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Abstract

The goal of this thesis is to continue to build the bridge between communication complexity

and analysis. More specifically, the purpose is to initiate a systematic study of dimension-free

relations between basic communication complexity and query complexity measures and var-

ious matrix norms. In other words, our goal is to establish qualitative equivalences between

complexity measures, namely to bound a measure solely as a function of another measure.

This is in contrast to the more common framework in communication complexity where

quantitative equivalences are the main focus of study and poly-logarithmic dependencies on

the number of input bits are tolerated.

Dimension-free bounds are closely related to structural results, where one seeks to de-

scribe the structure of Boolean matrices and functions that have low complexity. We restate

and propose several conjectures in this nature such as: Does every matrix with small ran-

domized communication complexity contain a large all-zero or all-one submatrix [CLV19]?

Does every Boolean function with small approximate Fourier algebra norm have large affine

subspace on which the function is constant?

We consider such questions for several communication and query complexity measures as

well as various matrix and operator norms. In several cases, we achieve satisfying answers,

while for some cases we show that such bounds do not exist.

We establish that, in addition to applications in complexity theory, these problems arise

naturally in operator theory and Harmonic analysis. We show that these problems are central

to characterization of the idempotents of the algebra of Schur multipliers, and could lead to

new extensions of Cohen’s celebrated idempotent theorem regarding the Fourier algebra.
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Abrégé

L’objectif de cette thèse est de renforcer le lien entre les domaines de la complexité de la

communication et l’analyse. Plus précisément, son but est d’initier une étude systématique

des relations entre la complexité de la communication basique et la complexité des requêtes

et de diverses normes de matrice indépendamment des dimensions. En d’autres mots, notre

objectif est d’établir des équivalences qualitatives entre les mesures de la complexité, à savoir

pour lier une mesure uniquement en fonction d’une autre mesure. Cela diffère du cadre

habituel de la complexité de la communication, où l’emphase est plutôt mise sur l’étude des

équivalences quantitatives et où les dépendances polylogarithmiques sur le nombre de bits

dans les données sont tolérées.

Les limites indépendantes des dimensions sont fortement liées aux résultats structuraux,

où l’un cherche à décrire la structure des matrices booléennes et des fonctions de basse

complexité. Ainsi, nous reformulons et proposons plusieurs hypothèses : Est-ce que toutes les

matrices dont la complexité de communication aléatoire est basse ont des sous-matrices larges

de 0 ou de 1 [CLV19]? Est-ce que toutes les fonctions booléennes, dont les normes d’algèbre

de Fourier approximatives sont petites, ont des sous-espaces affines larges sur lesquels la

fonction est constante?

Nous considérons de telles questions pour les mesures de la complexité de communication

et des requêtes ainsi que pour diverses normes de matrices et d’opérateurs. Dans plusieurs

cas, nous avons obtenu des réponses satisfaisantes. Cependant, dans certains cas, nous

montrons que de telles limites n’existent pas.

Nous établissons qu’en plus de leur application dans la théorie de la complexité, ces
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problèmes apparaissent naturellement en théorie des opérateurs ainsi qu’en analyse har-

monique. Nous montrons que ces problèmes sont importants pour la caractérisation des

idempotentes de l’algèbre des multiplicateurs de Schur et qu’ils pourraient mener à de nou-

velles extensions du théorème des idempotentes célébré de Cohen sur les algèbres de Fourier.
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Chapter 1

Introduction

A matrix is called Boolean if its entries are either 0 or 1, and similarly, a function is called

Boolean if it takes only 0 and 1 values. Our goal in this thesis is to study whether dimension-

free relations exist between basic communication and query complexity measures and various

matrix norms for Boolean matrices and functions.

The field of communication complexity, formally defined in 1979 in a paper by Yao [Yao77],

studies the communication costs of computing Boolean functions whose input is split between

two or more parties. In the two-party model, two players, Alice and Bob, want to collab-

oratively compute a Boolean function (or a matrix) f : X × Y → {0, 1} 1. Alice and Bob

are given inputs x ∈ X and y ∈ Y , respectively. Neither of the players knows the other’s

input, however, the function f is known to both players. They have access to unlimited

computational power, and wish to compute f(x, y) by transmitting the minimum number of

bits. This transmission is carried out according to a communication algorithm π – referred to

as protocol throughout the text – which is fixed by Alice and Bob beforehand, and depends

only on the task f . The number of bits transmitted according to a protocol on the worst

input is called the cost of the protocol.

The deterministic communication complexity of f , denoted by D(f), is the number of

bits Alice and Bob have to exchange according to the best protocol on the worst case choice

1Throughout the text we refer f : X × Y → {0, 1} as a matrix and a function interchangeably.

1



of input pair (x, y), i.e.

D(f) = min
π

max
(x,y)∈X×Y

{number of bits exchanged by π to compute f(x, y)}.

Obviously, one of the parties, say Alice, can send her entire input, bit by bit, to Bob, he

then can evaluate f on their inputs, and send the output back to Alice 2.

Thus, 1 ≤ D(f) ≤ min{log(|X |), log(|Y|)}+ 1 for every f . While for some functions this

trivial algorithm is provably optimal, the goal is to find better bounds for communication

complexity, or for certain functions, exactly determine it.

Allowing Alice and Bob to have access to a source of randomness can make communica-

tion protocols more powerful. Given a source of randomness, Alice’s and Bob’s next messages

not only depend on the previous messages but also on a coin flip. Hence, the output of the

function will also depend on the sequence of coin flips. Here, we will allow the protocols to

output a wrong value with a small probability. We say that a protocol uses the public coin

model if Alice and Bob receive the same random string r. Then they execute a deterministic

protocol πr, where their messages can depend on the string r. In other words, a randomized

communication protocol is a distribution over deterministic protocols. A randomized proto-

col computes a function f with error at most ε if Prr[πr(x, y) = f(x, y)] > 1 − ε for every

input (x, y). The cost of a public coin protocol is the maximum cost of any of the determin-

istic protocols πr. The public coin randomized communication complexity of f , denoted by

Rε(f), is the minimum cost of a public coin protocol which computes f with error at most

ε.

Developed by complexity theorists, communication complexity has been naturally influ-

enced by the more classical areas of complexity theory such as computational complexity

where the main challenges lie in separation of complexity classes. Communication complex-

ity classes are defined in [BFS86] as the set of problems that can be solved using protocols

with communication costs logc(n) in the corresponding model, where n is the number of in-

put bits. As a result, a major part of the literature of communication complexity is focused

2We follow the convention that the last communicated bit must be the output bit, otherwise D(f) ≥ 1 is

not true when f is a constant function.
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on finding explicit instances (e.g. set-disjointness [She14], Hadamard matrix [For02], gap

Hamming distance [CR12]) that require communication cost logc(n) in one model (e.g. non-

deterministic), whereas they require a much higher communication cost in a different model

(e.g. randomized), ideally Ω(n). However, a O(log(n)) versus Ω(n) separation unfortunately

does not overrule the existence of dimension-free relations, as for instance, it is possible that

one parameter is upper-bounded by an exponential function in the other parameter.

A relation between two measures is called a dimension-free relation or bound if it provides

a bound on one of the measures solely as a function of another one. Dimension-free bounds

are often closely related to structural results. For instance, it is well-known that if the

deterministic communication complexity of a Boolean function is bounded by a constant c,

then its corresponding matrix is highly structured. Namely, it can be partitioned into 2c

all-zero or all-one submatrices. In other words, its partition number is upper-bounded by a

constant. Similarly, its rank is also upper-bounded by 2c.

The simple example of the identity matrix, often called the equality function in the

context of communication complexity, shows that having small randomized communication

complexity does not imply a small partition number or a small rank, as the n×n-sized identity

matrix has rank n, partition number Ω(n) and randomized communication complexity O(1).

While this and a handful of other known examples show that the rank of a matrix with

bounded randomized communication complexity can be arbitrarily high, they do not overrule

the possibility that such matrices might be structured in a different way, or at least contain

highly structured parts. Investigating such structures is another focus of this thesis.

All the known examples of matrices with small randomized communication complexity

contain a large all-zero or all-one submatrix. The following conjecture in [CLV19], speculates

that this structure holds in general.

Conjecture I. If the randomized communication complexity of an n×n Boolean matrix M

is bounded by c, then it contains an all-zero or all-one δcn× δcn submatrix, where δc > 0 is

a constant that only depends on c.

In fact [CLV19] conjectures that one can take δc = 2−O(c) in the above statement. Another
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motivation for this conjecture stems from the open question of separating communication

complexity classes BPPCC and PNPCC
posed by [GPW18b] (see Section 2.6).

One way to establish Conjecture I would be to show that every Boolean matrix with

small parameter τ contains a large constant submatrix, where τ is a matrix parameter

lower-bounding randomized communication complexity. It is well-known that the normalized

approximate trace norm of a matrix is such a parameter. The approximate trace norm

‖M‖tr,ε for some ε > 0 is defined as the smallest ‖M ′‖tr for a real matrix M ′ such that

|M(i, j) −M ′(i, j)| ≤ ε for every i, j. It provides a lower bound of Ω
(

log ‖M‖tr,ε
n

)
for the

randomized communication complexity (see Lemma 2.15). Hence, this motivates us to ask

the following tantalizing question about the trace norm itself.

Conjecture II. If an n × n Boolean matrix M satisfies ‖M‖tr
n
≤ c, then it contains an

all-zero or all-one δcn× δcn submatrix, where δc > 0 is a constant that only depends on c.

This conjecture is interesting also from the point of view of graph theory. The trace

norm of the adjacency matrix of a graph is considered an important graph parameter, and is

often called graph energy [LSG12] in that context. Furthermore, there is an extensive body

of research that investigates graph theoretic [Chu14] or spectral conditions [GN08, BN07,

Nik06, LLT07, Nik09] that guarantee the existence of large complete bipartite subgraphs in

a graph or its complement. Conjecture II, if true, provides a very natural condition based

on graph energy.

The motivation behind the subject of this thesis goes beyond communication complexity

and combinatorics. Several of the problems considered in this thesis are basic questions about

Boolean matrices, and unsurprisingly, they also arise naturally in other areas of mathematics

such as operator theory, and Harmonic analysis.

Connection to Operator theory. Let X and Y be fixed countable sets, finite or infinite,

and consider the set of X × Y Boolean matrices M : X × Y → {0, 1}. We shall think of

rank-one Boolean matrices as the most structured of those. Every such matrix is of the form

1X0 ⊗1T
Y0

for some X0 ⊆ X and Y0 ⊆ Y . These matrices, which correspond to combinatorial
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rectangles X0 × Y0 ⊆ X × Y , are the building blocks of communication complexity. We

denote by

Rect = {M : X × Y → {0, 1} | rk(M) = 1},

the set of all rank-one Boolean matrices.

The next important class of structured Boolean matrices for the purposes of this thesis

is defined as follows. We call a matrix M : X × Y → {0, 1} blocky if there exist, possibly

infinitely many, disjoint sets Xi ⊆ X and disjoint sets Yi ⊆ Y such that the support of M is⋃
i

Xi × Yi.

A simple example of a blocky matrix is the identity matrix. We denote by Blocky the set

of all blocky matrices. Figure 1.1 demonstrates examples of a combinatorial rectangle, and

blocky matrices.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

Figure 1.1: A combinatorial rectangle on the left, and a blocky matrix on the middle and

on the right.

Blocky matrices appear naturally in different contexts, including those related to the

topic of this thesis, and have been given different names. In graph theory, blocky matrices

correspond to equivalence relations on the vertex set of a graph, and thus they have been

called equivalence graphs [Duc79, Fra82, Alo86, BK95]. In complexity theory, blocky matrices

have found applications in proving bounds against circuits and branching programs [PR94,

Juk06].

5



A blocky matrix is essentially a blow-up of the identity matrix, obtained by duplicating

rows and columns, and then permuting them. Hence, similar to the identity matrix, the

randomized communication complexity of every finite blocky matrix is bounded by a fixed

constant.

Blocky matrices also arise in the context of Schur multipliers. Recall that the Schur

product (also called the Hadamard product) of two |X | × |Y| matrices M1 and M2, denoted

by M1 ◦M2, is their entry-wise product. Let B(X ,Y) denote the space of bounded linear

operators A : `2(X ) → `2(Y) endowed with the operator norm. A |X | × |Y| matrix M is

called a Schur multiplier if for every A ∈ B(X ,Y), we have M ◦A ∈ B(X ,Y). Every Schur

multiplier M defines a map B(X ,Y)→ B(X ,Y) via A 7→M ◦A, which assigns an operator

norm to it:

‖M‖m := ‖M‖B(X ,Y)→B(X ,Y) = sup{‖M ◦ A‖`2(X )→`2(Y) : ‖A‖`2(X )→`2(Y) ≤ 1}.

Note that Schur multipliers form a Banach algebra via Schur product:

‖M1 ◦M2‖m ≤ ‖M1‖m‖M2‖m.

An element a of an algebra is said to be idempotent if a2 = a. The following question

arises naturally.

What are the idempotents of the algebra of Schur multipliers?

Every idempotent of this algebra must satisfy M = M ◦M , and thus is a Boolean matrix.

However, not every (infinite) Boolean matrix is a bounded Schur multiplier, as it is possible

to have ‖M‖m = ∞ for a Boolean matrix M [Liv95]. It is shown by Livshits in [Liv95]

that blocky matrices are exactly the set of all contractive idempotents, meaning, an idem-

potent Schur multiplier satisfies ‖M‖m ≤ 1 if and only if it is a blocky matrix. Livshits’s

characterization of idempotent Schur multipliers has been extended to other related set-

tings [BH04, Neu06, KP05, Lev14, MP16]. An important question in this area (see e.g.

[ELT16]) is the following.
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Are the idempotent Schur multipliers exactly those Boolean matrices that can

be written as a linear combination of finitely many contractive idempotents (or

equivalently blocky matrices)?

A simple compactness argument, as outlined in Theorem 4.12, shows that this problem is

equivalent to the following basic question about Boolean matrices.

Conjecture III. For every c > 0, there exists kc ∈ N such that the following holds. If a finite

Boolean matrix M is a linear combination of rank-one Boolean matrices with coefficients λi

satisfying
∑

i |λi| ≤ c, then M is a ±1-linear combination of at most kc blocky matrices.

On the other hand, it is not difficult to see that if M is a ±1-linear combination of at

most kc blocky matrices, then M can be written as a linear combination of rank-one Boolean

matrices with coefficients whose absolute values sum to at most O(kc).

By Grothendieck’s inequality (see Theorem 2.10), the assumption in Conjecture III can

be equivalently replaced with the bound ‖M‖γ2 = O(1), where

‖M‖γ2
:= min{‖B‖2→∞‖C‖1→2 : M = BC}.

The connection to Schur multipliers is due to the fact, stated in Theorem 2.10, that γ2

norm coincides with the norm of M as a Schur multiplier.

Connection to Harmonic analysis. Let G be a locally compact Abelian group with the

dual group Ĝ. Let M(G) denote the measure algebra of G, that is to say the algebra of

bounded, regular, complex-valued measures on G with the convolution operator as multipli-

cation (denoted by ∗). Note that every idempotent µ of this algebra satisfies µ ∗ µ = µ, and

this is equivalent to the statement that the Fourier transform µ̂ satisfies µ̂2 = µ̂, and thus is

Boolean. Paul Cohen, in a celebrated article [Coh60], proved that µ is an idempotent if and

only if µ̂ can be expressed as a ±1-linear combination of the indicator functions of a finite

number of cosets of Ĝ. More recently, Green and Sanders [GS08], and Sanders [San20] have

proven effective bounds on the required number of cosets as a function of ‖µ‖ when G is

finite.
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As we explain below, Cohen’s idempotent theorem is closely related to Conjecture III.

Consider a finite Abelian group G. In this case, since G ∼= Ĝ, and M(G) = L1(G), by

switching the roles of G and Ĝ, one can state Cohen’s idempotent theorem as follows.

Theorem 1.1 (Cohen’s theorem). For every c > 0, there exists kc > 0 such that the following

holds: If f : G→ {0, 1} satisfies

‖f‖A :=
∑
χ∈Ĝ

|f̂(χ)| ≤ c, (1.1)

then

f =
kc∑
i=1

±1Hi+ai , (1.2)

where each Hi ≤ G is a subgroup, and each ai ∈ G.

The norm ‖ · ‖A is called the Fourier algebra norm, and for finite Abelian groups, it is

equal to the sum of absolute values of Fourier coefficients of the function.

Note that ‖1Hi+ai‖A = 1, and furthermore it is not difficult to prove that the indicator

functions 1H+a of cosets are the only non-zero contractive idempotents of the Fourier algebra.

This is called the Kawada-Itô theorem [KI40, Theorem 3] and dates back to 1940. In other

words, if f : G → {0, 1} satisfies ‖f‖A = 1, then f = 1H+a for some coset H + a. Hence,

Cohen’s idempotent theorem says that every idempotent of the Fourier algebra of G can be

expressed as a linear combination of κ(‖f‖A) many contractive idempotents for some function

κ(·). This is precisely what Conjecture III is trying to establish regarding the idempotents

of the algebra of Schur multipliers. As we explain below, this connection is more than just

a verbal analogy.

Let G be a finite Abelian group. Consider a Boolean f : G → {0, 1} satisfying (1.1),

and let the Boolean matrix F : G × G → {0, 1} be defined as F (x, y) = f(x − y). It is

well-known [LS09, Lemma 36] that

‖F‖γ2 =
‖F‖tr

|G|
=
∑
χ∈Ĝ

|f̂(χ)| = ‖f‖A. (1.3)

Hence if ‖f‖A ≤ c, then the assumption of Conjecture III holds for F , and if the conjecture

is true, one should be able to express F as a linear combination of a bounded number (as a
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function of c) of blocky matrices. Indeed in this case, Conjecture III follows from Cohen’s

idempotent theorem, since a coset 1Hi+ai in (1.2) corresponds to the blocky matrix supported

on the entries in ⋃
b∈G/H

(Hi + b)× (Hi + b− ai).

Thus Cohen’s idempotent theorem implies that both Conjecture II and Conjecture III are

true for matrices of the form F (x, y) = f(x − y). In this regard, Conjecture III can be

thought of as an extension, or more accurately, an analogue of Cohen’s idempotent theorem

for the algebra of Schur multipliers. Obviously due to lack of structure in a group, one

cannot hope to find cosets—instead Conjecture III promises blocky matrices.

