
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2012)
J. Bender, A. Kuijper, D. W. Fellner, and É. Guérin (Editors)

Policies for Goal Directed Multi-Finger Manipulation

S. Andrews and P. G. Kry

School of Computer Science and Centre for Intelligent Machines, McGill University, Canada

Abstract

We present a method for one-handed task based manipulation of objects. Our approach uses a mid-level multi-
phase approach to break the problem into three parts, providing an appropriate control strategy for each phase
and resulting in cyclic finger motions that accomplish the task. All motion is physically based, and guided by a
policy computed for a particular task. The exact trajectory is never specified as the goal of our different tasks are
concerned with the final orientation and position of the object. The offline simulations used to learn the policy are
effective solutions for the task, but an important aspect of our work is that the policy is general enough to be used
online in real time. We present two manipulation tasks and discuss their performance along with limitations.

Categories and Subject Descriptors (according to ACM CCS): I.6.8 [Simulation and Modeling]: Animation—Human
grasping

1. Introduction

Computer animation of human manipulation is a difficult
and time consuming task. It is arguably one of the most
challenging genres of human motion to synthesize due to the
fact that it involves coordination of many degrees of freedom
and multiple contacts. Furthermore, successful simulation of
physically based manipulation depends on many variables
such as the shape, size, texture, and physical properties of
the object.

Problems related to grasping and manipulation have
received significant attention in both computer animation
and robotics, with extensive work addressing the issues
of motion planning, contact placement, and grasp quality.
In this paper, we focus on physically based simulation of
one-handed manipulation. A key feature of our approach is
that we do not require a scripted path for the object. Instead,
we specify only the goal and let the object trajectory be
influenced by hand geometry and finger motions. We believe
this is useful for creating plausible human-like manipulation,
and relevant in many scenarios where only the final object
configuration is important. Consider, for instance, preparing
a coin for insertion into a vending machine, rotating a small
package to read its labels, or orienting small parts as part of
a larger assembly task.

In contrast to high-level motion planning techniques,
which solve complex problems through a sequence of

actions, we instead take a mid-level control approach that
is well suited to grasp repositioning tasks. Specifically,
we introduce an automata-based controller architecture that
produces cyclic finger gaiting actions, wherein contact
related events trigger different low-level controller phases.
Adjusting a volume dial or removing a lid from a jar
are simple examples that work well with this approach;
the goal can be achieved by chaining together a number
of similar turning actions with repeated releasing and
re-grasping interleaved to reposition the contacts. We call
these three phases approach, actuate, and release, and we
also demonstrate a ball-in-hand re-orientation task as a more
complicated example.

We use optimization to compute the parameters necessary
for our mid-level controller phases. The objective is to
produce a successful manipulation, which either moves
toward or meets the desired goal. Our controllers tend to
work well for a collection of nearby states, and because
several cycles are often necessary to reach farther goals, we
build a policy using reinforcement learning and interpolation
of controller parameters. The learning approach helps us
tune the release phases so that fingers are better positioned
for improved progress toward the goal in future cycles. But
more importantly, once the policy has been computed, it is
useful for simulation of goal directed manipulation in real
time.

c© The Eurographics Association 2012.



S. Andrews & P. G. Kry / Policies for Goal Directed Multi-Finger Manipulation

While we do not use motion capture in our low-level
controllers, we do use a selection of natural hand poses.
This limits the number of degrees of freedom that we need
to include in searching for solutions, and encourages the
use of natural hand poses. Despite the reduced degrees of
freedom, we still have a full simulation that produces poses
outside of the reduced pose space, with finger joints bending
to accommodate contacts.

We believe our method makes important progress
toward the development of improved virtual humans that
can perform successful goal oriented physically based
interactions with virtual objects. Our main contributions
include:

• A novel framework for synthesizing motions for human
manipulation problems where the generated motions
exhibit finger gaiting;
• A reduced search space based on natural poses to increase

the performance of our method while ensuring the use of
plausible hand shapes;
• Learned policies that run in real-time.

2. Related Work

A variety of control strategies can be used in object
manipulation tasks, and contact changes are always a critical
aspect. Work in neurobiology observes that changes in motor
control are triggered by discrete events, with the contact
information provided by different mechanoreceptor signals
[FBJ06]. When this information is suppressed, it becomes
difficult to perform fine manipulation. For instance, imagine
trying to open a combination lock with fingers numbed by
cold.

