
PhysIK: Physically plausible and intuitive keyframing
Amir H. Rabbani∗

McGill University
Paul G. Kry†

McGill University

Figure 1: Creating successive swing motions followed by landing via constraining the interpolated pose keyframes with seven physcially
plausible pendulum trajectory templates (swing) as well as a ballistic path at the end of the motion. The trajectory templates control the
center of mass of the character. Hand and feet pinning constraints help the character to achieve natural grasps onto the monkey bar as well as
a plausible landing posture.

ABSTRACT

We present an approach for animating characters using inverse
kinematics (IK) handles that allows for intuitive keyframing of
physically plausible motion. Specifically, we extend traditional IK
and keyframing to include center-of-mass (CM) and inertia handles
along with physically based templates to help an animator produce
trajectories that respect physics during dynamic activities, such as
swinging, stepping, and jumping. Animators can easily control both
posture and physics-based quantities (inertia shape, CM position,
and linear momentum) when building motions from scratch, but
also have complete freedom to create exaggerated or impossible
motions. We present results for a variety of planar characters of
different morphologies.

Index Terms: I.3.7 [Three-Dimensional Graphics and Realism]:
Animation

1 INTRODUCTION

Inverse kinematics (IK) is an important tool used by animators to
set a character’s pose with intuitive handles, such as the positions
of hands and feet, as opposed to creating animation by keyframing
the angles of the skeletal joints directly.

The current state-of-the-art IK software solutions are mature and
highly optimized. Additionally, to ease the creation of natural hu-
manoid motion, IK techniques specific to humanoids (for instance,
in Maya) can be used to produce very life-like virtual human ani-
mation. Furthermore, data-driven IK solutions are an excellent way

∗e-mail: amir.rabbani@mail.mcgill.ca
†e-mail:kry@cs.mcgill.ca

to ensure that an animation exhibits natural postures and motion.
However, data and heuristics used for humanoids will not generally
apply to characters of different morphologies, such as quadrupeds
or imaginary creatures. Thus, there is also a need for general tools
and methods that can help animators produce plausible motion for
all characters.

We address specifically the aspect of physical plausibility in de-
veloping a new tool that assists an animator in controlling momen-
tum and inertia of a character while authoring new motions from
scratch. The challenge is that most IK solvers use joint-space ap-
proaches to parameterize control in terms of individual joint ac-
tions. As a result, there are difficulties in formulating high-level
tasks, like regulating momentum, as joint actions combine in a
highly non-linear way. Hence, animators may struggle to produce
desired results. Furthermore, any changes to the morphology of the
character will require retuning of the keyframed trajectories. In our
system, in contrast, adding a backpack, large boots, or a tail, need
not have an adverse effect on the momentum control of a currently
keyframed trajectory.

In this paper, we present a collection of techniques that allows
animators to easily control the center-of-mass (CM) and inertia of a
character, but also gives them complete freedom to create exagger-
ated or impossible motions. The CM and inertia become IK handles
and can be animated in the same way that hands and feet are con-
strained in existing IK solvers, but we also couple this with a set of
feature trajectory templates that help an animator create a variety of
physically plausible trajectories.

For instance, Figure 1 highlights a simple application of our tech-
nique to keyframe a monkey bar example. In this case, the animator
selects a pendulum motion template trajectory for the swing phase
and a projectile motion template for the flight phase before land-
ing. The pendulum template has the constraint that the CM trajec-
tory should remain on a circular path whose center is set to be the



pivot of the pendulum. Likewise the ballistic motion has the con-
straint that the linear momentum of the character is only affected
by gravity, and thus the center of mass will undergo a constant ver-
tical acceleration of −9.8 ms−2. The animator can adjust the arc
of the pendulum and the jump through a variety of controls such
as the pivot position, maximum height, initial velocity, initial po-
sition, end position, and time of flight. Because these parameters
are coupled, our tool automatically adjusts the parameters left un-
constrained by the animator in order to satisfy the constraints of
the template trajectories. Edits to the character’s pose can be made
during the swing and flight phases while preserving the desired CM
trajectory.

To achieve natural grasping of the monkey bar as well as to set
the stance at landing, we set appropriate pinning constraints for the
hands and feet (heel and toes). We regulate the weights of these
pins through keyframes to produce a graceful transition between
swings, and similarly, into the final landing phase. Finally, the cen-
ter of mass is smoothly animated with Hermite curves to prepare
for transitions between the swing motions, and similarly to stop the
character in landing. See Sections 5 and 6 for other examples that
demonstrate the different template trajectories that we provide in
our interface.

Creating physically plausible character motion through keyfram-
ing is a challenge for animators, and we see the results of our work
being relevant to character animators everywhere. Four compo-
nents make up the main contributions of our work:

• center-of-mass and rotational inertia IK handles;
• regulation of IK constraint compliance in a global solver;
• arbitrary re-rooting for simple sub-structure pose control;
• handle trajectory generation from physics-based templates.
While all demonstrations in this paper are 2D, the techniques

also apply to 3D with minor adjustments. The keyframing inter-
face and the physic-based templates make no assumptions about the
character dimension. However, a few modifications to the solver
will be necessary for a transition to 3D. To open up avenue for fur-
ther extensions of our work to 3D, we will first show how to com-
pute control quantities in 3D and then explain how to adapt them to
a 2D inverse kinematics solver.