Finally, let us discuss the approximate version of Cohen’s idempotent theorem, significant

to us due to connections to randomized query and communication complexity. Let G be an

Abelian group, and let f : G→ {0, 1} be a Boolean function. Now, instead of assuming that

‖f‖A is small, let us assume a weaker condition – f has an approximator with small algebra

norm. More precisely, there exists a function g : G→ R, not necessarily Boolean, such that

‖f − g‖∞ ≤ ε and ‖g‖A ≤ c. Such functions have been studied by Méla [M8́2] and Host,

Méla, and Parreau [HMP86] under the name ε-quasi-idempotent. In [M8́2] Méla shows that

in general, a structure similar to Cohen’s idempotent theorem does not necessary hold for

such functions. However, in the spirit of Conjecture I, we conjecture that for G = Zn2 , every

ε-quasi-idempotent contains a highly structured part.

Conjecture IV. Let f, g : Zn2 → R be such that f is Boolean, ‖f − g‖∞ ≤ 1
3
, and ‖g‖A ≤ c.

There exists a coset V = H + a ⊆ Zn2 such that f is constant on V , and |V |
|Zn2 |
≥ δc > 0, where

δc > 0 is a constant that only depends on c.

The constant 1
3

in the statement is not important and can be replaced by any fixed

constant ε ∈ (0, 1/2), as it is not difficult to see that all such statements will be equivalent.

Conjecture IV, if true, would imply Conjecture I for matrices of the form F (x, y) =

f(x − y) where f : Zn2 → {0, 1}. Indeed, this follows from the fact that randomized com-

munication complexity upper-bounds the approximate trace norm, and Proposition 4.13 (a
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generalization of Equation (1.3)) applied to the following symmetrization of the function

G(x, y) approximating F (x, y)

G̃(x, y) := Ez [G(z + x, z + y)] .

Public-coin versus private-coin randomness: In the private-coin model, each party

privately samples an independent random string. We caution the reader that in this the-

sis, randomized communication complexity always refers to the public-coin model – where

randomness is shared between the players – unless the opposite is stated explicitly. We also

reserve the notation R(M) to denote the public-coin randomized communication complexity

of a Boolean matrix M . See Section 2.1.2 for formal definitions.

Qualitative versus quantitative, and dimension-free-ness: In this thesis we are in-

terested in dimension-free results. In other words, we call two parameters qualitatively

equivalent if each can be bounded as a function of solely the other one. Furthermore, since

the main purpose of this thesis is establishing dimension-free dependencies, we will not be

concerned with quantitative effectiveness of these bounds.

For example, the well-known relations

log rk(M) ≤ D(M) ≤ rk(M), (1.4)

between rank and deterministic communication complexity, show that insofar as this the-

sis is concerned, they are qualitatively equivalent. In contrast, despite Newman’s theo-

rem [New91], which states that for n× n matrices,

R(M) ≤ Rprivate(M) ≤ O(R(M) + log log(n)), (1.5)

due to the log log(n) term (which is necessary), public and private randomized communica-

tion complexities are not qualitatively equivalent.

In fact, the private-coin model is not interesting from our standpoint: For every Boolean

matrix M ,

Ω(log D(M)) = Rprivate(M) ≤ D(M),
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and thus, as far as this thesis is concerned, the private-coin randomized communication

complexity is qualitatively equivalent to the deterministic communication complexity [KN97,

Lemma 3.8].

1.1 Our contributions

In this section, we summarize some of the results proven in this thesis.

• In Section 4.1 we prove that the deterministic communication complexity with access

to an equality oracle is qualitatively equivalent to the smallest k such that the matrix

can be written as a linear combination of k blocky matrices.

• In Section 4.2, we show that zero-error randomized communication complexity and

rank are qualitatively equivalent. Consequently, combining this with a recent result

of Gál and Syed [GS19] establishes qualitative equivalence between approximate rank,

zero-error randomized communication complexity, deterministic communication com-

plexity, and rank.

• In Section 4.3, we establish Conjecture I for one-sided error randomized communication

complexity.

• In Section 4.4, in Theorem 4.12 we use a compactness argument to show that Conjec-

ture III is equivalent to the statement that every idempotent of the algebra of Schur

multipliers is a linear combination of finitely many contractive idempotents.

• In Section 4.5, we consider matrices that are constructed from functions on finite

groups. Cohen’s idempotent theorem has been generalized to hold for non-Abelian

groups as well by Lefranc [Lef72], and effective bounds were given by Sanders [San11].

We use these results, in conjunction with a theorem of Davidson and Donsig [DD07]

to verify Conjecture II and Conjecture III for matrices of the form F (x, y) = f(y−1x),

where f : G→ {0, 1} and G is any finite group.
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• In Section 4.6, we prove a version of Conjecture IV for approximate Fourier rank instead

of approximate Fourier algebra, which is a weakening of the conjecture.

• In Chapter 5, we consider xor-lifts F⊕(x, y) = f(x1 ⊕ y1, . . . , xn ⊕ yn), where f :

{0, 1}n → {0, 1}. Note that xor-lift is a special case of F (x, y) = f(y−1x), where

G = Zn2 , and thus, as we mentioned above, Conjecture II and Conjecture III are true

for these matrices. We further discuss the analogue of Conjecture I for the ⊕-query

model, i.e. for parity decision trees. In other words, we consider Conjecture IV in

relation to randomized ⊕-query complexity. Furthermore, we show that the zero-error

randomized ⊕-query complexity is qualitatively equivalent to both the deterministic

⊕-query complexity and the number of non-zero Fourier coefficients.

• In Chapter 6, we consider and-lifts F∧(x, y) = f(x1∧ y1, . . . , xn∧ yn) for f : {0, 1}n →

{0, 1}. We prove that the analogue of Conjecture IV is true in the ∧-query model.

Namely, in Theorem 6.3, we prove that if the randomized and-decision tree of f :

{0, 1}n → {0, 1} is small, then there is a small set J of coordinates such that f is

constant on {x : xj = 0 ∀j ∈ J}.

We remark that Conjecture I, Conjecture II and Conjecture III all remain unresolved

for and-lifts.

• In Chapter 7, we explain our failure in proving Conjecture I, Conjecture II and Con-

jecture III by providing an example which shows that the common technique used in

proving Cohen’s idempotent theorem, and several similar theorems, including some of

our results in this thesis, is inherently inadequate for establishing these conjectures.

12



Chapter 2

Preliminaries

Let D denote the complex unit disk {z ∈ C | |z| ≤ 1}. For a positive integer n, we use [n]

to denote {1, . . . , n}. For a set S we denote by 1S the indicator function of S. For a vector

x ∈ {0, 1}n, and S ⊆ [n], we denote by xS ∈ {0, 1}S the restriction of x to the coordinates

in S. The Hamming weight of x is defined as |x| :=
∑
xi. For a matrix M its (i, j)-th entry

is denoted by Mij or M(i, j).

All logarithms in this thesis are in base 2.

For two functions f : N→ R and g : N→ R, we use the following asymptotic notations:

• f(n) = O(g(n)), if lim
n→∞

sup |f(n)|
|g(n)| <∞.

• f(n) = Ω(g(n)), if and only if g(n) = O(f(n)).

• f(n) = Θ(g(n)), if f(n) = O(g(n)) and f(n) = Ω(g(n)).

• f(n) = o(g(n)), if lim
n→∞

|f(n)|
|g(n)| = 0.

• f(n) = ω(g(n)), if lim
n→∞

|f(n)|
|g(n)| =∞.

We sometimes identify {0, 1}n or Zn2 with the vector space Fn2 over F2. In this context,

we refer to cosets H + a ⊆ Zn2 as affine subspaces, which naturally assign a dimensions and

a codimension to them.
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For sets X and Y , we will often identify a function f : X ×Y → C with its corresponding

matrix [f(x, y)]x∈X ,y∈Y .

For a measure space (Ω, µ), and p ∈ [1,∞), we denote by Lp(µ) the normed space of

functions f : Ω→ C with
∫
|f |pdµ <∞, together with the norm

‖f‖Lp(µ) :=

(∫
|f |pdµ

)1/p

,

and ‖f‖L∞(µ) is defined as the essential supremum of |f |.

For a finite set Ω, we write µΩ to denote the uniform probability measure on Ω, and we

shorthand ‖f‖Lp(µΩ) to ‖f‖Lp(Ω). When Ω is a countable set, we define the normed space

`p(Ω) according to the counting measure:

‖f‖`p(Ω) =

(∑
x∈Ω

|f(x)|p
)1/p

.

There are several natural norms on the space of m× n matrices. Considering an m× n

matrix M as a linear operator M : Cn → Cm endows the space with operator norms: For

p, q ∈ [1,∞], we use the notation ‖M‖p→q to denote its operator norm from `p to `q. That is

‖M‖p→q = sup
x∈Cn,‖x‖`p≤1

‖Mx‖`q ,

It is easy to see that

‖M‖2→2 = σmax,

where σmax is the largest singular value of M .

We shall need the following well-known inequalities.

Lemma 2.1 (Hoeffding’s inequality). For i = 1, . . . , n, let Xi be independent random vari-

ables taking values from range [ai, bi] and let X =
∑n

i=1 Xi. Then, for all t > 0,

Pr[|X − E[X]| ≥ t] < 2 exp

(
− 2t2∑

i(bi − ai)2

)
.

Lemma 2.2 (Cauchy–Schwarz inequality). Let u and v be arbitrary vectors of an inner

product space over the field C or R, then

|〈u, v〉| ≤ ‖u‖ · ‖v‖,
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where the norm is induced by the inner product; ‖u‖ =
√
〈u, u〉.

In particular, for the vectors u and v from space Rn with dot product, the inequality has

the following form: (
n∑
i=1

uivi

)2

≤

(
n∑
i=1

u2
i

)(
n∑
i=1

v2
i

)
.

2.1 Communication complexity

2.1.1 Deterministic communication complexity

The field of communication complexity studies the amount of communication required to

solve a problem of computing discrete functions when the input is split between two parties.

In other words, communication complexity studies the following question:

How many bits need to be exchanged between two parties to evaluate the function?

Every Boolean function f : X × Y → {0, 1} defines a communication problem. An input

x ∈ X is given to Alice, and an input y ∈ Y is given to Bob. Together, they should

both compute the entry f(x, y) by exchanging bits of information in turn, according to a

previously agreed-on protocol. There is no restriction on their computational power; the

only measure we care to minimize is the number of exchanged bits.

A deterministic protocol π specifies for each of the two players, the bit to send next,

as a function of their input and history of the communication so far. A protocol naturally

corresponds to a binary tree as follows. Every internal node is associated with either Alice

or Bob. If an internal node v is associated with Alice, then it is labeled with a function

av : X → {0, 1}, which prescribes the bit sent by Alice at this node as a function of her

input. Similarly, Bob’s nodes are labeled with Boolean functions on Y . Each leaf is labeled

by 0 or 1 which corresponds to the output of the protocol. We denote the number of bits

exchanged on the input (x, y) by costπ(x, y). This is exactly the length of the path from the

root to the corresponding leaf. The communication cost of the protocol is simply the depth
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of the protocol tree, which is the maximum of costπ(x, y) over all inputs (x, y).

CC(π) := max
x,y

costπ(x, y).

Every such protocol π computes a function X × Y → {0, 1}, which we also denote by

π. Namely π(x, y) is the label of the leaf reached by the path corresponding to the players’

communication on the input (x, y). We say that π computes f if π(x, y) = f(x, y) for all

x, y. The deterministic communication complexity of f , denoted by D(f), is the smallest

communication cost of a protocol that computes f .

A useful insight is that a bit sent by Alice at a node v corresponds to a partition of

the rows into two parts a−1
v (0) and a−1

v (1), and every bit sent by Bob corresponds to a

partition of the columns (see Figure 2.1). Every time Alice sends a bit, we restrict to a

subset of the rows, and proceed with the created submatrix. Similarly Bob’s communicated

bits restrict the columns. As this process continues, we see that every c-bit protocol induces

a partition of the matrix f into at most 2c submatrices (see Figure 2.1). In the context

of the communication complexity, submatrices are often called combinatorial rectangles or

simply rectangles. If the protocol computes f , then all submatrices in this partition are

monochromatic, namely, labeled by a unique element 0 or 1.
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a1(x)

a2(x) a3(x)

b1(y) b2(y)

Figure 2.1: A protocol tree on the left and its corresponding rectangle partitioning on the

right.

Note that every rank-one Boolean matrix is of the form 1X0 · 1TY0
for subsets X0 ⊆ X

and Y0 ⊆ Y . Thus rank-one Boolean matrices are essentially the same as 1-monochromatic

rectangles. We conclude the following proposition.

Proposition 2.3 ([KN97]). For every Boolean matrix f , we have

log rk(f) ≤ D(f) ≤ rk(f) ≤ rk(Rect , f) ≤ c ≤ 2rk(f),

where c is the partition number of f , which is the smallest c > 0 such that f can be parti-

tioned into c constant submatrices. In particular, all the above parameters are qualitatively

equivalent.

To the extent that we are concerned with qualitative results, Proposition 2.3 provides a

satisfactory description of the structure of Boolean matrices whose deterministic communi-

cation complexities are uniformly bounded. However, quantitatively, closing the exponential

gap between D(f) and log rk(f) into a polynomial dependency is called the log-rank conjec-

ture, and is perhaps the most famous open problem in communication complexity [Lov14].
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Conjecture 2.4 (Log-Rank Conjecture). There is an absolute constant C > 0 such that for

every Boolean matrix f we have

D(f) ≤ logC (rk(f)) .

2.1.2 Randomized communication complexity

In this thesis, we use the public coin model, where a probabilistic protocol πR is simply a

distribution over deterministic protocols. In this notation R is a random variable, and every

fixation of R to a particular value r leads to a deterministic protocol πr. We define the

communication cost of a probabilistic protocol πR as the maximum cost of any deterministic

protocol πr in the support of this distribution:

CC(πR) = max
r

CC(πr) = max
r

max
x,y

costπr(x, y).

We also define the average cost of such a protocol as the expected number of exchanged

bits over the worst input (x, y):

CCavg(πR) = max
x,y

ER[costπR(x, y)].

In the probabilistic models of computation, three types of error are often considered.

• Two-sided error: This is the most important notion of randomized communication

complexity. For every x, y, we require

Pr
R

[πR(x, y) 6= f(x, y)] ≤ ε,

where ε is a fixed constant that is strictly less than 1/2. Note that ε = 1/2 can be

easily achieved by outputting a random bit; hence it is crucial that ε in the definition

is strictly less than 1/2. It is common to take ε = 1
3
. Indeed, the choice of ε is not

important so long as ε ∈ (0, 1/2), since the probability of error can be reduced to any

constant ε′ > 0 by repeating the same protocol independently for some O(1) times,

and outputting the most frequent output (see Lemma 2.6).
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The two-sided error communication complexity is simply called the randomized com-

munication complexity. It is denoted by Rε(f) and is defined as the smallest commu-

nication cost CC(πR) of a probabilistic protocol that computes f with two-sided error

at most ε. We set ε = 1/3 as the standard error, and denote

R(f) = R 1
3
(f).

• One-sided error: In this setting the protocol is only allowed to make an error if

f(x, y) = 1. In other words, for every x, y with f(x, y) = 0, we have

Pr
R

[πR(x, y) = 0] = 1,

and for every x, y with f(x, y) = 1, we have

Pr
R

[πR(x, y) 6= f(x, y)] ≤ ε.

Again the choice of ε is not important so long as ε ∈ (0, 1) because the probability

of error can be reduced from ε to εk by repeating the same protocol independently k

times and outputting 1 only when at least one of the repetitions outputs 1. We denote

by R1
ε(f) the smallest CC(πR) over all protocols πR with one-sided error of at most ε.

We set ε = 1/3 as the standard error, and denote

R1(f) = R1
1
3
(f).

• Zero error: In this case the protocol is not allowed to make any errors. For every

x, y, we must have

Pr
R

[πR(x, y) 6= f(x, y)] = 0.

In this setting, CCavg(·) is considered, as CC(·) leads to the same notion of complexity

as the deterministic communication complexity. We denote

R0(f) = inf CCavg(πR),

over all such protocols.
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Note that one can convert a zero-error protocol π with average cost c to an one-sided error

protocol π′ with cost 3c, by terminating the protocol after at most 3c steps, and outputting

0 in the case where the protocol is terminated prematurely. The protocol π′ clearly does

not make any errors on 0-inputs. Furthermore, since the average cost of π is c, by Markov’s

inequality, the probability that the protocol π′ is terminated prematurely is at most 1
3
. We

conclude

R(f) ≤ R1(f) ≤ 3 R0(f).

Obviously, R(f),R1(f),R0(f) are all upper-bounded by D(f).

Proposition 2.5. For every Boolean matrix f , we have

R1(f) = Ω(logC1(f)− log log(n)), (2.1)

where C1(f) is the 1-covering number of f , which is the smallest c > 0 such that the 1’s of

f can be covered (possibly with intersections) by c all-one submatrices. In particular,

R0(f) = Ω
(
log
(
C1(f) + C1(f)

)
− log log(n)

)
.

To prove this we show that one-sided private randomized communication complexity of

f is lower-bounded by logC1(f), then Equation (2.1) will follow immediately from New-

man’s theorem (see Equation (1.5)). In contrast to public-coin randomized communication

protocols, the private randomized protocol is defined as follows: Alice and Bob each get

independent random strings rA and rB, the corresponding protocol is a binary tree where

each of Alice’s nodes are labeled by a function depending on x and rA, and, similarly, Bob’s

nodes are labeled by functions depending on y and rB. The input (x, y), as well as rA and

rB, determine a leaf in the tree labeled by 0 or 1 – this label is the output of the protocol on

input (x, y). Private randomized communication complexity of f is the height of the smallest

tree computing f .

Proof of Proposition 2.5. Given the one-sided private randomized protocol πR for f , take an

input x, y such that f(x, y) = 1 and fix the random string r = (rA, rB) for which πr(x, y) = 1.

For the fixed r let Sr = {(x, y) : πr(x, y) = 1}. Note that Sr is a rectangle, and f(x, y) = 1

20



for all (x, y) ∈ Sr. Also note that for each (x, y) such that f(x, y) = 1, there exists a random

string r (or multiple strings) such that (x, y) ∈ Sr. Hence, the union of such rectangles

covers all 1’s of f . The number of 1-leaves in the tree is at most 2R1(f), thus the number of

rectangles, hence also C1(f), is at most 2R1(f).

For more extensive survey on these and other communication complexity models, we refer

the interested reader to the books of Kushilevitz and Nisan [KN97], Jukna [Juk12], and Rao

and Yehudayoff [RY20].

Error reduction

Lemma 2.6. Let π be a randomized algorithm which computes the function f : Z → {0, 1}

with error at most ε and complexity c. Then, for any k > 0, there is an algorithm π′

computing f with error at most 2
−Ω
(
( 1

2
−ε)

2
k
)

and complexity k · c.

