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Medial Spheres for Shape Approximation
Svetlana Stolpner, Paul Kry, Kaleem Siddiqi

Abstract—We study the problem of approximating a 3D solid
with a union of overlapping spheres. In comparison with a state-
of-the-art approach, our method offers more than an order
of magnitude speed-up and achieves a tighter approximation
in terms of volume difference with the original solid, while
using fewer spheres. The spheres generated by our method are
internal and tangent to the solid’s boundary, which permits
an exact error analysis, fast updates under local feature size
preserving deformation, and conservative dilation. We show that
our dilated spheres offer superior time and error performance
in approximate separation distance tests than the state-of-the-art
method for sphere set approximation for the class of (σ, θ)-fat
solids. We envision that our sphere-based approximation will also
prove useful for a range of other applications, including shape
matching and shape segmentation.

Index Terms—medial axis, shape approximation, sphere-based
representations

I. INTRODUCTION

The choice of representation of 3D volumetric data is an im-
portant question in motion planning, solid modeling, computer
vision, computer graphics, medical imaging and computer
aided design. Whereas representations that approximate object
boundaries with triangles are popular, representations of solids
as unions of spheres are a valuable alternative. As argued
in [1], such representations are robust to noise and resolution
changes. Further, sphere-sphere distance tests are significantly
faster than distance tests between other volumetric primitives.

In recent years, a number of applications have made
use of sphere-based representations. For example, hierarchies
of spheres are used for collision detection in [2] because
sphere-sphere intersection tests are fast and simple. Sphere
representations are used in the application of soft shadow
generation [3], where a low-frequency object representation is
sufficient. Additionally, sphere-based representations are used
for efficient level-of-detail rendering [4], shape matching [5],
and shape deformation [6].

In the above applications, it is desirable to be able to quickly
generate an approximation of a solid that provides a tight
fit using a small number of spheres. Finding the minimum
number of spheres that covers a set of points on the object
boundary is NP-hard by reduction from Set Cover [7]. For this
reason, heuristics are used to find a small set of approximating
spheres in practice.

A popular strategy for approximating a solid with a small
number of well-fitting spheres is to start by computing the
Voronoi spheres of a set of points on the solid’s boundary ([7],
[8], [2]). The centres of these spheres, the Voronoi vertices,
are inherently clustered near rounded corners because there
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Fig. 1. A polyhedron (Left) and two distributions of sphere centres for a
sphere-based approximation this object. (Centre) The subset of the Voronoi
vertices of points sampled on the polyhedron boundary that lies near its medial
surface. (Right) Sphere centres computed with our method.

are many Voronoi vertices equidistant from 4 boundary points
at these locations (e.g. Figure 1(Centre)). Thus, each Voronoi
sphere does not necessarily capture a unique salient feature of
the polyhedron. Subsequently, to generate a small number of
spheres offering a tight fit to a solid, such methods require an
optimization step to remove and redistribute spheres, making
them computationally expensive.

We have recently proposed a method to approximate the
salient portions of the medial surface of a polyhedron using
a well-spaced collection of points [9]. The spheres produced
are internal and tangent to the boundary of the solid and there
is at most one sphere centre per cubic region of space (cf.
Figure 1(Right)). In this article we investigate the application
of this method to the problem of quickly generating a small
set of well-fitting spheres to a polyhedron. Compared to the
state-of-the-art method for approximating solids with spheres,
we show that our method is significantly faster and provides
a tighter fit in terms of volumetric error. When a model
undergoes local feature size preserving deformation, we show
how our sphere approximation can be quickly updated and
show how the volumetric error of the new sphere sets can
be evaluated. We then use our sphere-based representation
to compute approximate separation distance. To allow this
application, we propose a method to improve the coverage of
the solid’s boundary and describe how an efficient bounding
volume hierarchy of the sphere sets can be built to accelerate
distance tests. We show experimental results comparing the
performance of our method with the leading method in sphere-
based approximation for the computation of approximate sep-
aration distance.

II. BACKGROUND AND PREVIOUS WORK

We begin by providing some necessary definitions. Given
a 3D solid Ω with boundary B, the medial surface MS
of Ω is the locus of centres of maximal inscribed balls in
Ω, called medial points. A maximal inscribed ball in Ω is
called a medial ball of Ω, and its boundary is called a medial
sphere. A very important property of medial representation is
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that the union of all medial balls of Ω is Ω. Recently, many
promising methods for the computation of medial balls have
been proposed, examples of which include [10], [11] and [12].
For an overview of algorithms for the computation of medial
representations as well as their properties please refer to [13].

When approximating a solid with spheres, a popular strategy
is to start with a subset of the medial spheres of the solid.
Voronoi spheres, defined below, are often used to approximate
medial spheres.