In physically based computer animation, contact changes
are also important and included in the design of finite state
machines and automata-based controllers. Such controllers
are a natural choice for modeling virtual motor control
involving environmental interactions, such as grasping,
manipulation, and locomotion. Pollard and Zordan [PZ05]
present a physically based grasping simulation that mixes
motion capture at the wrist, key poses selected from the
capture, and a finite state machine. Their method only
performs a grasp and release of an object, but the state
machine and transitions are not too different from the
controller we use. However, their approach uses a simple
heuristic for triggering the release of the object, as opposed
to a grasp quality metric.

In an early approach to this problem, we attempted
to direct the hand through a learned policy of optimal
joint angle velocities, as in the motion fields work of
Lee et al. [LWB∗10]. However, it proved difficult to
generate motions that remained stable in the contact-rich
environments typical of human manipulation tasks. Instead,
we found it much more tractable to use a mid-level control

approach, whereby contact related events trigger specific
controller phases.

In robotics work, Huber and Grupen [HG02] demonstrate
robust finger gaits from closed-loop controllers. Their work
is quite similar to ours, but they do not use reduced
spaces for the desired control poses, and their technique
does not result in a policy that can be used in different
scenarios with changing goals. Other robotics work has used
a multi-modal control approach to perform motion planning
for full body manipulation tasks. Hauser et al. [HVNTH07]
break down the planning problem for robot pushing tasks
into a sequence of walking, reaching, and pushing motions.
These modes are high-level compared to the phases used
by our controller framework. Their approach uses shorter
phases (10-100 ms), making exploration costly for scenarios
where high branching factors exist. Our work schedules
phases transitions according to discrete events within the
simulation, resulting in longer phase durations (typically >
400 ms).

Other work has performed dexterous manipulation from
a grasping pose by optimizing the forces necessary to move
a manipulated object on a prespecified trajectory [Liu09].
These optimized forces are then used to drive finger motions
with appropriate torques at the joints. Our work differs in
that the complete trajectory of the object is not known a
priori, and we don’t require an initial grasp. In contrast, and
more recently, Ye and Liu [YL12] use contact sampling to
animate fingers given motion captured data for the object.
Interestingly, they note that it is important that the motion of
the object come from a captured manipulation, as opposed
to a key-framed trajectory, in order for finger motions to
appear natural. This is not unexpected, is also part of our
motivation of using a goal based approach, as opposed to
simplifying the problem by first scripting or planning a path
for the object.

In our work, we focus on goal directed dexterous
manipulation. Mordatch et al. [MPT12] present a solution
to this problem that produces impressive results. Their
approach solves a sequence of space time constraints with
a special treatment for contact. They avoid optimizing the
motion of each finger joint by considering only end effector
positions, and finger poses are reconstructed with inverse
kinematics. In our approach we simulate all the finger joints,
and our optimization takes the form of a shooting method
as opposed to encoding physics as constraints. As a result,
our solutions have better physical plausibility and hard
contacts, though we are only able to solve well structured
manipulation in comparison. To speed up our optimization,
we recognize that aspects of the grasping problem can
be described in a low dimensional manner. Santello et
al. [SFS98] show that the variation in final imagined grasp
poses for a large number of objects is quite small, with well
over 80% of the variation explained by only two principle
components.

c© The Eurographics Association 2012.



S. Andrews & P. G. Kry / Policies for Goal Directed Multi-Finger Manipulation

In other work, there has been progress in resynthesizing
human grasping motion. Kry et al. [KP06] capture forces and
motion with the objective of estimating finger stiffnesses to
use in a simulation to resynthesizing the captured motion.
The controller in this case is entirely feed-forward. While
the resynthesized interactions have a natural motion due
to estimated compliance, there is no feedback to ensure
resulting final object position and orientation matches a
desired goal.

An important part of our work is that we use continuous
optimization and machine learning to compute successful
controllers, and ultimately a policy that can be used in
real time simulation. In the context of locomotion, Coros
et al. [CBvdP09] use reinforcement learning to create a
policy that provides a controller to perform a series of
walking tasks (for instance, walking on a line). Their
controllers benefit from a learned control policy in that
they are made more robust by interpolating optimal control
parameters from nearby states. Similarly, Wang et al.
[WFH09] perform optimization for walking controllers that
anticipate perturbation.

