’ ∩M

white messages

(red messages)

14

send <color, timestamp,...> to Pj;

if color = white

 then V[j] := V[j]+1;

else tmin := min(tmin, timestamp);

fi;

That is, white messages are counted and for red messages the minimal timestamp value is determined.
When a message <msg_col,timestamp,...> is received by a process Pi, the following actions
take place:

if msg_col = white

then V[i] := V[i]-1;

fi;

Process the message and update T such

that T >= min(T’, timestamp) where T’

is the value of T before the receipt of

the message. After that, check whether

a control message is waiting (see be-

low) and can now be propagated.

A control message has three fields, it accumulates the local minimum of the local clocks on m_clock,
the minimum of the timestamps on m_send, and it accumulates the vector counters on count. When
a control message <m_clock, m_send, count> is received by a process Pi which is not the ini-
tiator, the following self-explanatory actions take place:

if color = white then

 tmin := ∞;
 color := red;

fi;

wait until V[i]+count[i] ≤ 0;
send <min(m_clock,T),min(m_send,tmin),
 V+count> to P(i mod n)+1;
V:=0;

When a control message <m_clock, m_send, count> is received by the initiator Pinit, the
following actions take place:

wait until V[init]+count[init] ≤ 0;
if count = 0

 then GVT_approx := min(m_clock,m_send);

 else send <T,min(m_send,tmin),V+count>
 to P(init mod n)+1; V:=0;

fi;

When Pinit gets back the control message after a complete first round, it is already red. It then starts
a second round if necessary (i.e., if count≠0). Notice that m_send and count must be accumulated

15

over both rounds, whereasm_clock is calculated individually for each round. When the initiator gets
back the control message after the second round,count is guaranteed to be the zero vector and the
GVT approximation is found.

Finally we note that the initiator Pinit starts the algorithm by setting its local variablecolor tored
andtmin to ∞, and then executing

send <T,∞,V> to P(init mod n)+1; V:=0;

Instead of vector counters, simplescalar counters can be used—this only requires a few obvious ad-
justments. (In particular, since by reducing the vector to a scalar, pertinent information is lost, it is not
possible to wait at specific processes for messages which are known to arrive. Therefore, the wait state-
ment must be removed.) Because in that case it is not guaranteed thatcount is 0 after the second
round, further rounds might be necessary. They are started in the same way as the second round. The
algorithm is also easily changed to allow repeated executions and other control topologies than rings;
the details, however, are left to the reader.

8 A Parallel Snapshot and GVT Approximation Algorithm

Although the snapshot algorithm of Section 4 and the GVT algorithm of Section 7 were presented in
a way which is particularly well suited for implementation on a ring, they can also be realized on other
control topologies, e.g. spanning trees. In this section we develop an "inherently parallel" snapshot and
GVT approximation algorithm which does not need a specific control topology. Another advantage
compared to the previous solutions is that it does not use vector counters although only a single control
"round" is necessary. The basic techniques (coloring of processes and messages; waiting for messages
that are in transit for the first cut) are the same as those used in the previous solutions.

Interestingly, the algorithm can be derived by adapting Chandy’s and Lamport’s elegant snapshot al-
gorithm [5] to non-FIFO systems. We therefore first present the outline of a slight variant of their
FIFO-based algorithm:

When process P receives a marker control message along an input channel c:

if P has not recorded its state
then P records its state;

 P sends one marker along each of its incident output channels;
 P records the state c as the empty sequence;

else P records the state c as the sequence of messages received along c
 after P’s state was recorded and before P received a marker along c;

fi;

If the underlying network is strongly connected then after finite time, once the algorithm has been ini-
tiated, each process will have recorded its state and the states of all incoming channels. A process spon-
taneously starts the algorithm as if it received a marker from some virtual, non-existing channel. The
reader may easily check that the global state is consistent; for the details we refer to [5].

16

If communication is non-FIFO, two cases must be considered. (1) A message sent by process P to pro-
cess Q after the marker can be received by Q before the marker; (2) a message sent by P to Q before
the marker can be received by Q after the marker. Fig. 11 illustrates the two cases.

We already know how to deal with case (1): A process becomes red at the moment it records its local
state, and the color of a process is piggybacked onto every basic message. Therefore, when process Q
receives message (1), it knows that a marker would have arrived if communication were FIFO. Upon
receiving a red message, a white process becomes red and does all the actions (i.e., state recording and
marker propagation) it would do upon receiving a marker. The subsequent arrival of the marker is sim-
ply ignored. Notice that for GVT approximation those messages do no harm and therefore no prema-
ture actions have to be taken (i.e., it is correct to record the state and to propagate the marker when the
first marker is received as in the FIFO case).

