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Dynamics simulation of smooth surfaced rigid bodies in contact is a critical problem in physi-

cally based animation and interactive virtual environments. We describe a technique which uses

reduced coordinates to evolve a single continuous contact between smooth piece-wise parametric

surfaces. The incorporation of friction into our algorithm is straightforward. The dynamics equa-

tions, though slightly more complex due to the reduced coordinate formulation, can be integrated
easily using explicit integrators without the need for constraint stabilization. Reduced coordinates

confine integration errors to the constraint manifold, thereby permitting a wide choice of step sizes

with visually acceptable results. We demonstrate these results using Loop Subdivision surfaces

with parametric evaluation.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling; Splines; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation

General Terms: Algorithms

1. INTRODUCTION

One of the difficult aspects of simulating rigid bodies is the case where there is
contact. In this case the motion of the bodies must be constrained so that they
do not interpenetrate. The combination of smooth surfaces, friction, and multiple
contacts can make this a challenging problem.

Dynamics simulation with contact is difficult since the contact points impose
constraints on motion which must be maintained during the simulation. These
contact constraints are intimately related to the representation of the local geometry
at the contact points. Polyhedral surfaces impose simple constraints and are often
used to approximate smooth shapes, but can cause either large errors in motion,
or require dense meshes. An attractive alternative is to directly work with smooth
surfaces (e.g., [Baraff 1990; Nelson and Cohen 1998]).

We can conceptually divide the computations of handling contact constraints into
two types:

—The contact transition problem is to determine possible discontinuous changes in
contact, for instance, caused by the collision of two objects (or different parts
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Fig. 1. Example frames from some of our simulations.

of objects that are already in contact). Algorithms for this problem must be
“global,” that is, they must be able to detect contacts anywhere on the two bod-
ies. This problem is essentially a two part problem as it involves both detecting
collision (or computing a separation distance) and computing a collision response.
This approach has received the most attention in graphics, computational geom-
etry, and robotics (e.g., [Gilbert et al. 1988; Baraff 1990; Lin and Canny 1991;
Mirtich and Canny 1995]).

—The contact evolution problem is to determine how a contact point evolves con-
tinuously over time, given the external forces on and dynamics of contacting
bodies. Algorithms for this problem are “local,” that is, they determine how
the contact changes if no global contact transitions occur. To be useful, they
still require a global algorithm to detect collisions. These algorithms come into
effect when the collision response determines that the surfaces are in continuous
contact (e.g., [Goyal 1989; Anitescu et al. 1996; Nelson et al. 1999]).

During typical contact simulations, a large proportion of time is spent in contact
evolution computations, with a few contact transitions. For instance, Figure 1
shows examples of Loop subdivision surfaces in continuous contact, simulated with
our system. For such motions, it pays to solve the contact evolution problem
efficiently.

In principle, contact evolution problems can be handled in the same way as con-
tact transition problems; indeed this the most common approach (e.g., [Baraff 1990;
Mirtich and Canny 1995]). Once the contact forces are determined, the motion of
the objects in 3D is computed by numerical integration. However, since only second
order (acceleration) constraints are imposed, the two bodies can interpenetrate or
separate after each integration step. The constraint then has to be reimposed (or
stabilized) by an additional step after integration, which is similar to the contact
transition problem. While this has the advantage of reusing some software used for
contact transitions, it can be inefficient. Stabilizing the constraint usually requires
finding extreme points between the separated or interpenetrating surfaces to com-
pute constraint gradients. This can be awkward for smooth surfaces, particularly
parametric surfaces, though it is possible to use iterative methods and coherence
to improve performance [Baraff 1990].

This paper investigates the dynamics of piece-wise smooth surfaces in single
surface-surface continuous contact. Our solution to this case of the contact evolu-
tion problem formulates an ordinary differential equation (ODE) in the coordinates
of the contact patches. By parameterizing the system in reduced coordinates, the
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contact constraint is automatically satisfied and therefore we avoid constraint sta-
bilization. There is a price, however, as the reduced coordinate formulation is more
complex and can take just as long if not longer to integrate per step. The advantage
is that a large range of step sizes can be taken with visually acceptable results, since
the integration error conforms to the constraint.

It is not difficult to extend our method to multi-body systems where the contacts
exist either in a chain or tree structure, since both the composite rigid body method
and articulated body method can be applied directly (our contacts are essentially
generalized joints in a kinematic system, see [Pai et al. 2000]). Kinematic loops can
also be treated, such as with loop closure constraints [Featherstone 1987]; however,
in this case, the extra constraints are likely to prevent an efficient reduction of the
system to an ODE (so stabilization of the extra constraints becomes necessary).
These more complicated systems also require a more thorough treatment of breaking
contact, which is a tricky problem in the presence of multiple contacts and friction
(though solvable as a linear complementarity problem [Anitescu and Potra 1997]).
In addition, for multiple contacts between just two rigid bodies, the advantage
of the reduced coordinate parameterization is not clear. But this problem is more
general, and different from the problem wherein our method has the greatest benefit,
specifically, smooth surfaces in contact exhibiting long periods of rolling and sliding.
For example, simulations including automatic synthesis of contact sounds benefit
from this direct treatment of rolling and sliding since the smooth and contiguous
contact forces do not produce audible artifacts [van den Doel et al. 2001].

Reduced coordinate formulations such as the one we use here are well stud-
ied [Featherstone 1987; Rabier and Rheinboldt 1993]. While Baraff [1996] provides
good motivation for the use of Lagrange multipliers in lieu of reduced coordinates,
the parameterization of smooth surface contact is not as hard as he suggests. Our
parameterization and kinematics equations, similar to others, are inspired by the el-
egant derivation of contact kinematics equations for orthogonal nets shown by Mon-
tana [1988]. Examples of other derivations are found in Nelson et al. [1999], which
considers equations more suitable for haptics, and in Anitescu et al. [1996], which
includes equations for curve-surface and curve-curve contact. Our contact evolution
algorithm is also inspired by the analysis of rigid body methods in Ascher et al.
[1997].

Subdivision surfaces and free-form parametric surfaces such as NURBS are pop-
ular surface representations for modeling and design. Because of their popularity,
simulating the contact dynamics of these kinds of surfaces is important. Our con-
tact evolution technique, being ideal for piece-wise parametric and parameterizable
surfaces (such as Loop, Catmull-Clark, and other stationary subdivision schemes for
which parameterizations are known), provides a useful component for simulations
involving smooth surface contact.

2. PRELIMINARIES

In this paper we use a notation for spatial dynamics which is similar to oth-
ers [Featherstone 1987; Jain 1991; Montana 1988; Murray et al. 1994; Pai et al.
2000].