Finally, Okamura et al. [OSC00] provide an overview of
dexterous manipulation in robotics, and discuss the idea of
mid-level control which we use in our work.

3. Controller Structure

We propose a framework that incorporates an automata-
based controller architecture. The rationale behind this
approach is a result of observations taken during preliminary
work and a goal that our work should produce motions
that exhibit the pseudo-cyclic nature of human grasping, or
finger gaiting. We observed that, in animating for human
manipulation tasks, the fingers move in coordinated motions
among a finite set of similar poses. For a broad range of
tasks, these coordinated motions could be broken down into
three distinct phases: (i) a pre-shaping and finger planting
phase wherein the hand forms a stable grasp around the
object, (ii) an actuation phase in which wrenches due to
contact forces are used to translate and rotate the object
toward some desired configuration, and (iii) a release phase
wherein the fingers adjust to a pose that is suitable for a
subsequent approach phase. We refer to these phases simply
as approach, actuation, and release (see Figure 1).

These phases represent strategies that are encompassed by
a controller. Each controller uses a set of three reference
hand poses q̃0, q̃1, q̃2 to guide the hand in order to
accomplish a manipulation task. During the ith phase, we
apply joint torques, τ, that is computed as

τ = K (q̃i−q)−Dq̇ , (1)

where K and D are the joint stiffness and damping matrices,
respectively. Although we use diagonal matrices, it is
possible to use dense matrices to model coupling effects in

Approach

Actuate

Release

Figure 1: Our three phase mid-level control strategy.

the control of different finger joints. For our human hand
model, each pose represents joint angles corresponding to
the 20 degrees of freedom for the hand as shown in Figure 3.

Throughout the rest of this paper we will use integer
subscripts 0,1,2 on scalar and vector parameters to denote
a correspondence with each of the approach, actuation, and
release phases, respectively.

3.1. Phase Transitions

We note that the initial obstacle faced in many grasping
problems is determining where to form contacts with the
object to be manipulated. During the approach phase, hand
pre-shaping occurs to prepare for contact and the finger
end-effectors typically end up in a configuration such that
there is a stable grasp with good dexterous capabilities
for manipulating the object. The subsequent phase involves
actuating the object using finger-object forces, typically
until further actuation is no longer possible (i.e., due to
joint limits) and some or all fingers break contact. The
pose of the hand moves toward a recovery pose where
pre-shaping and approach can begin again and the cycle
repeats. In our control structure, phase transitions occur
asynchronously and are tied to contact events occurring
within the simulation. In this section, we describe the
conditions used to trigger transitions between phases.

The approach phase ends whenever the fingers have
planted and the desired grasp quality, Q̃, has been achieved.
Quality here means that some stable, dexterous manipulation

c© The Eurographics Association 2012.



S. Andrews & P. G. Kry / Policies for Goal Directed Multi-Finger Manipulation

is possible, and there are several possibilities for measuring
this quantitatively. We use a metric that is computationally
inexpensive, yet effective, and we provide details in
Section 4.2.1. Once the grasp quality condition is met, the
approach phase transitions to the actuation phase.

At this point, the fingers are ready to manipulate the
object. The direction of manipulation is a result of contact
with the object and the accumulation of joint torques as
computed by the PD control given in Equation 1.

During actuation, joint torques are applied until the grasp
quality drops below an acceptable threshold, indicating
that dexterous manipulability is no longer possible and the
controller transitions to the release phase.

The transition between release and approach occurs
when the total joint velocity of the fingers becomes small
(indicating that the desired pose has been reached or that
motion is hindered due to contact forces) or an allotted
time for the phase has elapsed. At this point, the controller
transitions back to the approach phase and the cycle repeats.
No contact information is used to trigger a transition out of
the release phase.

Note that for all phases, we force a transition to the next
phase if the joint velocities of the hand become small or the
duration of the phase, T , exceeds a maximum value. The
one exception is when the goal has been reached, in which
case we hold in either the actuate or release phase waiting
for the goal to change. The choice here is to either let the
hand remain in the actuation phase, ready to apply forces
to achieve a new goal, or to remain in the release phase,
allowing the hand to be moved between objects as part of
a higher level control.