Given a set of point sites P = {p1, p2, . . . , pn}, pi ∈ R3,
the Voronoi diagram of P is a partition of R3 into Voronoi
cells V (pi) with respect to the Euclidean distance dE s.t.

V (pi) = {x ∈ R3 | d2
E(x, pi) ≤ d2

E(x, pj), ∀j 6= i}. (1)

A vertex of V (pi) is called a Voronoi vertex and is the centre
of a Voronoi sphere that touches 4 or more points of P , but
does not contain any point of P in its interior.

When the points P are sampled on the boundary B of a
solid Ω, Amenta et al. [11] show that a subset of the Voronoi
vertices of P , the poles, converges to the medial surface of
Ω as the sampling density of P approaches infinity. As the
union of medial balls of a solid reconstructs the solid, Voronoi
spheres are proposed for shape approximation in [8] and [2].

An early method for the approximation of an object with
spheres bounds each mesh triangle with a sphere but does not
necessarily offer a tight fit [14]. Also, a number of methods
have been proposed recently for the simplification of sphere
representations ([7], [15]), but they do not explicitly aim to
ensure tightness of fit. We now review existing methods that
approximate a 3D solid with spheres with the goal of providing
a tight approximation to the solid using a small number of
spheres.

There are two methods which approximate an object Ω with
tight-fitting spheres, starting with a set of Voronoi spheres.
Hubbard [8] greedily selects adjacent Voronoi spheres for
merging when their bounding sphere has the best tightness of
fit. Bradshaw and O’Sullivan [2] improve the tightness of fit
of Hubbard’s algorithm by using an adaptive greedy strategy
that adds sample points to the boundary of Ω to generate new
Voronoi spheres as needed. Tightness of fit is evaluated as
the maximum distance between each sphere and Ω. As this
quantity is difficult to compute exactly, an approximation is
used.

Wang et al.[3] propose a variational optimization method
that improves on the performance of [2] and is feasible for
approximations having up to several hundred spheres. The
error measure used is an approximation to total sphere volume
outside Ω. Approximate volumetric error is also used in [16]
to compare the performance of the methods of [8], [2], and
an octree-based method for approximating deforming objects
with spheres. In the present work, we also use a volume-based
error measure.

III. COMPUTATION OF MEDIAL SPHERES

We now describe a modification of the method first intro-
duced in [9] to approximate a solid Ω with a union of medial
balls, such that the density of the centers of the medial balls
is user-prescribed.

Fig. 2. In this 2D example, the boundary of an object is shown in black and
its medial axis in red. Left, the object angle of the small circle with centre
m1 is is greater than that of big circle with centre m2 since ∠A1m1B1 >
∠A2m2B2. Right, arrows show the directions to nearest locations on the
boundary of the object to points on R. In this example, the medial surface
intersects the line segment (b, opp(b)) because B(b) 6= B(opp(b)).

Suppose that a point m ∈ MS is equidistant from two
points A,B ∈ B. Angle ∠AmB (see Figure 2 left) is the
object angle. The complete medial surface of a polyhedron
can be a complicated structure and typically only a subset of
the medial surface is sought. The object angle is a valuable
simplification criterion for the medial surface ([10], [12]).
Our goal is to locate a small number of medial balls such
that the volume of their union approximates the volume of
Ω well. As shown in [12], removal of medial balls having
a small object angle has a small impact on the volume of
the reconstructed object (refer to Figure 2, left). In order to
reduce the number of spheres generated and to achieve a tight
volumetric approximation, we will look for those medial points
having a large object angle.

The method we use is based on the analysis of the nearest
boundary points to a set of query points inside Ω. Let B(p) be
the nearest point on B to a point p. As shown in [17], using
arguments similar to those in [18], the medial surface intersects
a line segment (p, q), where q = p+ γ(p−B(p)), iff B(p) 6=
B(q), for any scalar value of γ. Refer to Figure 2, right, for
an illustration. This property is the basis for the algorithm we
use for detecting medial points in convex regions.