The motion of a rigid body i = 1, ..., n is described using a reference frame labeled
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i attached to the body. Unless otherwise noted, we will let this body reference frame
be located at the center of mass and with its axes aligned with the principal axes
of rotation.

The homogeneous coordinates of frame i with respect to another frame j is given
by the 4 × 4 matrix j

iE. We will always use leading subscripts and superscripts to
indicate frames. The homogeneous coordinates of a three dimensional vector x in
frame i are denoted ix. The homogeneous coordinates of this vector in frame j are
given by left multiplying by j

iE.
The spatial velocity φ(j, i) describes the relative motion of frame i with respect

to frame j. In (non-homogeneous) coordinates of frame i it is given by the 6 × 1
matrix iφ(j, i) = (iωT , ivT )T , where ω is the angular velocity and v is the linear
velocity of the point at the origin of frame i. Spatial forces, called wrenches, are
represented as f = (fTr , f

T
t )T where fr is the (rotational) torque and ft is the

(translational) force.
It is useful to note that the spatial velocity vector parameterizes a twist that can

be written in homogeneous coordinates as the 4 × 4 matrix,

Oφ =

(

[ω] v
0 0

)

. (1)

Here, [ω] denotes the skew symmetric 3× 3 matrix equivalent to the cross product
ω×, that is,

[ω] =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 , (2)

and O denotes the linear expansion operation which converts the 6× 1 matrix into
a 4 × 4 matrix representation. We will let V denote the linear operation which
performs extraction of the 6 parameters, thus,

φ =

(

ω

v

)

= V

(

[ω] v
0 0

)

. (3)

If V is applied to a matrix whose upper 3 × 3 matrix is not skew symmetric then
we can assume that V acts as a projection onto so(3).

The time derivative of the change of coordinates from frame i to frame j is a
twist when written in coordinates of frame i, that is,

iφ(j, i) = V( i
jE

j
iĖ). (4)

Spatial velocities and spatial wrenches transform according to the Adjoint trans-
formation j

iAd. Spatial velocities being contravariant quantities transform by left

multiplying, jφ = j
iAd iφ. Because we write spatial wrenches as column vec-

tors, these covariant quantities are transformed by left multiplying with the inverse
transpose, jf = i

jAdT if . The 6 × 6 Adjoint matrix is defined as,

j
iAd =

(

Θ 0
[p]Θ Θ

)

, where j
iE =

(

Θ p

0 1

)

.

Here Θ is a 3 × 3 rotation matrix and p is a 3 × 1 displacement.
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Lastly, we define the spatial cross product of φ =
(

ωT , vT
)T

as the linear
operator with coordinate matrix

[φ] =

(

[ω] 0
[v] [ω]

)

.

3. CONTACT EVOLUTION FORMULATION

We consider rigid bodies whose boundaries are defined by a collection of paramet-
ric surface patches. Although the surface patches will typically be polynomial or
rational polynomial functions, this does not need to be the case. We only require
the ability to evaluate the function and its derivatives at a given point.

A single point of contact between two bodies will involve one patch from each
body. We ignore that adjacent patches will overlap along their boundary curves
as it is the location of the contact that we want to describe. If the contact lies
on a boundary then we can choose either of the patches sharing the boundary to
describe the contact location.

3.1 Contact Coordinates

Suppose body 1 and body 2 are in contact. Let the shape of the contacting patch
on body 1 be described by the function 1c : (s, t) → R

3, and on body 2 by
2d : (u, v) → R

3. Note that the functions have a preceding superscript denoting
that they define the surface shape in the coordinates of their respective body’s
reference frame. We drop this superscript when the coordinate frame is clear from
context.

We use the notation c,s
def
= ∂c

∂s
. The orthonormal contact frame with coordinates

(s, t) can be defined in frame 1, the body frame, as the coordinate frame with origin
at c(s, t) and coordinate axes1

x =
c,s

‖c,s‖
, y =

(c,s · c,s)c,t − (c,s · c,t)c,s
‖(c,s · c,s)c,t − (c,s · c,t)c,s‖

, z =
c,s × c,t

‖c,s × c,t‖
. (5)

Coordinates are in frame 1 (superscripts were omitted). The vectors x, y and z form
orthonormal axes provided the surface function is regular (that is c,s × c,t 6= 0 for
all points in the domain). Thus the homogeneous coordinates of this contact frame
with respect to frame 1 are given by

1
1cE =

(

1x 1y 1z 1c

0 0 0 1

)

. (6)

This matrix is a function of s and t. The contact frame on body 2 is defined in
the same way yielding the matrix 2

2cE, a function of u and v in the domain of the
patch d(u, v). Note that the c in the frame label 2c stands for contact as opposed
to representing patch c of body 1.

Because the contact frames are orthonormal and occur at the same location in

1Note that the given expression for y is less expensive than normalizing c,s × c,t × c,s which is

important since derivatives of this expression are needed in Section 3.2
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PSfrag replacements
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Fig. 2. Contact frames and contact coordinate ψ

space, they can be easily aligned by a rotation matrix (see Figure 2).

1c
2cE =









cosψ − sinψ 0 0
− sinψ − cosψ 0 0

0 0 −1 0
0 0 0 1









def
=

(

Rψ 0
0 1

)

(7)

The matrix 1c
2cE is idempotent and Rψ is its upper 3 × 3 rotation matrix.

We can describe any contact configuration between patches c and d of bodies 1
and 2 by the 2-dimensional location of the contact in the domain of each patch
along with the angle of rotation ψ. Assembled in a column vector, we call these 5
independent variables the contact coordinates and we denote it q; that is,

q =
(

s t u v ψ
)T
. (8)

3.2 Kinematics Equations

The contact kinematics equations relate the relative motion between two smooth
contacting bodies to a change in the contact coordinates. Because the contact
coordinates are of reduced dimension, this system of equations is a linear trans-
formation (a function of the contact coordinates) from the 5 dimensional space of
contact coordinate velocities into a 5 dimensional subspace of the 6 dimensional
space of spatial velocities. We give our own derivation here, suitable for any type
of parametric surface.

