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ABSTRACT
This paper describes the design and construction of an in-
strumented bouldering wall, and a technique for estimating
poses by optimizing an objective function involving contact
forces. We describe the design and calibration of the wall,
which can capture the contact forces and torques during
climbing while motion capture (MoCap) records the climber
pose, and present a solution for identifying static poses for
a given set of holds and forces. We show results of our cali-
bration process and static poses estimated for different mea-
sured forces. To estimate poses from forces, we use optimiza-
tion and start with an inexpensive objective to guide the
solver toward the optimal solution. When good candidates
are encountered, the full objective function is evaluated with
a physics-based simulation to determine physical plausibility
while meeting additional constraints. Comparison between
our reconstructed poses and MoCap show that our objective
function is a good model for human posture.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Virtual reality

Keywords
Motion Capture; Force Capture; Physics-Based Simulation;
Optimization

1. INTRODUCTION
Producing physically plausible computer animation of vir-

tual humans is difficult because of the complexity and sub-
tleties of how real humans control posture and motion. While
it is easy to write down the equations of motion for an artic-
ulated character, it is difficult to model how this character
should move or what constitutes a natural pose. One way
to deal with this is to devise an optimization problem and
design a set of terms for the objective function based on
reasonable assumptions and approximations, such as terms
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that minimize metabolic energy, that keep the head level,
or that guide the center of mass (COM) to a location above
the feet. Another way to generate plausible postures for vir-
tual humans is to simply use MoCap and record the poses
of a real person. MoCap can be challenging to modify, how-
ever, and we must ultimately come up with a computational
model that lets us edit the motion for new purposes.

In this paper, we build on the idea of bringing together
physics, optimization, and MoCap, which is a popular ap-
proach in research on virtual humans. However, we also
recognize that MoCap alone is only part of the picture, and
that contact forces are critical for building up a clear under-
standing of how posture and motion are produced: contact
forces let us resolve the ambiguity in determining the torques
applied at different joints. Contacts and contact forces are
often critical, whether in the context of standing balance,
object manipulation, or during climbing. We see climbing
motion and posture as an interesting example to focus on
because it combines locomotion and object manipulation,
where the object being manipulated is the body as a whole.

With our desire to study posture and movement of hu-
mans in interaction with their surroundings, and the goal of
developing improved virtual humans, we have designed an
instrumented climbing wall that allows forces and torques to
be measured at the holds. In this investigation, we focus on
static and slow moving, near-static postures in order to sim-
plify the problem. While we can capture both motion and
contact forces simultaneously, another goal of this work is to
have a method for reconstructing the posture of a climber
from the force capture alone. We use optimization to find a
pose that meets the contact constraints while being valid for
the measured forces and minimizing additional plausibility
requirements, such as wall contact, joint limits, and facing
direction. The objective function is quite complex, and uses
a physics-based simulation as a black box for its evaluation.
We use Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) to compute the solution as it alleviates the need
for a derivative in the objective function. We accelerate
the optimization process with a simple objective function
that guides the hips of the character to a location predicted
from the forces by a linear regression. This helps bring our
optimization to the neighborhood of the optimal solution
quickly, and reduces the number of computationally expen-
sive evaluations of our full objective function. Our posture
optimization method is beneficial because MoCap of climb-
ing can be challenging due to occlusions, and we can instead
produce posture estimates for a climb without requiring the
capture subject to wear a MoCap suit.



Our three main contributions are: an instrumented climb-
ing wall design, a calibration process for this wall, and a new
optimization-based method for estimating posture from con-
tact forces. Our climbing wall design permits forces and
torques to be measured at the holds, and allows a variety of
different experiments to be conducted. The pitch of the wall
is adjustable, and hold positions are easily reconfigurable in
pockets of the torsion box. Also, the wall is easily disas-
sembled for transport or long term storage. The calibration
process for force sensors mounted in arbitrary locations is
presented, in addition to a convenient calibration based on
known mounting locations. Finally, our estimates of pos-
ture from recorded forces combine physics, capture, and op-
timization to produce plausible poses which we validate with
ground truth MoCap measurements.

