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Abstract

Dynamics simulation of smooth bodies in contact is a critical problem in
physically based animation and interactive virtual environments. We describe a
technique which uses reduced coordinates to evolve a single continuous contact be-
tween Loop subdivision surfaces. The incorporation of both slip and no-slip friction
into our algorithm is straightforward. The dynamics equations, though slightly
more complex due to the reduced coordinate formulation, can be integrated eas-
ily using explicit integrators without the need for constraint stabilization. The use
of reduced coordinates also confines integration errors to lie within the constraint
manifold which is preferable for visualization.

Our algorithm is suitable for piecewise parametric or parameterizable sur-
faces with polygonal domain boundaries. Because a contact will not always remain
in the same patch, we demonstrate how a contact can be evolved across patch bound-
aries. We also address the issue of non-regular parameterizations occurring in Loop
subdivision surfaces through surface replacement with n sided S-patch surfaces.

Three simulations show our results. We partially verify our technique first
with a frictionless system and then with a blob sliding and rolling inside a bowl. Our
third simulation shows that our formulation correctly predicts the spin reversal of a
rattleback top. We also present timings of the various components of the algorithm.
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Chapter 1

Introduction

Within the graphics community, interest in physical simulation of rigid bodies prob-

ably reached a peak sometime in the last ten years. Although some might consider

it to be a solved problem, we feel that there are still important challenges to be met.

Figure 1.1: Example of dynamic simula-
tion using our algorithm. The objects are
bounded by smooth Loop subdivision sur-
faces.

One of the difficult aspects of

simulating rigid bodies is the case

where there is contact. In this case

the motion of the bodies must be

constrained so that they do not in-

terpenetrate. The combination of

smooth surfaces, friction and multi-

ple contacts can make this a very dif-

ficult problem.

This thesis is about the dy-

namics of piecewise smooth surfaces

in single continuous contact. We

present a method of computing how

a system of two rigid bodies evolves when their smooth boundaries are in contact at

a single point. We call this problem the contact evolution problem. Figure 1 shows
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an example of a smooth globe-like object rolling and sliding inside a bowl, simulated

with our system.

We formulate the problem as an ordinary differential equation in the coordi-

nates of the contact patches. By parameterizing the system in reduced coordinates,

violation of the contact constraint is prevented as we integrate. Any errors that

accumulate during integration instead lie entirely within the constraint manifold.

The incorporation of dynamic Coulomb friction into our method is straightforward.

Additionally, we can easily reformulate the equations to include no-slip and no-spin

friction. By monitoring the constraint force we can accommodate changes in friction

and object separation.

This is an attractive approach to the problem because it avoids the draw-

backs of traditional methods which spend most of their time in collision detection

and constraint computation. It is important to recognize that although collision

detection is still necessary to identify new contacts, it can be performed at a much

less frequent rate because it is not necessary for our single continuous contact evo-

lution technique. Other techniques rely on collision detection or minimum distance

computation at each time step to track the local contact points or for constraint

stabilization.

Simulating realistic models constructed with subdivision surfaces or free-

form parametric surfaces such as NURBS is important because of the popularity

of these surface representations for modelling and design. These types of piecewise

parametric and parameterizable surfaces are ideal for our single contact evolution

technique. With respect to piecewise parametric surfaces, an important contribution

of this thesis is a technique to evolve a contact across a patch boundary. The surface

description of any object will almost always consist of a collection of several patches.

Part of the popularity of subdivision surfaces is attributable to the relative

ease with which they can be edited and implemented. Unfortunately, this facility

does not carry over to contact evolution. Almost every object defined by a subdi-
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vision surface will have multiple patches that are non-regular (in the natural para-

meterization). In this thesis we focus on the use of Loop subdivision surfaces. For

contact evolution to work we must avoid evolving the contact near non-regularities.

We achieve this by replacing portions of the Loop subdivision surface with n sided

S-patches which are more complicated but better behaved. The replacement sur-

faces we construct maintain tangent plane continuity at their boundary with the

original subdivision surface. As a result their shape often matches quite closely that

of the non-regular surface.

1.1 Chapter Summary

We provide an account of related work in Chapter 2. The related work generally

falls into the three categories: dynamics simulation, contact kinematics, and collision

detection.

Chapter 3 provides additional background and motivation. We start with a

discussion on the representation of state. Sections 3.2 and 3.3 introduce the concept

of a constraint and briefly discuss solving constrained systems. This leads into

Section 3.4 where we motivate the use of reduced dimension parameterizations for

Constrained Systems.

Chapter 4 consists of a detailed derivation of our algorithm. After some pre-

liminaries, contact kinematics equations are derived in Section 4.2 and then incor-

porated as a constraint into the Newton-Euler equations of motion in Section 4.3.

With the foundation of our technique explained in the first part of this chapter,

we continue by demonstrating how to add Coulomb friction to the system in Sec-

tion 4.4. We also present some ideas for implementing no-slip and no-spin friction

in our framework as well as ideas on switching between different types of friction.

Section 4.5 contains an explanation of how a contact traverses the boundary of a

patch into an adjacent patch. Traversing boundaries is important as most models

consist of a collection of parametric surfaces. Lastly, we conclude this chapter with
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a summary of the algorithm.

In Chapter 5 we examine the problems involved with using Loop subdivision

surfaces with our algorithm. After a brief explanation of Loop subdivision surfaces,

we discuss the standard method for evaluating Loop surface patches and the impli-

cations of a non-regular parameterization on our contact evolution algorithm. In

Section 5.2 we introduce the idea of replacing parts of the surface with S-patches.

This section provides a description of S-patches and explains how to set S-patch

control points to maintain surface continuity via blossomed Loop patch evaluations.