As illustrated in Figure 3 we compute a matrix representing a change in coordi-
nates from frame 1 to frame 2. This composition is written as

2
1E = 2

2cE
2c
1cE

1c
1 E. (9)

The three matrices on the right hand side are functions of the contact coordinates.
They are defined by Equations 6 and 7. Recall2 that the relative spatial velocity

2See, for example, Murray et al. [1994].
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can be defined by
1φ(2, 1) = V( 1

2E
2
1Ė). (10)

Taking the time derivative using the chain rule gives

1φ(2, 1) = V

5
∑

j=1

1
2E

2
1E,qj

q̇j . (11)

Since the contact coordinates can change independently of each other, each 4×4
matrix in the sum will be a twist and can have the extraction operator applied
directly, hence

1φ(2, 1) =

5
∑

j=1

1Hj q̇j (12)

where 1Hj = V( 1
2E

2
1E,qj

). (13)

The column vector 1Hj tells us the contribution of a change in the jth component
of the contact coordinates to the relative spatial velocity of the two objects. Letting
1H be a matrix whose columns are 1Hj , j = 1 . . . 5, we can write Equation 12 in
matrix notation as

1φ(2, 1) = 1Hq̇. (14)

This 6 × 5 matrix H relates coordinate velocities to relative spatial velocities. It
can be transformed to any other convenient frame by left multiplying with an
appropriate adjoint.

When written in a contact frame, H has a simpler form. The bottom row contains
zeros because there does not exist a contact coordinate velocity corresponding to a
nonzero velocity in the z direction (a nonzero z velocity involves breaking contact
or penetration). Although the upper 5 × 5 sub-matrix of H is in general dense, in
a contact frame it can have several zeros if one of the surfaces is flat with straight
equiparameter lines.
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If there is near conforming contact between the surfaces, H becomes poorly
conditioned. When there is conforming contact the upper 5×5 sub-matrix becomes
singular. Consider the example of a ball in a socket. If the surfaces have almost
but not quite the same shape, then very large parameter velocities are needed to
account for small spatial velocities. When the surfaces conform exactly, the contact
has a lower number of degrees of freedom and needs a different parameterization
(see Anitescu et al. [1996] for an example of a cylinder on a flat surface going from
conforming contact to point contact). In general, this is a difficult problem for all
multi-body methods.

Although the derivation shown in Equations 9 through 14 is quick for demonstra-
tion, it lacks the convenience of the finer details necessary for an implementation.
A detailed derivation more suitable for implementation and emphasizing ease of
computation can be found in the appendix.

3.3 Constrained Dynamics

Let body 1 be free to move in contact with body 2 which is fixed. The Newton-
Euler equations for a rigid body (see [Murray et al. 1994; Pai et al. 2000]) can be
written using spatial vectors as

fext + fc = Mφ̇− [φ]
T
Mφ (15)

where fext is the external force, fc is the constraint force, φ is the spatial velocity
of the body relative to the world (inertial) frame, M is the spatial inertia. All
coordinates in this section are with respect to the body fixed frame, frame 1. Note
that φ̇ is the time derivative of φ in the body frame.

We can combine this equation with the contact kinematics equations,

φ = Hq̇, (16)

as a non-holonomic constraint to get a differential algebraic equation. The most
common method for solving these types of equations is to differentiate the constraint
until the system can be expressed as an ordinary differential equation. Differenti-
ating the constraint once, in the body frame, we get

φ̇ = Ḣq̇ +Hq̈. (17)

Combining Equation 15 with the constraint Equation 17 (instead of Equation 16)
gives us an ordinary differential equation instead of a differential algebraic equation.

In the frictionless case, the constraint force, fc, will be orthogonal to the degrees
of freedom since it must not do any work on the system. This can be expressed
as HT fc = 0. In the contact frame, fc will be zero except for the translational
z component as the first five rows of H are linearly independent and the sixth row
is zero.

We will write these equations in the matrix form below where all quantities are
expressed in frame 1 coordinates.





I M 0
0 I H

HT 0 0









fc
−φ̇
q̈



 =





b

−a
0



 (18)
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b = −[φ]
T
Mφ− fext

a = Ḣq̇

Performing block row elimination on the last row produces




I M 0
0 I H

0 0 HTMH









fc
−φ̇
q̈



 =





b

−a
r



 , (19)

r = HT (fext + [φ]
T
Mφ−MḢq̇).

The last row yields an ordinary differential equation in the contact coordinates
which can be integrated directly; it is equivalent to the ODE

q̈ = (HTMH)−1HT (fext + [φ]
T
Mφ−MḢq̇). (20)

Note that although HTMH is an invertible 5 × 5 matrix we use a matrix factor-
ization instead of explicit inversion.

The ODE in Equation 20 is not stiff and can be solved with explicit integration
methods. Implicit integration methods are also possible, though they can be more
expensive to compute and unduly stable.

Note that HTMH can become poorly conditioned in areas of high curvature,
but more importantly, our method is sensitive to the surface parameterization.
Undesirable accuracy to time-step trade offs result for low curvature surfaces with
parameterizations that have high curvature equiparameter lines (for simple rolling
or sliding motions the contact will need follow a high curvature path in parameter
space). Section 3.6 discusses this problem in more detail.

To summarize, we choose our constraint as the description of how two surfaces
move when they are in contact. Because we constrain the motion of our objects to
remain in contact, a continuous contact motion results when we integrate while ap-
plying an external force. Evolving the system in a set of reduced coordinates avoids
stabilization since the coordinates parameterize the constraint manifold exactly.

Since the constraint is bilateral we monitor the constraint force to check for when
the surfaces are breaking contact. The constraint force fc is computed easily during
back-substitution of Equation 19. Separation occurs when the z component of 1cfc
is negative.

Note that it is not difficult to extend this method to multi-body systems when
the contacts exist either in a chain or tree structure. Both the composite rigid body
method and articulated body method can be applied directly since the contacts are
essentially generalized joints in a kinematic system [Pai et al. 2000].

3.4 Friction

Friction is a necessary component in any physically-based animation. This section
presents a simple way of incorporating dry Coulomb friction into our algorithm.

With only a single point of contact between two bodies and isotropic friction,
we can make the assumption that the friction force opposes the relative velocity.
When the relative translational velocity is nonzero, the system experiences dynamic

friction (discussed in Section 3.4.1). For pure rolling motions we allow the contact
to evolve in a no-slip friction mode (discussed in Section 3.4.2). In no-slip mode
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the system has fewer degrees of freedom as the contact will move at the same speed
across both surfaces. In Section 3.4.3, we also discuss a less useful no-spin friction
mode that we have not implemented.

3.4.1 Dynamic Friction. For translational friction due to sliding at a single
point of contact, the tangential friction force is proportional to the normal con-
straint force and opposes the slip velocity. That is,

ft = −µv̂|fn|, v 6= 0, (21)

where ft is the tangent translational force due to friction, fn is the normal force, and
v̂ is the normalized relative translational velocity. Summing tangent and normal
components gives us the translational component of the constraint force.