2. RELATED WORK
We first review related work in biomechanics involving

climbing and the use of instrumented climbing holds. Then,
we focus on the field of animation, on works that combine
motion and forces, and on works revolving around the use
of optimization for physics-based simulations.

Climbing has been studied by various research groups in
the field of biomechanics using instrumented holds. Rougier
et al. [15] describe the first instrumented wall designed to
measure the amplitude of forces at the holds in 1991. Testa
et al. [17] use 3-Degrees of Freedom (3DoF) sensors. Quaine
et al. [12] use two video cameras to record two 2-D views of
the climber while recording forces on 3DoF transducers to
include postural information. A more recent instrumented
bouldering wall design is described by Fuss et al. [4], where
eight holds are equipped with 6DoF sensors. Works using
these setups mainly focus on analyzing the performance of
a climb and the climbers’ level of expertise [4, 3, 15, 16],
and on studying the effects of specific posture changes or
constraints on forces at the holds [13, 12, 17]. Our setup
is different in that it incorporates MoCap to offer full 3D
reconstruction of forces, torques and posture synchronized
in time and space. The objective of our approach is also
different as we are looking at the amount of information
contained in forces to explain a pose.

Pfeil et al. [11] provide a tool for quickly designing and
testing different hold configurations on a virtual climbing
wall. While the tool provides a good means of visualizing
possible routes, our approach differs as it relies on a physi-
cally simulated model of the climber.

A wide range of contributions to capture and synthesis
of posture or force data is found in computer animation.
Similarly to Brubaker et al. [1], who look at the converse
problem of estimating forces acting on the system from given
motion, we use a simulated character to model the subject
and constraints. Rosenhahn et al. [14] also use simulation
to enforce constraints found through analytics in MoCap of
special interactions.

MoCap and force sensing is used by Kry et al. [9] to cap-
ture interactions, focusing on hands and grasping. Joint
compliance is estimated from small time windows just be-
fore and after contacts, and used along with the reference
trajectory to synthesize new interactions. While it would
be interesting to look at how this method could be applied
to climbing to synthesize new postures with different wall
configurations, the focus of our research is to look at the
relationship between static poses and forces at the holds.

Closer to our work, Yin et al. [18] and Kry et al. [8] look
at how full body poses and grasp configurations can be es-
timated using force measurements from respectively a foot-
ground pressure sensor pad and a graspable device. These
approaches use a database consisting of pairs of MoCap and
force data to find the pose for the closest set of measured
forces. We, on the other hand, learn reduced features from
recorded data and use a physics-based approach to find a
pose that best explains the forces.

A similar approach is used by Ha et al. [5] to reconstruct
human motion from consumer-grade force sensors, and while
they also use a form of MoCap to obtain hand positions, one
can argue that because of the constrained nature of climb-
ing, end effector positions are given by the holds whereas
only feet locations can be obtained in the case of standing
on a platform. A fundamental difference is that our work
focuses on statics and looks at how climbing-specific con-
straints can drive the reconstruction through the optimiza-
tion of an objective function that we introduce as a means
of characterizing static poses.

Another body of relevant research in animation concerns
the use of optimization for physics-based simulations. de
Lasa et al. [2] describe a means of expressing locomotion
using a small number of features. Jain et al. [7] also look
at constrained optimization for virtual characters to design
controllers by formulating high-level objectives, and use those
constraints to generate, among other controllers, a climbing
controller. Using CMA-ES [6] with simple penalties around
the main objective is also a method we share with Nunes et
al. [10]. However, these authors look at generating plausi-
ble motion through the optimization of selected objectives,
while we are interested in optimizing the physical quality of
a static pose reconstruction for a set of forces.

3. WALL DESIGN
The instrumented bouldering wall’s main structure is an

8’×8’ torsion box. The wall doesn’t need to be fixed to a
second supporting wall as four additional beams offer sup-
port for the box and climber’s weight. This configuration
allows for easy movement of the wall and offers control over
the desired tilt of the climbing path, as shown in Figure 1.

Each climbing hold is mounted onto a front plate, in turn
attached to a 6-axis force torque sensor. The sensor is fixed
to a back plate that is mounted on the wall. The hold, front
plate, sensor and back plate form a “sensor sandwich” shown
in Figure 3a. The torsion box design will ultimately allow
us to hide sensors and wires inside and behind the pockets,
leaving sensitive material out of harm’s way and giving the
climber the same freedom they would have on a regular wall.