In Section 5.3 we provide additional detail on how we compute derivatives and blos-

soms. Since derivatives of S-patch functions are quite complicated we write this

code with inspiration from automatic differentiation techniques. We wrap up this

chapter with a brief overview of our Java implementation and its features.

Chapter 6 shows the results of our algorithm. As part of the evaluation of

our algorithm, we measure how long different portions of the calculation take in

Section 6.1. The timings show that a large proportion of the computation time is

spent in surface evaluations and surface derivative evaluations which suggests that

our algorithm is best suited for surfaces which are easy to evaluate. In Section 6.2 we

partially validate our implementation with a Loop subdivision surface on a flat and

frictionless Bézier patch. Section 6.3 demonstrates two Loop subdivision surfaces in

contact with dynamic friction. Section 6.4 finishes this chapter by showing that our

implementation correctly predicts the spin-reversing behaviour of a rattleback top.

Chapter 7 provides our conclusions and summarizes the impact of our algo-

rithm. We also describe possible future work.

Appendix A describes an alternate and more useful derivation of the contact

kinematics equations. This derivation starts by only considering half of the contact

and takes the least complicated expressions for describing this half of the equations.

The other half of the equations are very similar and only require transformation into

the same coordinates as the first half.
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In Appendix B we provide some sample files and a quick description of other

data files needed for our implementation. A rattleback scene description file is

provided in Section B.1 and a object file for a Loop subdivision surface is provided

in Section B.2.
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Chapter 2

Related Work

In recent years there has been a good amount of work concerning simulation of

contact. Being such a broad topic, the emphasis falls into several different areas.

Papers coming from the robotics community tend to focus on the constraints and

numerical methods while papers coming from the graphics community tend to focus

on collision detection. We break the following short literature survey into three

sections to help shed light on which areas our algorithm falls.

2.1 Dynamics Simulation

Multibody dynamics has been a bountiful area of research for many people over sev-

eral decades. Numerous books have been written on this topic such as [15, 43, 38] to

give an example of just a few. It is important for us to mention this work because our

research has been largely influenced by these multibody algorithms. In particular,

our algorithm is inspired in part by the analysis of rigid body methods by Ascher,

Pai and Cloutier appearing in [4]. Note that reduced coordinate formulations such

as the one we use in this thesis are well studied (for example, see [40] by Rabier and

Rheinboldt). In the rest of this section we provide an account of recent algorithms

and implementations relating to dynamics simulation.

Newton, [11], as described in Cremer’s PhD thesis is a system architecture for
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general purpose physical system simulation. His modular system incorporates colli-

sion detection with a variety of dynamics formulations consisting of open and closed

loop kinematic chains with a variety of inter-object constraints. The simulation is

based on events such as collisions and changes in contact and friction.

Lubich et al. present MEXX in [28]. MEXX is software for integration of

constrained mechanical multi body systems. Its focus is on the numerical method.

It is based on a method which is explicit in the differential equations and linearly

implicit in the nonlinear constraints. It has the ability to detect events such as im-

pacts, however, unlike Cremer’s system it is the user’s responsibility to reformulate

their equations and constraints to deal with such events.

Sauer and Schömer in [46] describe GALILEO, a system for rigid body sim-

ulation with emphasis on the simulation of unilateral constraints for virtual reality

applications. They formulate the problem of n polyhedral or curved objects (their

examples are all portions of spheres or cylinders) with K contacts with friction in

a single linear complementarity problem (they use a polyhedral approximation of a

friction cone). They demonstrate their friction modeling though the simulation of a

tippe-top.

Stewart and Trinkle in [53] present an interesting time-stepping method for

rigid body simulation. Being based on impulse-momentum equations it does not

need to explicitly resolve impulsive forces. It also does not require explicit collision

detection and can handle simultaneous impacts. Since they use an impulse based

method rather than a force based method they can set up their problem as a linear

complementarity problem. Because of their formulation, it is not necessary to de-

termine a time of impact (instead they maintain a set of constraints which are in

danger of being violated). They use a polyhedral approximation of a friction cone.

Hahn in [19] is an example of earlier work on rigid body simulation with

polyhedral models. His work focuses on integrating physically based simulation

with objects which are animated by hand. Although his system uses geometric

8



constraints as well as more general non-holonomic constraints, Hahn achieves non-

interpenetration by modelling contact as a series of frequently occurring collisions.

Baraff’s [5] is another example of some earlier work. The focus of this paper

appears to be the formulation of resting contact constraints. He uses a linear com-

plementarity problem to determine when contacts are breaking. This paper does

not address friction and the the examples given are planar consisting of polygons.

Baraff, in [6], also looks at rigid body simulation with curved surfaces. Al-

though the paper focuses on implicit surfaces a method of using parametric surfaces

is described in one of the appendices. Central to the method is the tracking of

all pairs of extremal points, that is the points where maximum penetration occurs

between the surfaces. To solve multiple contacts they formulate the unilateral con-

straints as a linear complementarity problem (LCP). Here Lemke’s algorithm for

solving linear complementarity problems is preferred to using a heuristic solution

to the positive semi definite (PSD) linear programming problem. Baraff points out,

however, that the problem is non-PSD in the presence of friction and suggests a

heuristic method would be useful in this case (which he presents in [8]). The paper

also discusses a fast method for detecting collisions using cached “witness” separat-

ing planes. He also discuses a method for quickly and accurately determining the

collision time as the algorithm requires this for backing up to the times at which

collisions occur.