This equation becomes very simple when written in coordinates of a contact
frame since the constraint wrench in a contact frame is already decomposed into a
component normal to the constraint manifold and a tangential component due to
friction. The normal component is simply the z translational component (the sixth
entry of 1cfc). The remaining components are due to friction, hence we can write
Equation 21 as

1cfc4 = −µ v̂x
1cfc6 , (22)

1cfc5 = −µ v̂y
1cfc6 . (23)

Since the constraint wrench in Equation 15 is in coordinates of frame 1, we need
to left multiply by the appropriate adjoint. Using the adjoint and Equations 22
and 23, the new constraint equation in matrix form becomes,

(

I5×5 0
)

1
1cAdT 1fc = −

(

05×5 µ
)

1
1cAdT 1fc, (24)

where µ =
(

0 0 0 (µ v̂x) (µ v̂y)
)T
. (25)

This corresponds to the third block row of Equation 18. For clarity, the size of
selected sub-matrices are shown with a trailing subscript. Note that the first three
entries of µ are zero because there is no torsional friction. The left hand side of
Equation 24 extracts the tangential component of the constraint force, while the
right hand side computes the tangential component based on the normal restoring
force and friction (Equations 22 and 23). There are only five rows in the matrix
because we do not place any restrictions on the normal force. The normal force
is determined solely by the condition that the surfaces must not interpenetrate.
Essentially, this equation directs the constraint wrench slightly off normal, such
that it opposes the relative motion of the bodies. If the normal component needs
to be larger to prevent the bodies from interpenetrating, then the tangential portion
will also become larger due to the larger normal force.

Bringing everything to the left hand side in Equation 24 gives,

F 1fc = 0, (26)

where F =
(

I5×5 µ
)

1
1cAdT . (27)

The 5 × 6 matrix F replaces HT in Equation 18. Repeating the block row sim-
plification performed in Section 3.3 on the modified matrix results in the following
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equation which we use instead of Equation 20.

FMHq̈ = F (fext + [φ]
T
Mφ−MḢq̇) (28)

Since F is a function of φ, a time explicit integration method will use the relative
spatial velocity from the previous time step in Equation 28. Note that high friction
can cause the matrix FMH to become poorly conditioned.

3.4.2 No-Slip Friction. For pure rolling motions, the contact location moves
across each object at the same speed. The dynamic friction method, described in
the previous section, can often generate reasonable approximations of these motions.
When the slip velocity is small, and provided the conditions exist for the system
to exhibit pure rolling, the slip velocity tends to make small oscillations which
effectively prevents noticeable slip between the objects. Although this may be
adequate for some applications, it has the undesirable drawback that objects will
slowly drift over one another rather than reaching a static rest configuration. This
section presents a solution for generating pure rolling motions by requiring the slip
velocity to be zero.

The no-slip friction condition imposes a non-holonomic unilateral constraint on
motion; it only places a restriction on the contact coordinate velocities. The five-
dimensional contact coordinates are still necessary to keep track of the configuration
of the contacting objects. The contact coordinate velocities, however, are no longer
independent, since they only have three degrees of freedom.

In this section, unless otherwise specified, we let H be in a contact frame (say
1cH, in the contact frame 1c). Let Hi..j,k..l be the sub-matrix consisting of rows
i through j and columns k through l. For example, H4..5,1..2 is the portion of
H which relates the contribution of the contact coordinate velocities (ṡ, ṫ) to the
tangential translational velocity of the contact, (vx, vy).

When the two objects in contact are moving without slipping, the relative trans-
lational velocity of the bodies in the contact frame will be zero. This defines a
relationship between (ṡ, ṫ) and (u̇, v̇). Because ψ̇ does not contribute to the slip
velocity we can write this relationship as

H4..5,1..2

(

ṡ

ṫ

)

= −H4..5,3..4

(

u̇

v̇

)

. (29)

Or,

(

ṡ

ṫ

)

= D

(

u̇

v̇

)

, (30)

where D = −H−1
4..5,1..2H4..5,3..4. (31)

This leads us to a smaller version of H, which relates the relative spatial velocity
to a set of independent contact coordinate velocities. We can write this as

φ = H1..6,1..2 D

(

u̇

v̇

)

+H1..6,3..4

(

u̇

v̇

)

+H1..6,5 ψ̇, (32)

which has the matrix form

φ = H ′





u̇

v̇

ψ̇



 , (33)
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where H ′ =
(

(H1..6,1..2 D +H1..6,3..4) H1..6,5

)

. (34)

The no-slip equations of motion are now simply the equations in Section 3.3 with
all occurrences of H and q̇ replaced with this 6 × 3 matrix H ′ and the reduced

contact coordinate velocities, (u̇, v̇, ψ̇)T , from Equation 33. Solving this smaller
system provides the reduced contact coordinate accelerations. The original q̇ must
still be integrated to get the new contact configuration q. This is done at each
derivative computation step by computing q̇ with Equation 30 using the reduced
contact coordinate velocities that resulted from the integration of the reduced con-
tact coordinate accelerations.

Simulations that include periods of both sliding and pure rolling are possible by
switching, when appropriate, between the methods presented in this section and
the previous section. To switch between models, we monitor the constraint force
and slip velocity. The system remains in no-slip friction mode when the inequality

|ft|

|fn|
≤ µstatic (35)

is satisfied. Recall that the tangential and normal components are easily extracted
from the constraint force when it is written in the contact frame. When in sliding
friction mode, if the magnitude of the slip velocity falls below the threshold then
we switch back to the no-slip mode. We used thresholds ranging from 2.5 mm/s to
5 mm/s (approximately 2 to 4 percent of the largest dimension of the object) for
the simulation described in Section 4.2.

3.4.3 No-Slip and No-Spin Friction. The no-slip method described above can
easily be extended to prevent any spin between contacting objects. However, since
the no-spin formulation does not solve any noticeable problems (such as the slow
drift avoided with the use of no-slip friction), we have not implemented this method.

Additionally restricting the free object from spinning reduces the degrees of free-
dom to only two. The no-spin condition requires ωz to be zero in the contact frame,
which can be written as

H3,1..2

(

ṡ

ṫ

)

+H3,3..4

(

u̇

v̇

)

+H3,5 ψ̇ = 0. (36)

Since 1cH3,5 = 1 (see Section 3.1 or the appendix for more details), and using
D from Equation 30 we can write

ψ̇ = −(H3,1..2 D +H3,3..4)

(

u̇

v̇

)

. (37)

Equation 33 with the additional requirement of no spin becomes,

φ = H ′′

(

u̇

v̇

)

, (38)

where H ′′ = H1..6,1..2 D +H1..6,3..4 +H1..6,5(−(H3,1..2 D +H3,3..4). (39)

This 6 × 2 matrix along with u̇ and v̇ replace H and q̇ in our dynamics equations
of Section 3.3. After integrating the computed ü and v̈ to get u̇ and v̇, we use
Equations 30 and 37 to compute q̇.
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The no-spin condition suggests that the contact area is large enough to transmit
frictional torques. In this case we can compare the torque about the z axis with
the magnitude of the normal force. That is, if the inequality

|1cfc3 |

|fn|
≤ µspin static (40)

is violated then we can switch to no-slip or sliding friction.