The sensor sandwiches can be inserted into each pocket
in four different orientations, providing good freedom for
designing climbing routes. The design also makes reconfigu-
ration easy. Moving a hold or changing its shape can be done
by respectively unscrewing the sensor from one of the 144
possible positions, or unscrewing the hold from the sensor.

The sensors are multi-component transducers with 6 chan-
nels for linear and angular forces expressed in a local coor-
dinate frame. Each sensor is connected to a 6-channel strain
gage amplifier with adjustable excitation voltage and gain.
Sensors can therefore easily be calibrated for maximum sen-
sitivity depending on the climber’s weight, or, in the case
of dynamic motions, the planned motion. The sensors are



Figure 1: The instrumented bouldering wall.

Figure 2: Voltages recorded for an example session.

sensitive enough to capture small tremors of muscle fatigue,
as well as contact forces as light as 0.05 N.

The calibration matrices to convert raw voltage data to
wrenches are close to diagonal and real-time visualization is
enough to evaluate excitation voltage and gain choices for
sensor sensitivity, as shown in Figure 2.

4. CALIBRATION AND CAPTURE
The main challenge in capturing data from both the Mo-

Cap and force sensing equipment is to find the relationship
between the two independently recorded data sets, both in
time and space. In this section, we describe the calibra-
tion process, present the major steps involved in capturing
synchronized data, and show a sample visualization.

4.1 Calibration
Each sensor possesses its own local frame in which the

force measurements are expressed as voltages, while skele-
ton reconstruction is expressed in the MoCap world frame.
Below, we describe two techniques for calibrating the posi-
tion and orientation of the sensors, which allow the force and
torque measurements to be expressed in the MoCap world
reference frame. We also describe a simple technique for
synchronizing the two data sets in time.

4.1.1 Converting the raw data to forces
As shown in Figure 2, sensors provide voltages for each of

the 6 channels. Using the inverse sensitivity matrices that
are provided with each sensor, we compute the forces and
torques from these voltages while taking into consideration
possible cross-talk. The forces and torques are given by

F = SV, (1)

where F is the vector containing the forces and torques, S
the inverse cross-talk sensitivity matrix for the sensor and

V the vector containing normalized voltages for the corre-
sponding channels. Normalized voltages for a channel are
found by dividing measured values by the appropriate gain
and excitation voltage, which are configured on the amplifier
boards for each individual channel, for each sensor.

4.1.2 Optimization-based space calibration
In order to visualize the force and motion data and to

be able to relate the different coordinate frames in which
the different measurements are made, we need to find the
appropriate transforms. Our goal is to find the transform

w
s E =

[
w
s R

wps
0 1

]
(2)

that converts coordinates expressed in the local frame of the
sensor to coordinates in the world MoCap frame. Here s
denotes the sensor frame, w the world frame, wps the origin
of the sensor frame in world coordinates, and w

s R is the
rotation matrix that aligns the axis in the sensor frame with
the corresponding axis in the world frame. In order to find
wps and w

s R, we look at the influences of force and contact
location on sensor measurements. We will show how precise
contact locations are found, and how these positions are used
along with recorded forces to compute the sensor frames.

To obtain contact locations, a calibration tool consisting
of a rigid body with a sharp tip is tracked with MoCap as it is
rotated around the contact point, as shown in Figure 3b. For
a recorded set of orientations of our rigid body, the contact
point is found using a least-squares approach by finding the
pair (bpc,

wpc) that minimizes

n∑
j=1

∥∥∥wb Ej bpc − wpc

∥∥∥2

, (3)

where b is the body frame, n the number of collected sam-
ples, wpc is the position of the contact point in world coor-
dinates, and w

b Ej is the calibration tool coordinate frame for
sample j in the recorded MoCap trajectory. In other words,
we are looking for the point pc that is invariant for wb E over
the data. That is the point that best describes a center of
rotation for all individual frames, which is the location of
the contact between the tip and surface. Using the posi-
tion of the tip in body coordinates, we can thereafter find
any contact location in world coordinates from the captured
calibration tool frame.