In [8], Baraff shows how to compute contact forces with friction for rigid

bodies. His approach in this paper is to generalize the problem as little as possible

(he does not formulate an LCP as before). This has the advantage of avoiding

code for solving general optimization problems which can be overly complicated

for the friction problem. The result is a much faster and simpler algorithm. Baraff

admits that although they can not prove that the algorithm terminates they have not

experienced this problem from any of their tests. They implemented an interactive

planar algorithm, and an off line system for the three dimensional version of the
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algorithm.

Anitescu, Cremer and Potra’s [1] provides an example of more recent work in

rigid body dynamics. This work focuses on the formulation of contact problems with

friction as a linear complementarity problem. The friction cone is approximated by a

polyhedron. They consider smooth shaped bodies and derive the contact kinematics

equations for surface-surface contacts, curve-surface contacts, and curve-curve con-

tacts. They also investigate conforming planar contacts with arbitrary boundaries.

They give the example of a cylindrical object on a table with external forces to

demonstrate the transition from the conforming planar contact to a curve-surface

contact. Although the Newton-Euler formulation they use is in global coordinates,

instead of using an optimization algorithm for determining the new contact points

they use the contact kinematics equations. They do not address the problem of

changing patches as the contact moves since they assume that all calculations are

done within a single patch on each body.

Mirtich and Canny take an interesting approach to rigid body dynamics

simulation in [29]. All interactions between the bodies, from colliding contact to

all varieties of continuous contact are treated as collisions. Their method has the

advantage of simplicity as a wide variety of systems can be simulated, including

those that are difficult to simulate with constraint based methods. The disadvan-

tage however is that it relies greatly on the collision detection algorithm to provide

information about all collisions with accuracy. One of the many examples they use

to test the algorithm is a rattleback top.

2.2 Contact Kinematics

Smooth surfaces in contact have been extensively studied in both graphics and

robotics. We’ve already mentioned Anitescu’s work with the equations of contact,

but there are several others which should be mentioned. Many of the earlier papers

derive general contact kinematic equations but then demonstrate them with simple
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surfaces such as spheres.

Montana derived contact kinematics equations for orthogonal nets in [30]

and showed how they could be used for fine grip adjustment and other robotics ap-

plications. The beauty of Montana’s derivation is that if the contacting surfaces are

described by orthogonal networks then the kinematics relationship can be described

with matrices from differential geometry. See also [33, 10, 25, 22] for alternate

derivations and applications.

Goyal derives various constraints in [17] for the purpose of smooth surface

simulation. The equations in this paper were derived to allow smooth surface inter-

action for Cremer’s Newton dynamic simulator. The provided example interactions

are limited to relatively simple objects such as a cylinder rolling on a block without

slipping and a torus rolling on a plane.

An alternate version of the contact kinematics equations is derived by Nelson

Johnson and Cohen in [35]. They use a separation distance as one of their contact

coordinates allowing them to easily measure penetration distance during contact

evolution. In this paper the penetration distance is used to compute a contact force

in a haptic simulation of NURBS surfaces in contact.

2.3 Smooth Surface Contact, Collision and Distance

Hégron computes rolling motion of a convex object on a parametric surface using

a prediction-correction schema in [20]. He demonstrates a sphere rolling without

sliding on a collection of bi-cubic Bézier patches. The sphere is placed in contact

with the surface by lowering it vertically using an iterative method. They assume

that the parametric surface patch grid has C1 continuity, and that the rolling rigid

object is convex. A single point of contact is maintained during the animation.

Snyder examined the problem of placing smooth surfaces in contact in [49].

His algorithm allows the user to place smooth objects in stable non-interpenetrating

configurations given a set of external forces. Shapes can be non-convex and place-
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ment of complicated shapes can occur at interactive rates. The key is that the

objects do not behave as physics would dictate. The example of placing a spoon in

a bowl shows how this is useful for object placement. Trying to place a spoon in

a bowl using a physically based animation algorithm may be difficult as the spoon

may bounce out before the system comes to rest.

In an earlier paper, [50], Snyder and others at the California Institute of

Technology investigated animating smooth surfaces. Their focus was on collision

detection. Surfaces can be parametric or implicit and the shapes can vary over

time. One of the key features of their solution is the generation of a set of uniformly

distributed points on the interface of a conforming contact between smooth surfaces.

Their method although slow is very powerful. The paper focuses solely on collision

detection and does not address how to handle the collision response and contact

evolution problems.

Johnson and Cohen, in [23], present a framework for minimum distance com-

putations between parametric surfaces. Their approach is based on a lower-upper

bound tree which allows them to quickly prune bounding volumes which are not

involved in the minimum distance. They also show that their solution converges

relatively quickly which is useful for time-critical applications.

In Nelson and Cohen’s [34], constraints in Cartesian coordinates are used

for interaction with smooth surfaced mechanical assemblies. They report that their

approach has a compact implementation due to the re-use of constraints. They

demonstrate their system for several small assemblies including a Stewart platform.
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Chapter 3

Additional Background

This chapter provides additional background on rigid body dynamics and simulation

issues in order to help motivate our work. We will show why we feel a solution to the

single continuous contact problem is necessary. Additionally, the discussion should

help give insight into the difficulty inherent in this simulation problem and related

ones.

An important focus of our discussion will be on the choices for parameterizing

the state of a system. This has a large impact on formulating dynamics equations.

We will also discuss different types of constraints, and methods for solving the

constrained equations of motion.

This extra motivation is helpful because our algorithm is not easily compa-

rable to other existing techniques. This is because in focusing on single contact we

avoid issues which are often emphasized in other algorithms. For example, friction

is a well studied problem and is one that becomes very difficult when there are mul-

tiple contacts between two bodies (Baraff has shown that solving multiple contacts

with friction is NP hard in [7]).
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3.1 State Representation

Rigid body simulations require a method for parameterizing the possible positions

and motions of bodies. An object free to move in space has six degrees of free-

dom. Three of these degrees of freedom are translational, while the other three are

rotational.