We consider a regular partition of space into voxels with
side length σ. For each voxel interior to or intersected by Ω,
we circumscribe v with a sphere S and sample points on S.
We then consider pairs of points (p, q) such that q = p +
γ(p − B(p)), and p and q both lie on S. For those pairs of
points (p, q) that have different nearest boundary points, we
perform binary search on the segment (p, q) to determine a
location within a user-chosen tolerance ε of the medial surface
on (p, q). We also estimate the object angle of this approximate
medial point, as described in [9], and discard points with low
object angle estimates. We output at most one point within
ε of the medial surface inside voxel v and inside Ω. This
point is the centre of a sphere whose radius is the distance
from this point to its nearest point on B. When exact point-to-
mesh distance computations are used, the computed spheres
are internal and tangent to the boundary B. To summarize, we
produce a set of spheres that are interior and tangent to the
solid’s boundary and whose centres are distributed such that at
most one sphere centre lies in one voxel. In contrast with the
method presented in [9], this method allows locating sphere
centres in voxels intersected by the boundary B in addition to
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those completely inside Ω. Thus, the current method offers an
improved fit. Using spheres that are interior and tangent to B
is essential for the error analysis in Section IV-A, the updates
under deformations in Section V-A, and the sphere dilation
process in Section VI-A.

IV. VOLUMETRIC ERROR FOR UNIONS OF BALLS

In this section, we evaluate the global quality of our sphere-
based approximation to a polyhedron using a volumetric
measure, and present comparative results against a leading
method that approximates polyhedra with spheres.

A. Volumetric Error: Exact and Lower Bound

We evaluate tightness of fit of an approximation of Ω with
a union of balls U as the volume of U outside Ω plus the
volume of Ω outside U . Let vol(.) denote volume and A be
the compliment of a set A. Then

ErrΩ(U) = vol(U ∩ Ω) + vol(Ω ∩ U) (2)

is the error of the approximation of Ω with U . We state the
following lemma.

Lemma 1: |vol(U)−vol(Ω)| ≤ ErrΩ(U) and when vol(U∩
Ω) = 0, vol(Ω)− vol(U) = ErrΩ(U).

Proof: Observe that vol(U) = vol(U∩Ω)+vol(U∩Ω) and
vol(Ω) = vol(Ω ∩ U) + vol(Ω ∩ U). It follows that vol(U)−
vol(Ω) = vol(U ∩ Ω) − vol(Ω ∩ U) ≤ ErrΩ(U). Likewise,
vol(Ω)− vol(U) = vol(Ω ∩ U)− vol(U ∩ Ω) ≤ ErrΩ(U). If
vol(U ∩ Ω) = 0, vol(Ω)− vol(U) = ErrΩ(U).

The next section explains how to compute vol(U) exactly.

B. Unions of Balls: Tools

In this section we describe tools for the analysis of unions
of balls, proposed in [19], [20], that we will use in this work.
First, we define a special space filling diagram for a set of
balls, called the power diagram [19].

Given a set of balls, B = {(c1, r1), . . . , (cn, rn)} with
centres ci ∈ R3 and radii ri ∈ R, the power diagram of B,
denoted PD(B), is a partition of R3 into convex power cells
P (bi), s.t.

P (bi) = {x ∈ R3 | d2
E(x, ci)−r2

i ≤ d2
E(x, cj)−r2

j ,∀j 6= i}.
(3)

Note that power cells (Eq. 3) are identical to Voronoi cells
(Eq. 1) when all the ball radii are the same. Figure 3 shows a
2D example of the power diagram of a set of disks.

We decompose a union of balls into convex cells by
intersecting each ball with its power cell. Consider the dual
complex DC(B) of the decomposition. DC(B) contains a
vertex i for each sphere si, an edge (i, j) whenever balls bi and
bj share a face of PD(B), a triangle (i, j, k) whenever balls
bi, bj , bk share an edge of PD(B), and tetrahedron (i, j, k, l)
whenever balls bi, bj , bk, bl share a vertex of PD(B). We will
use the relationships captured by this complex to improve the
surface coverage of a set of medial balls in Section VI-A.

As shown in [20], to find the total volume of a union of
balls, vol(∪ibi), one need only consider the balls correspond-
ing to vertices, edges, triangles and tetrahedra of DC(B):

(a) (b) (c) (d)

Fig. 3. (a) A union of a set of disks; (b) its power diagram overlayed; (c)
the union of the set of disks decomposed using the power diagram; (d) the
dual of this decomposition.

vol(∪ibi) =
∑
i∈DC(B) vol(bi)−

∑
(i,j)∈DC(B) vol(bi ∩ bj) +∑

(i,j,k)∈DC(B) vol(bi∩bj∩bk)−
∑

(i,j,k,l)∈DC(B) vol(bi∩bj∩
bk ∩ bl) . This simple formula makes the computation of the
volume of a union of balls efficient.

C. Experimental Results and Discussion

In this section, we compare the sphere-based approxima-
tions computed with our method and those computed using
a leading method in terms of the volumetric error of the
approximation. The method of Bradshaw and O’Sullivan [2]
for approximating solids with spheres, which we will refer to
as AMAA, is the state-of-the-art method for approximating
solids tightly using several hundred spheres or more. The
sphere approximations generated in [3] provide a tighter fit
than those computed by AMAA, but the method is only
feasible for generating small sphere sets (approximately 128
spheres). As our method is able to generate a large number
of spheres quickly, we compare its performance in generating
sphere sets of cardinality greater than 128 to that of AMAA.