Proof. Define π′ to run the algorithm π for k times independently and to output the most

frequent answer. π′ will output a wrong answer if π outputs incorrect answer more than k
2

times. For i = 1, . . . , k, let Xi ∈ {0, 1} denote the random variable which is 1 if the i-th

run of π outputs a wrong answer, and is 0 otherwise. Then by the Hoeffding inequality

(Lemma 2.1) for the upper tail:

Pr

[
k∑
i=1

Xi >
k

2

]
≤ 2 exp

(
−2

(
1

2ε
− 1

)2

· k
2ε2

k

)
= 2 exp

(
−2

(
1

2
− ε
)2

k

)
.

2.2 Query complexity

In Section 2.1, we introduced various models of communication complexity. In this section

we discuss query complexity. Let X be a finite set, often endowed with a product structure,

most commonly X = {0, 1}n. In query complexity, a function f : X → {0, 1} is fixed, and

a player, who does not know the input x, wants to find out the value of f(x) by making

queries about x. In other words, query complexity strives to answer the following question:
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How many queries to the input need to be done to evaluate the function?

The goal is to minimize the number of queries. Depending on what type of queries are

allowed, we arrive at different models of query complexity. The most natural setting is to

have f : {0, 1}n → {0, 1}. Denoting the input x = (x1, . . . , xn) ∈ {0, 1}n, we consider three

important types of queries, each leading to a different model of query complexity.

• The coordinate queries xi for i ∈ {1, . . . , n}.

• The parity queries ⊕i∈Sxi, which are the xor of the coordinates in S, for S ⊆ [n].

• The and queries
∏

i∈S xi, for S ⊆ [n].

Note that, similar to communication complexity, a protocol in each of these models

corresponds to a binary tree where each internal node is labeled with a query, and the

computation branches according to the output of these queries. The leaves are labeled

with the output of the protocol. When only coordinate-queries are allowed, these trees are

simply called decision trees. The parity decision trees, and and-decision trees, respectively

correspond to parity queries and and queries.

The cost of such a protocol is the maximum number of queries made on an input, which

is equal to the depth of the tree. Such trees naturally correspond to Boolean functions, and

the decision tree complexity dt(f), the parity decision tree complexity dt⊕(f), and the and-

decision tree complexity dt∧(f) are defined as the smallest depth required for the function

f .

A randomized protocol is simply a distribution over deterministic protocols, and the

notions of cost, average cost, zero-error, one-sided error, and two-sided error are defined

analogous to communication complexity. The complexity measures corresponding to zero-

error, one-sided error, and two-sided error are denoted respectively by rdt0, rdt1, rdt.

In the and-query model, we denote these by rdt∧0 , rdt∧1, rdt∧, and in the parity query

model by rdt⊕0 , rdt⊕1, rdt⊕.

In the simple decision tree model of coordinate queries, a theorem of Nisan [Nis91] shows

that all these parameters are qualitatively equivalent, in fact with polynomial dependencies.
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Proposition 2.7 (Coordinate Query Equivalencies [Nis91]). For every Boolean function

f : {0, 1}n → {0, 1}, we have

rdt(f) ≤ rdt1(f) ≤ 3 rdt0(f) ≤ 3 dt(f) ≤ 81 rdt(f)2.

In light of Proposition 2.7, from the point of view of this thesis, the case of the coordinate

query has been completely resolved. However, as we shall see later, in both the xor and

and models, there are examples for which the randomized query complexity is O(1), while

the deterministic query complexity is Ω(n). We discuss the xor-model in Chapter 5, and

the and-model in Chapter 6.

2.3 Lifting theorems: Communication versus Query

Communication to Query: Communication complexity is a more general model than query

complexity, thus, intuitively, communication protocols are more powerful than decision trees.

In fact, given a decision tree computing a function f and assuming the input to f is split

between two parties Alice and Bob, one can obtain a communication protocol computing f

by simulating the decision tree as follows: for a query to i-th input bit, the party who knows

the i-th bit sends it to the other party, then the protocol proceeds to the next query in the

decision tree. The number of bits transmitted by this communication protocol is equal to

the number of queries required for the decision tree to compute f . It follows, lower bounds

for communication complexity imply lower bounds for query complexity.

Query to Communication: This is the counter-intuitive direction – can restricted, weaker

models simulate general, stronger models? In short, lifting theorems try to establish this

direction as then lower bounds for the restricted model – which typically are easier to achieve

– will imply lower bounds for the general model. In our context, lifting theorems transform

an efficient communication protocol into an efficient decision tree, thus “lifting” lower bounds

for decision trees into lower bounds for communication protocols.

The study of lifting theorems have been a very successful area of theoretical computer

science, particularly in the past two decades [RM97, CKLM19, HHL18, GPW18a, GLM+16,
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GPW20, GKPW17], resolving a wide range of problems in communication complexity, circuit

complexity, proof complexity, data structures, etc.

Lifting theorems focus on composed functions: for a Boolean function f : {0, 1}n → {0, 1}

and g : X × Y → {0, 1}, the lifted function F : X n × Yn → {0, 1} is defined as

F ((x1, . . . , xn), (y1, . . . , yn)) = f (g(x1, y1), . . . , g(xn, yn)) .

g is often called the gadget and f the outer function. Many interesting and well-studied

functions in communication complexity fall into this setting such as Equality, set-disjointness,

gap Hamming Distance and etc.. In this setting of composed functions the template of lifting

theorems looks as follows:

Theorem 2.8 (Lifting theorem template). Let Cdt and CCC be query complexity and com-

munication complexity measures, respectively. Then,

CCC(F ) = Cdt(f) ·Θ(CCC(g)).

The choice of a gadget in lifting theorem plays a crucial role, its domain size should be

small, though it can be non-constant. For example, let the gadget be the index function

INDm : {0, 1}m × [m]→ {0, 1} on m = θ(nc) bits, defined as INDm(x, i) = xi. Then [RM97]

and [GPW20] showed that for any f : {0, 1}n → {0, 1}, the deterministic communication

complexity of F = f ◦INDn
m is equivalent to f ’s decision tree complexity up to a log(n) factor,

where log(n) in the upper bound is the communication complexity of INDm. Consequently,

lifting results with gadgets having non-constant domain size are going to give sub-optimal

results, as we have to pay the communication cost of computing the gadget. So the ideal

setting is when g’s domain size is constant, i.e. |X | = |Y| = O(1). We will focus on constant

size gadgets in this thesis, in particular on the one-bit gadgets. The only non-equivalent

one-bit gadgets are xor and and.

The framework that we are interested in this thesis is slightly different from as of above.

Let G be a finite group. Every function f : G→ C defines a lift matrix

F : G×G→ C, F : (x, y) 7→ f(y−1x). (2.2)
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The xor lift. The case of G = Zn2 in (2.2) is closely related to the parity query complexity.

The group operation on Zn2 corresponds to the point-wise xor operation on {0, 1}n, and hence

for a given function f : {0, 1}n → {0, 1}, Equation (2.2) translates to F⊕(x, y) = f(x ⊕ y).

The Fourier transform of f carries important information about the matrix F⊕. Indeed

Fourier characters are the eigenvectors of F⊕, Fourier coefficients of f (scaled by the factor

of 2n) are their corresponding eigenvalues, and as a result

rk(F⊕) = rk⊕(f), (2.3)

where rk⊕(f) denotes the number of non-zero Fourier coefficients of f .

The relation between parity query complexity parameters of f and their correspond-

ing communication complexity parameters of F⊕ has been studied extensively [HHL18,

TWXZ13, Zha14, ZS10, MS20, MO09].

Note that for x, y ∈ {0, 1}n,

⊕i∈S(x⊕ y)i = (⊕i∈Sxi)⊕ (⊕i∈Syi) ,

which in particular allows one to translate every party decision tree to a communication

protocol. Namely, every time that a query ⊕i∈S has been made in the parity decision tree,

in the communication setting, the players can individually compute the two bits ⊕i∈Sxi
and ⊕i∈Syi and exchange them to find out the answer to the query on x ⊕ y. It follows

that D(F⊕),R0(F⊕),R1(F⊕), R(F⊕) are upper-bounded respectively by 2 dt⊕(f), 2 rdt⊕0 (f),

2 rdt⊕1(f), 2 rdt⊕(f).

The difficult part of establishing a lifting theorem is indeed upper-bounding the query

complexity in terms of the communication complexity. We will discuss these in Chapter 5.

The and lift. In this case, we will work with the semigroup ({0, 1}n,∧) where ∧ corre-

sponds to the pointwise product. Namely,

x ∧ y = (x1y1, . . . , xnyn),

and the lifted function is defined as

F∧(x, y) = f(x ∧ y).
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Similar to the xor setting, one easily shows that D(F∧),R0(F∧),R
1(F∧), R(F∧) are upper-

bounded respectively by 2 dt∧(f), 2 rdt∧0 (f), 2 rdt∧1(f), 2 rdt∧(f). We will discuss the and-

lift in detail in Chapter 6.

2.4 Matrix norms and ranks

In this section we describe some well-known as well as some new matrix parameters which

arise from representations of general matrices in terms of more structured matrices. Allowing

S to be various sets of structured matrices (for example, S = Rect or S = Blocky) we define, in

a generic way, the matrix parameters that come up in this thesis. This also makes it easier

to see how some of these parameters relate to each other. For a fixed set S of structured

matrices, we introduce a notion of matrix rank in terms of S , which we call S -rank, and a

matrix norm in terms of S , which we call S -norm analogously.

Definition 2.9. Let Z be a finite set, and let S be a spanning subset of the vector space

{f : Z → C}.

• Define the S -rank of a function f , denoted by rk(S , f), to be the smallest k such that

f can be expressed as a linear combination of at most k functions in S over C.

• Define ‖f‖S as

‖f‖S = inf

{
r∑
i=1

|λi| : f =
r∑
i=1

λigi, for gi ∈ S , λi ∈ C, r ∈ N

}
.

It is easy to verify that ‖ · ‖S is always a semi-norm. By considering different S we can

recover many of the norms and parameters related to this thesis.

• (Normalized trace norm) The trace norm of an m× n matrix M is defined as the sum

of its singular values σmax := σ1 ≥ . . . ≥ σmin(m,n) ≥ 0, namely

‖M‖tr =

min(m,n)∑
i=1

σi.
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In this thesis, it is more convenient to work with the following normalized version of

this norm, which we call the normalized trace norm:

‖M‖ntr =
‖M‖tr√
mn

.

When S is the set of all m× n matrices of the form a⊗ b, where a ∈ Rm and b ∈ Rn

satisfy

‖a‖L2(m) :=

(
m∑
i=1

|ai|2

m

)1/2

≤ 1, and ‖b‖L2(n) :=

(
n∑
i=1

|bi|2

n

)1/2

≤ 1,

then rk(S ,M) coincides with rk(M) over C, and it follows from the singular value

decomposition theorem that

‖M‖S = ‖M‖ntr.

• (µ-norm) If S = Rect , that is the set of rank-one Boolean matrices a ⊗ b, where

a ∈ {0, 1}m and b ∈ {0, 1}n, then ‖ · ‖Rect is commonly known as the ‖ · ‖µ norm. Note

that to define ‖ ·‖µ one could equivalently take a⊗b, where a ∈ [0, 1]m and b ∈ [0, 1]n.

• (ν-norm) If S is the set of all m × n matrices of the form a ⊗ b, where a ∈ {−1, 1}m

and b ∈ {−1, 1}n, then ‖ · ‖S is commonly known as the ‖ · ‖ν norm. Again to define

‖ · ‖ν one could equivalently take a⊗ b, where a ∈ [−1, 1]m and b ∈ [−1, 1]n.

It immediately follows that ‖·‖ν ≤ ‖·‖µ, but in fact the two norms are equivalent, since

every {−1, 1}-valued vector can be written as the difference of two Boolean vectors:

‖ · ‖ν ≤ ‖ · ‖µ ≤ 4‖ · ‖ν . (2.4)

It will be useful to know that the identity matrix – an important example in the thesis

– has constant ν-norm. Indeed, for the n× n identity matrix In we have

In(x, y) =
1

2n

∑
S⊆[n]

(−1)
∑
i∈S xi(−1)

∑
i∈S yi ,

and thus ‖In‖ν = 1.
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• (γ2-norm) We can relax the ν-norm further. Let S be the set of all m × n matrices

with ij-entries 〈ai,bj〉, where ai and bj are unit vectors in any Hilbert space H.

Taking H to be R, we have only two unit vectors ±1 and thus we recover ν norm.

Hence ‖ · ‖γ2 ≤ ‖ · ‖ν . It turns out that γ2-norm is also equivalent to the ν norm. This

is in fact the well-known Grothendieck inequality (see Theorem 2.10):

‖ · ‖γ2 ≤ ‖ · ‖ν ≤
π

2 ln
(
1 +
√

2
)‖ · ‖γ2 .

The constant π

2 ln(1+
√

2)
is due to Krivine [Kri79], and it holds for both real and complex

Hilbert spaces. Note also that the unit ball of ‖ · ‖γ2 is the set of m× n matrices with

ij-entries 〈ai,bj〉, where ‖ai‖ ≤ 1 and ‖bj‖ ≤ 1 in some Hilbert space H.

• (Blocky-rank and norm) For S = Blocky , we study rk(Blocky , f), which we prove is

qualitatively equivalent to the deterministic communication complexity with access

to equality oracle (see Proposition 4.1). We refer to ‖ · ‖Blocky as blocky-norm. Blocky

matrices are the blow-ups of the identity matrix, and thus every non-zero blocky matrix

B satisfies

‖B‖γ2 = ‖B‖ν = 1.

On the other hand, every a⊗b, where a ∈ {−1, 1}m and b ∈ {−1, 1}n, can be written

as the difference of two blocky matrices, and thus satisfies ‖a ⊗ b‖Blocky ≤ 2. We

conclude

‖ · ‖ν ≤ ‖ · ‖Blocky ≤ 2‖ · ‖ν . (2.5)

Combining this with Equation (2.4) and with the fact that a rank-one Boolean matrix

is also a blocky matrix, we deduce:

1

4
‖ · ‖µ ≤ ‖ · ‖Blocky ≤ ‖ · ‖µ. (2.6)

• (Fourier rank and algebra norm) Let G be a finite Abelian group with dual Ĝ. Then

for f : G→ C,

rk(Ĝ, f)
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corresponds to the so-called Fourier rank of f , which is the number of non-zero Fourier

coefficients of f . In this case, the corresponding norm coincides with Fourier algebra

norm

‖f‖Ĝ = ‖f‖A.

• (Monomial rank and norm) Consider the space of functions f : {0, 1}n → C, and let

M on :=

{
x 7→

∏
i∈S

xi | S ⊆ [n]

}
be the set of all monomials where every variable appears with degree at most 1. Then,

for a function f : {0, 1}n → C,

rk(M on, f)

corresponds to the number of non-zero coefficients in the (unique) polynomial represen-

tation of f . This is often called the sparsity of f in the literature of computer science.

Note also that ‖f‖Mon is the sum of absolute value of the coefficients in the unique

polynomial representation of f in the ring C[x1, . . . , xn]/(x2
1 = x1, . . . , x

2
n = xn).

Schur Multipliers Let X and Y be two countable sets. The Schur product, also known

as the Hadamard product of two X ×Y matrices A = [axy] and B = [bxy], denoted by A ◦B,

is their entry-wise product [axy · bxy]. Consider the two Hilbert spaces H1 = `2(Y) and H2 =

`2(X ), and let B(H1,H2) be the space of all bounded linear operators A : H1 → H2 together

with the operator norm ‖A‖H1→H2 . We correspond the linear operator A : H1 → H2 to an

X ×Y matrix. A matrix MX×Y is called a Schur multiplier if for every A ∈ B(H1,H2), the

matrix M ◦ A ∈ B(H1,H2). Every Schur multiplier defines a map B(H1,H2)→ B(H1,H2)

via A 7→M ◦ A.

To distinguish from the norm on bounded operators, we will write ‖M‖m for the norm

of a Schur multiplier :

‖M‖m = sup{‖M ◦ A‖H1→H2 : ‖A‖H1→H2 ≤ 1}.

It turns out that ‖ · ‖m coincides with γ2 norm defined above. The following relations are

essentially due to Grothendieck (see also [LS07, Pis12]).
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Theorem 2.10 (Grothendieck [Gro52]). For every matrix M ,

‖M‖m = ‖M‖γ2 ≤ ‖M‖ν ≤
π

2 ln
(
1 +
√

2
)‖M‖γ2 .

For the proof of the first equality, we refer the reader to [Pis12, Proposition 3.3]. In other

words, ‖ · ‖m, ‖ · ‖µ, ‖ · ‖ν , and ‖ · ‖γ2 are all within constant factors of each other. Let us

also mention the following common properties of ‖ · ‖m and ‖ · ‖γ2 norm.

Proposition 2.11. Let Mi be a sequence of matrices. Then the following holds for their

direct sum

‖⊕∞i=1Mi‖m = sup
i
‖Mi‖m.

In particular, the equality also holds for ‖ · ‖γ2.

Proof. First note that ‖⊕∞i=1Mi‖m ≥ supi ‖Mi‖m as the operator norm does not increase

under restriction.

For the other direction, denote M = ⊕∞i=1Mi, and let M ′
i be the extension of Mi such

that it has the dimensions of M and is all-zero outside of Mi. From the definition of ‖ · ‖m
there is a matrix A such that ‖A‖H1→H2 = 1 and ‖M‖m = ‖M ◦A‖H1→H2 . Given A, we can

deduce

‖M‖m = ‖M ◦ A‖H1→H2 = sup
i
‖M ′

i ◦ A‖H1→H2 ≤ sup
i
‖M ′

i‖m = sup
i
‖Mi‖m.

Here the second equality is a property of operator norm, which is straightforward to verify.

Proposition 2.12. For a matrix MX×Y = [mij], ‖M‖m ≤ 1 if and only if there exist vectors

x1, . . . , x|X | and y1, . . . , y|Y| from the unit ball of some Hilbert space H such that 〈xi, yj〉 = mij.

We refer the reader to [Pau02, Theorem 8.7] or [Pis96, Theorem 5.1] for the proof.

Idempotents and Boolean matrices Schur multipliers on B(H1,H2) form a Banach

algebra via the Schur product, since

‖M1 ◦M2‖m ≤ ‖M1‖m‖M2‖m.
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When H1 and H2 are finite dimensional, Boolean matrices and idempotents of this algebra

coincide: M ◦ M = M if and only if M is a Boolean matrix. However, in the infinite

dimensions, not every Boolean matrix is a bounded Schur multiplier.

We will be interested in characterizing the idempotents of the algebra of Schur multipliers.

As we shall see in Theorem 4.12, this reduces to characterizing the structure of finite Boolean

matrices M with a uniform bound on ‖M‖m.

First let us consider the contractive idempotents. Note that every rank-one Boolean

matrix is a contraction. As a result, by Proposition 2.11, the identity matrix and, more

generally, all blocky matrices are contractions.