Euler angles, for example, can be used to parameterize the rotation, although

not without singularity problems. A higher dimensional parameterization is often

used as it can be more convenient. The rotational component may be represented

by a 3 × 3 rotation matrix giving us a parameter space of dimension 12. But

only matrices which are orthogonal and have determinant equal to 1 are rotation

matrices so we must be careful that our state vector preserves this property, despite

any changes we make.

Alternatively unit length quaternions can be used to represent a rotation.

This gives a total dimension of 7. Again, we must be careful to preserve the unit

length of a quaternion, which happens to be a fair bit easier. If we make a change

to the state which violates the condition by a small amount it is easy to project the

state back onto the space of valid states as we can simply normalize the quaternion.

See [55] for more on rigid body simulation and the issues of representing the state

of the system.

3.2 Constraints

A constraint is an expression which describes a subset of states satisfying a certain

property. It is often written in the form f(x) = 0 or f(x) ≥ 0, where x is the

state of the system. When the expression is an equality the constraint is bilateral,

such as for a revolute joint. If the expression is an inequality then the constraint is

unilateral, such as a non-interpenetration constraint.

Holonomic constraints are essentially position constraints, or they are con-
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straints that can be integrated to position constraints. Examples of this are revolute

joints and some kinds of non-interpenetration constraints. A non-holonomic con-

straint, however, is one that is expressed as a velocity or acceleration constraint,

and can not be integrated to get a position constraint. An example of this is a ball

rolling without slipping on a table. The ball can achieve any position on the table

with any rotation by some sequence of rolling and spinning. For more on constraints

in rigid body dynamics see [24].

3.3 Solving Constrained Systems

Combining the Newton-Euler equations of motion with an algebraic constraint gives

a differential algebraic equation (DAE). Such equations are not always easy to solve

(see [2]). The most common approach is to differentiate the constraints so that

they are stated in terms of accelerations. The differentiated constraints provide a

system which can be solved as an ordinary differential equation. We must, however,

take care to ensure the solution lies on the constraint manifold. This can be done

with Baumgarte stabilization [9]. This stabilization technique acts like a spring

damper system connecting our solution to the constraint manifold. As this type of

stabilization has some undesirable properties (see [3]) there may be a desire to use

more expensive and more mathematically sound techniques.

Sometimes it is easier to give a position constraint as a velocity constraint.

This is the case for parametric surfaces in contact. The position constraint is essen-

tially a distance function which lacks a simple closed form. The velocity constraint,

on the other hand, is much easier to write using the normals of the contacting points

(or the extremal points in the case of interpenetration).
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θ θ

x

Figure 3.1: A robot arm with one degree of freedom is depicted on the left while
a rod in contact with the plane having two degrees of freedom while in contact is
depicted on the right. These are bilateral and unilateral constraints, respectively, for
which we can express the configuration of the system more concisely with reduced
coordinates.

3.4 Reduced Coordinates for Constrained Systems

It can be advantageous to choose a set of reduced dimension coordinates for repre-

senting the state of a constrained systems. A robot arm with one degree of freedom

can be described by its joint angle rather than parameterizing its position as if it

were a free body. Although the reduced coordinate dynamics equations are generally

more expensive to evaluate, they do not require stabilization when they are inte-

grated if the reduced coordinates exactly describe all possible configurations of the

system. The robot arm with its bilateral constraint is an example of this situation.

We might imagine a rod on a plane in a two dimensional environment as another

example but with a unilateral constraint. Figure 3.1 shows a conceptual drawing of

both these cases. For the robot arm case we only need to keep track of the angle. In

the case of the rod, while it is in continuous contact with the surface we only need

to keep track of the angle and the x position of the contact.

It is useful to consider the full implications of reduced coordinates for para-

metric surface non-interpenetration constraints.

A non-interpenetration constraint is unilateral. It is only active when there
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is contact and it can be complicated as it depends on the contacting geometry.

Multiple contacts mean multiple active constraints. If we use higher dimensional

coordinates then although we do not need to change our state representation when

the constraints become active, we do need to stabilize these constraints to ensure

that our solution remains on the constraint manifold. The alternative of reduced

coordinates unfortunately does not extend well to multiple contacts.

The constraint (or the constraint gradient in the case of some methods of

solving this problem) may not be easy to compute for certain configurations of the

given geometry. There will be a best way to handle each of these special contact

configurations. For example, a screw in a threaded hole would best be treated as a

system with one degree of freedom. A peg in a hole would be best treated as a two

degree of freedom system. A cylinder on a table has three degrees of freedom until

it is tipped up on edge in which case it has five. The problem of transitions between

different formulations, however, is not trivial even for this relatively simple example

(see [1]).

Trying to use reduced coordinates for systems with a reduced number of

degrees of freedom is not always possible. The system may have multiple states

for a given coordinate location, or singularities where there are reduced degrees of

freedom. For example consider a five bar mechanism. This mechanism is a linkage

of four bars (the fifth bar is actually the base which connects the two ends of the

linkage). We might try to use the planar location of the end effector to describe the

state of the system. An arbitrary position can be achieved with the left “elbow”

bent in or out and the right elbow can be in or out. This can be seen in Figure

3.2. There are other positions which can not be achieved at all due to the limited

length of the arm. Additionally, when one of the arms is straight there is one

less degree of freedom at the end effector. We might consider using two angles to

parameterize the system, but we do not really avoid any of our problems. There

are still configurations which can not be reached and there are multiple possible
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Figure 3.2: Four possible configurations of a five bar mechanism created by having
the left and right “elbows” in or out. The planar position of the dark circle is the
configuration space. It is inappropriate to use a two dimensional state representation
for this system even although it really only has two degrees of freedom.

end effector positions for many settings of the two angles. It appears that a two

dimensional state representation for the system is inappropriate.