Let SD be the approximation to Ω computed with our
distance-based method and let SV be the approximation to
Ω computed with the Voronoi-based AMAA method. Let BD
and BV be the closed balls corresponding to the spheres
SD and SV , respectively. Let UD and UV be the corre-
sponding unions of balls. As explained in Section III, UD
is completely contained in Ω, i.e., vol(UD ∩ Ω) = 0. By
Lemma 1, Err(UD) = vol(Ω) − vol(UD), while Err(UV ) ≥
|vol(UV )−vol(Ω)|. Since in our experiments we approximate
a variety of objects of different sizes, we will define the
normalized error of the approximation offered by sphere set
S to be nerr(S) = ErrΩ(U)

vol(Ω) , where U is the union of the balls
corresponding to S.

We tabulate the exact error of SD given by nerr(SD), and
a lower bound on the error of SV , nerr(SV ), for 12 models
of varying geometric complexity in Table I. Approximate
volumetric error has been used in the literature ([3], [16])
to evaluate the quality of sphere-based approximations and
provides a global measure of fit. AMAA construction proceeds
top-down by building a hierarchy with a fixed branching
factor and depth. In Table I, SV are the leaves of an 8-
ary hierarchy of depth 4 (i.e., maximum number of spheres
generated is 512). In finding the appropriate set of spheres SD,
we found the largest voxel resolution such that |SD| < |SV |.
Fast construction of a tight binary hierarchy for the spheres
SD is discussed in Section VI-C. Figure 4 shows error and
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|SV | = 512 506 474 497 512 496 510 444 482 506 499 495
|SD| = 495 475 449 483 472 481 487 422 469 500 487 480

nerr(SV ) ≥ 0.035 0.248 0.017 0.054 0.141 0.266 0.055 0.091 0.015 0.101 0.480 0.050
nerr(SD) = 0.034 0.191 0.011 0.033 0.073 0.156 0.038 0.062 0.011 0.060 0.157 0.029
Time(SV ) = 2,342 3,212 4,049 2,672 4,936 1,930 22,845 2,469 7,428 2,870 3,739 9,479
Time(SD) = 103 138 284 99 171 94 429 278 356 114 159 243
# triangles = 6,144 5,104 6,924 5,672 11,116 5,288 46,202 5,110 18,432 5,114 13,320 19,276

TABLE I
SPHERE SETS SD ARE GENERATED WITH OUR METHOD; SPHERE SETS SV ARE GENERATED WITH THE METHOD OF [2]. TIMINGS ARE IN SECONDS.

computation time as a function of the number of spheres
generated for AMAA and for multiple invocations of our
method until the appropriate sphere set was found. Timings
are shown on a 3.6 GHz Pentium IV processor with 3 GB of
RAM. As can be seen from Table I and Figure 4, our method
generates a set of tighter fitting spheres significantly faster than
AMAA. In generating our sphere sets, we use a threshold on
object angle of 0.6 radians.

Our distribution of sphere centres, where at most one sphere
centre is produced per voxel, is typically not an optimal
distribution for minimizing the volumetric error. An optimal
distribution of spheres minimizing volumetric error would
include more large radius medial spheres than small radius
medial spheres. In the case of the peanut and tooth models
(columns 3 and 9 of Table I) our heuristic necessarily generates
a suboptimal sphere centre distribution. However, for these
models as well, we observe that our method’s performance in
terms of volumetric error is superior to that of AMAA.

Fig. 4. Error and timing results for the pear (5154 triangles) and triple torus
(16000 triangles) models. Note that true SV error may be higher than plotted.

V. FAST UPDATES UNDER DEFORMATION

In this section, we consider the case when Ω is a polyhe-
dron whose triangulated boundary undergoes deformation. We
devise an algorithm for quickly updating our spheres sets in
this case. We also compute bounds on the volumetric error of
the new approximation.