Case (2) essentially is the problem of knowing when the last white message along a channel arrives.
For FIFO systems this is easy because markers flush the channels; when the marker has arrived there
are no more white messages in transit for that channel. For non-FIFO systems the same can be achieved
by an extension of the flushing principle that makes markers "slower" than basic messages: A marker
is augmented with the number of (white) messages that are sent before it along the channel. The ac-
ceptance of the marker can then be deferred until all messages sent before it have been received. Fig.
12 illustrates the idea. To realize it, a process must count for each channel the number of white mes-
sages received and the number of white messages sent. The two solutions for cases (1) and (2) can be
combined by piggybacking the number of white messages sent along a channel onto every red message
sent along that channel. Notice that for non-FIFO systems the state of a channel is the set of all white
messages received by a red process.

In [1], Ahuja presented a similar solution. In order to extend the applicability of the Chandy-Lamport
algorithm (and other algorithms) to non-FIFO systems, the author proposes flush primitives for non-
FIFO channels. All messages sent along a channel before sending a forward-flush marker are received
before the marker (this solves case 2 of Fig. 11), and all messages sent along a channel after sending a

FIG. 11. Non-FIFO communication.

Q

P

(1) (2)

marker

FIG. 12. Deferment of acceptance of a marker.

Q

P

17

backward-flush marker are received after the marker (this solves case 1). The author observes
that sending a combined forward-backward marker (instead of an ordinary marker) is a suffi-
cient condition for the correct working of the Chandy-Lamport algorithm for non-FIFO sys-
tems. However, as our discussion shows, explicit use of flush primitives is not necessary for an
efficient solution of the non-FIFO snapshot problem.

In order to form a global state, the local snapshots (including the channel states) must be col-
lected. For a single initiator and a system with bidirectional communication channels this can
be done in an elegant way by theecho algorithm [8, 25]: Upon receipt of the first marker or the
first red message a process sends markers to all neighbors but the one from which the marker
or the message was received. A process having no other channel waits until all white messages
have been received and then returns anecho message that contains the local snapshot. (Echoes
behave like markers, they also contain the number of white messages sent before them.) When
a process has received markersor echoes along every incident channel and when it has received
all white messages, it returns an echo with all accumulated snapshots to the process from which
it first received a marker or a red message. Eventually the "echo wave" reaches the initiator. It
is easy to see that the channels travelled by the echoes form aspanning tree of the network.

For GVT approximation one can take the cut defined by those instants when the echo message
is sent. (For the initiator this is the instant when itwould send an echo.) By construction, there
is no white message in transit for this cut, therefore it qualifies for cut C’ of Fig. 10. A process
becomes red when it receives the first marker. The instants when the processes become red
form cut C of Fig. 10. The global minimum of the local clocks and of the red messages sent
before C’ is accumulated by the echo wave. We shall not discuss the technical details, but it
should become clear that the resulting algorithm is aparallel variant of the algorithm presented
in Section 7. Instead of control rounds on rings it uses awave of control messages which con-
sists of two phases. The first phase (which is realized by markers) corresponds to the first
round, and the second phase (which is realized by echoes) corresponds to the second round.
Exactly 2e control messages are used (where e is the number of channels).

9 Conclusions

We presented new distributed algorithms for computing snapshots of distributed computations
and for approximating the Global Virtual Time of a distributed simulation system. The algo-
rithms are simple and efficient and do not require channels to be FIFO or messages to be ac-
knowledged. The basic idea is to use two colors which indicate whether a process has already
taken its local snapshot and whether a message was sent before or after the local snapshot of a
process. Thus, messages which would make a snapshot inconsistent can easily be recognized
and avoided, and messages which are in transit can be caught by the receiving process. The
problem of knowing when the snapshot is complete (i.e., all in-transit messages have been
caught) is solved by a distributed termination detection scheme. While in the paper this was
illustrated using the vector counter termination detection method, using any other termination

18

detection scheme (e.g., based on simple scaler counters instead of vector counters) will also
work.

GVT approximation is done by applying a somewhat specialized variant of this principle. In
particular, messages which cross a cut in the "wrong" direction can simply be ignored. The
main idea of GVT approximation is to use two cuts and to make sure that no messages cross
both cuts. Hence, the minimum of the timestamps of all messages which cross the second cut
can easily be determined by considering all messages which are sent between the two cuts.

Cuts can be realized in various ways. We first presented a simple implementation using a token
circulating on a ring, and then sketched how the echo algorithm with its two phases can be used
to realize the two cuts by traversing an arbitrarily connected network in parallel. An additional
advantage of this variant is the fact that only a single "round" of the echo algorithm is necessary
although the control messages are rather short. Since distributed termination detection is a par-
ticular case of GVT approximation, this scheme does also yield an elegant parallel termination
detection algorithm for distributed computations. Interestingly, it is also possible to derive
GVT approximation algorithms from termination detection algorithms [21] which shows that
the two problems are closely related instances of the general snapshot problem.