4. Control Policy Creation

In this section, we provide details on how to build a
control policy for object manipulation tasks, beginning with
a description of the simulation environment.

Each state is represented by the joint angles of the
hand, q, the orientation of the object using a quaternion
representation, θ, and the 3D position x of the object in the
hand frame. The aggregate state vector (q,θ,x) is succinctly
referred to as s.

Other components of the simulation state, such as the
the linear and angular velocity of the object and hand joint
velocities, are used to initialise the dynamic simulation
when evaluating control parameters. However, we found
these state components had little effect on the results when
querying the control policy for optimal control parameters.
This can be partly explained by the quasi-static nature of the
hand based on the stiffness and damping control parameters
we use. Therefore, we exclude all velocity level quantities
from the state when building our control policy function.

Algorithm 1 Value Iteration
while not converged do

for s ∈ S do
a∗ = OPTIMIZE(s)
s′← FORWARD_DYNAMICS_SIMULATION(s,a)
Ṽ (s) = R(s,a∗)+ γV (s′)
V (s)← α ˜V (s)+(1−α)V (s)
Π(s) = a∗

if ISNOVEL(s′) then
S← S∪ s′

end if
end for

end while

An action, a, is represented by the tri-phase controller
described in the previous section, and each action may be
decomposed as a sequence of three desired hand poses–
(q0,q1,q2). The control policy, Π(s), provides a mapping
from the environment state to an optimal action, a∗, whose
control parameters are used to bring the environment to a
higher valued state. This progression occurs by means of a
forward dynamical simulation, and the value of being in a
state is provided by the value function, V (s).

We represent the value and control policy functions using
a k-nearest neighbor (k-NN) function approximator, with
k = 6. Distance between neighboring states is computed as a
combination of state components. For example, for states sa
and sb, the distance is

d(sa,sb) = ‖qa−qb‖+‖xa− xb‖+‖ log(θ−1
a θb)‖.

Here the distance for the object’s orientation is the
angle between the two configurations, computed using
the magnitude of the quaternion logarithm. Note that this
distance is an unweighted metric, and that combining
angular and linear distance measures works in our case due
to the size of the objects in our simulations.

The interpolation weight for the ith neighbouring state is
computed as

wi =
1
σ

1

(d(s,si))
2 .

Convexity is ensured by computing a normalizing factor 1
σ

such that ∑
k
i=1 wi = 1. The optimal action for an arbitrary

state is estimated by interpolating the optimal actions for the
k closest states in the policy,

a∗ =
k

∑
i=1

wi ai .

4.1. Value Iteration

A control policy is learned using the value iteration
method [SB98]. We begin by bootstrapping the value

c© The Eurographics Association 2012.



S. Andrews & P. G. Kry / Policies for Goal Directed Multi-Finger Manipulation

function using a set of random states, S, chosen uniformly
across variations of pose and task.

For each state in S, we solve an optimization problem to
determine the optimal action at that state. The value function
for the state is updated using the value of the proceeding
state, s′, and the reward function, R(s). If s′ is sufficiently
novel, we add it to S. Pseudo-code for the value iteration
algorithm is provided in Algorithm 1.

Evaluating the action requires performing a forward
dynamics simulation. Thus, the optimization problem is
non-linear, with the parameter search occurring across a
rugged landscape. We use covariance matrix adaptation
(CMA-ES) [Han06] to determine the optimal controller
parameters at each state s, performing outer loops of the
algorithm until the policy converges.

The CMA-ES optimization is performed over one
complete cycle of the state machine, and phases are not
optimized in isolation. The coupling between phases is
key to our approach, since evaluation of the success of a
controller is determined not only by minimizing a set of
objective terms for each phase independently, but by their
performance as a sequence.

The desired poses for all phases of the controller
are determined by minimizing the following composite
objective function:

min
a∗

L0 +L1 +L2 +Lg ,

where L0,L1,L2 pertain to the approach, actuation, and
release phases, respectively; Lg is an aggregation of global
terms pertaining to all phases. The contents of the phase
specific and global objective functions are discussed in the
following sections.

Note that the terms of the composite objective function are
scaled to bring the range of values for each objective term to
within the same order of magnitude. These scaling factors
are determined empirically. Also, we use the notation ∑t∈Ti

to indicate a term that is accumulated over period Ti, with its
value being sampled at each time step.