A. Update Method

Let B be a triangle mesh boundary of Ω. Consider a
deformed version of B, B′, bounding solid Ω′. We will show
how to update the sphere set approximating Ω to build an
approximation to Ω′. Consider the set of internal spheres
tangent to Ω. Let F : B → B′ be a one-to-one mapping of
vertices in B to those in B′. For a medial sphere s = (c, r)
of Ω, we now explain how the position and radius of the
corresponding sphere s′ = (c′, r′) in B′ may be estimated.
Let A be a nearest point to c on B. Let NB(A) be the inner
normal to B at A. By construction,

c = A+ rNB(A). (4)

Suppose that A lies on 4vivjvk. Let λi, λj , λk be the
barycentric coordinates of A in 4vivjvk, such that A =
λivi + λjvj + λkvk. Then if v′i, v

′
j , v

′
k are the vertices of B′

corresponding to vi, vj , vk, let sphere s′ be tangent to B′ at
A′ = λiv

′
i + λjv

′
j + λkv

′
k. If s′ is a medial sphere, then

c′ = A′ + γNB′(A′), (5)

for some constant γ [21]. Given vertex normals, we estimate
NB′(A′) = λiNB′(v′i) + λjNB′(v′j) + λkNB′(v′k). We obtain
an initial estimate for c′ by letting γ = r.

Incorrect normal estimates or local shrinking of B′ cause
sphere s′ = (c′, r) to protrude outside B′. This case is
determined by checking the shortest distance from c′ to B′.
When this distance is significantly less than γ, the value for γ
is reduced until the sphere protrudes a user-chosen tolerable
amount outside B′. Algorithm 1 summarizes the procedure for
shrinking spheres.

Algorithm 1 SHRINK(s = (c, r),B, p, ξ)
Input: Mesh boundary B, point p of contact of sphere s with
B, threshold ξ > 0.

Output: A sphere that protrudes at most ξ outside B.
1: Let d be the distance from c to B.
2: while r − d ≥ ξ do
3: Let r = (r + d)/2.
4: Let c = p+ r(c− p)/‖c− p‖2.
5: Let d be the distance from c to B.
6: end while
7: Return (c, d).
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B. Volumetric Error: Upper Bound
After using Algorithm 1 to ensure that no deformed sphere

protrudes more than ξ outside the mesh boundary B, we can
find an upper bound for the volumetric error of the new sphere
set.

Lemma 2: Suppose that for each sphere (ci, ri) ∈ S,
dE(ci,B) > ri − ξ. Let U be the union of the balls
corresponding to S and let Uξ be the union of the balls
corresponding to Sξ = {(ci, ri − ξ)|(ci, ri) ∈ S}. Then
ErrΩ(U) < vol(Ω)− vol(U) + 2(vol(U)− vol(Uξ)).

Proof: As shown in the proof of Lemma 1, vol(Ω) −
vol(U) = vol(Ω ∩ U) − vol(U ∩ Ω). Further, recall that
ErrΩ(U) = vol(Ω ∩ U) + vol(U ∩ Ω). It follows that

ErrΩ(U) = vol(Ω)− vol(U) + 2vol(U ∩ Ω). (6)

Let us express vol(U) = vol(U ∩ Ω) + vol(U ∩ Ω) and
vol(Uξ) = vol(Uξ∩Ω)+vol(Uξ∩Ω). Because vol(Uξ∩Ω) =
0, vol(U)−vol(Uξ) = vol(U∩Ω)+vol(U∩Ω)−vol(Uξ∩Ω).
Since vol(U ∩ Ω) − vol(Uξ ∩ Ω) > 0, vol(U ∩ Ω) <
vol(U)−vol(Uξ). Combining with Eq. 6, the lemma follows.

Next, we will use this bound to evaluate the quality of our
sphere-based approximation to deformed polyhedra.

C. Experimental Results and Discussion
Figure 5 shows times to compute and update a reference set

of spheres for two deformation sequences. Note that this fast
update under deformations is possible because we use spheres
that are interior and tangent to the solid’s boundary. Using
Lemmas 1 and 2, we compute lower and upper bounds on the
volumetric error of our approximations.

Following [11], the local feature size of a point A on
the boundary of Ω is the distance from A to the medial
surface of Ω. Note that our approach will not produce tight
sphere-based approximations for deformations that modify the
local feature size of a solid, as well as deformations that
stretch the boundary. However, we have observed that the
method produces tight-fitting sphere-based approximations at
a fraction of the time necessary to compute the original set of
spheres for those deformations arising from part articulation
(such as the horse sequence) and volume preserving elastic
deformations (such as the octopus sequence).

VI. APPROXIMATE SEPARATION DISTANCE

For those solids which can be tightly approximated using
a small number of spheres relative to the number of surface
triangles, separation distance computations can be accelerated
by working with the sphere representation instead of the
boundary mesh representation. Further, pairwise distance tests
are significantly faster between spheres than triangles. In this
section, we show how to quickly grow our set of inscribed
spheres so as to improve boundary coverage, and how to
construct a bounding volume hierarchy of the set of spheres.
We introduce a class of solids, called (σ, θ)-fat solisd. We then
demonstrate experimentally that spheres generated with our
method perform faster and with smaller error than the state-
of-the-art method AMAA of [2] for approximate separation
distance computations for (σ, θ)-fat solids.