This seems to be fairly strong motivation not to use reduced coordinates, at

least for this scenario. Let us go back to the smooth surface contact constraint as

this is our primary interest.

If there is only a single point of contact between two bodies, then the con-

tact can be parameterized as a five degree of freedom joint (this is explained fully in

Section 4.2.1). In this case the reduced coordinates uniquely describe a configura-

tion. The additional advantage of these coordinates is that their dimension matches

the number of degrees of freedom exactly, and the entire space parameterizes valid

configurations. As a result, we can use these coordinates without having to worry

about stabilization. Note that we will still accumulate errors in integrating the sys-

tem but these errors will be inside the constraint manifold. These types of errors are

acceptable because they are far less noticeable than interpenetration or separation

errors.

Global changes such as new constraints becoming active can be detected

at a slower rate than the rate at which we evolve contacts. This is possibly the

most important feature of our technique as collision detection is often the most

computationally expensive component of physically based simulations. Collision

detection can be minimized or even omitted if we know that the object shapes do

not allow multiple contacts.
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Additionally, single contact can be useful in a variety of situations, such as

haptics, [35], and certain manipulation examples, [22]. Fast contact evolution is

interesting for real time interaction with smooth objects where contact evolution

information is used for sound synthesis, [13, 14].
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Chapter 4

Formulation

4.1 Preliminaries

In this thesis we use a notation for spatial dynamics which is similar to [15, 44, 21,

30, 32].

The motion of a rigid body i = 1, ..., n is described using a reference frame

labeled i attached to the body. Unless otherwise noted, we will let this body ref-

erence frame be located at the center of mass and with its axes aligned with the

principle axes of rotation.

The homogeneous coordinates of frame i with respect to another frame j is

given by the 4×4 matrix j
iE. We will always use leading subscripts and superscripts

to indicate frames. The homogeneous coordinates of a three dimensional vector x

in frame i are denoted i
x. The homogeneous coordinates of this vector in frame j

are given by left multiplying by j
iE.

The spatial velocity φ(j, i) describes the relative motion of frame i with

respect to frame j. In (non-homogeneous) coordinates of frame i it is given by the

6 × 1 matrix i
φ(j, i) = (iωT , ivT )T , where ω is the angular velocity and v is the

linear velocity of the point at the origin of frame i. Spatial forces, called wrenches,

are represented as f = (fTr , fTt )T where fr is the (rotational) torque and ft is the

(translational) force.
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It is useful to note that the spatial velocity vector parameterizes a twist that

can be written in homogeneous coordinates as the 4 × 4 matrix,

Oφ =

⎛
⎝[ω] v

0 0

⎞
⎠ . (4.1)

Here, [ω] denotes the skew symmetric 3 × 3 matrix equivalent to the cross product

ω×, i.e.,

[ω] =

⎛
⎜⎜⎜⎝

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞
⎟⎟⎟⎠ , (4.2)

and O denotes the linear expansion operation which converts the 6 × 1 matrix into

a 4 × 4 matrix representation. We will let V denote the linear operation which

performs extraction of the 6 parameters, thus,

φ =

⎛
⎝ω
v

⎞
⎠ = V

⎛
⎝[ω] v

0 0

⎞
⎠ . (4.3)

If V is applied to a matrix whose upper 3× 3 matrix is not skew symmetric then we

can assume that V acts as a projection onto so3.

The time derivative of the change of coordinates from frame i to frame j is

a twist when written in coordinates of frame i, i.e.,

i
φ(j, i) = V( i

jE
j
iĖ). (4.4)

Spatial velocities and spatial wrenches transform according to the Adjoint trans-

formation j
iAd. Spatial velocities being contravariant quantities transform by left

multiplying, j
φ = j

iAd
i
φ. Because we write spatial wrenches as column vectors,

these covariant quantities are transformed by left multiplying with the inverse trans-

pose, j
f = i

jAdT
i
f . The 6 × 6 Adjoint matrix is defined as,

j
iAd =

⎛
⎝ Θ 0

[p]Θ Θ

⎞
⎠ , where j

iE =

⎛
⎝Θ p

0 1

⎞
⎠ .
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Here Θ is a 3 × 3 rotation matrix and p is a 3 × 1 displacement.

Lastly, we define the spatial cross product of φ =
(
ωT , vT

)T
as the linear

operator with coordinate matrix

[φ] =

⎛
⎝[ω] 0

[v] [ω]

⎞
⎠ .

4.2 Contact Kinematics

We consider rigid bodies whose boundaries are defined by a collection of parametric

surface patches. Although the surface patches will typically be polynomial or ra-

tional polynomial functions this does not necessarily need to be the case. We only

require the ability to evaluate the function and its derivatives at a given point.

A single point of contact between two bodies will involve one patch from

each body. We can ignore, for now, the fact that adjacent patches will overlap along

their boundary curves as it is the location of the contact that we want to describe

and if it lies on a boundary then we can choose either of the patches sharing the

boundary to describe the contact location.

4.2.1 Contact Coordinates

Suppose body 1 and body 2 are in contact. Let the shape of the contacting patches

be described by the functions 1
c : (s, t) → R

3 and 2
d : (u, v) → R

3. Note that the

functions have a preceding superscript denoting that they define the surface shape in

the coordinates of their respective body’s reference frame. We drop this superscript

when the coordinate frame is clear from context.