We can now look at how a set of linear forces (with no
torque) applied at different contact points are measured by
the sensor. More specifically, and assuming that the contact
coordinate frame is aligned with the world coordinate frame,
the measured torque can be expressed as

cτ = w
s R

sτ + (wps − wpc )× w
s R

sf , (4)

where cτ is the torque in the contact frame, and sf and sτ
are respectively the forces and torques in the sensor frame.
Since we are not applying a torque at the contact point,
cτ = 0. Thus, finding the origin and orientation of the
sensor’s local frame given a wide variety of contacts and as-
sociated measured forces becomes an optimization problem
where we are trying to find the pair (ws R,wps) that minimizes

k∑
i=1

m∑
j=1

∥∥∥ ws R sτij + (wps − wpci )× w
s R

sfij

∥∥∥2

, (5)



(a) (b)

Figure 3: Close-up on a “sensor sandwich” (a) and the cali-
bration tool in action (b).

where k is the number of contacts and m is the number
of recorded force samples per contact. Put simply, we are
looking for the sensor frame that can best explain force and
torque measurements for every given contact point. We find
wpc using the calibration tool and MoCap, and sτ and sf are
given by the sensors. In order to perform this calibration,
we then need a wide set of forces applied at various contact
points to ensure that the problem is not under-constrained.

We use MoCap to track the calibration tool while applying
linear forces at a contact point, with the sensors recording
forces and torques. For a set of contact points, and the forces
and torques recorded during the contact, we use Equation
5 to solve for w

s R and wps. The equation is nonlinear due
to rotations, and once linearized (as we describe later), it is
quartic. For that reason, we use an iterative and alternating
least squares approach. We set w

s R and wps to initial ap-
proximations and then solve for one of the unknowns while
fixing the other. Then, we alternate and repeat until we
converge to an acceptable error. In practice, three different
contact points are enough to find good solutions.

With w
s R fixed, wps can be easily computed as the least

squares solution of Equation 5. Solving for the best rotation
is trickier. We choose to solve for a small change in rotation
R such that our estimate at iteration l + 1 is updated from
the estimate at iteration l using

w
s Rl+1 = w

s Rl R . (6)

We parameterizeR in exponential coordinates, R = exp([ω]),
where [ω] is the skew symmetric matrix that performs the
cross product operation ω×, and we linearize the rotation
with a first order approximation of the exponential,

w
s Rl+1 ≈ w

s Rl (I + [ω]). (7)

When solving for ws R with a fixed wps, we consequently solve
for ω that minimizes Equation 5, where ws R becomes ws Rl(I+
[ω]) and w

s Rl is the most recent estimate. With the least
squares solution ω, we use Equation 6 to update the estimate
for w

s R using the exponential map R = exp([ω]) computed
with Rodrigues’ formula. To limit the error induced by the
linearization, we bound the norm of ω so that the update is
no more than 0.1 radians.

In sum, the calibration process consists of calibrating the
calibration tool to have accurate contact positions, recording
motion and forces as the tool is used to apply linear forces
at different contact locations rigidly attached to the sensor
and computing a least-squares estimate for the frame using
an iterative method and first-order approximation.

4.1.3 Pocket-based space calibration
Although time consuming as it requires several MoCap

and force recordings for each sensor to be calibrated, the last
approach is accurate and indispensable when sensors are not
in specific locations. In cases where sensors are attached in
pockets in known orientations, a speedier calibration method
is to place markers on known locations on the wall and define
a wall coordinate frame in which a sensor position and ori-
entation can be expressed. The origin of each sensor frame
can be computed from its location in a given corner of the
pocket where it is mounted, while the orientation can be set
to a combination of 90-degree rotations about the axis of the
wall frame. The positions and orientations are then easily
expressed in the world frame using the position of the wall,
determined by the markers attached to it and MoCap.

4.1.4 Measurement synchronization
Since our equipment does not easily permit a synchronous

recording of motion and forces, an extra step of measure-
ment synchronization is needed. Similarly to what is done
to synchronize sound and video in cinema, we hit one of
the sensors with an object tracked with MoCap. The post-
processing step consists of finding the frame with a sharp
peak at the beginning of the raw voltage data visualization,
and the frame where the tracked body used for synchroniza-
tion has its momentum change in the MoCap data. For sim-
plicity, we capture forces and motion at the same rate, even
though forces can be sampled at a much higher frequency.