A. Improving Boundary Coverage by Conservative Dilation

Fig. 6. The envelope of the dark circles s1 and s2 is non-differentiable at
point v, whose nearest point on the boundary is m. The radii of both internal
circles are increased to create circles that contain or touch m.

In Section IV, we aimed to approximate the volume of the
solid Ω tightly. For the application of approximate separation
distance, we now require the envelope of our set of spheres
to provide a tight approximation to the boundary of the solid.
By improving boundary coverage, we mean to increase the
number of boundary points that lie inside some sphere. It is
no longer essential that the approximating spheres be interior.
We introduce a simple heuristic for conservatively growing the
set of internal spheres to improve boundary coverage.

The envelope of the spheres S is a non-differentiable object.
Let B be the balls corresponding to S, i.e., B = cl(int(S)).
Recall that the dual complex DC(B) describes the adjacency
of balls in the union of balls B. Edges in DC(B) identify
pairs of balls intersecting along circular arcs on the envelope
of S, while triangles identify triples of spheres intersecting at
vertices on the envelope of S.

We can solve for the locations of the vertices of the envelope
of the spheres S, called v-points, by considering all triangles
(bi, bj , bk) in DC(B), finding the 2 intersection points of
spheres si, sj and sk, and ignoring those intersection points
that lie inside some spheres of S. We note which triple of
spheres contributed to the creation of a v-point. For a v-point
v, we consider the nearest point on the boundary of Ω to v. The
radius of each sphere s is increased sufficiently so as to cover
the nearest mesh point to each of the v-points that is created by
s. Figure 6 presents a 2D example. For those singleton edges
of DC(B), identifying pairs of balls that touch but do not
contribute any v-points, we sample 2 random opposite points
on the circle of intersection of the two corresponding spheres
and proceed to cover their nearest boundary points by growing
the spheres.

Let S+
D be the sphere-based approximation obtained by

growing internal spheres SD as described. Let SV be the
approximation produced by the AMAA method of [2]. We
compare how well the envelope of each sphere set approxi-
mates the boundary of a polyhedron by evaluating the signed
distance from 1) points on the envelope of the spheres to the
polyhedron boundary, and 2) from points on the polyhedron
boundary to the envelope of the spheres. Figure 7 shows
histograms of signed distances for several models, where
positive distance means that the point on the sphere envelope
giving the distance measurement is outside the polyhedron,
and negative otherwise.

As we can see from the plots in Figure 7, the heuristic
for growing internal spheres SD generates spheres S+

D whose
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16857
triangles

4307
spheres

rel. speed 100% 4.04% 4.10% 4.08%
vol. error [0.0110, 0.0110] [0.0331, 0.0473) [0.0362, 0.0509) [0.0370, 0.0516)

39632
triangles

9801
spheres

rel. speed 100% 19.5% 19.9% 19.6%
vol. error [0.0211, 0.0211] [0.0256, 0.0585) [0.0253, 0.0583) [0.0252, 0.0579)

(a) (b) (c) (d)
Fig. 5. (a) Reference mesh (top) approximated using internal and tangent spheres (bottom). (b)-(d) These sphere sets (bottom) approximate deformed versions
of the reference mesh (top). The parameter ξ is 0.25% of the maximum dimension of the reference mesh bounding box. The reference set of spheres took
146.8 and 226.6 seconds to compute for the horse and octopus reference poses, respectively. The relative speed is the fraction of the time to compute the
sphere set compared to computing the reference sphere set. Also shown is the range of the volumetric error normalized by volume of the polyhedra, where
the lower bound for volumetric error is given by Lemma 1 and the upper bound by Lemma 2.

envelope covers a significant portion of the boundary of the
polyhedra, without generating spheres that protrude a great
amount outside the polyhedra, as is often the case with SV
spheres. The mean absolute error for S+

D is smaller than that
for SV , except for the last model, where both means are small.
Note that since neither sphere set is bounding, neither the
envelope of our sphere sets S+

D, nor that of SV , contain the
polyhedra. As can be seen from Figure 7, the sphere sets S+

D

capture the shape of the polyhedra more faithfully than the SV
spheres, in particular for the duck, bunny and octopus models.

Because the spheres SD are internal and tangent to the
boundary of Ω, points on the envelope of SD are inside or on
the boundary of Ω. Using the method we have just described,
boundary coverage is improved in the vicinity of points on
the envelope of SD. This heuristic does not consider the
geometry of Ω explicitly. Whenever the (one-sided) Hausdorff
distance from the boundary of Ω to the set of spheres is
small, this strategy works well to improve boundary coverage.
This strategy also offers the advantage of improving the fit
of the envelope of spheres without an expensive optimization
procedure.