We use the notation c,s
def= ∂c

∂s . The orthonormal contact frame with coor-

dinates (s, t) can be defined in frame 1, the body frame, as the coordinate frame

with origin at c(s, t) and coordinate axes

x =
c,s
‖c,s‖ , y =

(c,s · c,s)c,t − (c,s · c,t)c,s
‖(c,s · c,s)c,t − (c,s · c,t)c,s‖ , z =

c,s × c,t
‖c,s × c,t‖ . (4.5)
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Coordinates are in frame 1 (superscripts were omitted). The vectors x, y and z always

form orthonormal axes, and will always exist if we require our parametric surface to

be regular (that is c,s(s, t) �= 0 and c,t(s, t) �= 0 for all (s, t) in the domain). Also, y is

orthogonal to z since it is a linear combination of c,s and c,t. It is also orthogonal to

x since its inner product with c,s is equal to zero. Thus the homogeneous coordinates

of this contact frame with respect to frame 1 are given by

1
1cE =

⎛
⎝1

x
1
y

1
z

1
c

0 0 0 1

⎞
⎠ . (4.6)

The matrix in equation 4.6 is a function of s and t. The contact frame on body 2

is defined in the same way yielding the matrix 2
2cE which is a function of u and v

in the domain of the patch d(u, v). Note that the c in the frame label 2c stands for

contact as opposed to representing patch c of body 1.

Because the contact frames are orthonormal and occur at the same location

in space, they can be easily aligned by a rotation matrix (see Figure 4.1).

1c
2cE =

⎛
⎜⎜⎜⎜⎜⎜⎝

cosψ − sinψ 0 0

− sinψ − cosψ 0 0

0 0 −1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

def=

⎛
⎝Rψ 0

0 1

⎞
⎠ (4.7)

The matrix 1c
2cE is idempotent and Rψ is its upper 3 × 3 rotation matrix.

We can now describe any contact configuration between patches c and d of

bodies 1 and 2 by the 2-dimensional location of the contact in the domain of each

patch along with the angle of rotation ψ. Assembled in a column vector, we call

these 5 independent variables the contact coordinates and we denote it q; i.e.,

q =
(
s t u v ψ

)T
. (4.8)

4.2.2 Multiple Contacts

When there is more than one point of contact between two bodies the situation

becomes more complex. When there are two contacts the number of degrees of
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Figure 4.1: Contact Coordinates

freedom is reduced in general to four. We run into problems, however, if we try

to represent our two contact configurations as a four dimensional generalized joint.

Suppose we use the parametric location of one of the contacts on both surfaces as

our contact coordinates. Valid unique configurations in the state space are those

where there is only one rotation of the objects about each other at the specified

point of contact for which the objects establish a second point of contact. If there

are additional rotations which yield a second point of contact then we have the

problem of not knowing which configuration we have from the contact coordinates

alone. For some special cases of contact there can be in fact five degrees of freedom.

An example of this is a sphere wedged between two flat parallel planes. In this

case all rotations are possible giving us the extra degree of freedom. Although

this case can be treated as a bilateral constraint (the sphere can not move in the

direction normal to either contact), there are most certainly scenarios which can

not be simplified so easily. Other attempts at a general parameterization of multi-

contact configurations will have similar problems. Parameterizing multiple contact

configurations is a difficult problem we do not propose to solve.
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This all appears to be a good argument for avoiding a reduced coordinate for-

mulation and sticking with simpler more reusable constraints that need stabilization.

This avoids the problem of choosing and switching between different parameteriza-

tions. Nevertheless, we still recognize the single contact problem as interesting,

important, and useful. If the objects spend most of the time in a given contact state

then parameterizing the local contact manifold is useful.

4.2.3 Kinematics Equations

The contact kinematics equations relate the relative motion between two smooth

contacting bodies to a change in the contact coordinates.

Because the contact coordinates are of reduced dimension this system of

equations will be a linear transformation (a function of the contact coordinates)

from the 5 dimensional space of contact coordinate velocities into a 5 dimensional

subspace of the 6 dimensional space of spatial velocities.

Many different derivations of these equations with minor differences can be

found in [30, 10, 1, 35].

For example, [30] showed that when the parametric surfaces are orthogonal

networks these equations can be written using the fundamental forms of curvature

of the two surfaces.

For another example, if the contact coordinates are extended to include a

distance along the z direction between the coordinate frames then we get a bijective

transformation relating all spatial velocities to the changes in these extended contact

coordinates. A derivation of this can be found in [35] where it is used for haptics.

Having a separation distance is useful in haptics since a negative distance measures

penetration which can be used to compute a reaction force based on a penalty

method.

In our simulation, however, because we use the contact kinematics equations

as a constraint we do not include distance as one of the degrees of freedom. We will
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Figure 4.2: Change of reference frames

give our own derivation here, suitable for any type of parametric surface. A more

detailed derivation can be found in Appendix A.

As illustrated in Figure 4.2 we compute a matrix representing a change in

coordinates from frame 1 to frame 2. This composition is written as

2
1E = 2

2cE
2c
1cE

1c
1 E. (4.9)

The three matrices on the right hand side are functions of the contact coor-

dinates. They are defined by Equations 4.6 and 4.7.

Recall that the relative spatial velocity can be defined by

1
φ(2, 1) = V 1

2E
2
1Ė. (4.10)

We take the time derivative by using the chain rule, thus

1
φ(2, 1) = V

5∑
j=1

1
2E

2
1E,qj q̇j. (4.11)

Since the contact coordinates can change independently of each other, each

4×4 matrix in the sum will be a twist and can have the extraction operator applied

27



directly, hence

1
φ(2, 1) =

5∑
j=1

1
Hj q̇j (4.12)

where,
1
Hj = V 1

2E
2
1E,qj . (4.13)

The column vector 1
Hj tells us the contribution of a change in the jth com-

ponent of the contact coordinates to the relative spatial velocity of the two objects.