Note that we do not treat the case of angular momentum conser-
vation, but it is natural to extend our current framework to handle
this case with adding a feature template that takes into account the
coupling of the inertia and the angular velocity keyframes. We dis-
cuss this in more length at the end of the paper.

2 RELATED WORK

Inverse kinematics is a problem of great importance in both com-
puter graphics and robotics. For small systems, analytical solutions
exist and can be very practical [9], but for complex articulated struc-
tures with large numbers of joints it is necessary to use iterative
methods. An overview of methods to solve the inverse kinematics
problem along with techniques to gracefully deal with singularities
can be found in several good surveys [5, 7]. While a challeng-
ing problem, fast and robust solutions to the constrained inverse
kinematics problem have been available for many years, with a
vast amount of research addressing issues such as prioritized strate-
gies for resolution of conflicting goals [2], motion editing applica-
tions [4], alternate mathematical formulations including non-linear
programming [21], singularity-robust inversion [20], damped least
squares [6], and fast solutions such as CCD and FABRIK [19, 1].

In most cases, the inverse kinematics problem is highly under
constrained, and many solutions exist. While giving weight to a
single natural rest pose can help, recent work has shown that mo-
tion data can also provide an effective way of selecting the position
of redundant joints by appropriately weighting the least squares so-
lution [10]. Latent variable models also prove useful for solving
the inverse kinematics problem in a manner that preserves the style

of example motion data [8]. More recently, latent variable models
have been combined with prioritized motion constraints to achieve
a broader range of goals [16].

While data-driven IK methods can produce very natural motion,
it is still possible that poses will violate the condition necessary for
stable balance. That is, a data driven IK solution does not explicitly
control the center of mass to above the support polygon of the feet in
a static pose. With the aim of producing physically plausible results
that respect postural stability, inverse kinetics formulations include
position control on the center-of-mass [3, 12]. This is straightfor-
ward to apply to any character provided that a mass can be assigned
to the different geometries that make up the character.

This earlier work on inverse kinetics provides a critical tool
for plausibly maintaining balance during standing and reaching,
but does not directly address dynamic constraints such as momen-
tum conservation during ballistic motion. In contrast, Shapiro and
Lee [17] introduce an interactive system to let animators improve
unrealistic motions in 3D animation by visualizing dynamic physi-
cal properties such as the center of mass trajectory and angular mo-
mentum during ballistic motion. These quantities are visualized to
provide the animator with hint paths to let them modify the created
motion such that it matches the physics-based path.

Other recent work presents a method to edit kinematic motion
using momentum and force constraints [18], as well as a method
that can directly deal with approximate secondary dynamics in
combination with inverse kinematics constraints [11]. In compari-
son, our work is an interactive tool that helps the animator control
important dynamic aspects of the motion through kinematic tech-
niques. We not only provide the center of mass as a constraint
within the inverse kinematics solve, but we also provide control
of the magnitude of the character’s inertia tensor, and more im-
portantly, we provide a collection of handle template trajectories
and tools that help an animator craft dynamic and physically plau-
sible motions from scratch. Momentum and inertia are quantities
that have been recognized by the robotics community as being im-
portant [13] for answering questions about balance, and Lee and
Goswami have shown how to use the computation of the general-
ized mass inertia tensor of an articulated character for this purpose.

3 HANDLES FOR PHYSICALLY PLAUSIBLE KEYFRAMING

In many IK problems, the objective is to control points at the end
of limbs, such as a hand or foot. This can be solved by working
with joints in isolated limbs. Hence, positioning of end points is
often treated as a local IK problem. In contrast, there are cases
where IK problem cannot be solved locally. For example, the CM
is a function of the position of all limbs. In particular, changing
the CM position becomes challenging in the presence of additional
constraints at hands or feet. Thus, a solution that constrains the CM
in addition to hands and feet is ideally best found with a global IK
solver.

In order to provide the animator with tools to animate the rota-
tional inertia and CM, we estimate the size and physical properties
of the character’s parts. We assume that this can be done automat-
ically from the character’s geometry. If the geometry is formed by
set of closed meshes, then mass and rotational inertia of each seg-
ment can be computed from volume integrals with a reasonable ma-
terial density. In the case of non-closed or more complex character
geometries, we believe that it is not unreasonable to assume that the
artist will also create a collection of simple collision proxies from
which the mass and rotational inertia can be computed instead.

3.1 Derivation
In the following parts we identify the momentum related functions
and show that we can use the gradient as a linear map in the control
quantities. In order to derive equations for the inverse kinematics
solver we need differential quantities of the desired control handles



with respect to the joints. That is, given a forward kinematics map
f : Q→ Rn and a desired configuration fd ∈ Rm, we would like
to solve the equation f (θ) = fd for some θ ∈ Q, where n and m
vary based on the type of joints and the controlled features. This
is a root finding problem, and it may have multiple solutions, a
unique solution, or no solution at all, as discussed by Murray et
al. [14]. Solutions to this mapping are obtained by iterative solvers
that require differentiating the forward kinematic map with respect
to the control quantities.

For an articulated character made up of many bodies, each body
has a coordinate frame, and the position of the frame in world coor-
dinates is a function of the position and orientation of the root along
with the joint angles of the character. We assemble all parameters
of a character’s pose into a vector θ , including the root position
and orientation, and thus we can think of orientation and position
of each body as functions of θ .