Note that the Schur multiplier norm is monotone in the sense that the norm of a submatrix

cannot be larger than the original matrix. Since ‖1‖m = 1, it follows that every non-zero

Boolean matrix satisfies ‖M‖m ≥ 1. Livshits [Liv95] showed that the 2×2 matrix with three

1’s is not contractive.

Lemma 2.13 ([Liv95]). We have ∥∥∥∥∥∥
1 1

0 1

∥∥∥∥∥∥
m

=
2√
3
> 1.

Since ‖ · ‖m norm is invariant under row and column permutations, it follows that a

contractive idempotent M cannot have any 2 × 2 submatrices with exactly 3 ones. In

this context, the property is often called the 3-of-4 property, which fully characterizes such

matrices as being the same as the set of blocky-matrices.

Theorem 2.14 ([Liv95]). M is a contractive idempotent of the algebra of Schur multipliers if

and only if M ∈ Blocky. More generally, this is true for idempotents that satisfy ‖M‖m < 2√
3
.

Relation to the Normalized Trace Norm As we saw above ‖ · ‖γ2 = ‖ · ‖m, ‖ · ‖µ, and

‖ · ‖ν , are all equivalent. Furthermore, it is easy to see [LS07, Section 2.3.2] that

‖ · ‖ntr ≤ ‖ · ‖γ2 . (2.7)

However, ‖·‖ntr could be much smaller than the above norms since adding all-zero rows or

columns would decrease the normalized trace norm, while other norms would remain intact.
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2.4.1 The Fourier algebra norm

Let f : {0, 1}n → {0, 1} be a Boolean function. Identifying {0, 1}n with the finite Abelian

group G = Zn2 allows us to consider the Fourier expansion of f =
∑

χ∈Ĝ f̂(χ)χ, where Ĝ is

the dual of G and its elements χ are called characters of G. It is common in theoretical

computer science to represent this expansion as

f =
∑
S⊆[n]

f̂(S)χS,

by representing the characters of Zn2 as

χS : x 7→
∏
i∈S

(−1)xi .

The Fourier algebra norm of f , denoted by ‖f‖A, is the sum of absolute values of Fourier

coefficients:

‖f‖A =
∑
S

|f̂(S)|.

The name comes from the fact that it satisfies ‖f1f2‖A ≤ ‖f1‖A‖f2‖A for any f1, f2 : G→ C.

In the literature of theoretical computer science, this norm is sometimes called the spectral

norm of f , but in order to avoid confusion with spectral norm of matrices, we will use the

harmonic analysis term, Fourier algebra norm.

The above definition immediately generalizes to every finite Abelian group G, namely

the Fourier algebra norm of f : G→ C is the sum of absolute values of Fourier coefficients.

This can be further generalized to every locally compact Abelian group, and in fact Eymard

in [Eym64] generalized the definition of the Fourier algebra to every locally compact group.

In this thesis, we are only concerned with finite groups. Suppose that G is a finite group

and f, g : G→ C. The convolution f ∗ g of f and g is then defined point-wise by

f ∗ g(x) := Ey∈G
[
f(y)g(y−1x)

]
. (2.8)

This can be used to introduce the convolution operator : given h : G → C, define Lh :

L2(G)→ L2(G) via Lh : ν 7→ ν ∗ h. The Fourier algebra norm of f is then defined as

‖f‖A := sup
{
〈f, h〉 : ‖Lh‖L2(G)→L2(G) ≤ 1

}
.
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When G is an Abelian group, it is not difficult to see that this coincides with the sum of

absolute values of Fourier coefficients of f :

‖f‖A =
∑
χ∈Ĝ

|f̂(χ)|.

2.5 Approximate norms and randomized complexity, a

general approach

The study of randomized complexity classes is often naturally linked to approximate norms.

For every matrix norm ‖ · ‖ and every ε > 0, we define a corresponding ε-approximate norm

for real matrices M as

‖M‖ε = inf{‖N‖ : |M(x, y)−N(x, y)| ≤ ε ∀x, y},

where in the infimum N is a real matrix of the same dimensions as M .

Similarly, for every norm ‖ · ‖ on the space of real-valued functions f : X → R, we define

the ε-approximate version of the norm as

‖f‖ε = inf{‖g‖ : ‖f − g‖∞ ≤ ε, g : X → R}.

We also define the notion of the approximate S -rank similarly:

rkε(S , f) = min{rk(S , g) : ‖f − g‖∞ ≤ ε, g : X → R},

where we are using the notation of Definition 2.9.

We use rkε(M) to denote the ε-rank of a real matrix M , which is the minimum rank

over real matrices that approximate every entry of M to within an additive ε. Similar to

randomized complexity measures, the choice of ε is not very important, as changing ε could

only affect the value of the approximate-rank of a Boolean matrix polynomially [KS07].

Approximate norms and randomized protocols, a general approach. Suppose we

are given a function f : Z → {0, 1}, and we are interested in complexity of f in a randomized
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model of computation M . Here M could be the communication complexity model, in which

case we think of Z = X × Y , or any of the query complexity models discussed above, in

which case Z = {0, 1}n.

Consider also the set of all the deterministic (query or communication) protocols π,

each computing a corresponding function π : Z → {0, 1}. Furthermore, the cost of every

deterministic protocol π, denoted by cost(π) ∈ N, is the worst-case number of queries or com-

municated bits used by the protocol over the set of all inputs. This defines the deterministic

complexity of a function f as

DM (f) := inf{cost(π) : π(z) = f(z) ∀z ∈ Z}.

A randomized protocol πR is a probability distribution over deterministic protocols πr, and

the cost of a randomized protocol is defined to be the maximum cost of a deterministic

protocol in its support. This leads to the notion of the randomized complexity of a function

f :

RM
ε (f) := inf{cost(πR) : Pr

R
[πR(z) 6= f(z)] ≤ ε ∀z ∈ Z}.

The following lemma provides a connection between the randomized complexity and a suit-

able notion of approximate norm.

Lemma 2.15 (Equivalence of RM
ε (f) and ‖f‖S ,ε). Consider the setting described above. Let

S be a spanning subset of functions Z → D, and ε ∈ (0, 1
2
) be a parameter.

(i) If there exists an increasing function κ : R+ → R+ such that for every function f :

Z → {0, 1},

‖f‖S ≤ κ(DM (f)),

then

‖f‖S ,ε ≤ κ(RM
ε (f)).

(ii) If every h ∈ S satisfies

DM (h) ≤ c,
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then

RM
ε (f) ≤ 32c log(2/ε)

(1− 2ε)2
‖f‖2

S ,ε.

Proof. (i) Consider a randomized protocol πR of cost at most c that computes f with two-

sided error at most ε. Then

‖ER[πR]− f‖∞ ≤ ε,

while by convexity

‖f‖S ,ε ≤ ‖ER[πR]‖S ≤ ER [‖πR‖S ] ≤ max
r
‖πr‖S

≤ max
r
κ(DM (πr)) ≤ max

r
κ(cost(πr)) = κ(RM

ε (f)), (2.9)

as desired.

(ii) Let δ = 1−2ε
4

. Recall that the approximate norm ‖f‖S ,ε is defined as the infimum

of ‖f ′‖S such that ‖f − f ′‖∞ ≤ ε, however, there might not exist a function f ′ witnessing

the infimum. Hence, instead let λi ∈ C and hi ∈ S be such that f ′ =
∑k

i=1 λihi satisfies

‖f − f ′‖∞ ≤ ε+ δ, and

L :=
k∑
i=1

|λi| ≤ ‖f‖S ,ε.

We will convert this to a randomized protocol.

For every i, define λ′i := λi
|λi| , so that |λ′i| = 1. Pick g randomly from {λ′1h1, . . . , λ

′
khk}

according to the probability distribution

Pr[g = λ′ihi] =
|λi|∑k
i=1 |λi|

.

Note that E[g] = f ′/L, and furthermore ‖g‖∞ ≤ 1 by our assumption about S . Let N =

2δ−2L2 log(2/ε) = 32L2 log(2/ε)
(1−2ε)2 , and g1, . . . , gN be i.i.d. copies of g, and define G̃ = L

N

∑N
i=1 gi.

For every z ∈ Z, by applying Hoeffding’s inequality (Lemma 2.1) to the real part of G̃, we

have

Pr
[
| re(G̃(z))− re(f ′(z))| ≥ δ

]
< 2 exp

(
− 2δ2

4N · (L/N)2

)
≤ ε,
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where the last inequality is by the choice of N . Next, let G be the Boolean rounding of G̃,

that is G(z) = 1 if and only re(G̃(z)) ≥ 1/2. Noting that | re(f ′(z))− f(z)| ≤ ε+ δ, we have

Pr[G(z) 6= f(z)] ≤ Pr

[
| re(G̃(z))− re(f ′(z))| ≥ 1

2
− ε− δ

]
≤ Pr

[
| re(G̃(z))− re(f ′(z))| ≥ δ

]
≤ ε. (2.10)

Note that by our assumption each hi can be computed at cost at most c. Since G̃(z) can be

computed by rounding a linear combination of N such hi’s, it can be computed at cost cN .

This concludes the statement.

Next we apply Lemma 2.15 to specific models of query and communication complexity.

Corollary 2.16. For ε > 0, let cε = log(1/ε)
(1−2ε)2 . We have

(a) and-query model:

log3 ‖f‖Mon,ε ≤ rdt∧ε (f) ≤ O
(
cε · ‖f‖2

Mon,ε

)
.

(b) xor-query model:

log2 ‖f‖A,ε ≤ rdt⊕ε (f) ≤ O
(
cε · ‖f‖2

A,ε

)
.

(c) Randomized communication complexity:

log2 ‖F‖µ,ε ≤ Rε(F ) ≤ O
(
cε · ‖F‖2

µ,ε

)
,

which, in particular, implies

log2 ‖F‖γ2,ε ≤ Rε(F ) ≤ O
(
cε · ‖F‖2

γ2,ε

)
,

Proof. (a) and-query model: Z = {0, 1}n, and S = M on.

Later in Proposition 6.1, we will prove that ‖f‖Mon ≤ 3dt∧(f). Hence the lower bounds

follows from Lemma 2.15 (i).

The upper bound follows directly from Lemma 2.15 (ii), as for every hS :=
∏

i∈S xi ∈

M on, dt∧(hS) = 1.
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(b) xor-query model: Z = {0, 1}n, and S = {χS}S⊆[n], the set of characters of Zn2 .

By Cauchy-Schwarz inequality (Lemma 2.2) ‖f‖A ≤
√

rk⊕(f) · ‖f‖L2(Z) ≤
√

rk⊕(f),

which combined with Proposition 5.1 below, gives ‖f‖A ≤ 2dt⊕(f). Now Lemma 2.15

(i) yields the lower bound.

The upper bound follows from Lemma 2.15 (ii), noting that dt⊕(χS) = 1 for all S ⊆ [n].

(c) Randomized Communication Complexity: Z = X × Y , S = Rect .

A communication protocol of cost c provides a partition of F into at most 2c monochro-

matic rectangles, and thus ‖F‖µ ≤ 2D(F ). Now the lower bound follows from Lemma 2.15

(i).

The upper bound follows from Lemma 2.15 (ii) by noting that D(h) = O(1) for every

h ∈ Rect .

2.6 Communication Complexity Classes and Conjec-

ture I

Babai, Frankl, and Simon [BFS86] introduced the hierarchy of communication complexity

classes inspired by classical complexity theory classes where the model of computation is

the Turing machine. Though since then, there has been a lot of research on this topic,

there are still numerous open questions and unknown relationships between classes. One of

the motivations behind Conjecture I, as we explain below, stems from the open question of

separating classes BPPCC and PNPCC
.

Göös, Pitassi and Watson in [GPW18b] surveyed the known relationships adding some

new results as well. Here we will bring the definitions of only those classes which we need.

For the complete list refer to [GPW18b]. We define the classes on the universe of functions

f : {0, 1}logn × {0, 1}logn → {0, 1} or equivalently, n× n matrices.
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• PCC is the set of those functions for which there exists a deterministic communication

protocol solving it with cost logc(log n), for some constant c > 0.

• NPCC is the set of functions that can be solved by a non-deterministic communication

protocol of logc(log n) cost, for some constant c > 0. Non-deterministic communication

complexity of a function f is equal to the logarithm of 1-covering number of f , which

is the smallest k > 0 such that the 1’s of f can be covered (possibly with intersections)

by k all-one submatrices.

• BPPCC is the set of functions f such that can be solved by a public-coin randomized

communication protocol of logc(log n) cost, for some constant c > 0.

• PPCC is the set of functions f that for some constant c > 0 have logc(log n) weakly

unbounded-error randomized complexity , which is defined by inf0≤ε≤1/2

{
Rε(f) + log

(
1

1−2ε

)}
.

This includes an additional penalty term, which increases as ε approaches 1/2.

• PEQCC
is the set of functions f that for some constant c > 0 can be solved by a

deterministic protocol of cost logc(log n) which has access to an oracle solving the

Equality problem (i.e. the identity matrix) and each query to the oracle costs 1 extra

bit. The complexity of such protocols is denoted by DEQ(f).

• PNPCC
is the set of functions that, for some constant c > 0, can be solved by a

deterministic protocol of cost logc(log n) which has access to an oracle solving problems

from NPCC and is charged an extra 1 bit for each query to the oracle. Obviously,

PEQCC ⊂ PNPCC
.

However, unlike classical complexity theory, most of the relationships between these

classes are already known (Figure 2.2.).

As stated in [CLV19], one of the reasons to study Conjecture I is an old open question

of [BFS86] (stated explicitly in [GPW18b]): Is BPPCC ⊆ PNPCC
for total functions?

It is known that BPPCC 6= PNPCC
, since BPPCC ⊂ PPCC, while PNPCC * PPCC. Or,

simply note that the Set-Disjointness function is not in BPPCC, but it is in PNPCC
.
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NP

PEQ

BPP
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PP

?

Figure 2.2: C1 → C2 denotes C1 ⊆ C2, and C1 99K C2 denotes C1 * C2, Red indicates the

open problem we are interested in.

Interestingly, there is a partial function – a function defined only on a subset of inputs

– separating BPPCC and PNPCC
(a version of Gap-Hamming-Distance function [PSS14]).

However, there is no known total function separating BPPCC and PNPCC
. [CLV19] showed

a separation between BPPCC and PEQCC
– one of the most interesting subclasses of PNPCC

.

While this was an important milestone, the question whether BPPCC * PNPCC
remains

open.

A result of [PSS14] suggests that Conjecture I stands as a barrier for understanding the

relation between BPPCC and PNPCC
. [PSS14] showed that a matrix F has a PNPCC

protocol

of cost c if and only if there exists a list of 2c tuples (Ri, zi), where Ri is a submatrix of F and

zi ∈ {0, 1}, such that F (x, y) = zi for the first submatrix Ri in the list for which (x, y) ∈ Ri.

Having this, if BPPCC ⊂ PNPCC
, then for all F ∈ BPPCC it is not hard to verify that there

exists an all-one or all-zero submatrix in F of density 2−O(c) for c = polylog(log n). Thus,

refuting Conjecture I, will show that BPPCC * PNPCC
. On the other hand, if Conjecture I

is true, it will suggest a positive evidence towards BPPCC ⊂ PNPCC
.
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Chapter 3

Important examples

In this section, we review the properties of some specific examples of matrices and functions.

These will be used in the later chapters.

3.1 Equality function

As usual denote by Jn the n× n all-one matrix.

Example 3.1 (Identity Matrix, Equality Function). The n × n identity matrix In, and its

complement In := Jn − In satisfy the following.

(i) See [KN97, Example 3.9]:

R0(In) = R0(In) = Θ(log(n)).

(ii) See [KN97, Example 3.9]:

R1(In) = Θ(log(n)), and R1(In) = O(1),

In particular, R(In) = O(1).

Proof. (i) The upper bounds follow from the trivial protocol and the lower bounds follow

from Proposition 2.5 as the covering number C1(In) = Ω(n).
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(ii) By the same arguments, R1(In) = Θ(log n).

Next, we bring an one-sided error randomized protocol which computes In with O(1)

cost. Let x be Alice’s input, y be Bob’s input and r ∈ {0, 1}logn be the common random

string. The protocol is the following:

Alice computes a :=
∑

i xiri (mod 2) and sends a to Bob. Bob, in his turn,

computes b :=
∑

i yiri (mod 2) and compares b with a. If a = b, the protocol

outputs 0, otherwise it outputs 1.

The protocol requires only two bits. For the correctness, note that if x = y, then a = b,

hence the protocol outputs the correct answer without an error. If x 6= y , then a = b with

1/2 probability, hence on 1-inputs the error probability is 1/2. Repeating this protocol for

one more time will reduce the error probability to 1
4
< 1

3
.

3.2 Greater-than function

We consider the greater-than matrix, where all the entries on the diagonal and below it are

0, and all the entries above the diagonal are 1.

Example 3.2 (Greater-than). The n×n greater-than matrix GTn, defined as GTn(i, j) = 1

if and only if i < j, and its complement GTn := Jn −GTn satisfy the following.

(i) See [KN97, Exercise 3.10]:

R1(GTn) = Θ(log(n)), and R1(GTn) = Θ(log(n)).

In particular,

R0(GTn) = R0(GTn) = Θ(log(n)).

(ii) See [Vio15, RS15] and [KN97, Exercise 3.18]:

R(GTn) = Θ(log log(n)).
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Proof. (i) The trivial protocol gives the upper bounds, and the lower bounds follow from Propo-

sition 2.5 as the 1-covering number C1(GTn) = Ω(n).

(ii) R(GTn) = O(log2(log n)) can be achieved by doing a binary search. A more careful

analysis yields the upper bound of O(log log n) suggested [KN97, Exercise 3.18]. The lower

bound is proven in [Vio15, RS15] .

3.3 Threshold functions

For an integer k ≥ 0, define the threshold function thrk : {0, 1}n → {0, 1} as thrk(x) = 1 if

and only if
∑n

i=1 xi ≥ k. We will also write thrk = 1− thrk.

Denote the xor and and-lifts of thrk as Thr⊕k (x, y) = thrk(x ⊕ y) and Thr∧k (x, y) =

thrk(x ∧ y), respectively. Recall that rk⊕(f) denotes the number of non-zero Fourier coef-

ficients of a function f : {0, 1}n → {0, 1}, which is also equal to the rank of F⊕(x, y) :=

f(x⊕ y).

Lemma 3.3 (Threshold function in the xor-model). For every 0 ≤ k ≤ n, we have

(i) rdt⊕(thrk) ≤ rdt⊕1(thrk) = 2O(k). In particular, R(Thr⊕k ) = 2O(k).

(ii) We have rk⊕(thrk) = rk(Thr⊕k ) ≥ 2n/2, and consequently dt⊕(thrk) = Ω(n).

Proof. (i) The randomized protocol will first randomly partition {1, . . . , n} into sets S1, . . . , Sk,

where each element j ∈ [n] is uniformly and independently assigned to one of the k sets.