Letting 1
H be a matrix whose columns are 1

Hj, j = 1 . . . 5, we can write Equation

4.12 in matrix notation as
1
φ(2, 1) = 1

Hq̇. (4.14)

This 6×5 matrix H relates coordinate velocities to relative spatial velocities.

It can be transformed to any other convenient frame by left multiplying with an

appropriate adjoint.

Note that when H is written in one of the contact frames it takes on a

simpler form. Its bottom row becomes zero because a velocity in the z direction is

not achievable through a change in the contact coordinates (a non zero z velocity

involves breaking contact).

The upper 5 × 5 sub-matrix of H is in general dense. In a contact frame,

however, H will have several zeros if one of the surfaces is flat and without twists

in its equiparameter lines.

If there is near conforming contact between the surfaces, H becomes poorly

conditioned. When there is conforming contact the upper 5×5 sub-matrix becomes

singular. Consider the example of a ball in a socket. If the surfaces have almost but

not quite the same shape then very large parameter velocities are needed to account

for small spatial velocities. If the surfaces conform exactly then we have a lower

number of degrees of freedom and need a new parameterization for the contact (see

[1] for an example of a cylinder on a flat surface going from conforming contact to

point contact).
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Although the derivation shown in Equations 4.9-4.14 is quick for demonstra-

tion, it lacks the convenience of the finer details necessary for an implementation.

Appendix A contains a detailed derivation more suitable for implementation as it

emphasizes ease of computation.

4.3 Constrained Dynamics

Let body 1 be free to move in contact with body 2 which is fixed. The Newton-Euler

equations for a rigid body (see [36, 32]) can be written using spatial vectors as

fext + fc = Mφ̇− [φ]TMφ (4.15)

where fext is the external force, fc is the constraint force, φ is the spatial velocity

of the body relative to the world (inertial) frame, M is the spatial inertia, and all

coordinates are with respect to the body fixed frame, frame 1. Note that φ̇ is the

time derivative of φ in the body frame.

We can combine this equation with the non-holonomic constraint

1
φ = 1

Hq̇ (4.16)

to get a differential algebraic equation. Differentiating the constraint once, in the

body frame, we get
1
φ̇ = 1

Ḣq̇ + 1
Hq̈, (4.17)

where 1
Ḣ = 1

1cȦd
1c
H + 1

1cAd
1c
Ḣ. (4.18)

Combining Equation 4.15 with the constraint Equation 4.17 (instead of Equation

4.16) gives us an ordinary differential equation instead of a differential algebraic

equation.

In the frictionless case the constraint force must not do any work on the

system. The result of this is that fc will be orthogonal to all of the degrees of

freedom. This can be expressed as HT fc = 0. If interpreted in the contact frame,
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fc is easily seen to be perpendicular to the surface as the first five rows of H are

linearly independent and the sixth row is zero.

We will write these equations in the following matrix form below where all

quantities are expressed in frame 1 coordinates, so we drop the frame label for

clarity. ⎛
⎜⎜⎜⎝

I M 0

0 I H

HT 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
f

−φ̇
q̈

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

b

−a
0

⎞
⎟⎟⎟⎠ (4.19)

b = −[φ]TMφ− fext (4.20)

a = Ḣq̇ (4.21)

Performing block row elimination on the last row produces
⎛
⎜⎜⎜⎝
I M 0

0 I H

0 0 HTMH

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
fc

−φ̇
q̈

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

b

−a
r

⎞
⎟⎟⎟⎠ . (4.22)

Here,

r = HT (fext + [φ]TMφ−MḢq̇).

The last row yields an ordinary differential equation in the contact coordi-

nates which can be integrated directly; it’s equivalent to the ODE

q̈ = (HTMH)−1HT (fext + [φ]TMφ−MḢq̇). (4.23)

Note that although HTMH is an invertible 5×5 matrix we use a matrix factorization

instead of explicit inversion.

To summarize, we choose our constraint as the description of how two sur-

faces move when they are in contact. Because we constrain the motion of our objects

to remain in contact, we will achieve this type of motion when we integrate while ap-

plying an external force. In this approach we avoid stabilization since we evolve the

30



system in a set of reduced coordinates which parameterize the constraint manifold

exactly.

Recall that we only wanted a unilateral non-interpenetration constraint. Al-

though the contact kinematics equations are much less complicated than the distance

computation required for a position level constraint, our formulation effectively gives

us a bi-lateral constraint. We resolve this problem by monitoring the constraint force

to check for when the surfaces are breaking contact.

4.4 Friction

Friction is a necessary component for realism in any physically-based animation.

We present a simple way of incorporating dry Coulomb friction into our algorithm.

Sections 4.4.2 through 4.4.4 discuss ideas related to static friction which we have

not implemented.

4.4.1 Dynamic Friction

With only a single point of contact between two contacting bodies and isotropic

friction, we can make the assumption that the friction force opposes the relative

velocity.

When the relative translational velocity is non zero, we are in sliding or

dynamic friction mode. When the magnitude of the relative translational velocity

falls below a small threshold, we might consider that the contact enters sticking

or non-slip or static friction mode. In this mode the system has fewer degrees of

freedom as the contact will move at the same speed across both surfaces. We discuss

how no-slip friction could be added to our algorithm in Section 4.4.2. See also [17]

for more on no-slip contact evolution.

We observed results which are adequate for many graphics applications by

allowing the surfaces to be in frictionless contact when the relative translational

velocity falls below a threshold. When the bodies are close to a static friction
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configuration they will appear to be sticking but will in fact be slipping on one

another and the contact will slowly drift from its current position.