4.2. Approach

This is a pre-shaping phase, wherein the agent makes contact
with the object in preparation for actuation. The objective
function for this phase is simply

L0 = max
(
0, Q̃−QT0

)
,

and ensures that the grasp quality at the end of the phase,
QT0 , is at least the desired grasp quality Q̃, provided by the
user. Note that the transitions occur as per the descriptions in
the previous section. As such, the duration of the approach
phase T0 can equal the time out T if the grasp quality
was not achieved, in which case L0 will be some positive
value to penalize this action. Alternatively, if grasp quality

is achieved, then T0 is the time at which the approach phase
transitions into activation, and the objective L0 will simply
be zero. Overall, This encourages the optimization method
to find solutions where the fingers are planted and ready to
actuate the object.

Details for how the grasp quality is computed are provided
in Section 4.2.1.

4.2.1. Grasp Quality

We measure the grasp quality similarly to [KB87]. The
grasp Jacobian G ∈ R6×(mN) is assembled for a 6D wrench
space, accounting for N finger-object contacts and m basis
vectors that provide a discretized Coulomb friction cone.
Each wrench is written in the coordinate frame of the object.
We compute the singular value decomposition G = UΣV T ,
and let our grasp quality measure Q be the smallest singular
value of the grasp Jacobian. Because G has 6 rows, Q is
equal to the sixth entry on the diagonal of Σ. Intuitively,
the smallest singular value corresponds with the wrenching
direction that is weakest. By avoiding poses where Q is
equal or close to zero, singular grasp configurations may be
avoided. In addition, the columns of U provide the axes of
the wrench ellipsoid, and the axis with the smallest singular
value provides a direction in which the least amount of force
and torque is needed to break the grasp.

Since contacts are single-sided, as an additional check we
ensure that the cone spanned by the contact force normals is
at least π

2 . If this is not the case then we assign a quality
of Q = 0. We use π

2 instead of π because friction forces
will allow an object to be grasped even in the absence of
opposing normal contact forces.

Note that the most common way of determining grasp
quality is by computing the force closure of the grasp
Jacobian [MSL94]. However, this requires that we compute
the convex hull in a 6D wrench space at each simulation step,
resulting in protracted computing time. In practice, there was
little difference in the motions generated using each metric.

4.3. Actuation

It is during the actuation phase that the agent makes
most of its progress on the task. Wrenches acting on
the object change the object’s position and orientation
such that progress is made toward the goal state, in a
greedy sense. Based on this assumption, it’s necessary that
the predominate objective for this stage of the controller
optimization is to minimize a task-based objective function.
Specifically,

LT = ‖x̃− x‖+‖ log(θ̃−1
θ)‖.

Here, we consider the norms unitless, since no scaling or
normalization is used to combine the linear and angular
components of LT . For our experiments, the units of x
are selected such that the typical range of the values

c© The Eurographics Association 2012.



S. Andrews & P. G. Kry / Policies for Goal Directed Multi-Finger Manipulation

for the Euclidean norm approximately matches the range
of quaternion logarithm norm (i.e., within an order of
magnitude).

Note that LT ≥ 0, and the minimal value occurs when the
goal orientation and position are reached. The value function
should reflect the optimality of our task state. We choose
R(s)=−LT , giving a reward function that is non-positive for
all states. This means that V (s) is also non-positive, ensuring
that the minimization of LT corresponds to choosing actions
that maximize the return of the reward and value function.

During manipulation, it is also a requirement that the
fingers maintain a certain degree of stability with the object.
Using the same metric from the approach phase, a minimum
level of grasp quality is maintained throughout the actuation
phase by the objective

LQ =
1
T1

∑
t∈T1

max
(
0, Q̃−Qt

)
.

Here, T1 is the duration of the actuation phase and Qt is the
quality at time t of the actuation phase.

Additionally, we include a penalty term allowing the
user to specify which of the M fingers participate in the
actuation. An array of boolean values, p, contains an entry
for each finger, indicating if it should participate– true
if participating, false otherwise. We compute the summed
magnitude of contact forces affecting each finger as

Fj =
N j

∑
k
‖ f j,k‖,

where f j,k is the kth of N j contact forces between the object
and finger j.