B. (σ, θ)-fat Solids

In this section, we characterize the class of solids whose
sphere-based approximations computed using the method we
have proposed are connected. Consider the subset of the
medial surface containing only points with object angle greater
or equal to θ,MSθ. Let σ be the side length of the voxels used
to generate the approximation to the medial surface. Let S be
the subset of medial spheres of Ω, such that each sphere has
object angle greater than θ, and such that each voxel with side
length σ containing a medial point with object angle greater
or equal to θ contributes a medial sphere to S. We say that a
solid Ω is (σ, θ)-fat with respect to given values of σ and θ if
σ ≤ r0√

3
for r0 the smallest medial sphere radius for medial

points in MSθ. Solids that are (σ, θ)-fat have the following
property:

Lemma 3: Suppose that MSθ of Ω is connected. If Ω is
(σ, θ)-fat, then the union of the spheres in S is connected.

Proof: Consider a pair of adjacent voxels with side length
σ, each containing medial points in MSθ. The maximum
distance between any pair of points in these voxels is 2

√
3σ.

If r ≥
√

3σ for all radii r of medial points in the two voxels
considered, then the two spheres touch. Since Ω is (σ, θ)-fat,
medial spheres in adjacent voxels always touch. Since the set
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Fig. 7. Comparison of the SV (col. 1) and S+
D (col. 2) approximations for

various models. Col. 3: histograms of signed distances from points sampled on
the boundary of polyhedra to points on the envelopes of S+

D and SV . Col. 4:
histograms of signed distances from points sampled on meshes approximating
the envelopes of S+

D and SV to the boundary of polyhedra. Stars denote SV

spheres, while circles denote S+
D spheres. Means of the absolute distance are

shown as a dashed line for SV and a dotted line for S+
D .

of voxels considered is connected, the union of the spheres in
S is connected.
Solids that are (σ, θ)-fat do not have sharp corners or narrow
parts with respect to the voxel resolution. The boundaries of
those solids that are (σ, θ)-fat can be better approximated using
our sphere sets than other solids.

C. Hierarchy Construction using Rectangle Swept Spheres

Fig. 8. RSS

In order to use our set of spheres S+
D to per-

form fast proximity queries, we fit a bounding
volume hierarchy to S+

D. We observe that the
medial surface simplified by object angle is
often composed of relatively flat sheets, along
which the radius of the medial spheres varies
smoothly. A Rectangle Swept Sphere (RSS)
is therefore a suitable bounding volume for
medial spheres (see Figure 8). Such a bounding volume was
introduced for bounding mesh triangles in the exact proximity
query package PQP [22]. The hierarchy is constructed top-
down, each parent has 2 children, and each RSS is fitted to
the set of leaf spheres it bounds. We find the orientation of
the RSS rectangle and the partitioning plane by using CGAL’s

implementation of linear least square fitting of spheres.1 The
radius is found by using a procedure similar to that in [22].

Alternatively, one may compute a bounding volume hierar-
chy using spheres as the bounding volume. Given our sphere
set approximation, we compute the hierarchy using a similar
top-down procedure as when using RSSs as the bounding
volume. To compute the minimum bounding sphere of a set
of spheres, we use CGAL’s implementation of the algorithm
in [23].

D. Experimental Results and Discussion

We evaluate the usefulness of our sphere approximations
for measuring approximate separation distance in terms of
computation time and accuracy of the computations. In our
experiments, we perform a physics simulation by placing
pairs of the same object in a box, simulating random gravity,
allowing objects to continuously collide inside the box, and
measuring separation distance using both the sphere sets and
the triangulated boundaries at each frame.

We compare the performance of separation distance tests
for the set of spheres computed with our method and that
computed with the AMAA method of [2]. When generating
spheres for this application, we subdivided those voxels that
are intersected by the boundary of Ω into 8 voxels and thus,
output at most 8 medial spheres for boundary voxels. The
threshold on object angle is 0.6 radians. We grow our initial
sphere set SD using the strategy outlined in Section VI-A to
create a new sphere set S+

D. This step takes 1-5 seconds for
the models in Table II. We compute both an RSS hierarchy
and a sphere hierarchy of our set of spheres using the method
described in Section VI-C. AMAA constructs a bounding vol-
ume hierarchy where bounding elements are spheres. Timings
for AMAA in Table I include time for building a hierarchy
with branching factor 8 (as AMAA is a top-down approach).
In proximity query experiments, we consider hierarchies with
branching factor 2. Computation of a binary AMAA hierarchy
for the models shown in Table II takes significantly longer:
from 3 hours (for the eight model) to 14 hours (for the
octopus model). In addition to a binary sphere hierarchy,
we also construct an RSS hierarchy of the AMAA spheres.
Constructing an RSS hierarchy for the sphere sets considered
takes a fraction of a second on average.