4.2 Capture
As in any system involving MoCap, one of the main chal-

lenges when it comes to collecting quality data is camera
placement to avoid occlusion. When capturing a climber,
the front is mostly occluded as the body is facing the wall.
For that reason, most markers on the subject are placed
carefully to face away from the wall during a climbing ses-
sion. Sometimes marker positions are only chosen after sev-
eral trials, especially when recording new dynamic motions.
Our MoCap setup consists of 24 cameras, 6 of which have
wide-angle lenses; these are placed close to the wall, above
and on each side and are critical because they cover all the
regions occluded from the other cameras.

For the force sensors, the only concern is to choose gain
and excitation parameters that will allow for high sensitivity
while preventing sensor overload. This is also done by trial
and error but is far less time consuming. Typically, more
torque is exerted by hands as the holds need to allow for
grasping and tend to protrude more, as shown in Figure 3a.

The pre-processing to perform a successful capture ses-
sion consists of calibrating the cameras to avoid occlusions,
finding the origins and orientations of the sensor frames us-
ing one of the two space calibration methods, and carefully
choosing marker positions and sensor sensitivities to have
quality data. During the capture session, the subject uses a
rigid object to hit sensors prior to climbing and performs the
desired task. The post-processing consists of using the hit to
synchronize the two data streams in time, using the calibra-
tion matrices to convert the recorded voltages to force mea-
surements, and using the estimated sensor frames to express
the measured forces in the MoCap world frame. Figure 4
depicts the results of a successful capture, where squares
represent the sensors, and red and green arrows represent
forces and torques measured by each sensor.



(a) (b)

Figure 4: Climber during a trial (a) and visualization (b).

Figure 5: Subject generating a range of arbitrary forces at
the sensors while maintaining the same pose.

5. RECONSTRUCTION OF STATIC POSES
In order to look at the relationship between motion and

forces, several capture trials with male and female partic-
ipants of various skill levels were recorded. Finding a re-
lationship between measured forces and observed pose is
difficult, and we distinguish between two forms of ambigu-
ity: similar poses can generate different forces, as shown in
Figure 5, and similar forces can be generated by different
poses. To limit ambiguity, we restrict our focus to simpler
problems where data consists of static poses and quasi-static
transitions. To ensure as little dynamic movements as possi-
ble, participants were asked to move slowly while performing
natural and controlled movements.

5.1 Statistical analysis
We took a preliminary look at the data to see how much

of the posture and force spaces was exploited by various
climbers. We investigated the correspondence between forces
and static poses by performing linear regression and canon-
ical correlation analysis. In static or quasi-static poses, the
forces offer a lot of information on the location of the COM:
without momentum, forces at the holds are highly depen-
dent on the distribution of the climber’s weight, as shown in
Figure 6. For simplicity, and because we do not know the
exact mass of the different links, the position of the COM
is approximated by the root of the skeleton (the hips). The
location of the root can be predicted using linear regression
with a maximum error around 10 cm. However, the models
failed to predict entire poses from forces. A likely explana-
tion is strong non-linearities in the correlation due to joint
angles. A principal component analysis of the two data sets
reveals that only a few components are necessary to capture
most of the variation in the data in both cases, as shown in

Figure 6: Correlation between forces at the sensors and
COM position for static poses.
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Figure 7: Variance explained against number of components
for (a) forces and torques and (b) MoCap joint angles.

Figure 7. The lower dimensionality of both data sets can be
explained by the highly constrained nature of the problem.

5.2 Physical simulation and CMA-ES
In order to take advantage of these constraints and to ac-

count for physical plausibility, we use a physics-based sim-
ulation. Specifically, hands and feet are constrained to lo-
cations given by the four sensors at which forces are non-
zero, the climber must face the wall, he cannot penetrate
it, and has joint angle limits. The virtual character used to
simulate the climber has its dimensions defined by the cap-
tured climber (stored in the Biovision Hierarchy format).
The skeleton is a set of rigid bodies attached using different
types of joints. Joints are also used to constrain hands and
feet to proper hold locations, determined by assuming the
climber is facing the wall, is upright and is exerting force
on the holds. Joint angle limits and weight distribution are
chosen to match that of the climber, while contacts with the
simulated wall prevent unnatural poses. The simulation is
built using the Open Dynamics Engine (ODE).