3.5 Traversing Patch Boundaries

Since object models are commonly a collection of surface patches, a robust method
of evolving a contact across patch boundaries is needed. For example, the bowl and
table in Figure 6 consist of 14 and 60 surface patches respectively. We use Stam
[1998] for parametric evaluation of Loop subdivision surfaces, which recognizes that
these surfaces are equivalent to piece-wise quartic box splines almost everywhere
(see [Zorin and Schroder 2000] for background on subdivision surfaces). Normally,
this involves subdividing the mesh once to ensure that there is at most one extraor-
dinary vertex3 per patch, but larger patches are preferred since they result in fewer
patch transitions. Instead of subdividing, we evaluate a patch having more than one
extraordinary vertex using consistent reparameterizations of its four subpatches.

If two contacting patches are both part of a larger group of regular patches on
their respective surfaces, then we can treat the collection of patches as a single sur-
face function over a larger domain (much like we do for patches with more than one
extraordinary vertex). Although the resulting functions would have discontinuous
3rd derivatives at the original patch boundaries, they would allow a contact to be
evolved over larger distances without requiring a boundary traversal. We do not
do this because the non regular regions at extraordinary vertices make it difficult.
Their domains, along with the domains of the regular patches surrounding the non
regular patches, can not be assembled into a larger domain without distorting the
parameter space. Instead, we avoid the problem entirely by evolving the contact
very close to the boundary and then computing an equivalent state that we can
evolve into the next patch.

Note that our traversal technique requires tangent plane continuity between ad-
jacent patches. Sharp edges occur when there are tangent plane discontinuities,
bringing up the possibility of curve-surface and curve-curve contact, which re-
quire different contact coordinates and contact kinematics equations [Anitescu et al.
1996].

We find the state of the system at the transition by taking successively smaller
steps, and backing up every time the state crosses the boundary. When the step size
falls below a specified minimum, the current parameter velocity is used to project
the contact location onto the exact boundary.

Note that it is important to approach the traversal point from inside the patch
rather than interpolate the current state with the result of the step that evolved
the contact outside of the current patch. Interpolation introduces large errors into
the system because the surface functions are polynomial and tend to grow quickly
outside of their domains and in directions different from the adjacent surface.

3For triangle meshes with Loop subdivision, extraordinary vertices have valence not equal to 6.
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Fig. 4. To compute contact coordinates on patch B, the angle ψ has θ added to it. We add
positive θ because xA × xB points in the same direction as the normal, n.

Assume that the domain of a patch is a polygon described by a counter clockwise
list of points in the plane, Pi, i = 1 . . . n. For every edge in the domain polygon we
know both the adjacent patch and the corresponding domain edge. Given a point
on the edge of a patch, we must be able to find the point on the corresponding
domain edge of the adjacent patch mapping to the same location. In many cases,
this relationship is quite simple.

In the case of Loop subdivision surfaces, the boundary curves (equivalent to
quartic Bézier curves in most cases) of two adjacent patches are identical, and
thus, a crossing at parameter α of one curve occurs at 1 − α of the other, due to
the counter clockwise order of the domain points.

Suppose that the contact moves from patch A to patch B on body 1, while the
contact remains in patch C of body 2 (see Figure 4). When the state of the system
is at a patch boundary we use a superscript to denote the patch whose coordinate
system is being used. For example, qA denotes the system configuration using patch
A. Likewise, HA denotes the contact kinematics equations using patch A.

Suppose the location of the contact is at a point α along edge i of patch A’s
domain polygon, that is, at PAi+1α+ PAi (1− α) in the domain of patch A. Assume
edge j of patch B corresponds with edge i of patch A. We can write the state of
the system on the boundary of patch B as

qB =





PBj+1(1 − α) + PBj α

qA3..4
ψB



 (41)

where the new rotation ψB aligning the contact frames is yet to be determined. Note
that the third and fourth components of the contact coordinate remain unchanged,
since they only involve patch C.

As shown in Figure 4, we compute ψB by adding a correction to ψA to reflect
the angle between the x axes of the contact frames at the crossing position of the
adjacent patches. Since cos−1(xA · xB) is normally computed as an angle in the
range [0, π], we check to see if xA × xB points in the opposite direction of the
surface normal, in which case we negate the correction angle. That is,

ψB = ψA + sgn((xA × xB) · z) cos−1(xA · xB). (42)

With the complete contact coordinates known on both sides of the boundary, the
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Fig. 5. Contact evolution through a corner and the resulting patch transitions.

destination patch contact coordinate velocity can be computed. Since the contact
frame of body 2 is fixed, we equate the spatial velocities in coordinates of frame 2c
as given by the contact kinematics equations. Since the spatial velocity is computed
in a contact frame, we drop the z component (which is zero) yielding a system that
is not over-constrained. Hence, we solve for q̇B in

2cĤA q̇A = 2cĤB q̇B (43)

where 2cĤ is a 5× 5 matrix equivalent to the matrix 2cH with the bottom (zero)
row removed.

This completes the calculation of the system state in terms of patches B and C

instead of A and C. Note that a transition on the other object, say from patch C

into an adjacent patch D, is completely independent of our transition from A to
B. The other transition can occur either before or after without changing the end
result.

Consider the infrequent special case of a contact that evolves directly through
the corner of a patch, as shown in Figure 5. Although the contact velocity may
not point toward one of the adjacent patches (one sharing a boundary rather than
just a vertex with our current patch), we still transfer the contact to an adjacent
patch. Once in the adjacent patch we try again to advance the system to time
t+ ∆t; however, the contact may evolve through the corner again (at time t). We
let the process repeat until the contact evolves into the interior of the domain. If
we have n patches meeting at a point, we may need to perform n − 1 transitions
before finding the final destination patch (or detecting insufficient accuracy of the
minimum step size), because we consistently choose counterclockwise transitions at
the traversal point to prevent oscillating transitions between adjacent patches.