If the value of Fj for a non-participating finger exceeds
a threshold, ε, a penalty proportional to the contact force is
added. Conversely, if Fj for a participating falls below ε, a
penalty is also added. The penalty is accumulated at each
time step of the phase as

LP = ∑
t∈T1

M

∑
j


ε−Fj if Fj < ε and p j
Fj− ε if Fj > ε and not p j
0 otherwise

.

Assembling each of the task, quality, and
non-participating finger penalty terms, the total objective
function for the actuation phase is

L1 = LT +LQ +LP.

4.4. Release

The primary objective of the release phase is to let fingers
break contact and move them in preparation for another
approach. Any net wrench on the object during this phase
is penalized in order to ensure that progress made during the

actuation phase is not undone. This is done by looking at the
magnitude of the net wrench applied to the object,

Lw =

∥∥∥∥∥ N

∑
i

b
i Ad−T i fi

∥∥∥∥∥
where fi is the ith contact force and b

i Ad is the adjoint
matrix that transforms this contact force to a wrench
expressed in the object frame (see [MSL94] for details on the
adjoint transformation and expressing wrenches in different
coordinate frames).

Simply minimizing the the net wrench affecting the object
will not ensure good manipulation, since the hand must
recover to a pose where it can make good progress during
the following approach phase. This information is contained
in the value function V (s). Conveniently, like the reward
function, the value function is also bounded above by 0,
meaning that we can use its value directly as a penalty term
in the controller optimization problem:

LV =V (s) .

At the beginning of each inner loop of Algorithm 1, we
reset the covariance matrix entries pertaining to the release
phase. This is necessary because the value function changes
at each iteration of the algorithm. Thus, the solution found
for the release pose in previous iteration may no longer
minimize V (s).

Combining the wrench penalty and value function terms,
the objective function for the release phase is

L2 = Lw +LV .

4.5. Global Terms

In addition to the individual objectives for each phase, we
add a global penalty term in order to minimize the energy
used to perform the action, and to discourage contacts
that use surfaces on the back of the fingers. The global
component of the objective function is

Lg = ∑
t∈T ′
‖K (q̃−q(t))‖+ ∑

t∈T ′

M

∑
j

b j(t)

where b j(t) is equal to 1 if there is contact on the back
of finger j at time t, or zero otherwise. This is determined
by comparing the contact force with a vector defining the
backhand direction on each finger segment. The term T ′

is the time to complete a full controller cycle, and this is
accumulated over all phases.

4.6. Tractability and Implementation

In addition to using a grasp quality metric which is simpler
and faster to compute, we have made a few other technical

c© The Eurographics Association 2012.



S. Andrews & P. G. Kry / Policies for Goal Directed Multi-Finger Manipulation

Figure 2: Poses used to build a reduced basis for the control
parameter search.

choices which greatly reduce the computing time of the
CMA-ES optimization required for controller selection.

One obvious choice is to use a parallelized version of the
OPTIMIZE(s) method. On a modern multi-core CPU, this
reduced the time required to compute an optimal action by
nearly an order of magnitude.

Rather than performing optimization in the full coordinate
space, we were inspired by the work of Santello et
al. [SFS98] that suggests human hand postures, when
interacting with tools and everyday objects, may be
represented using just a few principal component vectors.

Using a set of 10 to 20 grasp poses, from which the user
may select some or all, a reduced pose basis is constructed.
Figure 2 shows some of the poses we use for building our
reduced pose space. Principal component analysis (PCA)
is used to generate a set of orthogonal basis in which to
perform the controller optimization. For the tasks shown in
this paper, the parameter space is reduced from 20 degrees
of freedom for each phase to just 8, giving a total of 24
parameters for each tri-phase controller. This significantly
improves the performance of our optimization algorithm.

Finally, we use an implicit version of Equation 1 to

Figure 3: Our hand model showing the associated number
of degrees of freedom at each of the joints.

generate joint torques, allowing us to take larger time steps
while remaining stable. For the examples shown in this
paper, ∆t = 17ms.

5. Results and Discussion

In this section be provide some results for two examples:
knob turning and ball-in-hand manipulation. The tasks
involve re-positioning and re-orienting an object to match
a desired configuration. A collection of capsule and box
collision geometries is used to model the geometry hand,
with finger segments being actuated by joints with 1 and
2 degrees of freedom (see Figure 3), for a total of 20 joint
angles.