We want to find a pose that best explains an arbitrary
function – which we define in Sections 5.3 and 5.4 – of forces
at the holds. Treating this as an optimization, we want the
pose that minimizes our objective while taking into account
the hard constraints enforced by the simulation. In other
words, we are looking for the set of joint angles

argmin
φ′∈Φ∗

f(φ′, FS), (8)

where Φ∗ is the manifold of joint angles that describe poses
respecting the constraints, f is the objective function, and
FS is the measured set of forces. We choose CMA-ES, which
uses sample fitness to update the sampling distribution, be-
cause we evaluate our objective functions via simulation.



CMA-ES produces sets of arbitrary joint angles φ using
a multi-variate normal distribution, and we devise a projec-
tion step Γ(φ) to find, for a given arbitrary set of joint angles
φ, the closest set of angles φ′ = Γ(φ) that describes a valid
pose on the constrained pose manifold Φ∗. This projection is
achieved using a proportional-derivative controller, by start-
ing with a valid pose (from MoCap data) and treating the
produced angles φ as desired angles. We apply torques at
each joint individually to try and match the angles produced
by CMA-ES, using differences in orientations, as well as stiff-
ness and damping parameters that offer a trade-off between
speed and stability. After a small amount of time, the sim-
ulation stabilizes into a new pose with joint angles φ′ that
is treated as the projection of the pose described by angles
φ onto the constraint manifold. The fitness of the original
sample φ is computed using the projected pose given by φ′.

5.3 Physical Plausibility as an Objective
In order to find the pose that best explains forces at the

holds, our objective function evaluates the fitness of a sample
φ by computing the physical plausibility of the pose given
by φ′ = Γ(φ), with the additional physical constraints that
the pose is static and generates the contact forces measured
by the sensors. The plausibility is computed as

ρ(φ′, FS) = ‖τr‖2 (9)

where τr is the torque generated at the root (or hips), where
the contact forces FS at the sensors and gravity are acting
on the system, and where the system is static. In other
words, we look at the constraint torque generated to enforce
statics for the pose given by φ′ when the forces acting on the
system are gravity and the forces measured by the sensors.

We find the plausibility ρ using the ODE simulation. Rigid
constraints are set on skeleton joint angles to enforce the
pose given by φ′, while another fixed constraint is applied to
the root position and orientation in the world to enforce stat-
ics. In order to simulate the forces generated by the holds
on the hands and feet, the opposite of the forces measured
by the sensors are applied to the appropriate end effectors.
Gravity is also taken into account.

The wrench applied to the root to enforce statics contains
information on the physical plausibility of the pose for FS .
For a static pose, resultant forces and torques at the root are
zero as gravity and the sum of the forces generated by the
holds cancel out. Assuming forces at the holds are explained
by the position of the COM, as illustrated by Figure 6, we
can always hope to find a pose that minimizes torque at
the root by distributing the skeleton’s weight appropriately.
Linear force at the root however is the difference between
the weight of the simulated skeleton and the sum of forces
at the holds and is therefore pose-invariant.

Torques at the inner joints describe the necessary effort
to maintain the pose given by φ′. A small total inner torque
is in general a good measure of high human plausibility.
However, the simplicity of our simulated model makes it
difficult to interpret inner torques, as it does not capture the
shape of the holds or model the strategies used by different
climbers to distribute effort among different muscle groups.

Therefore, we only use the torque that needs to be applied
to the root to enforce statics as a measure of the quality of
the pose given by φ′ for explaining FS . The closer the torque
is to zero, the more plausible the pose. Consequently, finding
a unique pose with physical plausibility as an objective is

under-constrained: the set of COM positions that minimize
the said torque lie on a line parallel to the linear part of the
wrench applied to the root to enforce statics. To incorporate
the missing information on human plausibility and guide
our optimizer toward a smaller set of good solutions, we use
statistical information gathered on the position of the root
for a given set of forces.