3.6 Surface Representation Problems

Subdivision surfaces are very convenient for describing object geometry. Their pop-
ularity in recent years is attributable to the relative ease with which they can be
edited and implemented. As mentioned in Section 3.3, however, our method is
sensitive to the parameterization of the surface. Problems can arise for parameter-
izations which have high curvature equiparameter lines even when the surface does
not. Unfortunately, the natural parameterization given by Stam [1998] for Loop
subdivision surfaces has this problem near extraordinary vertices, along with the
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additional problem of non-regularities at the extraordinary vertices. Contact co-
ordinate velocities are an essential part of the system state–the velocity is directly
related to surface derivatives–so our contact evolution technique effectively breaks
down in areas where the magnitude of the surface derivatives go to zero or infinity,
such as when the contact point approaches an extraordinary vertex. Note that the
non-regularity problem is not confined to subdivision surfaces. For example, the
NURBS definition of a sphere has two non-regular points at its poles (though this
too is avoidable, for example, with rational quartic Bézier triangles [Farin et al.
1988]).

In an attempt to circumvent this problem, Kry [2000] considers replacing the sur-
face near extraordinary vertices with S-patches [Loop and DeRose 1989]. This is
quite inefficient due to the expense involved in evaluating S-patches (see Table I).
More recently, however, Peters [2001] shows that Loop surfaces can be approxi-
mated using only quartic Bézier patches. While ideal for our algorithm, we have
not implemented this patching method, and instead we avoid the problem of ir-
regularity by forcing the surfaces to separate when the contact evolves too close to
extraordinary vertices. The objects then evolve by making small bounces, similar to
a method described by Mirtich and Canny [1995], until the continuous contact can
be restored on the other side of the problem area. The magnitude of the impulses
used to resolve collisions during this period may need to be increased to prevent the
objects from intersecting after advancing the system by the minimum step. Note
that this change in simulation philosophy could make the incorporation of contact
evolution into a multi-body setting tricky, since impulses resolving one contact may
violate interpenetration constraints of others. For this reason, it would be desirable
to just avoid the problem entirely with good surface parameterizations, such as
those built using the surface repatching method described by Peters [2001].

3.7 Algorithm Summary

At this point it may be useful to review the entire algorithm. Everything is centered
around the computation of q̈. For a single contact, the amount of work needed to
do this computation does not vary.

While the simulation has not achieved the target time, we try to step the inte-
grator by the current step size ∆t, which may result in the contact crossing a patch
boundary or breaking contact. To compute (q, q̇) at t+ ∆t, the integrator requires
us to compute the state derivative at a given state and time (this computation
occurs multiple times for higher order methods). That is, for example, we need to
produce (q̇, q̈) at time t given (q, q̇) at time t. This only involves computing q̈ as we
can use the q̇ provided in the current state. The whole process can be summarized
briefly by the steps that follow.

—First we evaluate the surfaces at the current contact coordinates (q at time t).
That is, we must compute the position of the contact point on each surface and all
the partial derivatives of order up to three. As the basis functions of parametric
surfaces are smooth, and due to the symmetry of mixed partials (c,uv = c,vu),
only ten sets of basis functions are needed to do this evaluation4.

4Note that Equation 20 uses Ḣ, which contains third order partial derivatives.
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—Next we compute the position and orientation of the bodies in world coordinates.
This is necessary for computing any external forces, such as gravity. We do this
by computing 2

1E from Equation 9 using the surface evaluations computed above.

—We then compute H with the method described in the appendix. With H in the
free body reference frame, we calculate φ using q̇ from the current state.

—Having everything required to compute q̈, we proceed by solving Equation 20
for the frictionless case, or by solving Equation 28 for the friction case. This is
accomplished with an LU decomposition of HTMH in the frictionless case, or
FMH in the friction case.

—Back substituting q̈ into the second row of Equation 19 gives the contact wrench
fc which we use to detect breaking contact (the constraint in this formulation is
bilateral). When the z component of 1cfc becomes negative we allow the objects
to separate.

—If the integrator computes a new contact coordinate outside the current domain
boundary, then we revert the system to time t and reintegrate with a smaller
time step, given the last step size was above the minimum step size. Otherwise,
the state is projected onto the domain boundary using the current velocity and
the new state on the other side of the boundary is computed as described in
Section 3.5.

—Provided no boundary traversal or separation occurs, the time advances to t+∆t
and the computed values of q and q̇ at t + ∆t become the current state. If the
no-slip friction model is active during this last step, then the computed q̇ only
contains the reduced contact coordinate velocities. In this case the complete set
of contact coordinate velocities is computed using Equation 30.

—Last, given a successful step, we also increase the current step size, though not
beyond a previously specified maximum step size.

When the bodies are not in contact, such as after a separation, we evolve the
bodies without constraints. If we observe transient collisions occurring in close suc-
cession and proximity, then we switch back to reduced coordinates. For collision
detection, our implementation uses sphere trees [Quinlan 1994] built from polyhe-
dral approximations of our models. In establishing a continuous contact, we first
compute approximate contact coordinates from the minimum distance reported by
the sphere tree. Before using these coordinates we apply a few Newton iterations,
as described in [Nelson et al. 1999], to find a better approximation of the contact
point on the smooth surfaces.

4. RESULTS AND DISCUSSION

We have implemented a rigid body simulator in Java that uses our contact evolution
technique. When objects are not in contact we use a sphere tree [Quinlan 1994]
for collision detection and an algebraic collision law due to Chatterjee and Ruina
[1998] for collision response. Our simulations with Loop subdivision surfaces, such
as those in Figures 1 and 6, run in real time on current hardware and in near real
time on our reference machine used for timing specific computations in the following
section.
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Table I. Timings for calculating the ten partial derivatives necessary for the al-

gorithm. Timings are with HotSpot optimizations, run on a 350 MHz Pentium II.

Times are an average of ten thousand successive computations and hence may

appear smaller than they should due to caching effects.

surface type evaluation time

Loop regular 0.2413 ms

Loop extraordinary (degree 3) 0.1683 ms

Loop extraordinary (degree 5) 0.1933 ms

Loop extraordinary (degree 7) 0.2223 ms

Loop extraordinary (degree 10) 0.2654 ms

S-patch (3 sides) 0.1632 ms

S-patch (4 sides) 0.4466 ms

S-patch (5 sides) 1.1006 ms

S-patch (10 sides) 20.0248 ms

Bi-cubic Bézier 0.0801 ms

4.1 Timings

If running the HotSpot Java virtual machine on a 350 MHz Pentium II machine,
the entire computation of q̈ takes about 1.2 ms. With this computation time the
simulation can run at 15 frames per second without using all available CPU cycles.
The bulk of the time is spent in Java3d code to draw the system.

Table I shows the time necessary to evaluate various types of surface functions
along with all the necessary partial derivatives for the algorithm. We performed
all our tests on a 350 MHz Pentium II running Java 1.3. All times reported in
this section are measured as an average of ten thousand computations to give the
HotSpot virtual machine sufficient opportunity to optimize our code. Although
timings in the table may be smaller than in practice due to caching effects, all
other times reported in this section do not have this bias as they were measured
during an actual simulation.