3.1.1 Controlling the CM position
The CM position is the weighted average of the CM positions of all
bodies. Suppose we would like to know this quantity in some world
coordinate frame w. Given the position of the CM of a link, we can
write this as a function of θ ,

c(θ) =
1

mσ

N

∑
b

mb
wrb(θ) (1)

where rb and mb are the position and mass of body b respectively, N
is the number of bodies, mσ is the total mass and leading superscript
w on r denotes that the quantity is expressed in world coordinates.
We may want to control the CM of the character so that it stays in
a given position, or follows a desired trajectory. For this we take
partial derivative of Equation 1 with respect to θ

∂c(θ)
∂θ

=
1

mσ

N

∑
b

mb
∂ rb(θ)

∂θ
. (2)

Defining the terms for the CM and body Jacobians

∂c(θ)
∂θ

= Jc (3)

∂ rb(θ)

∂θ
= Jb (4)

we can rewrite Equations 2 as

Jc =
1

mσ

N

∑
b

mbJb. (5)

The jth block of Jb relates the change of joint angle j to the position
of body b,

Jb j = p̂b jRb j (6)

where pb j and Rb j are the translational and rotational components
of the transformation from joint coordinate frame j to body coor-
dinate frame b, and ∧ is a cross product operator in the form of a
skew symmetric matrix for a 3×1 vector a:

â =

 0 −az ay
az 0 −ax
−ay ax 0

 . (7)

To adapt the center of mass handle to 2D we exclude the third di-
mension from the positional vectors, and the cross product operator
will reduce to

â =

[
ay
−ax

]
. (8)

3.1.2 Controlling the rotational inertia
Total rotational inertia at the CM frame is the lower right 3×3 block
of the generalized inertia tensor

cM =

[
mσ I 0

0 I

]
(9)

where I is identity matrix. We obtain cM through summation of all
body inertia matrices transformed to the CM coordinate frame

cM = c
wAd

N

∑
b

w
b AdT bM w

b Ad (10)

where Ad is an adjoint transformation matrix [14]

Ad =

[
R p̂R
0 R

]
. (11)

Since there might be off-diagonal non-zero elements in I due to the
correlation of the inertia axes, we perform singular value decom-
position (SVD) on I to extract the rotational inertia elements along
each axis. For a planar character the rotational inertia reduces to a
single scalar quantity (as opposed to a 3× 3 matrix in 3D), which
corresponds to the element along the axis that is orthogonal to the
plane.

In 2D we can think of the rotational inertia as a disk with a radius
that is proportional to the square of off-plane scalar element. Hence
the expression for computing the total inertia becomes

I(θ) =
N

∑
b

mb(rb(θ)− c(θ))2 + Ib (12)

where scalar Ib is the rotational inertia of body b. In order to com-
pute the Jacobian we take partial derivative of Equation 12 with
respect to θ

∂ I(θ)
∂θ

= 2
N

∑
b

mb(rb(θ)− c(θ))T
(

∂ rb(θ)

∂θ
− ∂c(θ)

∂θ

)
(13)

and replace the relevant terms from Equation 3 and Equation 4

Jr = 2
N

∑
b

mb(rb(θ)− c(θ))T (Jb− Jc). (14)

3.1.3 Linear and angular momentum
It is also useful to consider expressions for linear and angular mo-
mentum of the entire character. In the absence of contact, the angu-
lar momentum will be a conserved quantity, and linear momentum
in the vertical direction will decrease at a constant rate due to grav-
ity while linear momentum in the horizontal direction is conserved.
Of note, the linear momentum is directly related to the CM velocity.

In 3-dimensional space, the velocity of a rigid body with respect
to an inertial frame is written as a twist, and can be written as a 6
components vector in a given coordinate system. For instance, the
twist of body b expressed in the coordinate frame attached to body
b can be written as

b
ζb =

[
v
ω

]
∈ R6. (15)

Likewise, the momentum of body b in coordinate frame b is a 6
component vector that is linearly related to the body velocity

b
Φb =

[
L
H

]
= bM b

ζb (16)



where L and H are the linear and angular momentum vectors, and
bM is the inertia tensor.

Just like twists, we use the adjoint transform (Equation 11) to
change momentum from one coordinate to another, except that we
use the inverse transpose. The total momentum of a multibody char-
acter, in coordinates at the CM of the character, is the sum of the
momentum of all rigid bodies

c
Φσ =

N

∑
b

b
cAdT bM b

ζb. (17)

In two dimensions linear velocity v and linear momentum L become
2×1 vectors and angular velocity w and angular momentum H are
scalar. We can likewise define the 2D adjoint transformation that
transforms twists from coordinate frame a to coordinate frame b,

b
aAd =

[
R p̂
0 1

]
(18)

where R becomes a 2×2 block and p̂ is the same as Equation 8. Let
bΓb provide the twist of body b in coordinate frame b when multi-
plied by joint velocities θ̇ . This is effectively the Jacobian of a rigid
body’s position, which is a function of the characters configuration
θ . With this, we can then write an expression that relate the joint
velocities to linear and angular momentum,

c
Φσ =

(
N

∑
b

c
bAdT bM b

Γb

)
θ̇ (19)

from which the Jacobian is found as

Jm =
N

∑
b

c
bAdT bM b

Γb. (20)

The sum in Equation 19 interestingly contains the CM position
Jacobian. That is, the upper two components of cΦσ are the linear
momentum of the entire character, which is same as the CM posi-
tion Jacobian multiplied by the joint velocities. In future work we
can use the expression for angular momentum in the bottom com-
ponent to regulate the overall angular velocity of the character in a
manner consistent with angular momentum conservation. Further-
more, while these quantities are derived for 2D planar characters,
the derivations are very similar for 3D rigid motion.