5.4 Hint Objective for improved optimization
As mentionned earlier, linear regression can be used to

accurately estimate root position with a maximum error in
the order of 10 cm. The model to predict the position of the
hips for a given set of forces is input into CMA-ES and used
to help reduce ambiguity. During initialization, r′, the ex-
pected root position, is computed with the regression model
given the forces measured by the sensors. The distance be-
tween the current location of the hips for a candidate pose
and the estimated root position for the sensor forces is used
as a hint to guide the optimization toward a good solution.
Since the regression error is in the order of 10 cm, we use
r′ to guide CMA-ES toward the set of poses with a root
position inside a 10 cm sphere from the estimate.

Conceptually, we guide our pose toward a configuration
where the COM, which we approximate as root position,
lies in a sphere, and use physical plausibility to project that
COM onto the line that minimizes constraint torque applied
to the root. In practice, the optimal solution is described as
the most physically plausible pose where the hips are within
a 10 cm radius of the expected hips position.

In sum, the optimization procedure starts with an arbi-
trary initial pose that satisfies the constraints. Linear regres-
sion is used to find r′, the predicted root position for forces
FS . For a new CMA-ES sample φ, the projection φ′ = Γ(φ)
on the constrained manifold is found using a proportional-
derivative controller. The actual position of the root r is
given by the pose described with φ′. The fitness – which
we want to minimize – of the sample φ for explaining FS is
defined as

ζ(φ) =

{
k ‖r − r′‖2 +G(φ′) if ‖r − r′‖ > t

ρ(φ′, FS) +G(φ′) otherwise
, (10)

where t is an estimate of the maximum regression error, used
to determine the significance of the information provided by
r′, G(φ′) is a set of linear penalties that grow as the skeleton
faces away from the wall, and k is a large weight that ensures
CMA-ES discards samples where the hips lie outside the
sphere given by the regression. Since the distance between
actual and expected root positions r and r′ is inexpensive
to compute for a given pose, the physical plausibility ρ is
only evaluated when the solution is promising in terms of
human plausibility. Figure 8 illustrates the exploration of
pose space by CMA-ES, where each picture contains the
population cloud for the indicated iteration. Our projection
method enables an easy exploration of the set of valid poses,
and the optimization converges when in the vicinity of the
optimal solution by progressively lowering the variance for
the CMA-ES sampling variables (the desired joint angles φ).

6. RESULTS AND DISCUSSION
Our calibration methods were used to capture nine sub-

jects and collect close to an hour of climbing data. Two
routes were designed and each subject was asked to perform



Figure 8: Vizualisation of the optimization process.

several takes with objectives such as shifting COM position
and completing routes following different progressions.

6.1 Calibration
Our setup supports the expedient calibration procedure:

in practice, most of the capture sessions were recorded using
the pocket-based procedure. Markers are placed in corners
of the wall to define the coordinate frame in which sensor
frames are expressed as a function of pocket placement.

However, a number of tests as well as a full wall calibra-
tion were performed for the optimization-based calibration.
For each sensor, three contact point locations were consid-
ered. For each contact location, 20 seconds of MoCap and 20
seconds of force measurements were recorded. Using Mat-
lab, calibrating the calibration tool from 2500 frames of Mo-
Cap took less than a second, while estimating the position
and orientation of a sensor with the iterative and alternating
method from 2000 samples per point and 3 contact locations
took less than a minute.

Contact point estimate error is expressed as the mean er-
ror for the least-squares estimate bp∗c . For each frame, wb Ej
is used to compute the contact location in world coordinates.
Based on Equation 3, we describe the error as

εc =
1

n

n∑
j=1

∥∥∥wb Ej bp∗c − wp∗c

∥∥∥ , (11)

where wp∗c is the average of w
b Ej

bp∗c over all samples. This
quantity can be seen as the size of the point cloud where the
actual contact point lies in world coordinates. Table 1 shows
average errors for contact point estimates at each hold for a
full calibration procedure. The high errors can be explained
by the use of the matrices wb Ej , which are estimated by the
software from the position of four markers, each of which has
an individual reconstruction error in the order of 0.3 mm.