Next, for each i ∈ [k], pick a subset Ti ⊆ Si uniformly at random, and query ⊕j∈Tixj. Output

1 if all the queries are 1, and output 0 otherwise.

If thrk(x) = 0, then we will always correctly output 0, as in this case there always

exists i such that x|Si is all zeros. On the other hand, if thrk(x) = 1, with probability

at least k!
kk
≥ e−k, every Si will contain at least one 1. Conditioned on the prior event,

with probability at least 2−k every query satisfies ⊕j∈Tixj = 1, in which case the protocol

correctly outputs 1. Thus, the probability of error is at most 1−(2e)−k. Finally, by standard
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error-reduction, repeating this procedure 2O(k) times can reduce the error to at most 1/3.

We conclude that there is a constant ck = 2O(k) such that rdt⊕1(thrk) = ck.

(ii) First note that fixing the values of variables can only decrease the size of the support

of the Fourier transform. Now if k ≤ n/2, then setting k− 1 of the variables to 1 will result

in the function that is 1 everywhere except on 0. This restricted function has a full Fourier

support, which is of size 2n−k+1 ≥ 2n/2. Similarly, if k ≥ n/2, then setting n − k of the

variables to 0 yields a function which is 0 everywhere except on 1. Hence this function has

a full Fourier support, which is of size 2k ≥ 2n/2.

Next, Proposition 5.1 from below implies

dt⊕(thrk) ≥
1

2
log rk⊕(thrk) ≥

n

4
.

The threshold functions are also important instances for the and-query model.

Lemma 3.4 (Threshold functions in and-model [KLMY20, Example 6.3]). For every fixed

0 ≤ k ≤ n, we have

(i) dt∧(thrk) ≥ log
(
n
k

)
∼ n · H( k

n
), where H is the binary entropy function defined as

H(x) = −x log2 x− (1− x) log2(1− x).

(ii) rdt∧(thrn−k) = rdt∧(thrn−k) ≤ rdt∧1(thrn−k) = 2O(k).

In particular, R(Thr∧n−k) = 2O(k).

Proof. (i) Consider an and-decision tree T computing thrk. It suffices to show that T has

at least
(
n
k

)
leaves. Let

(
[n]
k

)
denote the set of all elements of Hamming weight exactly k.

Note that if the output of a query ∧i∈S is the same for two elements x, y ∈ {0, 1}n, then the

query will also return the same value for x ∧ y. This shows that the computation in T for

two distinct x, y ∈
(

[n]
k

)
cannot lead to the same leaf, as then x ∧ y must also lead to the

same leaf, but 1 = thrk(x) 6= thrk(x ∧ y) = 0.

(ii) Note that thrn−k(x) = 1 if and only if x ∈ {0, 1}n contains at least k + 1 0’s. We

partition [n] uniformly at random into k+1 sets S1, . . . , Sk+1, and query ∧j∈Sixj for i ∈ [k+1].
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If all of the queries return 0, we output 1, and otherwise we output 0. This protocol is always

correct on inputs x with thrn−k(x) = 0, and furthermore for inputs with thrn−k(x) = 1, the

probability of error is at most 1− (k+1)!
(k+1)k+1 ≤ 1− ek+1. The claim now follows from standard

error reduction.

Finally, we prove a lower bound on the Fourier algebra norm of threshold functions.

Lemma 3.5 (Fourier algebra norm of threshold functions). For k ≤ n/2, we have

e−(k−1)

√√√√k−1∑
i=0

(
n

i

)
≤
∥∥thrk

∥∥
A
≤

√√√√k−1∑
i=0

(
n

i

)
.

In particular, by Corollary 4.16, the same bounds hold for ‖Thr
⊕
k ‖ntr = ‖Thr

⊕
k ‖γ2.

Proof. Define p : {−1, 1}n → R as

p(y) =
∑
S⊆[n]
|S|≤k−1

∏
i∈S

yi,

and note that p(y) =
∑

x∈{0,1}n thrk(x)χTy(x) = 2nt̂hrk(Ty), where Ty = {i : yi = −1}.

Hence,

‖thrk‖A =
1

2n

∑
y

|p(y)| = ‖p‖L1({−1,1}n).

By Parseval

‖p‖L2({−1,1}n) =

√√√√k−1∑
i=0

(
n

i

)
,

and furthermore, since deg(p) ≤ k−1, by generalization of Khintchine’s inequality to degree

k − 1 polynomials ([O’D14, Theorem 9.22]), we have

e−(k−1)‖p‖L2({−1,1}n) ≤ ‖p‖L1({−1,1}n) ≤ ‖p‖L2({−1,1}n).
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Chapter 4

Main results: General matrices

We start by proving the results that apply to general Boolean matrices. Later, in Chapter 5

and Chapter 6, we study special classes of xor and and-matrices.

4.1 Blocky matrices and blocky-rank

As we have discussed earlier, EQ provides a separation between deterministic communication

complexity and randomized communication complexity, in both one-sided and two-sided

error models. Now suppose that we equip the players, Alice and Bob, with an equality

oracle. To be more precise, we allow these protocols to have query nodes v, on which

the players map their inputs to strings αv(x) and βv(y), respectively, and the oracle will

broadcast the value of EQ(αv(x), βv(y)) to both players. This will contribute only one bit to

the communication cost which is measured in bits. Note that the usual communicated bits

can also be simulated by oracle queries. For example, if it is Alice’s turn to send a bit av(x),

then she can use the query EQ(av(x), 1) to transmit this bit to Bob. Hence, in this model,

we can assume that all the communication is done through oracle queries.

Obviously, having access to an equality oracle, Alice and Bob can solve EQ determinis-

tically at cost O(1), namely by querying the oracle for EQ(x, y).

Let DEQ(M) denote the smallest cost of a deterministic protocol with equality oracle for
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the matrix M .

Proposition 4.1. Let M : X × Y → {0, 1} be a matrix. Then

1

2
log rk(Blocky ,M) ≤ DEQ(M) ≤ rk(Blocky ,M),

and
1

2
log ‖M‖Blocky ≤ DEQ(M).

Proof. We first prove DEQ(M) ≤ rk(Blocky ,M). Let k = rk(Blocky ,M). We construct

an EQ-oracle protocol for f . In advance, Alice and Bob agree on a decomposition M =∑k
i=1 λiMi, where Mi is a blocky matrix and λi ∈ R for i ∈ [k]. Since each blocky matrix

Mi corresponds to an EQ query, for an input (x, y) Alice and Bob make k queries to the

oracle to determine M1(x, y), . . . ,Mk(x, y). At this point both Alice and Bob can compute

M(x, y) =
∑k

i=1 λiMi(x, y).

For the lower bounds, let d = DEQ(M). Consider a leaf ` in the EQ-oracle protocol tree

computing M and let P` denote the path of length k` ≤ d from the root to `. Note that

each non-leaf node v in the tree corresponds to a query to the equality oracle, and each

such query corresponds to a blocky matrix Bv. For the matrix Mv, define B1
v = Bv and

B0
v = Bv = JX×Y −Bv.

Suppose P` = v1, v2, . . . , vk` , `, and consider the matrix

MP` := B
σv1
v1 ◦B

σv2
v2 ◦ . . . ◦B

σvk`
vk`

,

where σvi ∈ {0, 1} and σvi = 1 if and only if the edge (vi−1, vi) is labeled by 1. Hence, after

simplification, MP` can be written as a sum of at most 2d summands with ±1 coefficients,

where each summand is a Schur product of at most kl blocky matrices. Observe that the

Schur product of two blocky matrices is a blocky matrix. Thus, MP` can be written as a

sum of at most 2d blocky matrices with ±1 coefficients.

Summing over all the leaves that are labeled by 1, we get

M =
∑

` is a 1-leaf

MP` .
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As the number of leaves is bounded by 2d, and each MP` is a ±1 linear combination of at

most 2d blocky matrices, it follows that rk(Blocky ,M) ≤ 22d and ‖M‖Blocky ≤ 22d.

Combining the two inequalities, we have the following useful relation

1

2
log ‖M‖Blocky ≤ rk(Blocky ,M). (4.1)

The opposite direction turns out to be equivalent to Conjecture III.

Conjecture 4.2. There exists κ : R+ → R+ such that for a Boolean matrix M ,

rk(Blocky ,M) ≤ κ(‖M‖Blocky).

Proposition 4.3. Conjecture 4.2 and Conjecture III are equivalent.

Proof. Conjecture III =⇒ Conjecture 4.2: Conjecture III implies that there is a function

τ : R+ → R+ such that M can be written as a sum of τ(‖M‖µ) blocky matrices with ±1

coefficients. Hence, by Equation (2.6),

rk(Blocky ,M) ≤ τ(4 · ‖M‖Blocky).

Conjecture 4.2 =⇒ Conjecture III: By the proof of Proposition 4.1, M can be written as

a sum of 22 DEQ(M) blocky matrices with ±1 coefficients. If Conjecture 4.2 is true, then for

some κ : R+ → R+,

DEQ(M) ≤ rk(Blocky ,M) ≤ κ(‖M‖Blocky). (4.2)

Now, by the assumption of Conjecture III, ‖M‖µ ≤ c for some constant c. Recall from Equa-

tion (2.6) that ‖M‖Blocky ≤ ‖M‖µ, so ‖M‖Blocky ≤ c. Combining this with Equation (4.2),

we conclude that M can be written as a sum of kc := 22κ(c) blocky matrices with ±1 coeffi-

cients.

4.1.1 Relation of blocky-rank to randomized communication com-

plexity and Conjecture I

Proposition 4.4. For a function f : X × Y → {0, 1},

R(f) ≤ O(DEQ(f) · log DEQ(f)).
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Proof. Suppose d := DEQ(f). An EQ oracle protocol tree of depth d can be used to design

a randomized protocol for f : The parties simply simulate the tree, where at each node the

equality oracles are simulated (up to some error probability) via an efficient randomized

communication protocol for EQ. By a simple union bound, to ensure that the final error

is bounded by 1/3, it suffices to use randomized equality protocols with error at most 1
3d

.

Recall that by Example 3.1, R(EQ) = O(1), and thus R 1
2c

(EQ) ≤ O(c). As a result,

R 1
3d

(EQ) ≤ O(log d) and R(f) ≤ O(d log d).

It follows from this, and Proposition 4.1 that

R(f) ≤ O(rk(Blocky , f) · log rk(Blocky , f)). (4.3)

The function Thr
⊕
2 from Lemma 3.3 demonstrates that the opposite relation is not true

– small randomized communication does not imply having a small rk(Blocky , ·). Indeed, by

Lemma 3.3 (i), R(Thr
⊕
2 ) = R(Thr⊕2 ) = O(1). On the other hand, since the γ2 norm of every

blocky matrix is at most 1, by Equation (4.1), we have

rk(Blocky ,Thr
⊕
2 ) ≥ 1

2
log ‖Thr

⊕
2 ‖Blocky ≥

1

2
log ‖Thr

⊕
2 ‖γ2 ,

and by Lemma 3.5, we have

log ‖Thr
⊕
2 ‖γ2 ≥ Ω(log n).

Remark. By the above discussion, Thr
⊕
2 witnesses a gap of O(1) vs. Ω(log(n)) between

randomized communication complexity and deterministic communication complexity with

access to equality oracle. The difference between these two parameters had also been stud-

ied in [CLV19], where a function with R(f) = O(log(log n)) and DEQ(f) = Ω(log(n)) is

exhibited. However, the separation of [CLV19] was not ruling out a dimension-free relation

between these parameters.

As Equation (4.3) shows, randomized communication complexity can be upper-bounded

by a function of blocky-rank, and thus it is natural to wonder whether a relaxation of

Conjecture I holds for matrices with bounded blocky-rank, or equivalently DEQ(·) = O(1).

It is not hard to see that this is indeed true.
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Lemma 4.5. If an n×n matrix M satisfies rk(Blocky ,M) ≤ c, then M has a monochromatic

rectangle of size δcn× δcn, where δc > 0 only depends on c.

Proof. We prove by induction on c that the statement is true with δc ≥ 3−c. As the base case

we first show that every n × n blocky matrix has an n/3 × n/3 monochromatic rectangle.

Suppose B is a blocky matrix with blocks X1 × Y1, . . . , Xt × Yt. We assume without loss

of generality that |∪iXi| ≥ 2n/3, as otherwise ([n]\ ∪i Xi) × [n] contains an n/3 × n/3 all-

zero rectangle. Moreover, note that if for some i ∈ [t], |Xi| ≥ n/3, then one of Xi × Yi or

Xi × [n]\Yi contains an n/3 × n/3 monochromatic rectangle. Now, suppose that for all i,

|Xi| < n/3. This implies that there is k such that
∑k

i=1 |Xi| ∈ (n/3, 2n/3). Note that both

(∪i≤kXi) × ([n]\ ∪i≤k Yi) and ([n]\ ∪i≤k Xi) × (∪i≤kYi) are monochromatic rectangles, and

furthermore one of them contains an n/3× n/3 monochromatic rectangle.

Now suppose that M is an n× n matrix such that M =
∑m

i=1 λiBi, where Bi are blocky

matrices. By the base case, Bm has an n/3× n/3 monochromatic rectangle X × Y . Then

M ′ := (M − λmBm)|X×Y =
m−1∑
i=1

λiBi|X×Y ,

which shows rk(Blocky ,M ′) ≤ c − 1. Consequently, M ′ has an |X|
3c−1 × |Y |

3c−1 monochromatic

rectangle, which translates to an n
3c
× n

3c
monochromatic rectangle in M .

Lemma 4.5 combined with the lower bound from Proposition 4.1 implies that a weaker

version of Conjecture I holds where instead of assuming bounded randomized communication

complexity, one makes the stronger assumption that DEQ(·) = O(1).

4.2 Zero-error complexity and approximate-rank are

qualitatively equivalent to rank

In this section, we prove that both approximate-rank, and zero-error randomized communi-

cation complexity are qualitatively equivalent to the rank, and deterministic communicating

complexity.
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It is known that, allowing a loss of O(log log(n)), the gap between the zero-error ran-

domized communication complexity, and the deterministic communication complexity of an

n× n matrix M can be at most quadratic [KN97, Exercise 3.15]:

Ω(
√

D(M)− log log(n)) ≤ R0(M) ≤ D(M).

The above bound does not provide a dimension-free equivalence between D(M) and R0(M)

due to the O(log log(n)) term which is from applying Newman’s theorem to convert zero-error

private randomness to zero-error public randomness. To obtain a dimension-free equivalence,

we use a different method.

Our approach is to find copies of submatrices that have large zero-error randomized

communication complexity in every high-rank Boolean matrix. The following key lemma

states that if the rank of a Boolean matrix is sufficiently large, then it must contain, as

a submatrix, a large copy of at least one of the four matrices: the identity matrix Ik, its

complement Ik, greater-than function GTk, or its complement GTk.

Lemma 4.6 (Key lemma for zero-error and approximate-rank). Let M be a Boolean matrix

of rank r, and let k = log5(r)/4. Then M contains a copy of at least one of Ik, Ik, GTk, or

GTk as a submatrix.

Proof. The proof is similar to the proof of the existence of Ramsey numbers. LetR(k1, k2, k3, k4)

be the smallest r such that every Boolean matrix of rank r, contains a copy of at least one

of Ik1 , Ik2 , GTk3 , or GTk4 . We will show by induction that

R(k1, k2, k3, k4) ≤ 5k1+k2+k3+k4 . (4.4)

The base cases are when ki = 1 for some i ∈ {1, . . . , 4}, in which case R(k1, k2, k3, k4) ≤ 2,

as any matrix of rank 2 must contain both 0 and 1 entries, and thus must contain, as a

submatrix, a copy of each of I1, I1,GT1,GT1.

To prove the induction step, assume ki ≥ 2 for all i ∈ [4], and consider a Boolean matrix

M = [aij]m×n of rank at least 5k1+k2+k3+k4 . Since rk(M) ≥ 2, then M contains both 0’s and
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1’s so we may assume without loss of generality that the n-th column contains both 0’s and

1’s. This partitions the rows of the matrix into two non-empty sets:

R0 = {i ∈ [m] : ain = 0} and R1 = {i ∈ [m] : ain = 1}.

Let a ∈ {0, 1} be chosen such that Ra × [n] corresponds to the submatrix with the larger

rank, that is

rk(M |Ra×[n]) ≥ rk(M)/2,

where we used the subadditivity of rank. By permuting the rows if necessary, we can assume

that m 6∈ Ra, or equivalently amn 6= a. Define

C0 = {j ∈ [n] : amj = 0} and C1 = {j ∈ [n] : amj = 1}.

Let M00 be the submatrix of M on (R0∩ [m−1])×(C0∩ [n−1]), and define M01,M10,M11

similarly (see Figure 4.1).

For a matrix N , let mI(N) denote the largest k such that N contains a copy of Ik. Define

mI(N), mGT(N), and mGT(N) similarly.

If amn = 1, then

mI(M) ≥ mI(M00) + 1, and mGT(M) ≥ mGT(M01) + 1,

since one can use the last row and the last column to extend those submatrices in M00 and

M01 to larger ones in M . Note also that in this case, since a = 0,

rk(M00) + rk(M01) ≥ rk(M |R0×[n]) ≥ rk(M)/2,

which implies that either

rk(M00) ≥ 5k1+k2+k3+k4−1 ≥ R(k1 − 1, k2, k3, k4),

or

rk(M01) ≥ 5k1+k2+k3+k4−1 ≥ R(k1, k2, k3, k4 − 1).

In both cases, the induction hypothesis yields the desired bound Equation (4.4).
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Similarly if amn = 0, then

mI(M) ≥ mI(M11) + 1, and mGT(M) ≥ mGT(M10) + 1,

and in this case, since a = 1, we obtain

rk(M10) + rk(M11) + 1 ≥ rk(M |R1×[n]) ≥ rk(M)/2,

which implies

rk(M10) ≥ 5k1+k2+k3+k4−1 ≥ R(k1, k2, k3 − 1, k4),

or

rk(M11) ≥ 5k1+k2+k3+k4−1 ≥ R(k1, k2 − 1, k3, k4).

Again in both cases, the induction hypothesis implies Equation (4.4) as desired.
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Figure 4.1: The matrix M with the row partitions R0 and R1, the column partitions C0

and C1, and the respective submatrices M00,M01,M10 and M11. When amn = 1, as shown

in the left figure, a copy of Ik in M00 can be extended to Ik+1, and a copy of GTk in M01 to

GTk+1. When amn = 0, as in the right figure, a copy of Ik in M11 can be extended to Ik+1,

and a copy of GTk in M10 to GTk+1.