4 SOLVING THE INVERSE KINEMATICS PROBLEM

In this section we describe how to formulate and solve the inverse
kinematics problem with a mixture of high and low priority con-
straints. While our solver is global in the sense that it uses full
body configuration space to compute the solution, we also propose
a method that allows for local edits to the character.

4.1 Physics-based solution
In order to solve for the joint angles that satisfy the physics-related
control parameters we form a 6× 1 vector with the desired handle
quantities

gdes(θ) =

 Ides
cdes
Φdes

 . (21)

We also combine the three Jacobians that we computed so far into
a weighted Jacobian matrix

Jw =W

Jr
Jc
Jm

 (22)

where W is a 6×6 diagonal user-specified weighting matrix in the
form of

W =

[wr]1×1 0 0
0 [wc]2×2 0
0 0 [wm]3×3

 . (23)

The weighting matrix allows for additional control over the con-
tribution of each momentum handle to the solution. Since the Ja-
cobian matrix is not square, we use a pseudo-inverse method to
compute the solution

∆θ = J†
w gdes(θ) (24)

where J†
w is the pseudo-inverse of Jw and is computed by

J†
w = Jw

T (JwJw
T )
−1

. (25)

Equation 24 provides a least square solution with minimal norm
that remains robust as as long as singular configurations are
avoided. We use an iterative method because our characters typ-
ically have many degrees of freedom (20 to 25) and the target con-
figuration is defined by a few control quantities which makes it im-
possible to apply a closed-form IK solver.

The desired physical quantities are set via an automatic sys-
tem where the handle values are computed through processing the
keyframes of each handle track in the interface panel. Equivalently,
the desired parameters can be set by the animator through a set of
interactive tools.

4.2 Natural motion with prioritized solver
Although solving Equation 24 ensures physical plausibility of our
character motion, it does not guarantee for the character to maintain
a natural posture. In our solver we include three types of constraints
to achieve a natural motion:

• pinning constraint that control the velocity of links;
• desired joint angles;
• out of motion-range joint angle corrections.

Dealing with large collections of constraints is of interest in de-
signing complex motions, but it can also become a problem when
constraints are infeasible or conflict with one another. One solution
is to give physics-based constraints higher priority than the postu-
ral constraints, as they are of greater importance and can not be
violated.

We use a prioritized solver that takes advantage of the nullspace
of J†

w to allow for secondary constraints. For any arbitrary vector γ

we can expand Equation 24

∆θ = J†
wgdes(θ)+(I− J†

wJw)γ (26)

where (I− J†
wJw) performs a projection onto the nullspace of J†

w.
By suitably choosing γ we can achieve secondary effects such as
satisfying the postural (soft) constraints, while J†

wgdes(θ) provides
us with minimum error solutions to the physics-based (hard) con-
straints [5]. We directly follow the work of Yamane and Naka-
mura [20] for the computation of γ . Our work, however, differs
from their approach as we treat the pose tracker as lower priority
constraint and compute it in γ , whereas they treat it as a primary
constraint.

The problem of having additional control quantities is that the
resulting equations may not have exact solution due to conflict.
Even though solving the IK system with a pseudoinverse yields a
least square solution, infeasible solutions might be produced when
the configuration is singular. Therefore singularity robust methods,
such as the one proposed by Deo and Walker [7] need to be applied.



Algorithm 1 PhysIK algorithm

while running do . Processing the keyframes
θ ← GET CURRENT JOINTS STATE
C← COMPUTE CM(θ)
I← COMPUTE INERTIA(θ)
T ← GET CURRENT TIME
(Ks1,Ks2)← GET POSE KEYFRAMES(T )
(K p1,K p2)← GET PIN KEYFRAMES(T )
(Kc1,Kc2)← GET CM KEYFRAMES(T )
(Ki1,Ki2)← GET INERTIA KEYFRAMES(T )
θdes← INTERPOLATE(Ks1,Ks2)
Pdes← INTERPOLATE(K p1,K p2)
Cdes← TRAJECTORY TEMPLATE(Kc1,Kc2)
Ides← INTERPOLATE(Ki1,Ki2)
while not converged do . IK solver

Jc← CM JACOBIAN(θ ,C) . Eq. 5
Jr← ROTATIONAL INERTIA JACOBIAN(θ , I) . Eq. 14
Jhard← COMBINE(Jc,Jr) . Eq. 22
gdes(θ)← SET DESIRED HANDLES(Cdes, Ides) . Eq. 21
∆θh← SOLVE(gdes(θ),Jhard) . Eq. 24
Jsoft← SOFT CONSTRAINT JACOBIAN(θ ,Pdes,θdes)
∆θs← SOLVE SOFT CONSTRAINTS(Jsoft,Jhard) . Eq. 26
∆θ ← ∆θh +∆θs
θ ← UPDATE CHARACTER(∆θ)

end while
end while

A singularity robust method (SR), also known as damped pseu-
doinverse, uses a regularization parameter to relax the solution by
letting the norm of the solution have some error