We found that evaluating the surface functions takes up a substantial portion
of the simulator’s time. In our implementation, these functions have quite a bit
of room for optimization. Surface representations which can be evaluate quickly
are thus preferred for our algorithm. For two contacting cubic Bézier surfaces, the
program computes H in 0.3485 ms on our test machine. Note that Table I reveals
that half of this time is spent on surface evaluations of the two patches. The routine
which computes q̈ takes about 0.235 ms (this includes the LU factorization and
back substitution). The total computation time for the derivatives comes to about
0.9 ms in the Bézier on Bézier case. The time which is unaccounted for comes from
checking boundaries, computing object positions, velocities, and external forces.

4.2 Example Simulation and Results

To evaluate the benefits of our contact evolution algorithm, we look at the simula-
tions which result when we change the upper limit on the step size.

Figure 6 shows the simulation of a bowl thrown on a table, repeated three times.
Loop subdivision surfaces define the boundaries of both objects. The table surface
is approximately 40 cm square while the bowl is approximately 13 cm across, 11 cm
high, and weighs a little less than 1 kg. For all three simulations the minimum step
size is fixed at 1 ms, while the maximum step size is set to 1 ms, 16 ms, and 64 ms
seconds respectively. We integrate using an explicit fourth order Runge-Kutta

ACM Transactions on Graphics, September 2002.



Continuous Contact Simulation for Smooth Surfaces · 19

Fig. 6. The three columns show sequences of the bowl thrown on the table. Note that the table

edges are rounded. The six frames in each sequence are in half second intervals. The maximum

step size, from left to right, is 1 ms, 16 ms and 64 ms respectively. All three settings yield plausible
motion for the bowl on the table.

method.
Figure 7 shows the trajectories of the bowl’s center of mass for these three cases.

The down pointing triangles mark where the bowl establishes continuous contact
with the table. With larger maximum step sizes the integration error increases
dramatically (as expected for any method due to larger truncation errors). What
we notice here and in Figure 6 is that the bowl behaves in a relatively similar
manner for all three cases.

In each simulation, the bowl collides with the table several times before estab-
lishing a continuous contact. All three simulations show similar periods of both
pure rolling and sliding as the bowl gradually comes to rest on the table. The slip
velocity threshold for entering no-slip friction is 5 mm/s for all but the 1 ms max-
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Fig. 7. Planar position of the center of mass of a bowl thrown on a table. Trajectories for

the step sizes limited to 1 ms, 16 ms, and 64 ms are shown in solid red, dotted green and
dashed blue respectively. Each trajectory has additional markings to show collisions, transitions

between patches, transitions between dynamic and no-slip friction and the transitions to and from
continuous contact.

imum step size simulation where a threshold of 2.5 mm/s was used giving better
accuracy.

Although the three trajectories follow different paths, they are all plausible mo-
tions for the bowl thrown onto the table. Thus, one can sacrifice accuracy for speed,
without sacrificing visual plausibility. This is a major advantage of the method,
however, there does comes a point when the error is too large. In this case, with
a maximum step size of 128 ms, the slip velocity of the bowl on the table in the
resulting simulation does not fall below the 5 mm/s threshold necessary to enter
no-slip friction, which results in the bowl wobbling and sliding until it falls off the
table.

The CPU times for the 3 second simulations in Figure 7 are shown in Table II
along with the times for other settings of the maximum step size. This includes
the collision detection computations during the brief period that the bowl is not in
contact, as well as the contact evolution computations for the periods of dynamic
friction and no-slip friction. Because the large smooth areas of the bowl and the
table are described with a small number of patches, there exist long periods where
larger steps can be taken without crossing a patch boundary. This is seen in the
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Table II. Timings for a 3 second simulation for the bowl on the table with differ-

ent maximum step sizes. These timings were taken on a machine with a 1.8 GHz

Xeon processor. Note that this particular simulation with our unoptimized im-

plementation requires steps larger than 2 ms for real time computation.

maximum step size simulation time

1 ms 6.542 s

2 ms 3.328 s

4 ms 1.766 s

8 ms 0.974 s

16 ms 0.521 s

32 ms 0.370 s

64 ms 0.286 s
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Fig. 8. Histograms of the successful step sizes used while in contact for the 16 ms and 64 ms

maximum step size simulations in Figures 6 and 7. Although dependent on the given simulation,
these histograms show the effect that boundary crossing events have on the variation of step sizes.

Note that boundary crossings occur only when a minimum step (in this case, 1 ms) evolves the
contact out of one of the currently contacting patches.
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Fig. 9. Center of mass x position during the first second of the bowl on table simulation. Patch

transitions are denoted with a vertical dotted line while conversions to and from continuous contact

are shown with a solid red vertical line. The data points of the computed trajectory are shown
with dots. Between data points, either linear or Hermite interpolation is used to compute a system

state for visualization.

timings as the halving of computation times with the doubling of the maximum
step size, since the simulations are not dominated by the patch boundary crossing
events. Figure 8 also shows this with histograms of successful step sizes during the
contact evolution portion of two simulations.

Last, Figure 9 shows the x position of the bowl’s center of mass over time for
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Fig. 10. Top and front views of our rattleback model.

the maximum step size case of 64 ms. The dashed vertical lines denote boundary
crossings, while the distances between dots correspond to step sizes. Because the
rendered simulation has a constant frame rate, not synchronized with the adaptive
time steps, we compute the system state at each frame with either linear or Hermite
interpolation. During periods of continuous contact this consists of interpolating
the reduced coordinates.

4.2.1 Rattleback. Rattleback tops, also known as celts or wobblestones, are in-
teresting because they can reverse their spin. Some rattlebacks reverse their spin in
both directions while others have a spin bias and only reverse their direction if spun
in the direction opposite to their preferred direction. The nonintuitive behaviour
of rattleback tops makes them interesting test objects for contact simulations (see,
for example, [Mirtich 1996]).

We tested our simulation with the very simple rattleback model shown in Fig-
ure 10 consisting of a single bi-cubic Bézier patch. It is longest in a direction 10
degrees off of the x axis and its width is one third of its length. Its curved shape
comes from elevating the outer control points. We spin the model around its z axis.

Although the top is symmetric, we set the inertia tensor such that it is not in
alignment with the planes of symmetry. A nonuniform mass density can cause this
in a physical model. The reversal effect is due to the misalignment of the principal
axes of inertia with the principal axes of curvature at the point of contact [Garcia
and Hubbard 1988]. With this simple model we can simulate single or multiple spin
reversals, depending on viscous damping and the coefficient of friction.