We evaluate the accuracy of a separation distance test as
the difference between the distance between two polyhedra
and the distance between their approximations with spheres.
As in each frame of the simulation we consider pairs of
non-intersecting solids at a variety of separation distances
and relative orientations, this error provides a meaningful
measure of the quality of the sphere set approximation for
this task. Table II presents error statistics for the different
sphere sets. Our sphere sets display a smaller average error
and generally smaller maximum error than those of AMAA.
The models in Table I that are not represented in Table II
are the horse, hippo, dragon and cow models. These models
are not (σ, θ)-fat with respect to the voxel resolution σ and
the object angle θ considered because they have very narrow

1Computational Geometry Algorithms Library, www.cgal.org.
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regions, such as their ears and tails. The simulation we ran is
particularly demanding of the quality of the approximation of
such extremal regions as they minimize the separation distance
more often than other regions. To approximate these models
well using spheres by using our strategy, a very small value
of σ needs to be used, resulting in a large number of spheres.
We were not able to generate such large AMAA sphere sets
for these models to draw comparative results.

We compare average per-frame time for performing ap-
proximate separation distance tests using S+

D and SV , where
both sphere hierarchies (SH) and RSS hierarchies (RSSH) are
considered. These results are summarized in Table II. Timings
are shown for a 3.6 GHz Pentium 4 CPU with 3 GB of RAM.
In our experiments, we find that building an RSS hierarchy of
spheres significantly improves distance query time compared
to using a sphere hierarchy for both our and AMAA sphere
sets, as the RSS offers greater tightness of fit. For these
models, we see that the fastest performance is achieved by
using our sphere sets and the RSS hierarchy. We believe that
because our spheres are nearly medial, RSS bounding volumes
provide them with a particularly tight fit. For the models
shown, the fastest performance is achieved by using our sphere
sets and the RSS hierarchy, even when |S+

D| > |SV |.

Error Timings
Size Ave. Max. SH RSSH

S+
D 520 0.012 0.074 0.524 0.085
SV 498 0.024 0.063 0.268 0.088
S+
D 558 0.074 0.228 0.467 0.131
SV 397 0.094 0.331 0.627 0.132
S+
D 1052 0.026 0.102 0.672 0.134
SV 831 0.054 0.144 0.206 0.140
S+
D 296 0.009 0.024 0.385 0.066
SV 439 0.020 0.075 0.206 0.123
S+
D 695 0.116 0.297 0.709 0.143
SV 697 0.118 0.599 0.239 0.145
S+
D 1389 0.081 0.272 0.373 0.074
SV 745 0.109 0.4086 0.130 0.075
S+
D 548 0.055 0.173 1.458 0.108
SV 579 0.110 0.597 0.250 0.114
S+
D 469 0.076 0.325 0.360 0.068
SV 502 0.167 0.425 0.123 0.076

TABLE II
TIMING AND ERROR RESULTS FOR SEPARATION DISTANCE TESTS FOR OUR

GROWN SPHERES S+
D AND SPHERES SV OF [2]. TIMINGS ARE IN

MILLISECONDS. MAXIMUM DIMENSION OF BOUNDING BOXES IS 10.

VII. CONCLUSION

We have described a method to compute a tight-fitting
union of spheres approximation to a 3D solid without an
expensive sphere redistribution or pruning step. As such, our
method is significantly faster than existing methods and can
be used to generate sphere set approximations with a larger
number of spheres than previously possible. In comparison
with the state-of-the-art AMAA method of [2], our method
generates fewer spheres, has a smaller volumetric error, and
is significantly faster. Because our spheres are internal and
tangent to the object, it is possible to compare the volumetric
error of approximations produced by our method and another

method, to quickly update our sphere sets when the object
deforms, and to quickly dilate the sphere sets to improve
boundary coverage. We demonstrate the benefit of using the
rectangle swept sphere bounding volume for building a hierar-
chy of medial spheres. For (σ, θ)-fat solids, we have presented
experimental results showing that our sphere sets perform
faster and more accurately than those of the AMAA method
for approximate separation distance computation. There is
a wide variety of additional applications where our sphere
approximations can be valuable, that do not necessarily require
the boundary of the object to be well approximated, including
shape matching, mesh deformation, shape morphing, shape
segmentation, approximate Minkowski sums, point location
and shadow rendering.
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