A∗ = AT (AAT + kI)−1
(27)

where A∗ is the SR inverse of A, matrix I is the identity, and k is the
damping parameter weighting between the error and the norm of the
solution. For small values of k we get smaller errors, but we might
as well encounter larger solutions around singular points. Using
the SR inverse along with proper tuning of damping k helps us ease
the singularity problem by allowing errors near singular points. We,
however, want to use regularization only for the constraints that are
secondary in terms of importance and use a typical pseudo-inverse
method for the momentum related quantities. As a result, we use
an undamped pseudo-inverse method for the hard constraints, and a
damped pseudo-inverse technique for the soft constraints to achieve
the best mixture in our prioritized solver. Algorithm 1 provides an
overview of the steps involved in our IK solver.

4.3 Limited changes
Our system provides both the ability to adjust the character pose
globally as well as making changes to a limited set of user specified
joints. While making global edits helps fast sketching a pose, giving
the animator the ability to apply limited changes to the body is also
necessary. This is because an artist is typically interested in making
subtle adjustments to a part of the character without affecting the
whole body.

In order to isolate a group of joints, a local root R′ is selected and
the dragging of joint D determines the set of body limbs that are
taken into account by the IK solver. Figure 2 shows how dragging
a joint partitions the character into an active joint set (red nodes)
and a passive set (blue nodes). Algorithm 2 shows how we mark all
the joints as included or excluded depending on which subtree each
joint belongs to.

When solving for the soft constraints, we adjust the correspond-
ing weight of those that are included to 1 and set the rest to 0. At the
core of our algorithm we find the path Pm by marching from joint

Figure 2: Dragging the joint D separates the body into active (red)
and passive (blue) regions. Main path Pm to the local root R′ shares
at least one node with path Pi, which makes the joint Ni a member
of the active set. Path Pj does not share any joints with Pm so its
corresponding sample joint N j is excluded from the IK solve.

Algorithm 2 Limited changes

while Local root is selected do
R← GET THE ACTUAL ROOT
R′← GET THE LOCAL ROOT
D← GET DRAGGED NODE(nodes)
while D is valid do

MARK ALL NODES EXCLUDED(nodes)
Pm← FIND PATH TO LOCAL ROOT(R′,D)
for all nodes do

Ni← GET CURRENT NODE
Pi← FIND PATH TO R′(Ni,nodes,R′)
if Pi and Pm share any node except R′ then

MARK INCLUDED(Ni)
end if

end for
Ns← GET A SAMPLE INCLUDED NODE(nodes)
PL← FIND PATH TO R′(Ns,nodes,R′)
PR← FIND PATH TO ACTUAL ROOT(Ns,nodes,R)
if PL ⊆ PR then

MARK INCLUDED(R′)
end if

end while
end while

D to R′. For any other joint we find the path Pi to R′ and mark the
joint included only if Pi and Pm share at least one joint other than
R′. We do not allow for any translational update to the actual root
when performing limited changes. Our method ensures no viola-
tion of the positional constraint when a pinned joint is excluded and
is dragged by D.

5 HANDLE TRAJECTORY TEMPLATES AND INTERFACE

Given the appropriate handles, such as the CM position and inertia,
the key to our solution is to present the animator with a tool that
allows them to intuitively edit these features of a motion while pre-
serving physical plausibility. In this section, we describe a collec-
tion of tools and trajectory templates that provide this functionality.

Figure 3 shows part of the temporal controls interface presetned
to the animator. Much like in any standard keyframing interface,
there are different tracks for different quantities that have keyframes



Figure 3: Screen capture of the workspace used to set keyframes
and template trajectories. (a) Timing pane with a selected repeat
area shown in red and a time scrubber shown in green. (b) Pose
keyframing track where the type of interpolation is also set (note
the ease-in-ease-out blue and orange curves). (c) Pin keyframes
with a super imposed cubic spline to control pin gains. (d) CM
keyframes with a hint for physically plausible timing requirement.
(e) Trajectory template control panel.

set, such as pose tracker, hand or foot constraints, as well as the CM
position. The animator can insert, delete, copy and paste, and edit
keyframes, as well as dragging them to different times. Between a
pair of keyframes, we allow the user to adjust different properties,
such as setting the interpolation function in the pose track, the posi-
tional constraint gains in the pin track, and the template trajectories
in the CM track.

In order to obtain the character configuration for the current time
step, the system first uses the timing pane to select the active pair
of keyframes in each track, then computes the desired quantities
through processing the selected keyframes, and finally solves for
the joint angle updates by inverse kinematics. The animator is pro-
vided with optional inclusion or exclusion of keyframes in the pin
and the CM tracks. This is a direct feature of separating physics-
based quantities and postural constraints in Equation 26.

Figure 4 shows a snapshot of the spatial controls available to the
animator during the landing sequence of a jump. The CM position
at the keyframes can be dragged, as can be the velocity. Pinning
constraints are also an important part of designing the motion. In
the figure, note how feet are naturally dragged towards the ground
while preparing for landing. The desired touch down points are
shown in red on the grass. While the character is still in the air, the
pins are set with low gains that increase over time in preparation for
the landing phase. The velocity of the CM at the time of landing
is likewise used as the initial velocity of the CM Hermite curve in
the landing phase, ensuring that there is a C1 continuous smooth
transition between the projectial path and the landing motion.