The Vortex [Vor12] toolkit is used to simulate the forward
dynamics, which include contact and gravity forces. All
results were obtained using a 6-core Intel i7 3.2 GHz
processor and running 12 simulation threads.

The maximum time per phase was set at 0.6 s. The CMA-
ES optimization was performed using parameters σ = 0.1
for the knob turning example and σ = 0.2 for ball-in-hand;
λ = 60 and a maximum iterations count of 2000 for both.
Approximately 350 states were used to represent the control
policy, giving learning times that ranged from 1 to 5 hours.
However, we found it sufficient to stop the value iteration
algorithm after just few iterations.

Although learning times are long, the result is a policy that
runs in real time. Individual iterations of our algorithm work
like a space-time constraints optimization problem, giving a
partial solution for performing the overall task.

c© The Eurographics Association 2012.



S. Andrews & P. G. Kry / Policies for Goal Directed Multi-Finger Manipulation

Figure 4: Showing hand motion sequences for the knob turning example (top) and the ball-in-hand example (bottom). The
desired (yellow) and current (red) configuration are shown.

Figure 4 shows a temporal sequence of hand poses
generated for our two examples. Complete animations are
available in the accompanying video.

5.1. Knob Turning

For this example, a cylindrical object is constrained using a
hinge joint, similar to a mounted dial or volume knob. Since
the object is constrained to rotate about a single axis and no
linear motion is allowed, the reward function simplifies to

R(s) =−
∣∣φ̃hinge−φhinge

∣∣
where φ̃hinge and φhinge are the desired and current angle
of rotation about the hinge axis, respectively. One of the
trajectories generated by the learned policy is shown in the
first row of Figure 4. On average, it takes about 5 to 10
seconds to perform the controller optimization for each state
s∈ S, with σ = 0.1 and λ = 60 used as CMA-ES parameters.

5.2. Ball-in-hand

The ball-in-hand involves re-orienting and re-positioning an
unconstrained ball. The task state may be decomposed as
t = (x,θ), where x and θ are the 3D position and orientation
of the object in the hand frame, respectively.

There is special consideration for states where, at the end
of the controller optimization, the ball is no longer in contact
with the hand. For these states, we remove them from S.

On average, it takes about 30 to 60 seconds to perform
the controller optimization for each state s ∈ S, with σ = 0.2
and λ = 60 used as CMA-ES parameters. The phase time is
limited to 0.6 s.

6. Conclusion

We have introduced a framework for generating human
grasping motion. By building a policy of phase based
controllers and performing optimization of control param-
eters using a forward dynamics simulation, we synthesize
motions for a variety of manipulation tasks. Not only are the
motions plausible, but since our approach doesn’t assume a
pre-defined trajectory and the focus is to achieve some goal
state, the agent is capable of adapting to task changes in
real-time. The use of a multi-phase controller architecture
also generates motion sequences that exhibit human finger
gaiting.

As future work, we intend to investigate the use of
linear feedback control to improve the robustness of
the learned policies. Similar to the work in character
locomotion [YLvdP07] and balance, we endeavour to make
similar progress in the domain of grasping. By performing
feedback control on components of the grasping state, such
as grasp quality and net wrench, it may be possible to
not only produce a larger variety of finger motions, but to
improve the overall robustness and stability of the control
policy.

c© The Eurographics Association 2012.



S. Andrews & P. G. Kry / Policies for Goal Directed Multi-Finger Manipulation

Additionally, we aim to incorporate contact force
and joint data, captured from human subjects, into the
framework. This is key to understanding and building
more complex control strategies that correspond to phase
transitions occurring in actual manipulation. Also, by
increasing the fidelity of the underlying dynamics simulation
(e.g., by adding soft finger contacts), it may be possible to
not only make the control problem simpler [JL11], but allow
our controller architecture to make better transitions given
the contact rich nature of the problem.

Acknowledgments: We thank the anonymous reviewers
for their suggestions for improving the paper. This work was
supported by funding from NSERC and GRAND NCE.