19

References

1. Ahuja, M. Flush Primitives for Asynchronous Distributed Systems. Information Processing
Letters 34 (1990), 5-12.

2. Baldwin, R., Chung, M.J., and Chung, Y. Overlapping Window Algorithm for Computing
GVT in Time Warp. InProc. 11th International Conference on Distributed Computing Sys-
tems, 1991, pp. 534-541.

3. Bauer, H., Sporrer, C., and Krodel, T.H. On Distributed Logic Simulation Using Time Warp.
In Proc. VLSI International Conference, IFIP, Edinburgh, 1991.

4. Bellenot, S. Global Virtual Time Algorithms. InProc. of the SCS Multiconference on Dis-
tributed Simulation, 1990, pp. 122-127.

5. Chandy, K., and Lamport, L. Distributed Snapshots: Determining Global States of Distrib-
uted Systems.ACM Transactions on Computer Systems 3, 1 (1985), 63-75.

6. Chandy, K., and Misra, J. Asynchronous Distributed Simulation Via a Sequence of Parallel
Computations.Comm. of the ACM 24, 2 (1981), 198-205.

7. Chandy, K., Misra, J, and Haas, L. Distributed Deadlock Detection.ACM Transactions on
Computer Systems 1, 2 (1983), 144-156.

8. Chang, E. Echo Algorithms: Depth Parallel Operations on General Graphs. IEEE Transac-
tions on Software Engineering SE-8, 4 (1982), 391-401.

9. Critchlow, C., and Taylor, K. The Inhibition Spectrum and the Achievement of Causal Con-
sistency.Proc. 9th ACM Symp. on Principles of Distributed Computing, 1990, pp. 31-42.

10. Fidge J. Timestamps in Message-Passing Systems That Preserve the Partial Ordering.Proc.
11th Australian Computer Science Conference, 1988, pp. 56-66.

11. Fujimoto, R.M. Parallel Discrete Event Simulation.Comm. of the ACM 33, 10 (1990), 30-
53.

12. Hélary, J. Observing Global States of Asynchronous Distributed Applications. In Bermond,
J-C, and Raynal, M. (Eds.).Proc. of the 3rd International Workshop on Distributed Algo-
rithms. Springer-Verlag, LNCS 392, 1989, pp. 45-56.

13. Jefferson, D. Virtual Time.ACM Trans. Program. Lang. Syst. 7, 3 (1985), 404-425.

14. Koo, R., and Toueg, S. Checkpointing and Rollback-Recovery for Distributed Systems.
IEEE Transactions on Software Engineering SE-13, 1 (1987), 23-31.

15. Lai, T., and Yang, T. On Distributed Snapshots.Information Processing Letters 25 (1987),
153-158.

20

16. Lamport, L. Time, Clocks, and the Ordering of Events in a Distributed System. Comm. of
the ACM 21, 7 (1978), 558-565.

17. Lin, Y. B., and Lazowska, D. Determining the Global Virtual Time in a Distributed Simu-
lation. Proc. of the International Conference on Parallel Processing, 1990, pp. 201-209.

18. Mattern, F. Algorithms for Distributed Termination Detection. Distributed Computing 2
(1987), 161-175.

19. Mattern, F. Experience with a New Distributed Termination Detection Algorithm. In: Van
Leeuwen, J. (Ed.). Proc. of the 2nd International Workshop on Distributed Algorithms.
Springer-Verlag, LNCS 312, 1988, pp. 127-143.

20. Mattern, F. Virtual Time and Global States of Distributed Systems. In Cosnard M. et al.
(Eds). Proc. Workshop on Parallel and Distributed Algorithms (Chateau de Bonas, France,
Oct. 1988), Elsevier, 1989, pp. 215-226.

21. Mattern, F., Mehl, H., Schoone, A., Tel, G. Global Virtual Time Approximation with Dis-
tributed Termination Detection Algorithms. Tech. Rep. RUU-CS-91-32, Department of
Computer Science, University of Utrecht, The Netherlands, 1991.

22. Misra, J. Distributed Discrete-Event Simulation. Computing Surveys 18, 1 (1986), 39-65.

23. Samadi, B., Muntz, R.R., and Parker, D.S. A Distributed Algorithm to Detect a Global State
of a Distributed Simulation System. In Proc. IFIP Conference on Distributed Processing,
Amsterdam, North-Holland, 1987.

24. Sarin, S., and Lynch, N. Discarding Obsolete Information in a Replicated Database System.
IEEE Transactions on Software Engineering SE-13, 1 (1987), 39-47.

25. Segal, A. Distributed Network Protocols. IEEE Transactions on Information Theory IT-29,
1 (1983), 23-35.

26. Taylor, K. The Role of Inhibition in Asynchronous Consistent-Cut Protocols. In Bermond,
J-C, and Raynal, M. (Eds.). Proc. of the 3rd International Workshop on Distributed Algo-
rithms. Springer-Verlag, LNCS 392, 1989, pp. 280-291.

27. Tel, G. Topics in Distributed Algorithms. Cambridge University Press, Cambridge, 1991.