We have investigated a few different templates for setting physi-
cally plausible character motion between keyframes.

Hermite. Cubic curves allow positoin and velocity to be
matched connecting the segments between keyframes. In partic-
ular, we can ensure smooth trajectories for the CM leading into and
exiting the other template trajectories. In order to generate a tra-
jectory for a Hermite interval, CM positions are sampled along the
path connecting two Hermite keyframes based on the time dura-
tion of the path, and the CM positions and velocities at each end.
Although the cubic curves are computed for each Hermite interval
separately, the resulting spline when connecting multiple segments
will be C1 continuous.

Figure 4: Screen capture of the interface showing handles available
for controlling the landing motion of a jump.

Projectile. This template has the constraint that the linear mo-
mentum of the character is only affected by gravity, and thus the
center of mass will undergo a constant vertical acceleration of
−9.8 ms−2, while the horizontal momentum is conserved. The an-
imator can adjust the arc of the jump through a variety of controls
such as the maximum height, initial velocity, initial position, end
position, and time of flight. Because these parameters are coupled,
our tool automatically adjusts the parameters left unconstrained by
the animator in order to satisfy the constraints of the template trajec-
tory. In particular, we present three projectile templates, as shown
in Table 1, each with a specific purpose that makes them intuitive to
use by the animator. We label these templates as (I) , (II) and (III).

Projectile (I) presents a straightforward template where the an-
imator will only need to set the start and end CM positions and
specify the time of flight, where the height of the arc can be ad-
justed through changing the time interval of the keyframes. Note
that this template does not use any velocity handles but updates its
neighbours velocity handles to ensure smoothness.

Projectile (II) does not require a landing position and instead
uses the take-off velocity handle to control the jump arc. In this
case we allow the template to automatically compute the landing
position and update the corresponding CM keyframe with the new
value, Ce

′. The free landing parameter helps the animator to explore
different jump scenarios in the sketching phase only by regulating
the initial velocity handle without being too much concerned with
the landing position.

Projectile (III) uses an auxiliary interactive tool to set the desired
maximum height. This is specially useful when we want to author
jump motions where take-off and landing, as well as the height of
the motion, are more important than the time of flight. For example,
performing a slam dunk by a basketball player requires reaching a
certain desired height while take-off and landing positions should
remain on the floor and inside the playground. Because the time
of flight might not match that of the keyframes we provide visual
hints both on the ballistic path and in the keyframing panel to help
the animator with the process, as shown in Figures 5 and 6. We also
present an “auto-fix” feature to automatically compute a new time
of flight te′ that satisfies the jump height and positional constraints.



Figure 5: Projectile hint and auto-fix in the CM keyframing track.
Top: Initial setup of the keyframes to be edited. Middle: Increasing
the desired maximum height of the jump violates the timing of the
end CM keyframe. Bottom: Corrected time of flight.

Figure 6: Projectile hint and auto-fix display related to the example
shown in Figure 5 with the same order of steps. H is the desired
maximum height, V0 and V1 are the initial and end velocity handles
and Ct is the CM position at the current time. The rest of variables
are the same as Figure 5.

Should the animator decides to use this feature, we move the end
CM keyframe such that the new time interval matches te′, as shown
in Figure 5.

Pendulum. The motion of the CM follows the motion of a
pendulum, allowing animation of a character swinging between
branches, on monkey bars or spiderman type of swing between
buildings. This template assumes a frictionless pivot that results in
an undamped motion trajectory of the CM. The only acting forces
on the pendulum are the gravitational force and the force that keeps
the mass point on the constrained path. The length, initial velocity
and pivot position of the pendulum can be adjusted and keyframes
can be set to transition at arbitrary times. Just like projectile (II) we
do not use the end CM position in generating the pendulum path,
rather we update the end keyframe with the position of the CM at
the end of the time interval, as shown in Figure 7 as C3

′. Using the
same template we can also generate path for an inverted pendulum
by adjusting the initial velocity handle. An inverted pendulum al-
lows animating a variety of interesting character motions such as
walking locomotion or gymnastic front and back aerials. This is in-
spired by simplified models used to understand animal locomotion,
and to control physics based character locomotion.

Table 1 summarizes the control variables available to the an-
imator when using each feature trajectory template. We always

Figure 7: Generating a pendulum trajectory for a pair of CM po-
sitions given by C1 and C2. Initial velocity handle V0, the pivot
position P and the time interval between C1 and C2 are used to gen-
erate the trajectory. Hermite curves are also set for the keyframe
pairs C1 and C2 as well C3

′ and C4. Ct is the CM position at time t.
Note that C3

′ is automatically updated by the template and the end
velocity V1 is used to update the cubic curve on the right-hand side.