Lemma 4.6 shows that zero-error randomized communication complexity and rank are

all qualitatively equivalent.
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Theorem 4.7 (Equivalence between zero-error and rank). There exist a constant c > 0,

such that for every Boolean matrix M , we have

c log log rk(M) ≤ R0(M) ≤ rk(M), (4.5)

Proof. The upper bound in (4.5) follows from R0(M) ≤ D(M). It remains to prove the lower

bound in (4.5). By Lemma 4.6, we are guaranteed to find a copy of Ik, Ik, GTk, or GTk as

a submatrix in M , where k = 1
4

log5 rk(M). By Example 3.1 and Example 3.2, all the four

matrices Ik, Ik, GTk, GTk have zero-error randomized communication complexity Ω(log k),

which yields the lower bound of (4.5).

Remark. The lower bound in Equation (4.6) is sharp for identity matrix In, as rk(In) = n,

but rkε(In) ≥ Ω
(

log(n)
ε2 log(1/ε)

)
for 1

2
√
n
≤ ε ≤ 1

4
(see [Alo09]).

Remark. The upper bound of Equation (4.5) follows from D(M) ≤ rk(M), however Lovett

[Lov16] proved a better upper bound for deterministic communication complexity in terms of

rank: D(M) ≤ O(
√

rk(M) log rk(M)). Although, quantitatively this is a huge improvement

from the previous known upper bound of O(rk(M)), from our perspective Lovett’s upper

bound does not change the qualitative relation between D(M) and rk(M).

Theorem 4.8 ([GS19]). For every ε < 1/2, there exists a constant cε > 0 such that for every

Boolean matrix M , we have

cε log2 rk(M) ≤ rkε(M) ≤ rk(M). (4.6)

Proof. The upper bound is trivial, so we sketch their proof of the lower bound here. Let

A be the matrix ε-approximating M . It will be easier to work with sign matrices, so let

M ′ = J−2M and A′ = 1
1−2ε

(J−2A) be the sign versions of M and A, respectively. Then for

α := 2
1−2ε

, A′ α-approximates M ′, where α-approximation for sign matrices is equivalently

defined as 1 ≤M ′(x, y)A′(x, y) ≤ α.

Let r = rkα(M ′) and note that it is sufficient to prove that the number of distinct rows (or

columns) in M ′ is at most 2cαr for some cα > 0. Let v1 . . . vk be the rows in A′ corresponding
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to the maximal set of pairwise distinct set of rows in M ′. For each pair of rows vi1 and vi2 ,

where i1 6= i2, there exists a column j ∈ [n] such that |vi1j − vi2j| ≥ 2.

Let U be the span of the rows of A′ and consider the space V = U ∩ [−α, α]n. Note that

vi ∈ V for all i ∈ [k]. Then, for a vector v and λ > 0 denote v+λV = {v+λu | u ∈ V }. Fix

λ = 1
1+α

, and observe that for each i ∈ [k], the sets vi + λV are pairwise disjoint. Hence,

k · Volume (λV ) =
k∑
i=1

Volume (vi + λV ) ≤ Volume ((1 + λ)V ) ,

where the last inequality follows from vi +λV ⊆ (1 +λ)V for all i ∈ [k] and the sets vi +λV

being pairwise disjoint. It follows

k ≤ Volume ((1 + λ)V )

Volume (λV )
=

(1 + λ)r · Volume(V )

λr · Volume(V )
= (α + 2)r.

We deduce that rk(M ′) ≤ 2cαr, where cα = log2(α + 2).

Corollary 4.9 (Equivalence between zero-error, rank, approximate rank, and deterministic).

There exist a constant c > 0, such that for every Boolean matrix M , we have

c log log D(M) ≤ c log log rk(M) ≤ R0(M) ≤ D(M) ≤ rk(M),

and for every ε < 1/2, there exists a constant cε > 0 such that

cε log2 rk(M) ≤ rkε(M) ≤ rk(M).

Proof. The corollary follows immediately from Theorems 4.7 and 4.8, and R0(M) ≤ D(M).

4.3 One-sided error complexity

In this section, we consider one-sided error randomized protocols, and study the structure

of matrices M that satisfy R1(M) = O(1). As in the case of two-sided error randomized

communication, the identity matrix (Example 3.1) shows that there is a gap between rank

and one-sided error randomized communication complexity. The xor lift of the thresh-

old function also witnesses such a gap; for a constant k, we have R1(Thr⊕k ) = O(1) and
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rk(Thr⊕k ) ≥ 2Ω(n) by Lemma 3.3. These examples demonstrate that even for matrices with

uniformly bounded one-sided error randomized communication complexity we cannot hope

to obtain a full structure through bounded rank. Therefore, similar to the theme of Conjec-

ture I, we focus on finding a highly structured object in such matrices.

Theorem 4.10 (Conjecture I for one-sided error). For every c > 0, there exists a constant

δc > 0 such that if the one-sided error randomized communication complexity R1(M) of an

n × n Boolean matrix M is bounded by c, then it contains an all-zero or all-one δcn × δcn

submatrix.

Proof. Let t be a constant not depending on n and c; the value of t will be determined

later. Assume n > 2
c
t
+1, as otherwise the claim is trivial with δc = 2−

c
t
−1 for all constant

t. Fix a small constant 0 < ε < 2−
2c
t
−4. We will assume |supp(M)| < εn2, as otherwise we

can find a large all-one submatrix as follows: Given a one-sided error randomized protocol

πR for M with communication at most c, there is a fixing of the randomness r, so that

S = {(x, y) | πr(x, y) = 1} satisfies |S| ≥ εn2/3, where πr is a deterministic protocol. As

πR is a one-sided error protocol, we have S ⊆ supp(M). Since πr is deterministic, then it

provides a partitioning of S into at most 2c all-one submatrices. As a result, M has an

all-one submatrix of size at least εn2

3·2c .

Let S be the maximal subset of supp(M) such that for any distinct pairs (x1, y1), (x2, y2) ∈

S, x1 6= x2 and y1 6= y2. Let r = |S|, and note that if r ≤ 2
c
t , then from the maximality of S

it follows that deleting all the rows and columns involved in S from M will remove all the 1

entries from M . So the resulting submatrix of M will be all-zero and will have size at least

(n− 2
c
t )× (n− 2

c
t ) ≥ 1

4
· n2, where the inequality follows from t being constant in n and c,

and from the assumption of n > 2
c
t
+1. Thus, we may assume r > 2

c
t .

Denote k = 2
c
t . By Example 3.1, the identity matrix is hard for one-sided randomized

communication, more precisely R1(Ik) > τ log k for some constant τ > 0. Fixing t = τ , we

get R1(Ik) > c.

This means that M cannot contain a copy of the k × k identity matrix as a submatrix.

Thus, every k × k submatrix of M that contains k entries from S must also have at least
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one 1-entry outside of S – call such entries off-diagonal 1’s. Let m be the number of such

off-diagonal 1’s in M . The number of k × k submatrices of M that have k entries from S

is
(
r
k

)
, and each of these submatrices have at least one off-diagonal 1. In this process, each

off-diagonal 1 in M is counted in at most
(
r−2
k−2

)
many submatrices. Hence,

m ≥
(
r
k

)(
r−2
k−2

) ≥ r2

4k2
.

Now, if r ≥ 2
√
εk · n, then m ≥ εn2, hence |supp(M)| ≥ εn2, which is a contradiction to

our assumption of |supp(M)| < εn2. So, r < 2
√
εk · n. In this case, by deleting all the rows

and columns of S from M , we obtain an all-zero rectangle of size at least (n− 2
√
εk · n)2 =

(1 − 2
√
εk)2 · n2. To sum up, by taking δc = 1 − 2

√
ε · 2c/t, we get that there is an all-zero

rectangle of size at least δ2
cn

2.

4.4 Idempotent Schur multipliers. An infinite version

of Conjecture III

Let X and Y be two countable sets. Recall that a matrix MX×Y is a Schur multiplier, if

A 7→ M ◦ A defines a map B(H1,H2) → B(H1,H2). In Theorem 2.14, we saw that M is a

contractive idempotent of the algebra of Schur multipliers if and only if M ∈ Blocky .

Consequently, if a Boolean matrix MX×Y can be written as a linear combination of finitely

many contractive idempotent Schur multipliers, then by the triangle inequality it is a Schur

multiplier. More precisely, if M =
∑t

i=1 λiMi is Boolean valued and each Mi is contractive,

then M is an idempotent Schur multiplier as M ◦M = M , and ‖M‖m ≤
∑t

i=1 |λi|. This

leads to the following conjecture.

Conjecture 4.11. An (infinite) matrix M is an idempotent Schur multiplier if and only

if M is Boolean and can be written as a linear combination of finitely many contractive

idempotent Schur multipliers.
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A simple compactness argument shows that Conjecture 4.11 is equivalent to Conjec-

ture III.

Remark 1. Conjecture III is equivalent to asking whether M is a linear combination of

at most kc blocky matrices (given the assumption of Conjecture III). Indeed, assume that

M =
∑k

i=1 λiMi is an m× n Boolean matrix, and Mi are blocky matrices. Identify M and

each Mi with their supports. Note these are subsets of [m]× [n]. For k′ ≤ 2k, let S1, . . . , Sk′

be the atoms of the σ-algebra generated by Mi’s. Since M is measurable with respect to this

σ-algebra, we have M = ∪i∈ISi for some I ⊆ {1, . . . , k′}. Note that for j ∈ {1, . . . , k′}, Sj is

an intersection of Mi’s and complements of Mi’s. The intersection of two blocky matrices is

a blocky matrix, and the complement of a blocky matrix B is J− B, where J is the all-one

(blocky) matrix. We conclude that each Sj can be written as a ±1-linear combination of at

most 2k blocky matrices, and thus M can be written as a ±1-linear combination of at most

22k blocky matrices.

Theorem 4.12. Conjecture 4.11 and Conjecture III are equivalent.

Proof. By the equivalence of the norms ‖ · ‖µ and ‖ · ‖m, Conjecture III can be rephrased as

follows:

For every constant c, there exists a constant kc such that if a finite Boolean matrix M

satisfies ‖M‖m ≤ c, then there exists kc blocky matrices Bi and signs σi ∈ {−1, 1} such that

M =
kc∑
i=1

σiBi.

Conjecture 4.11 =⇒ Conjecture III: If Conjecture III is not true, then there must exist an

infinite sequence of finite Boolean matrices {Mi}i∈N with ‖Mi‖m ≤ k for all i, such that Mi

cannot be expressed as a ±1-linear combination of at most i contractive idempotent Schur

multipliers. Then M = ⊕i∈NMi would be an idempotent Schur multiplier, but for every

i ∈ N it cannot be expressed as a ±1-linear combination of i idempotent contractions. Since

M is Boolean, it follows from Remark 1 that M cannot be expressed as a linear combination

of at most a finite number of idempotent contractions.
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Conjecture III =⇒ Conjecture 4.11: Let M be an idempotent Schur multiplier on

B(`2(X ), `2(Y)), and consider a nested sequence X1 ⊆ X2 ⊆ X3 . . . of finite subsets of X ,

and a nested sequence Y1 ⊆ Y2 ⊆ Y3 . . . of finite subsets of Y such that X × Y =
⋃
Xi ×Yi.

Let Mi = 1Xi×Yi ◦M , which can be interpreted as a Schur multiplier on B(`2(Xi), `2(Yi)).

Since our sequences are nested, for every i < j, we have

1Xi×Yi ◦Mj = Mi. (4.7)

Furthermore, ‖Mi‖m ≤ ‖1Xi×Yi‖m · ‖M‖m ≤ ‖M‖m, and thus by Conjecture III, there

is a constant t, depending only on ‖M‖m, such that Mi =
∑t

k=1 σi,kNi,k for idempotent

contractions Ni,k. Furthermore by (4.7) for every j > i,

Mi =
t∑

k=1

σj,k (1Xi×Yi ◦Nj,k) .

For a fixed i and k, since Ni,k, and 1Xi×Yi ◦ Nj,k for all j, are supported on the finite set

Xi × Yi, by restricting to a sub-sequence i1 < i2 < i3 < . . ., we can assume without loss of

generality that for every j ≥ i we have

1Xi×Yi ◦Nj,k = Ni,k.

By restricting to further sub-sequences we can assume this is true for all i, and furthermore

for every k, there exists a σk ∈ {−1, 1} such that σj,k = σk for all j. To summarize: for all

k, and j > i,

1Xi×Yi ◦Nj,k = Ni,k, (4.8)

and moreover σj,k = σk for all j, k.

For k ∈ {1, . . . , t}, define the matrix Nk = [Nk(x, y)]x∈X ,y∈Y as

Nk(x, y) = Ni,k(x, y),

where i is any index such that (x, y) ∈ Xi×Yi. This is well-defined since X ×Y =
⋃
Xi×Yi,

and (4.8).

Note that Nk is an idempotent contractive Schur multiplier, since, for example, it obvi-

ously does not contain any 2×2 submatrix with exactly three 1’s. Moreover M =
∑t

k=1 σkNk,

which finishes the proof.
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4.5 Group lifts

In this section we focus on the matrices of the form F (x, y) = f(y−1x), where f : G → C,

and G is a finite group. We start by showing that for any finite group G, the Fourier algebra

norm of f coincides with the normalized trace norm of its lift F (x, y) = f(y−1x).

Proposition 4.13. Let G be a finite group, and f : G→ C. Let the matrix F : G×G→ C

be defined as F (x, y) = f(y−1x). We have

‖f‖A = ‖F‖ntr :=
1

|G|
‖F‖tr.

Proof. Note that the Fourier algebra norm is defined through its dual. The proof will rely

on the fact that the dual of the trace norm is the operator norm ‖ · ‖L2(G)→L2(G).

Let h : G → C, and the matrix H be its lift H(x, y) = h(y−1x). Recall that the

convolution operator for h is defined as Lh : ν 7→ ν ∗ h, where the convolution is defined

by Equation (2.8). Thus, for ν : G→ C,

Lhν(x) =
1

|G|
∑
y∈G

h(y−1x)ν(y) =
1

|G|
∑
y∈G

H(x, y)ν(y) =
1

|G|
Hν(x).

Hence,
‖Lhν‖L2(G)

‖ν‖L2(G)

=
‖Lhν‖`2(G)

‖ν‖`2(G)

=
‖Hν‖`2(G)/|G|
‖ν‖`2(G)

,

which shows

‖Lh‖L2(G)→L2(G) =
1

|G|
‖H‖`2(G)→`2(G).

Next, recall that for matrices F and H, 〈F,H〉 :=
∑

i,j FijHij = tr(FH∗), where the overline

denotes the conjugate of an entry and H∗ denotes the conjugate transpose of H. Now note

that

〈f, h〉L2(G) =
1

|G|2
〈f, h〉`2(G) =

1

|G|2
〈F,H〉 ≤ 1

|G|2
‖F‖tr‖H‖`2(G)→`2(G) = ‖F‖ntr‖Lh‖L2(G)→L2(G),

which shows that

‖f‖A = sup
{
〈f, h〉 : ‖Lh‖L2(G)→L2(G) ≤ 1

}
≤ ‖F‖ntr.

59



On the other hand, let H : G×G→ C be such that

‖H‖`2(G)→`2(G) = 1 and ‖F‖tr = 〈F,H〉,

and let H̃ : G×G→ C be the following symmetrization of H:

H̃(x, y) = Ez∼GH(zx, zy).

By convexity

‖H̃‖`2(G)→`2(G) ≤ ‖H‖`2(G)→`2(G) = 1.

Define h : G → C by h(x) = H̃(x, 1), and note that for every y and x, h(y−1x) =

H̃(y−1x, 1) = H̃(x, y). Since F (zx, zy) = F (x, y) = f(y−1x) for all z, we have

〈F,H〉 = 〈F, H̃〉 = |G|2〈f, h〉L2(G)

≤ |G|2‖f‖A‖Lh‖L2(G)→L2(G)

= |G|‖f‖A‖H̃‖`2(G)→`2(G)

≤ |G|‖f‖A,

this shows ‖F‖ntr ≤ ‖f‖A and completes the proof.

Davidson and Donsig [DD07] by applying a lemma of Mathias [Mat93] showed that

‖M‖ntr = ‖M‖m if the entries of M are invariant under a transitive group action.

Theorem 4.14 ([DD07]). Let X be a finite set with a transitive group action G on X .

Suppose that the matrix MX×X belongs to the commutant of the action G, or equivalently

M(x, y) = M(gx, gy) for all g ∈ G. Then

‖M‖ntr = ‖M‖m = ‖M‖γ2 .

Lemma 4.15 ([Mat93, Lemma 2.4]). Let M = [mij] be a complex-valued, n × n square

matrix such that the main diagonal entries of both |M | and |M∗| are the same. Then,

‖M‖m = ‖M‖ntr.
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Proof. Let the unitary matrixW = [wij] be such thatM = W |M | be the polar decomposition

of M , where |M | =
√
M∗M . Recall, since M is a square matrix there always exists such a

W yielding the polar decomposition of M . Let the matrix W = [wij] be obtained by taking

the complex conjugate of each entry of W , and let W ∗ = [w∗ij] = (W )T be the conjugate

transpose of W . Let ~1 denote the vector with n 1’s and ei denote the vector which is 1 on

i-th coordinate and 0 elsewhere.

First we show the lower bound. From the definitions of Schur norm and operator norm

‖M‖m ≥ ‖M◦W‖2→2 ≥
‖(M ◦W ) ·~1‖2

‖~1‖2

=
‖(M ◦W ) ·~1‖2 · ‖~1‖2

‖~1‖2 · ‖~1‖2

≥ 1

n
〈(M◦W )·~1,~1〉, (4.9)

where the last inequality follows from Cauchy-Scwarz inequality (Lemma 2.2). Next note

that the vector (M ◦W ) ·~1 =
(∑n

j=1 w1jm1j, . . . ,
∑n

j=1wnjmnj

)T
. It follows,

〈(M ◦W ) ·~1,~1〉 =
n∑
i=1

n∑
j=1

wijmij =
n∑
j=1

n∑
i=1

w∗jimij =
n∑
j=1

(W ∗M)jj = Tr(W ∗M) = Tr(|M |),

(4.10)

where the last equality is due to W being unitary. Finally, combining Equations 4.9 and

4.10 yields ‖M‖m ≥ 1
n

Tr(|M |) = ‖M‖ntr.