Figure 11 shows a sequence of frames where the top reverses its spin after about
eight seconds. Several previous positions of the top are drawn in grey to indicate
the direction of motion. We start the spin slightly off the center of the top because a
perfect spin around the z axis results in a stable rotation. Just before the rattleback
model reverses its spin, it rocks with a period of about 0.5 seconds. We find that
this simulation gives best results for step sizes smaller than 50 ms. Simulations
with steps of about 50 ms result in the top losing most of its energy during the
reversal; the top does not end up spinning convincingly in the opposite direction.
Although the top spins stably with larger step sizes such as 100 ms, it does not
reverse. Other motions, such as tapping the rattleback at one end, are obviously
not stable for these exaggerated step sizes.
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Fig. 11. Spin start of a rattleback. The lower left corner of each image shows the time in seconds

and the previous positions of the rattleback are shown in grey. The direction of the spin is initially

counter clockwise and quickly changes to clockwise. The maximum step size for this simulation

was 10 ms.

5. CONCLUSIONS

We have described a fast contact evolution algorithm for single contact between
piece-wise parametric surfaces. We first derived contact kinematics equations for
arbitrary regular parametric surfaces. Next, we showed that using these equations
as acceleration constraints we can formulate the contact dynamics as an ODE in
the contact coordinates. The resulting ODE can be easily integrated using explicit
integrators, without the need for constraint stabilization. We easily incorporate a
Coulomb friction model into our formulation. A method of evolving contacts across
patch boundaries is presented.

Our contact evolution technique, although useful for single contact, is not suitable
for all configurations of single contact due to its sensitivity to the parameterization
of the contacting surfaces. Although many parametric surfaces can have non-regular
points, such as Loop subdivision surfaces with their natural parameterization, these
points are limited in number and can be avoided entirely by repatching [Peters
2001], or by evolving the system with an alternate method when the system state
approaches these configurations.

As in all simulation algorithms, the truncation error can be quite large if we
take large step sizes while in continuous contact. These errors, however, can be
quite acceptable for visual realism as they do not violate the noninterpenetration
constraint.

Having measured the time used to perform various calculations for our simula-
tion, we notice that a large proportion of the time can be spent computing partial
derivatives of the parametric surfaces, which suggests that surfaces that are less
expensive to evaluate are more desirable with our technique (for example, Catmull-
Clark subdivision surfaces, which are bi-cubic almost everywhere).

Our method extends easily to multi-body systems with chain or tree structures.
The benefits of our method decrease, however, for systems with kinematic loops,
such as a pair of objects with multiple contacts, since these systems do not, in
general, reduce to an ODE and require stabilization of the extra constraints. Nev-
ertheless, we feel that the contact evolution method we have presented here is both
interesting and useful for rigid body simulation.
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APPENDIX

This derivation of the contact kinematics equations uses the same setup as described
by Equations 5 through 8 in Section 3.1.

As the contact point moves, so do the contact frames. The spatial velocity of
the contact frame 1c relative to the body frame 1 in terms of contact parameter
velocities, has a particularly simple form in the contact frame. If 1cφ(1, 1c) =
(ωT , vT )T , then the spatial velocity of the contact frame 1c relative to the body
frame 1 in coordinates of 1c is

(

[ω] v
0 0

)

=
1c

1 E
1

1cE,s ṡ+
1c

1 E
1

1cE,t ṫ. (44)

Let Θ be the leading 3 × 3 sub-matrix of
1

1cE (see Equation 6) and recall that the

rightmost column of
1

1cE is the location. Examining the matrix multiplications in
Equation 44 for a closer look at the contributions of ṡ and ṫ to ω and v yields

[ω] = ΘTΘ,s ṡ+ ΘTΘ,t ṫ, v = ΘT c,s ṡ+ ΘT c,t ṫ. (45)

First, consider ω by examining the skew symmetric matrix ΘTΘ,s
5 (ΘTΘ,t will be

very similar).

ΘTΘ,s =







x · x,s x · y,s x · z,s
y · x,s y · y,s y · z,s

z · x,s z · y,s z · z,s






(46)

The least complicated expressions relating ω to ṡ are those which are boxed in
Equation 46 (x,s is less complicated than z,s which is less complicated than y,s).
Thus we can write ω as,

ω =





−y · z,s
−z · x,s
y · x,s



 ṡ+





−y · z,t
−z · x,t
y · x,t



 ṫ. (47)

Now looking at the ΘT c,s and ΘT c,t components we can write,

ΘT c,s =





x · c,s
y · c,s
z · c,s



 =





x · c,s
0
0



 , (48)

ΘT c,t =





x · c,t
y · c,t
z · c,t



 =





x · c,t
y · c,t

0



 . (49)

Equations 47, 48 and 49 combine to give 1cH1.

1cφ(1, 1c) = 1cH1

(

ṡ

ṫ

)

(50)

5The skew symmetric property of this matrix is easily seen by differentiation of the identity

ΘT Θ = I.
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where 1cH1 =

















−y · z,s −y · z,t
−z · x,s −z · x,t
y · x,s y · x,t
x · c,s x · c,t

0 y · c,t
0 0

















(51)

Note that here the subscript on H denotes body 1 as opposed Equation 13 where
we denote a relationship to an individual component of the contact coordinates.
We can analogously define 2cH2. This transforms to frame 1c as

1cH2 =
1c

2cAd 2cH2 =

(

Rψ 0
0 Rψ

)

2cH2. (52)

Finally, relative spatial velocity of the two contact frames is a pure rotation about
the surface normal, that is,

1cφ(1c, 2c) = 1cHψψ̇, (53)

where, 1cHψ =
(

0 0 −1 0 0 0
)T
. (54)

We can now compute the contact matrices Hk as follows. The relative spatial
velocity of the two bodies is given by

φ(1, 2) = φ(1, 1c) + φ(1c, 2c) + φ(2c, 2),

= φ(1, 1c) + φ(1c, 2c) − φ(2, 2c).

Substituting Equations 50, 52 and 54 yields

1cφ(1, 2) = 1cHq̇, (55)

where 1cH =
(

1cH1 −1cH2
1cHψ

)

. (56)

The contact matrix H can now be transformed to any convenient frame, for in-

stance, frame 1: 1H =
1

1cAd 1cH.
In Section 3.3 we need 1cḢ as we will take the time derivative of Equation 55.

Once 1cḢ1 = 1cH1,sṡ+ 1cH1,tṫ and 2cḢ2 = 2cH2,uu̇+ 2cH2,v v̇ are computed
with the current state (q and q̇) using the chain and product rules, we can write

1cḢ =
(

1cḢ1 −(
1c

2cȦd 2cH2 +
1

1cAd 2cḢ2) 0
)

. (57)
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