Template Cs Ce Vs Ve ∆T H/P Ce
′ te′

Hermite x x x x x
Projectile I x x x
Projectile II x x x x
Projectile III x x x x x
Pendulum x x x x x

Table 1: Template control variables. Cs and Ce are start and end CM
positions, Vs and Ve are the start and end velocities, ∆T is the time
duration of the trajectory, H/P means either use of desired height
(H) or pivot position (P), Ce

′ is the computed end CM position and
te′ is the corrected end time.

update the neighbour CM trajectories when editing the path of a
template in order to maintain the smoothness of the CM trajectory
segments. For instance, in Figure 6 we see how the adjacent Her-
mite templates are updated as we edit the projectile path. Note that
we can only update the velocity handles if they are part of the ad-
justable variables of the trajectory template (Vs and Ve). This means,
for example, Hermite curves are always updated though both the
initial and end velocity handles, while a pendulum template can
only be updated through its initial velocity handle.

6 RESULTS

We present results for a variety of examples, which are best seen
in the supplementary video. Our keyframing system allows for
quickly authoring a motion with visual hints and assist control to the
animator whenever a physical constraint is violated. The humanoid
example has size and mass distributions which come from a study
by Nasa [15]. We also show that our method does not make any
assumption regarding the morphology of the character. All com-
putations were run on a dual-core 2.4 GHz machine with 12 GB
RAM. Each IK step with both hard and soft constraints takes about
250 µs. This helped us achieve real time preview display and user
interactions in the keyframing interface, which is a crucial factor in
animation creation process.

Limited changes. Figure 8 shows reproducing results similar
to those demonstrated by Yamane and Nakamura [20], as well as
how our limited change algorithm provides more control over edit-
ing body posture. In this figure, we compare postural changes of
the character with and without a user selected local root, where ed-
its are only applied to a user selected region. The limbs coloured
in green are temporarily excluded from the edit process. Our algo-
rithm ensures dragging an active limb results in a new posture that



also meets the positional constraints of the passive pins. This can
be seen from parts (d) and (f) in the figure where the pinned feet
remain in their positions while the the right hand is dragged.

Monkey bar. As shown in Figure 1 as well as in the supple-
mentary video, all three types of trajectory templates are put to-
gether to create an animation where the character performs sportive
actions in a highly dynamics manner. Successive swings consist
of seven pendulum templates that are connected by Hermite cubic
curves to achieve smooth CM trajectories in transitions. A projec-
tile template is used for a plausible landing motion and a Hermite
template steers the character to its rest pose. Pin gains are also
scheduled to achieve natural arms and feet motion in making and
breaking contacts with the monkey bar, as well as in landing.

Jump motion. In the supplementary video we present a long
jump example that well demonstrates the application of IK handle
in our keyframing system. The character center of mass follows a
projectile motion created by constraining a desired height, take off
and landing positions. Not only Hermite template handles at take
off and landing help creating a smooth curve for the center of mass,
but also based on the created ballistic path they are automatically
updated to match velocity when interpolating keyframes. Plausi-
ble take off and landing feet postures are achieved through pinning
the toes and heels to the ground and regulate their gain using the
interface. Figure 9 shows an example of changing the pose of the
character without any necessity to regulate the IK handles. In the
video we show how to use the interface to author an example jump
motion using the techniques described here.

Dive motion. Figure 10 shows a fast way of creating the poses
that are common in a dive motion simply by regulating the inertia
of the character. In this figure we maximize the body inertia to
achieve full stretch in the beginning and at the end, and decrease
it at the top of the ballistic curve. We use the inertia handle along
with the projectile template to quickly generate results shown in
this figure.

Work flow. In the video we present our work flow and how an
artist is provided with visual hints to correct the physics of a jump
motion. We also show an easy autofix button to automatically cor-
rect the timing of the keyframes when, for example, the timing dif-
ference between two keyframes does not allow the character reach
its target landing position.

Face hugger. This example shows how the IK handles are not
dependant on the morphology of the character. Figure 11 illustrates
an alien character with many body limbs. While creating a pose
could be challenging due to many joints of the face hugger, we show
changing the inertia can provide a fast way of moving the limbs
towards a desired pose. The video shows symmetrical postures are
achieved by merely using the inertia handle. We also show that a
predator pose emerges naturally by pinning two legs on the ground
and moving the tail sideways while lowering the inertia quantity.

Performance. Figure 12 shows an example convergence plot
for a typical case of editing the character with varying number of
pins. For the sake of performance test we set the desired pose of
the character to a fixed rest pose before each call to the IK solver.
Note that while this could make it more challenging for the solver
to converge, in practice we typically set the desired pose from the
solution at the previous step of animation to get faster convergence
rates. In our experiments we found that iteration numbers between
30 to 50 generally produce convincing motions while allowing for
real time interactions with the character.

7 CONCLUSION

In this paper we derive expressions for the center of mass, momen-
tum, and the magnitude of the inertia tensor, and we use these as
constraints within an inverse kinematics solver to allow animators

Figure 8: Limited changes. (a) Default pose with feet pinned. (b)
Dragging right hand results in full body change. (c) Using local
root to only adjust the lower part of the body. (d) Using the same
local root to adjust the upper part. (e) Isolating the right leg through
a local root at the right hip. (f) Dragging the right hand changes the
body posture but has no effect on the excluded limbs. Note that the
positional constraint of the right foot is also satisfied.