For the upper bound, we again take the polar decomposition of M = W |M |. Observe that

M∗M and M∗M are Hermitian matrices, it follows (M∗M)1/2 = |M | and (MM∗)1/2 = |M∗|

are also Hermitian matrices. Define the vectors xi = |M |1/2ei and yj = |M |1/2W ∗ej for

i, j ∈ [n] so that 〈xi, yj〉 = Mij. Indeed,

〈xi, yj〉 = 〈|M |1/2ei, |M |1/2W ∗ej〉

= 〈
(
|M |1/2W ∗)∗ |M |1/2ei, ej〉

= 〈W
(
|M |1/2

)∗ |M |1/2ei, ej〉
= 〈W |M |ei, ej〉

= 〈Mei, ej〉 = Mij,

where
(
|M |1/2

)∗ |M |1/2 = |M |1/2 as |M |1/2 is Hermitian, which follows from |M | being Her-

mitian. Next,

‖xi‖2 = 〈xi, xi〉 = 〈|M |1/2ei, |M |1/2ei〉 = 〈
(
|M |1/2

)∗ |M |1/2ei, ei〉 = 〈|M |ei, ei〉 = |M |ii,
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where |M |1/2 being Hermitian follows from |M | being Hermitian. Similarly,

‖yi‖2 = 〈|M |1/2W ∗ei, |M |1/2W ∗ei〉

= 〈W ∗|M∗|1/2ei,W ∗|M∗|1/2ei〉

= 〈
(
W ∗|M∗|1/2

)∗
W ∗|M∗|1/2ei, ei〉

= 〈
(
|M∗|1/2

)∗
WW ∗|M∗|1/2ei, ei〉

= 〈
(
|M∗|1/2

)∗ |M∗|1/2ei, ei〉

= 〈|M∗|ei, ei〉 = |M∗|ii,

where |M |1/2W ∗ = W ∗|M∗|1/2 since |M |1/2 and |M∗|1/2 are unitarily equivalent, namely

|M |1/2 = W ∗|M∗|1/2W , and |M∗|1/2 is Hermitian as |M∗| is Hermitian. By Proposition 2.12,

‖M‖m ≤ max
i
‖xi‖ ·max

j
‖yj‖ =

√
max
i
|M |ii ·

√
max
j
|M∗|jj.

Since |M | and |M∗| are constant on the main diagonal, maxi |M |ii = 1
n

Tr(|M |) and maxj |M∗|jj =

1
n

Tr(|M∗|).

|M | and |M∗| are unitarily equivalent; there exists a unitary matrix U such that |M∗| =

U∗|M |U . Then, Tr(|M∗|) = Tr(U∗|M |U) = Tr(U∗(U |M |)) = Tr(|M |), where we used the

fact that Tr(AB) = Tr(BA) for any matrix A and B.

Combining up,

‖M‖m ≤
√

1

n
Tr(|M |) ·

√
1

n
Tr(|M∗|) =

1

n
Tr(|M |) = ‖M‖ntr.

Proof of Theorem 4.14. Observe that if a matrix M satisfies the theorem’s condition then

all the entries on the main diagonal of M are equal. To satisfy the condition of Lemma 4.15

|M | and |M∗| also must be constant on the diagonal. Indeed, since |M | and |M∗| belong to

the C∗-algebra generated by M , then both |M | and |M∗| are in the commutant of the action

G, hence they are constant on the diagonal.

Combining Proposition 4.13 and Theorem 4.14, we obtain the following corollary.
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Corollary 4.16. Let G be a finite group, f : G→ C, and F : G×G→ C be its lift defined

as F (x, y) = f(y−1x). We have

‖F‖m = ‖F‖γ2 = ‖F‖ntr = ‖f‖A.

This corollary combined with the non-Abelian version of Cohen’s idempotent theorem

settles Conjecture II and Conjecture III for matrices of the form F (x, y) = f(y−1x).

Theorem 4.17. Conjecture II and Conjecture III are true for for the class of functions F :

G×G→ {0, 1} of the form F (x, y) = f(y−1x), where G is a finite group, and f : G→ {0, 1}.

Proof. By Corollary 4.16,

‖F‖m = ‖F‖γ2 = ‖F‖ntr = ‖f‖A.

Suppose that ‖f‖A < c. By the general version of Cohen’s idempotent theorem [San11, Theo-

rem 1.2], there is some constant k = kc, subgroups H1, . . . , Hk ⊆ G, elements a1, . . . , ak ∈ G,

and signs σ1, . . . , σk ∈ {−1, 1} such that

f =
k∑
i=1

σi1Hiai .

Then

F (x, y) =
k∑
i=1

σi ×

 ∑
b∈Hi\G

1Hb(x)1a−1
i Hb(y)

 ,

and note that each Bi(x, y) :=
∑

b∈Hi\G 1bHai(x)1bH(y) is a blocky matrix as desired.

4.6 A weaker version of Conjecture IV

In this section, we prove a relaxation of Conjecture IV. We will show that for Boolean

functions having a small approximate Fourier rank there exists an affine subspace (coset) of

Zn2 of small codimension on which the function is constant.

Proposition 4.18. Let f : Zn2 → {0, 1} be a Boolean function and let g : Zn2 → R be

such that ‖f − g‖∞ ≤ 1
3
, and rk⊕(g) ≤ c. Then there exists an affine subspace V ⊆ Zn2
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of codimension δc > 0 such that f is constant on V , where δc > 0 is a constant that only

depends on c.

Before proving this, let us introduce some notations and a simple claim, which implies

the proposition.

For any α ∈ {0, 1}n and α 6= 0, the set Abα := {x : χα(x) = b} for b ∈ {0, 1} is an (affine)

subspace of Zn2 of codimension 1. For a Boolean function f : Zn2 → R denote by f |Abα the

restriction of f to a (affine) subspace Abα. Given α ∈ {0, 1}n, f can be written as

f(x) =
∑

β∈Zn2 /〈α〉

(
f̂(β) + f̂(α + β)χα(x)

)
χβ(x),

where Zn2/〈α〉 denotes the cosets of the group 〈α〉 = {0, α}. From this representation it

follows that under a restriction to Abα, the Fourier coefficients f̂(β) and f̂(α + β) for every

β collapse into one Fourier coefficient having absolute value |f̂(β) + (−1)bf̂(α + β)|. This

in particular implies that Fourier sparsity of f does not increase when f is restricted to a

subspace.

Claim 4.19. For a function f : Zn2 → R with rk⊕(f) ≤ c there exists an affine subspace

V ⊆ Zn2 of codimension δc > 0, and f is constant on V .

Proof. Note that if f̂(α) 6= 0 for some α 6= 0, then applying the restriction χα = b for any

b ∈ {0, 1} kills the monomial χα in the Fourier expansion of f , so the Fourier rank of f

decreases by at least 1. Thus, at most rk⊕(f) such restrictions taken from Fourier expansion

of f will make f constant.

Proof of Proposition 4.18. Let rk⊕(g) ≤ c. By Claim 4.19, there exists an affine subspace

V ⊆ Zn2 of codimension δc > 0 such that g is constant on V . Next, note that knowing g(x)

for any x ∈ Zn2 , one can uniquely recover the value of f(x) by a rounding argument. This in

particular implies that if the restricted function g|V is constant for some subspace V ⊆ Zn2 ,

then f ’s restriction on V is also constant.
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It is easy to see that ‖f‖A ≤ rk⊕(f) for Boolean f . Similarly, ‖f‖A,ε ≤ (1 + ε) · rk⊕,ε(f).

Hence, indeed, Proposition 4.18 is a relaxation of Conjecture IV. Interestingly, the following

relation between approximate Fourier rank and approximate algebra norm holds.

Lemma 4.20 ([Zha14]). For any f : {0, 1}n → R and δ > ε ≥ 0,

rk⊕,δ(f) ≤ O
(
‖f‖A,ε · n/(δ − ε)2

)
.

Note that Proposition 4.18 would have implied Conjecture IV if it was possible to get

a better upper bound in Lemma 4.20 without the dependency on n. However, the lemma

is tight for AND function - it has O(1) approximate algebra norm and θ(n) approximate

Fourier rank.

In relation to log-rank conjecture for xor functions. The log-rank conjecture has

been extensively studied for xor functions, however it remains open for this subclass of

functions. Due to the special property of xor functions – that is the Fourier rank of a

Boolean function is equal to the rank of its xor-lift matrix – the log-rank conjecture has an

interesting equivalent formulation for xor functions:

Conjecture 4.21 (folklore). There is an absolute constant C such that for every Boolean

function f : Zn2 → {0, 1} and its xor-lift F⊕ : (x, y) 7→ f(x⊕ y) we have

D(F⊕) ≤ logC (rk⊕(f)) .

Given this, the combined results of [TWXZ13] and [HHL18] showed that the log-rank

conjecture for xor functions in fact has even simpler equivalent formulation in Boolean

function analysis:

Conjecture 4.22 ([TWXZ13, HHL18]). Let f : Zn2 → {0, 1} be a Boolean function. There

exists an affine subspace V ∈ Zn2 on which f is constant and V is of codimension logC(rk⊕(f))

for some absolute constant C > 0.

Note that this conjecture looks similar to Proposition 4.18. Indeed, the following easy

claim shows that Proposition 4.18 is a relaxation of Conjecture 4.22.
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Claim 4.23. For every Boolean function f : Zn2 → {0, 1} and for every ε < 1/2, there exists

a constant cε > 0 such that

cε log (rk⊕(f)) ≤ rk⊕,ε(f).

Proof. Let h : Zn2 → R be such that ‖f − h‖∞ ≤ ε and rk⊕(h) = rk⊕,ε(f). Consider the

xor-lifts of f and h, defined as F⊕(x, y) 7→ f(x⊕ y) and H⊕(x, y) 7→ h(x⊕ y), respectively.

Note that ‖F⊕−H⊕‖∞ ≤ ε, hence rkε(F⊕) ≤ rk(H⊕). Combining this with the lower bound

on approximate rank from Equation (4.6), we deduce that there exists a constant cε > 0

such that

cε log (rk⊕(f)) = cε log (rk(F⊕)) ≤ rkε(F⊕) ≤ rk(H⊕) = rk⊕(h) = rk⊕,ε(f).

It is natural to ask whether the opposite direction of this inequality also holds as the

affirmative answer, in combination with Proposition 4.18, will imply Conjecture 4.22, thus

also the log-rank conjecture for xor functions.

Question 1. Is there an absolute constant C > 0 such that for every ε < 1/2 and for every

Boolean function f : Zn2 → {0, 1}, rk⊕,ε(f) ≤ logC (rk⊕(f))?

After the initial submission of the thesis, Arkadev Chattopadhyay pointed out an example

which provides negative answer to this question. We include the example and his proof below.

Consider the inner product function IP2n : {0, 1}2n → {0, 1} defined by

IP2n(x1, . . . , xn, y1, . . . , yn) = x1y1 + x2y2 + . . .+ xnyn mod 2.

A. Chattopadhyay shows that rk⊕(f) ≥ rk⊕,ε(IP2n) = 2Ω(n), thus answering Question 1

negatively.

Claim 4.24 (A. Chattopadhyay). rk⊕,ε(IP2n) = 2Ω(n).
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Proof. Let g : {0, 1}2n → R be such that ‖ IP2n−g‖∞ ≤ ε and rk⊕(g) = rk⊕,ε(IP2n).

〈IP2n, g〉 = Ex[IP2n(x)g(x)]

= Ex

[
IP2n(x)

( ∑
S⊆[2n]

ĝ(S)χS(x)

)]

≤
∑
S⊆[2n]

|ĝ(S)| ·
∣∣∣Ex[IP2n(x)χS(x)]

∣∣∣
≤
∑
S⊆[2n]

|ĝ(S)| ·
∣∣∣ÎP2n(S)

∣∣∣ =
∑
S⊆[2n]

|ĝ(S)| · 1

2n
≤ (1 + ε) · rk⊕(g) · 1

2n
,

where we used the fact that ÎP2n(S) = 1
2n

for all S ⊆ [2n], and |ĝ(S)| ≤ 1 + ε, since

|g(x)| ≤ 1 + ε for all x ∈ {0, 1}2n.

Note that on the other hand 〈IP2n, g〉 = Ex[IP2n(x)g(x)] ≥ 1 − ε. Combining this with

the inequality above, we get

rk⊕(g) ≥ 2n · 1− ε
1 + ε

.
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Chapter 5

xor-functions

Recall that the xor-lift of a function f : {0, 1}n → {0, 1} is defined as F⊕ : {0, 1}n×{0, 1}n →

{0, 1} with F⊕ : (x, y) 7→ f(x⊕ y).

Since xor-lift is special case of the group lift for G = Zn2 , by Theorem 4.17, both

Conjecture II, and Conjecture III are true for xor functions.

5.1 Structure for bounded query complexity

Let f : {0, 1}n → {0, 1}, and consider the complexity measures

rdt⊕(f) ≤ rdt⊕1(f) ≤ 3 rdt⊕0 (f),

and dt⊕(f). We shall study the structure of the function if we assume a uniform bound on

each of these measures.

Deterministic and zero-error randomized case. The Fourier spectrum of a Boolean

function plays an important role in understanding these parameters. The Fourier rank of f ,

denoted rk⊕(f), is simply the number of non-zero Fourier coefficients of f . The Fourier rank

is also commonly referred to as Fourier sparsity in literature. Note that denoting G = Zn2 ,

using the notation of Definition 2.9, we have

rk⊕(f) = rk(Ĝ, f).
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Proposition 5.1 (Equivalence between zero-error and deterministic complexities). For f :

{0, 1}n → {0, 1}, D(F⊕), rk(F⊕), R0(F⊕), dt⊕(f), rk⊕(f), and rdt⊕0 (f) are qualitatively

equivalent. More precisely, we have

1

2
log rk⊕(f) ≤ dt⊕(f) ≤ rk⊕(f), (5.1)

and there are constants c1, c2, c3 > 0 such that

D(F⊕) ≤ 2 dt⊕(f) ≤ c1 ·D(F⊕)6 ≤ c2 · rk(F⊕)6 ≤ 22c3·R0(F⊕)

≤ 222c3 rdt⊕0 (f)

≤ 222c3 dt⊕(f)

. (5.2)

Proof. Equation (5.1): Each parity query ⊕i∈Sxi corresponds to querying the value of the

corresponding character χS(x). In particular, if the Fourier spectrum of f is supported on

at most c characters, then the value of f(x) will be determined from the value of these

characters, and thus dt⊕(f) ≤ rk⊕(f).

For the other direction, the indicator function of every leaf of a depth d parity decision

tree is determined by the value of d characters and thus has Fourier rank at most 2d. Since

the number of leaves is bounded by 2d, we obtain rk⊕(f) ≤ 22d.

Equation (5.2): The first inequality is the straightforward simulation of a parity decision

tree by a communication protocol as discussed in Section 2.3, namely the fact that Alice and

Bob can simulate an xor-query ⊕S(x⊕ y) by two bits of communication ⊕S(x) and ⊕S(y).

The second inequality is the parity lifting theorem of [HHL18], and the third inequality is a

property of deterministic communication complexity Proposition 2.3. The fourth inequality

is Theorem 4.7. The fifth inequality is again the simulation of parity decision trees by

communication protocols. The final inequality is trivial since rdt⊕0 (f) ≤ dt⊕(f).

Remark. To prove the equivalences stated in Proposition 5.1, instead of dt⊕(f) ≤ c1 ·D(F⊕)6,

it would have sufficed to use the weaker but trivial inequality dt⊕(f) ≤ rk⊕(f) = rk(F⊕) ≤

2D(F⊕). However, the lifting theorem of [HHL18] provides stronger bounds.

One-sided randomized case. In Lemma 3.3 we saw that for a fixed integer k, the thresh-

old function thrk satisfies rdt⊕1(thrk) ≤ ck for some constant ck depending on parameter k,
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while dt⊕(thrk) = Ω(n). This shows that for xor-query model the one-sided error case is

not qualitatively equivalent to the zero-error and the deterministic case.

Proposition 5.2. For every Boolean function f : {0, 1}n → {0, 1}, there exists an affine

subspace V of co-dimension rdt⊕1(f) such that f is constant on V .

Proof. Consider a one-sided randomized parity decision tree AR with randomness R that

could only make errors when f(x) = 1. Suppose that f 6≡ 0, as otherwise we can take

V = {0, 1}n. Pick x ∈ f−1(1). Since PrR[AR(x) = 1] > 0, there is a fixing of randomness

R = r, such that Ar is a deterministic parity decision tree satisfying Ar(x) = 1. That

is, x leads to a leaf of Ar labeled with 1, and the leaf corresponds to an affine subspace

V of codimension ≤ rdt⊕1(f). Moreover, since Ar does not make errors on f−1(0), then

V ∩ f−1(0) = ∅ or, equivalently, f |V ≡ 1.

Two-sided error case. Next we turn to two-sided error. We saw in Corollary 2.16 that

the randomized parity decision tree complexity and the approximate Fourier algebra norm

of f are qualitatively equivalent. These parameters are also qualitatively equivalent to the

randomized communication complexity of the parity lift.

Proposition 5.3. For f : {0, 1}n → {0, 1} and ε ∈ (0, 1
2
), Rε(F⊕), rdt⊕ε (f), and ‖f‖A,ε are

qualitatively equivalent. More precisely,

log ‖f‖A,ε ≤ rdt⊕ε (f) ≤ O
(
cε‖f‖2

A,ε

)
, (5.3)

1

2
log ‖f‖A,ε ≤ Rε(F⊕) ≤ O

(
cε‖f‖2

A,ε

)
, (5.4)

where cε = log(1/ε)
(1−2ε)2 , and

Rε(F⊕) ≤ 2 rdt⊕ε (f) ≤ O
(
cε2

4 Rε(F⊕)
)
. (5.5)

Proof. Observe that a parity lift is a y−1x-group lift for G = Zn2 , and thus by Corollary 4.16,

we have ‖F⊕‖γ2,ε = ‖f‖A,ε. Hence Equation (5.3) and Equation (5.4) have already been

proven in Corollary 2.16.
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The first inequality in Equation (5.5) is the standard simulation of a parity decision tree

by a communication protocol. The second inequality in Equation (5.5) is a direct consequence

of the upper-bound in Equation (5.3) and the lower bound in Equation (5.4).

Remark. Note that Equation (5.3) provides an exponential lifting theorem for the random-

ized parity decision tree model. It is conjectured in [HHL18] that this can be improved to

rdt⊕(f) ≤ R(F⊕)O(1), which remains an intriguing open problem.

Remark. The counter-example to the log-approximate-rank conjecture [CMS20] demonstrates

that the upper bound both in Equation (5.3) and Equation (5.4) is almost tight. Let

SINK : {0, 1}(
m
2 ) → {0, 1} be a function where the input specifies the orientation of every

edge in the complete directed graph onm vertices, and SINK outputs 1 if there is a vertex that

is a sink, it outputs 0 otherwise. It is proven in [CMS20] that ‖ SINK ‖A,ε ≤ ‖ SINK ‖A ≤ m

and rdt⊕(SINK) = R(SINK⊕) = Θ(m).

It follows from Equation (5.3) that Conjecture IV has the following equivalent form:

Conjecture 5.4. Let f : Zn2 → {0, 1} be a Boolean function such that rdt⊕ε (f) ≤ c. Then

there exists a coset V = H + a ⊆ Zn2 such that f is constant on V , and |V |
|Zn2 |
≥ δc > 0, where

δc > 0 is a constant that only depends on c.