Sensor frame estimate error εs is expressed as

1

km

k∑
i=1

m∑
j=1

∥∥∥ws R∗ sτij + (wp∗s − wp∗ci )× w
s R
∗ sfij

∥∥∥ , (12)

where w
s R
∗ and wp∗s are the least-squares estimates for the

sensor frames. Table 1 shows average errors with a contact
point estimation error in the order of 4 mm, and sensor noise
in the order of 0.1 N for forces and 1 Nmm for torques. Since
a torque is a force applied at a distance, and given that in our
setup contacts with holds occur approximately 15 cm from
the origin of the sensors, an error of 75 Nmm represents a
weight discrepancy of a mere 50 grams at the sensor. The
iterative solver stops when the change in error is less than
0.01 Nmm per iteration.

A simple validation technique is to compare the climber’s
weight to the weight derived from measured forces expressed
in the world frame for static poses. While this does not give
any indication of the calibration precision, it is a good means

Sensor Average εc (mm) εs (Nmm)
1 4.3 75
2 3.3 55
3 4.6 92
4 3.4 87
5 4.4 102
6 4.1 96

Table 1: Average error accross the three contact point esti-
mates and error for sensor frame estimate for each sensor.

Test Best (cm) Average (cm) Worst (cm)
1 0.95 5.99 10.49
2 0.72 3.37 7.94
3 2.03 5.44 11.07
4 2.59 7.11 12.60
5 1.31 5.72 9.39
6 0.53 5.42 13.64

Table 2: Root position regression error.

of detecting errors in recorded gains, excitation voltages and
sensor orientations with respect to the wall.

6.2 Reconstruction of static poses
Using a data set containing a wide variety of static poses

and over 4000 frames of synchronized MoCap and force data,
we looked at how well linear regression on the position of
the root generalizes. We trained the model on 90% of the
samples and tested it on the remainder. Table 2 shows the
distance between predicted and actual root position for 6
such 90/10 partitions. As expected, dynamic motions and
higher errors coincide, confirming our hypothesis that the
correlation is more pronounced in the static case.

Pose reconstruction was run on several, varied static poses.
The reconstruction is compared to ground truth for 5 of
these poses in Figure 9, and timings as well as error measure-
ments for those runs are given in Table 3. Reconstruction
error is computed as the average distance between geomet-
ric centers of two corresponding bodies from the optimal
pose and the ground truth. Examples were run using ODE
and Java, on a dual-core 3 GHz Intel i3 CPU with 4 GB
RAM. CMA-ES runs for 100 iterations with 10 samples per
iteration, and the parameters for evaluating the fitness of
a pose are the desired angles for hips, knees, ankles, chest,
shoulders, elbows and wrists. The threshold to stop apply-
ing penalties pertaining to the distance between actual and
predicted root position is 10 cm. Average reconstruction er-
ror is near that threshold for all bodies, indicating that our
method for computing the optimality of the pose for a given
set of forces provides an accurate model for reconstructing
the remaining degrees of freedom.

7. CONCLUSIONS
We present an instrumented climbing wall, its design, and

calibration procedures. We also present new ideas in com-
puting postures during climbing from forces alone, using
optimization to find a physically valid pose while meeting
other important plausibility constraints. While linear re-
gression cannot directly provide good estimates of posture
from forces, it is useful for identifying the location of the



Figure 9: Reconstruction examples. At the bottom, the ground truth. At the top, the result of the optimization.

Example Time (min) εr (cm)
1 24.1 11.19
2 30.0 7.77
3 26.5 8.17
4 26.0 8.88
5 33.1 8.67

Table 3: Durations and reconstruction errors for the pose
reconstruction examples.

hips, which we use as an inexpensive hint to guide our opti-
mization towards the optimal solution. Comparison between
our reconstructed poses and MoCap show that our objective
function is a good model for human posture.

In the future, several avenues can be explored, such as au-
tomating the calibration procedure and improving the cal-
ibration tool, as well as expanding the framework to study
dynamics using the physical simulation.

Climbing and bouldering are difficult skills to learn be-
cause the actions and postures involved depend not only on
body position but also on how forces are applied. We believe
that our methods for estimating posture from forces will be
useful for augmented reality applications. For instance, in
learning or rehabilitation, data projectors could be used to
provide real-time visual feedback directly on the wall as a
person is climbing.
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