Figure 9: Editing a jumping character. Left: Initial pose. Right:
New pose. Note in both cases the center of mass position on the
ballistic curve remains fixed.

to easily animate physically plausible motion. Furthermore, phys-
ically based template trajectories help an animator produce trajec-
tories that respect physics during dynamic activities. The solver in-
cludes soft constraints on the pose of all joints to encourage natural
poses, while producing postures that meet reaching objectives and
foot placements with constraints of adjustable weight. Re-rooting
likewise allows an animator to easily specify local pose changes.
Creating physically plausible character motion through keyframing
is challenging, and we expect our results to be relevant to character
animators of all levels of experience.

7.1 Future work
While the results shown in this paper are 2D, the derivations of
center of mass an inertia handles are the same in 3D. Our deriva-
tion of momentum, both angular and linear opens up the possibility
of providing a template trajectory that preserves angular momen-
tum during ballistic motion. Combined with a control of the rota-
tional inertia, this can provide an animator the means to produce
physically valid animation that would be very hard to produce oth-
erwise. While it is straightforward to change the angular velocity of
a character to ensure that angular momentum is preserved when the
angular inertia changes, it is more challenging to do this with time
varying end point constraints with varying weights. We believe that
this can be addressed by combining a temporally local solves with
a more general optimization over a larger temporal window. Other



Figure 10: Dive motion using the projectile template and interpolation of rotational inertia. The inertia handle is shown as a grey circle. Note
the change of inertia from left to right.

Figure 11: Face hugger: Only using the inertia handle to change
the legs configuration. Increasing the inertia results in a natural
transition from left to right.

Figure 12: Example convergence plot of an IK solve with differ-
ent pin numbers. All soft and hard constraints are included in this
example.

interesting extensions to our work include the estimation of forces
through inverse dynamics to allow animators to understand when
and how the motions they designed become less plausible.

REFERENCES

[1] A. Aristidou and J. Lasenby. Fabrik: a fast, iterative solver for the
inverse kinematics problem. Graphical Models, 73(5):243–260, 2011.

[2] P. Baerlocher and R. Boulic. An inverse kinematics architecture en-
forcing an arbitrary number of strict priority levels. The Visual Com-
puter, 20(6):402–417, 2004.

[3] R. Boulic, R. Mas, and D. Thalmann. A robust approach for the con-
trol of the center of mass with inverse kinetics. Computers & Graph-

ics, 20(5):693–701, 1996.
[4] R. Boulic and D. Thalmann. Combined direct and inverse kinematic

control for articulated figure motion editing. Computer Graphics Fo-
rum, 11(4):189–202, 1992.

[5] S. R. Buss. Introduction to inverse kinematics with Jacobian trans-
pose, pseudoinverse and damped least squares methods, 2004. unpub-
lished survey.

[6] S. R. Buss and J.-S. Kim. Selectively damped least squares for inverse
kinematics. Journal of Graphics, GPU, and Game Tools, 10(3):37–49,
2005.

[7] A. Deo and I. Walker. Overview of damped least-squares methods for
inverse kinematics of robot manipulators. Journal of Intelligent and
Robotic Systems, 14(1):43–68, 1995.

[8] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popović. Style-
based inverse kinematics. ACM Transactions on Graphics (TOG),
23(3):522–531, 2004.

[9] M. Kallmann. Analytical inverse kinematics with body posture con-
trol. Computer Animation and Virtual Worlds, 19(2):79–91, 2008.

[10] T. Komura, A. Kuroda, S. Kudoh, T. C. Lan, and Y. Shinagawa. An
inverse kinematics method for 3D figures with motion data. In Com-
puter Graphics International 2003, pages 266–271, July 2003.

[11] P. G. Kry, C. Rahgoshay, A. Rabbani, and K. Singh. Inverse kino-
dynamics: Editing and constraining kinematic approximations of dy-
namic motion. Computers & Graphics, 36(8):904–915, 2012.

[12] R. Kulpa and F. Multon. Fast inverse kinematics and kinetics solver
for human-like figures. In Proceedings of IEEE Humanoids, pages
38–43, 2005.

[13] S.-H. Lee and A. Goswami. Reaction mass pendulum (RMP): An
explicit model for centroidal angular momentum of humanoid robots.
In ICRA, pages 4667–4672, 2007.

[14] R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction to
Robotic Manipulation. CRC, March 1994.

[15] H. G. A. A. M. R. L. W.-P. A. OH. Anthropometry and mass distri-
bution for human analogues. volume 1. military male aviators. Final
report, Anthropology Research Project, 1988.

[16] D. Raunhardt and R. Boulic. Motion constraint. The Visual Computer,
25(5):509–518, 2009.

[17] A. Shapiro and S.-H. Lee. Practical character physics for animators.
IEEE Computer Graphics and Applications, 31(4):45–55, 2011.

[18] K. W. Sok, L. Yamane, K., and J. Hodgins. Editing dynamic human
motions via momentum and force. In Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer animation, pages
11–20, 2010.

[19] L.-C. T. Wang and C. C. Chen. A combined optimization method for
solving the inverse kinematics problems of mechanical manipulators.
Robotics and Automation, IEEE Transactions on, 7(4):489–499, 1991.

[20] K. Yamane and Y. Nakamura. Natural motion animation through con-
straining and deconstraining at will. IEEE Transactions on Visualiza-
tion and Computer Graphics, 9:352–360, 2003.

[21] J. Zhao and N. I. Badler. Inverse kinematics positioning using nonlin-
ear programming for highly articulated figures. ACM Transactions on
Graphics (TOG), 13:313–336, 1994.