Next, we observe that for the class of xor-functions, Conjecture IV would imply Con-

jecture I.

Proposition 5.5. For the class of xor functions,

Conjecture IV ⇒ Conjecture I.

Proof. Suppose that R(F⊕) ≤ c. It follows then from Equation (5.4) that

‖f‖A,ε ≤ 22c.

Now if Conjecture IV is true, then f would be constant on a large subspace V ⊆ Zn2 . Then

V × V would be a large monochromatic rectangle in F⊕.
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Chapter 6

and-functions

In this section we focus on and-functions F∧(x, y) := f(x ∧ y). As we saw in Chapter 5,

investigating the Fourier expansion of f : {0, 1}n → {0, 1} was extremely useful for under-

standing the properties of their xor -lifts. This is chiefly because Fourier characters are

multiplicative with respect to the xor operation, and thus the Fourier transform naturally

translates to an expansion of the matrix F⊕ as a linear combination of rank-one matrices.

When studying the and-lifts, the representation of f as a multilinear polynomial over the re-

als plays a similar role since monomials are multiplicative with respect to the and operation.

More precisely, using the notation xS =
∏

i∈S xi, the polynomial representation

f(x) =
∑
S⊆[n]

λSx
S,

translates to

F∧(x, y) = f(x ∧ y) =
∑
S⊆[n]

λSx
SyS.

Equivalently,

F∧ =
∑
S⊆[n]

λSmSm
T
S ,

where mS ∈ {0, 1}2n , mT
S is the transform of mS, and (mS)x = xS. Since for each S, mSm

T
S

is a rank-1 matrix, and mS for S ⊆ [n] are linearly independent, then rk(F∧) is equal to

the number of non-zero coefficients λS, which by the notation of Section 2.4 is denoted by
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rk(M on, f). In other words,

rk(F∧) = rk(Mon , f). (6.1)

We obtain the following simple proposition, which establishes the equivalence of several

parameters related to the and-lift.

Proposition 6.1 (Equivalence between zero-error and deterministic complexities). For f :

{0, 1}n → {0, 1}, the parameters dt∧(f), rdt∧0 (f), rk(Mon , f), ‖f‖Mon , rk(F∧), D(F∧), and

R0(F∧) are all qualitatively equivalent. More precisely, there exists a constant c > 0 such

that

log rk(Mon , f) ≤ D(F∧) ≤ 2 dt∧(f) ≤ 2rk(Mon , f)

= 2rk(F∧) ≤ 22cR0(F∧) ≤ 222c·rdt∧0 (f)

≤ 222c·rk(Mon,f)

, (6.2)

and

rk(Mon , f) ≤ ‖f‖Mon ≤ 3dt∧(f).

Proof. Recall rk(F∧) = rk(Mon , f). Thus the inequality log rk(Mon , f) ≤ D(F∧) is the well-

known rank lower bound of Proposition 2.3, and the inequality D(F∧) ≤ 2 dt∧(f) is the

straightforward simulation of an and-decision tree by a communication protocol, discussed

in Section 2.3.

The inequality dt∧(f) ≤ rk(Mon , f) follows from the fact that the value of a monomial

can be determined by making one and-query.

By Theorem 4.7, there exists a constant c > 0 such that

rk(F∧) ≤ 22cR0(F∧) ≤ 222c rdt∧0 (f)

,

and the last inequality in the first equation follows from R0(F∧) ≤ 2 rdt∧0 (f) ≤ 2 dt∧(f) ≤

2rk(Mon , f).

The inequality rk(Mon , f) ≤ ‖f‖Mon follows from the easy and well-known fact that the

coefficients in the polynomial representation of f are all integers.

It remains to prove ‖f‖Mon ≤ 3dt∧(f). We use induction on d = dt∧(f). The base case

for d = 0 is trivial, as ‖f‖Mon is at most 1 for every constant Boolean function f . For the
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induction step, consider an and-decision tree of depth d computing f , and suppose that the

top node of the tree queries xS, and branches accordingly to compute f1 and f2. Now

f(x) = xS · f1(x) + (1− xS) · f2(x),

and since dt∧(f1), dt∧(f2) ≤ d− 1, we have

‖f‖Mon ≤ ‖xSf1‖Mon + ‖xSf2‖Mon + ‖f2‖Mon ≤ 3 · 3d−1 = 3d.

We conjecture that the exponential equivalence between D(F∧) and dt∧(f) in Proposi-

tion 6.1 can be improved to a polynomial equivalence. Recently, [KLMY20] proved dt∧(f) =

O(D(f∧)
3 log n), but due to the log(n) factor, their statement comes short of establishing

this conjecture.

Now, let us turn to randomized communication complexity and its related matrix pa-

rameters such as the trace and the γ2 norm. Unlike Fourier characters, the monomials in the

polynomial representation are not orthogonal, and thus the coefficients in the polynomial

representation of f do not correspond to the eigenvalues of F∧. This makes relating the

spectral properties of F∧ to similar properties of f difficult. For example, unlike the F⊕

case, we do not know how to verify Conjecture II or Conjecture III for matrices of the form

F∧. Similarly, we do not know how to relate the randomized communication complexity

assumption of Conjecture I to an assumption about rdt∧. Contrast this with the xor case

where we have established that R(F⊕), ‖F⊕‖γ2,ε, ‖f‖A,ε, and rdt⊕(f) are all qualitatively

equivalent. We conjecture however that a similar statement is true for the and-functions.

Conjecture 6.2. There exist an increasing function κ : R+ → R+ such that for every

f : {0, 1}n → {0, 1},

rdt∧(f) ≤ κ(R(F∧)).

Interestingly in the case of the and-functions, we know how to establish the analogue of

Conjecture IV.
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Theorem 6.3. Suppose f : {0, 1}n → {0, 1} satisfies rdt∧(f) ≤ d. Then, there exists a set

J ⊆ [n] of size at most 3d+1, such that f is constant on {x : xJ = 0}.

We will prove Theorem 6.3 in Section 6.1, but first, let us state the following corollary.

Corollary 6.4. Conjecture 6.2, if true, would imply that Conjecture I is true for F∧ matrices.

Proof. It would follow from Conjecture 6.2 that if R(F∧) ≤ c, then rdt∧(f) ≤ κ(c). Then by

Theorem 6.3, f is constant on V = {x : xJ = 0}, where |J | ≤ 3κ(c)+1. Consequently, F∧ is

constant on V ×V , which is a δ2n×δ2n combinatorial rectangle with δ = 2−|J | ≥ 2−3κ(c)+1
.

To summarize, in the case of F∧, the missing step for establishing Conjecture I is

a dimension-free lifting theorem for randomized communication complexity (i.e. Conjec-

ture 6.2), since we know how to deduce structure from a uniform bound on randomized

query complexity. In contrast, in the case of F⊕ such a lifting theorem is known, but we do

not know how to establish structure from a uniform bound on randomized query complexity

(i.e. Conjecture IV).

6.1 Proof of Theorem 6.3

By Corollary 2.16,

log3 ‖f‖Mon,ε ≤ rdt∧ε (f) ≤ O

(
‖f‖2

Mon,ε ·
log(1/ε)

(1− 2ε)2

)
. (6.3)

Theorem 6.3 now follows from the first inequality and the following lemma.

Lemma 6.5. For every f : {0, 1}n → {0, 1}, there exists a set J ⊆ [n] of size at most

3‖f‖Mon,1/3, such that f is constant on {x : xJ = 0}.

Proof. Let p =
∑

S⊆[n] λSx
S be a multilinear polynomial satisfying ‖p − f‖∞ ≤ 1

3
and

‖p‖Mon = d.

Consider the partial ordering on the Boolean cube where x � y if for every i, xi ≤ yi.

Under this ordering, pick a minimal w ∈ {0, 1}n such that f(0) 6= f(w). This means that
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for every v ≺ w, f(v) = f(0). Pick an arbitrary j such that wj = 1, and let v = w − ej,

where ej denotes the j-th standard vector. Note that |f(w) − f(v)| = 1, and as a result

|p(w)− p(v)| ≥ 1/3, which means that ∑
S⊆w:S3j

|λS| ≥
1

3
,

where S ⊆ w means S ⊆ {i : wi = 1}. Consequently, ‖p|xj=0‖Mon ≤ ‖p‖Mon − 1
3
. Thus

‖f |xj=0‖Mon,1/3 ≤ ‖f‖Mon,1/3 −
1

3
.

We include j in J and repeat the above process, replacing f with f |xj=0. Since ‖·‖Mon,1/3 ≥ 0,

this process can be repeated for at most 3‖f‖Mon,1/3 times, after which we will end up with

a constant function.

6.2 Randomized and-decision trees: One-sided and two-

sided error

Let us briefly discuss rdt∧1 and rdt∧. The example of the threshold function, as discussed

in Lemma 3.4, shows that the one-sided and the two-sided error case are not qualitatively

equivalent to the deterministic case. In particular, for f = thrn−1, Lemma 3.4 shows that

R(F∧) ≤ 2 rdt∧(f) ≤ 2 rdt∧1(f) = O(1), while dt∧(f) = dt∧(f) = Ω(log(n)).

On the other hand, in Theorem 6.3, we showed that if rdt∧(f) ≤ d, then there exists a set

J ⊆ [n] of size at most 3d+1, such that f is constant on {x : xJ = 0}. Thus for and-functions

we know how to prove the analogue of Proposition 5.2, even for two-sided error.
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Chapter 7

Forbidden substructures: A

proof-barrier for Conjectures I, II, III

In this section, we discuss a proof barrier, which shows that the techniques used for proving

Cohen’s idempotent theorem, as well as many similar structural results cannot establish

Conjectures I, II, and III. Such proofs are based on forbidding substructures. For instance,

to prove Cohen’s idempotent theorem for f : Zn2 → {0, 1}, one uses the fact that the function

gr : Zr2 → {0, 1}, defined as gr(x) = 1 iff |x| = 1, satisfies ‖gr‖A = Ω(
√
r). Consequently, if

‖f‖A ≤ c, then no restriction of f to any affine subspace of dimension k = kc = O(c2) can

be isomorphic to gk. One then uses the fact that f does not have a copy of this forbidden

substructure to obtain general structural results about f . The proof of Cohen’s theorem,

even for more general groups, follows the same approach.

Similarly, in Lemma 4.6, we showed that every Boolean matrix of high rank must contain

as a submatrix one of the four matrices Ik, Ik, GTk, or GTk, each with large zero-error

randomized communication complexity. In other words, we used these four matrices as

forbidden substructures for matrices that have small zero-error randomized communication

complexity. For one-sided error, in Theorem 4.10 we used the forbidden matrix Ik. Note

that even Sherstov’s pattern-matrix method [She11], which has been used successfully to

lower-bound several complexity measures of various important matrices, is based on finding
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certain highly symmetric patterns in them.

One may suspect that a similar approach could also be used to establish Conjectures

I, II, and III. Namely, one needs to find a suitable list of matrices with high randomized

communication complexity, high trace norm, or high γ2 norm, and show that if a Boolean

matrix M does not contain any of them as a submatrix, then it must have the desired

structure. We prove that this approach fails as there are matrices that cannot be handled

by this proof technique.

Theorem 7.1. For every sufficiently large n, there exists an n× n Boolean matrix M with

the following properties.

(i) Every n1/4 × n1/4 submatrix F of M satisfies

‖F‖ntr ≤ ‖F‖γ2 ≤ 4, and R(F ) = O(1).

(ii) M does not contain any monochromatic rectangles of size n0.99 × n0.99.

One interesting related proof that does not follow the forbidden substructure approach is

the purely spectral proof of Shpilka, Tal, and Volk [STV17] for the fact that every f : Zn2 →

{0, 1} with ‖f‖A ≤ c is constant on an affine subspace of co-dimension kc. This obviously

follows from Cohen’s theorem, but [STV17] obtained stronger bounds on kc.

Before stating the proof of Theorem 7.1, we will set up and prove an auxiliary lemma

on the blocky-rank of matrices that correspond to forests. A matrix M : X × Y → {0, 1}

naturally corresponds to a bipartite graph GM with bipartition X ∪Y , where there is an edge

between vertices x ∈ X and y ∈ Y if and only if M(x, y) = 1. Note that the bipartite graph

corresponding to a blocky matrix M is an edge-disjoint union of vertex-disjoint complete

bipartite graphs.

Recall that a graph is called a forest if it does not contain any cycles. A connected forest

is called a tree. Recall that both a tree and a forest are bipartite graphs.

Lemma 7.2. Let M be a finite Boolean matrix corresponding to a forest. Then M is a sum

of two blocky matrices.
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Proof. As mentioned above, a blocky matrix corresponds to an edge-disjoint union of vertex-

disjoint complete bipartite graphs. Hence it suffices to show that the edges of every forest

can be partitioned into two sets, each forming a disjoint union of complete bipartite graphs.

Obviously, it suffices to prove this for a tree as a forest is a disjoint union of trees. Let v be

an arbitrary vertex of the tree, and for i = 0, 1, . . ., let Li be the set of the vertices that are

within distance i from v. To complete the proof note that the edges between Li and Li+1

for even values of i form one blocky matrix, and similarly the edges between Li and Li+1 for

odd values of i form the other blocky matrix.

Proof of Theorem 7.1. Set p = n0.01

n
, and select a random n×n matrix M = [mij] by setting

each entry to 1 with probability p and independently of other entries. It suffices to show

that with probability 1− o(1) both (i) and (ii) hold.

(i) Let k = n1/4. We will show that every k × k submatrix F of M can be written as a

sum of four blocky matrices. Then R(F ) = O(1) immediately follows from Equation (4.3),

and ‖F‖ntr ≤ ‖F‖γ2 ≤ 4 follows from the fact that the γ2-norm of a blocky matrix is at most

1.

We first prove that with probability 1− o(1), for every r, t ≤ k, every r× t submatrix of

M contains a row or a column with at most two 1’s. Note that the statement is trivial when

min(r, t) ≤ 2. Fix r, t > 2, and assume without loss of generality that r ≤ t. The probability

that there is an r× t submatrix such that each of its t columns contains at least three 1’s is

bounded by(
n

r

)(
n

t

)((
r

3

)
p3

)t
≤ nrnt(r3p3)t ≤ (n2p3t3)t ≤

(
n0.03

n1/4

)t
≤ o(n−1/2).

Thus by a union bound over all choices of r, t ≤ k, the probability that there is r, t ∈ [k]

and an r×t submatrix where every column contains at least three 1’s is bounded by o(k2n−1/2)

which is o(1) as desired.

Now suppose that every r× t submatrix F of M contains a row or a column with at most

two 1’s. We will show that in this case, every such F is a disjoint union of two forests, and

by Lemma 7.2 M is a sum of four blocky matrices. Consider a row (or a column) with at
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most two 1’s, and let e1 and e2 be the edges corresponding to these (at most) two entries.

Removing this row from F will result in a smaller submatrix, which by induction hypothesis,

can be written as the union of two forests F1 and F2. Now F can be decomposed into the

union of two forests F1 ∪ {e1} and F2 ∪ {e2}. Note that in the base case, i.e. when r = 1 or

t = 1 we get a star, which itself is a tree.

(ii) Let K = n0.99. The expected number of monochromatic rectangles of size K ×K is

at most

2n × 2n ×
(
pK

2

+ (1− p)K2
)
≤ 22n(2e−pK

2

) ≤ 23n−pK2

= 23n−n1.98+0.01

= o(1).

Lastly, it is worth mentioning that the matrix M from Theorem 7.1 is not a counterex-

ample for Conjecture I as M in fact has a high randomized communication complexity – this

can be derived by upper bounding M ’s discrepancy.

In a follow up work to this thesis, Hambardzumyan, H. Hatami, P. Hatami [HHH21]

showed that Theorem 7.1 provides a counterexample to the Probabilistic Universal Graph

Conjecture of Harms, Wild, and Zamaraev [HWZ21]. Later work of H. Hatami and P.

Hatami [HH21], based on the idea of Theorem 7.1 refuted the Implicit Graph Conjecture

itself.
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Chapter 8

Conclusion and Summary

To summarize the results of this thesis and to point out the open problems below we bring

Figure 8.1 and Figure 8.2. The first figure focuses on Conjectures I, II, III, IV and it records

our progress towards resolving each one of them for general functions, lifted functions, xor-

functions and and-functions.

Conjectures F : X × Y → {0, 1} F (x, y) = f(y−1x) xor-functions and-functions

Conjecture I

R open open open open

R1 Theorem 4.10 – – –

R0 Theorem 4.7 – – –

Conjecture II open Theorem 4.17 – open

Conjecture III

open

Theorem 4.17 – open(Equivalent to

Conjectures 4.2, 4.11)

Conjecture IV

open open open open

(weaker version (implies (Equivalent to (Analogous to

Proposition 4.18) Conjecture I) Conjecture 5.4) Theorem 6.3)

Figure 8.1: Summary of some of the results and conjectures. The dash (–) denotes that the

corresponding result trivially follows from the result in the previous column (same row).
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The next figure focuses on the second theme of the thesis – qualitative equivalence. It

indicates all the known (qualitative) equivalences between measures that appeared and/or

are proven in this work.

DEQ(M)
Prop. 4.1←−−−−→ rk(Blocky ,M)

Conj. 4.2←−−−−→‖M‖Blocky

R0(M)
Thm. 4.7←−−−−→ rkε(M)

Thm. 4.8←−−−−→ rk(M)
Eq. 1.4←−−→ D(M)

rdt⊕0 (f)
Prop. 5.1←−−−−→ R0(F⊕)

Prop. 5.1←−−−−→ rk(F⊕)
Eq. 1.4←−−→ D(F⊕)

Prop. 5.1←−−−−→ dt⊕(f)
Eq. 5.1←−−→ rk⊕(f)

rdt⊕ε (f)
Prop. 5.3←−−−−→ ‖f‖A,ε

Prop. 5.3←−−−−→ Rε(F⊕)

rdt∧0 (f)
Prop. 6.1←−−−−→ R0(F∧)

Prop. 6.1←−−−−→ D(F∧)
Prop. 6.1←−−−−→ dt∧(f)

Prop. 6.1←−−−−→ rk(Mon , f)
Prop. 6.1←−−−−→ ‖f‖Mon

rdt∧(f)
Eq. 6.3←−−→ ‖f‖Mon,ε

Conj. 6.2←−−−→R(F∧).

Figure 8.2: Denote by A ↔ B if A and B are qualitatively equivalent, meaning ∃κ1, κ2 :

R+ → R+ such that A ≤ κ1(B) and B ≤ κ2(A). M is a Boolean matrix, f : {0, 1}n → {0, 1}

is a Boolean function, F⊕ and F∧ denote the xor and and-lifts of f , respectively. The red

arrow indicates that equivalence is not known and is conjectured.
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