References

[CBvdP09] COROS S., BEAUDOIN P., VAN DE PANNE M.:
Robust task-based control policies for physics-based characters.
ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 28, 5
(2009), 170:1–170:9. 3

[FBJ06] FLANAGAN J. R., BOWMAN M. C., JOHANSSON R. S.:
Control strategies in object manipulation tasks. Current Opinion
in Neurobiology 16 (2006), 1–10. 2

[Han06] HANSEN N.: The cma evolution strategy: A comparing
review. Towards a New Evolutionary Computation: Advanceson
Estimation of Distribution Algorithms (2006), 75–102. 5

[HG02] HUBER M., GRUPEN R.: Robust finger gaits from
closed-loop controllers. In IROS ’02: Proceedings of IEEE/RSJ
International Conference on Intelligent Robots and Systems
(2002), vol. 2, pp. 1578–1584. 2

[HVNTH07] HAUSER K., VICTOR NG-THOW-HING H. G.-B.:
Multi-modal motion planning for a humanoid manipulation
task. In Proceedings of International Symposium on Robotics
Research (ISRR) (2007). 2

[JL11] JAIN S., LIU C. K.: Controlling physics-based characters
using soft contacts. In Proceedings of the 2011 SIGGRAPH
Asia Conference (New York, NY, USA, 2011), SA ’11, ACM,
pp. 163:1–163:10. 9

[KB87] KLEIN C. A., BAHO B. E.: Dexterity measures for the
design and control of kinematically redundant manipulators. The
International Journal of Robotics Research 6, 2 (June 1987), 72–
83. 5

[KP06] KRY P. G., PAI D. K.: Interaction capture and synthesis.
ACM Transactions on Graphics (Proc. of SIGGRAPH) 25, 3
(2006), 872–880. 3

[Liu09] LIU C. K.: Dextrous manipulation from a grasping pose.
ACM Transactions on Graphics (Proc. of SIGGRAPH) 28, 3
(2009), 59:1–59:6. 2

[LWB∗10] LEE Y., WAMPLER K., BERNSTEIN G., POPOVIĆ J.,
POPOVIĆ Z.: Motion fields for interactive character animation.
ACM Transactions on Graphics (Proc. of SIGGRAPH Asia) 29,
5 (December 2010), 138:1–138:8. 2

[MPT12] MORDATCH I., POPOVIC Z., TODOROV E.: Contact-
invariant optimization for hand manipulation. In ACM
SIGGRAPH / Eurographics Symposium on Computer Animation
(2012), pp. 137–144. 2

[MSL94] MURRAY R. M., SASTRY S. S., LI Z.: A Mathematical
Introduction to Robotic Manipulation. CRC Press, 1994. 5, 6

[OSC00] OKAMURA A. M., SMABY N., CUTKOSKY M. R.: An
overview of dexterous manipulation. In Proceedings of IEEE
International Conference on Robotics and Automation (2000),
IEEE, pp. 255–262. 3

[PZ05] POLLARD N. S., ZORDAN V. B.: Physically based
grasping control from example. In SCA ’05: Proceedings of the
2005 ACM SIGGRAPH/Eurographics symposium on Computer
animation (2005), pp. 311–318. 2

[SB98] SUTTON R. S., BARTO A. G.: Reinforcement Learning
I: Introduction. The MIT Press, 1998. 4

[SFS98] SANTELLO M., FLANDERS M., SOECHTING J. F.:
Postural hand synergies for tool use. The Journal of Neuroscience
18, 23 (December 1998), 2123–2142. 2, 7

[Vor12] VORTEX: version 5.1.1. CMLabs Simulations Inc.,
Montreal, QC, 2012. 7

[WFH09] WANG J. M., FLEET D. J., HERTZMANN A.:
Optimizing walking controllers. ACM Transactions on Graphics
(Proc. of SIGGRAPH Asia) 28, 5 (Dec. 2009), 168:1–168:8. 3

[YL12] YE Y., LIU C. K.: Synthesis of detailed hand
manipulations using contact sampling. ACM Transactions on
Graphics (Proc. of SIGGRAPH) 31, 4 (2012). 2

[YLvdP07] YIN K., LOKEN K., VAN DE PANNE M.: Simbicon:
Simple biped locomotion control. ACM Transactions on
Graphics (Proc. of SIGGRAPH) 26, 3 (2007), Article 105. 8

c© The Eurographics Association 2012.