For translational friction due to sliding we have the equation,

ft = −µv̂|fn|, v �= 0, (4.24)

where ft is the tangent translational force due to friction, fn is the normal force,

and v̂ is the normalized relative translational velocity. Summing tangent and normal

components gives us the translational component of the constraint force.

This equation becomes very simple when written in coordinates of a con-

tact frame since the constraint wrench in coordinates of a contact frame is already

decomposed into a component normal to the constraint manifold and a tangential

component due to friction. The normal component is simply the z translational

component (the 6th entry of 1c
fc). The remaining components are due to friction.

Let 1c
fci be the ith component of the constraint wrench written in frame 1c.

Equation 4.24 becomes

1c
fc4 = −µ v̂x 1c

fc6, (4.25)

1c
fc5 = −µ v̂y 1c

fc6. (4.26)

We may also like to have friction slow down an object which is rolling or spinning.

This is most commonly achieved through viscous damping due to air resistance. It

is not difficult, however, to have a rolling or spinning friction torque proportional to

the normal force instead of the angular velocity (there is physical justification for

this in some special cases, see [31]).

When written in the contact frame, the relative angular velocity, ω, decom-

poses into a rolling component, ρ def= (ωx, ωy)T , and a spinning component, ωz.

Letting µr and µs represent the coefficients of rolling and spinning friction we can
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write,

1c
fc1 = −µr ρ̂x 1c

fc6, (4.27)

1c
fc2 = −µr ρ̂y 1c

fc6, (4.28)

1c
fc3 = −µs sgn(ωz)

1c
fc6. (4.29)

Recall that the constraint wrench in Equation 4.15 is in coordinates of frame 1. Thus

we will need to left multiply by the appropriate adjoint. We can use the adjoint and

Equations 4.25-4.29 to write our new constraint equation in matrix form.

µ
def=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

µr ρ̂x

µr ρ̂y

µs sgn(ωz)

µ v̂x

µ v̂y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.30)

⎛
⎜⎜⎜⎝I5×5

...

0
...

⎞
⎟⎟⎟⎠ 1

1cAdT
1
fc = −

⎛
⎜⎜⎜⎝05×5

...

µ
...

⎞
⎟⎟⎟⎠ 1

1cAdT
1
fc. (4.31)

The left hand side extracts the tangential component of the constraint force, while

the right hand side computes what the frictional component should be based on the

normal restoring force. There are only five rows in the matrix because we do not

place any restrictions on the normal force. The normal force is determined solely

by the fact that the surfaces are not allowed to interpenetrate. The essence of this

equation is to make the constraint wrench point in a slightly off normal direction

such that it opposes the relative motion of the bodies. If the normal component

needs to be larger to prevent the bodies from interpenetrating the tangential portion

will also become larger due to the larger normal force.

Bringing everything to the left hand side in Equation 4.31 we get,

F
1
fc = 0, (4.32)
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where F
def=

⎛
⎜⎜⎜⎝I5×5

...

µ
...

⎞
⎟⎟⎟⎠ 1

1cAdT . (4.33)

The 5× 6 matrix F thus replaces HT in Equation 4.19. Repeating the block

row simplification performed in Section 4.3 on the modified matrix results in the

following equation which we use instead of Equation 4.23.

FMHq̈ = F (fext + [φ]TMφ−MḢq̇) (4.34)

Note that F is a function of φ. In Equation 4.34, a time explicit integration

method would use the relative spatial velocity from the previous time step. This is

what we have implemented.

4.4.2 No-Slip Friction

No-slip friction imposes a non-holonomic unilateral constraint on motion. Because

it is non-holonomic, it only places a restriction on the contact coordinate velocities.

We still need the five dimensional contact coordinates, however, to keep track of the

configuration of the contacting objects. The contact coordinate velocities on the

other hand are no longer independent since they only have three degrees of freedom.

In this section, unless otherwise specified, we let H be in a contact frame (say
1c
H, in the contact frame 1c). Let Hi..j,k..l be the sub-matrix consisting of rows i

through j and columns k through l. For example, H4..5,1..2 is the portion of H which

relates the contribution of the contact coordinate velocities (ṡ, ṫ) to the tangential

translational velocity of the contact, (vx, vy).

When the two objects in contact are moving without slipping, the relative

translational velocity of the bodies in the contact frame will be zero. We can use this

fact to find a relationship between (ṡ, ṫ) and (u̇, v̇). Because ψ̇ does not contribute
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at all to this velocity we can write this relationship as

H4..5,1..2

⎛
⎝ṡ
ṫ

⎞
⎠ = −H4..5,3..4

⎛
⎝u̇
v̇

⎞
⎠ . (4.35)

Hence,

⎛
⎝ṡ
ṫ

⎞
⎠ = D

⎛
⎝u̇
v̇

⎞
⎠ (4.36)

where D
def= −H−1

4..5,1..2H4..5,3..4. (4.37)

We can now rebuild a smaller version of H which relates the relative spatial

velocity of the objects to a set of independent contact coordinate velocities. That

is, we can write

φ = H1..6,1..2 D

⎛
⎝u̇
v̇

⎞
⎠ +H1..6,3..4

⎛
⎝u̇
v̇

⎞
⎠ +H1..6,5 ψ̇, (4.38)

which has the matrix form

φ = H ′

⎛
⎜⎜⎜⎝
u̇

v̇

ψ̇

⎞
⎟⎟⎟⎠ , (4.39)

where H ′ def=

⎛
⎜⎜⎜⎝

...
...

(H1..6,1..2 D +H1..6,3..4) H1..6,5

...
...

⎞
⎟⎟⎟⎠ . (4.40)

The no-slip equations of motion are now simply the equations in Section 4.3

with all occurances of H and q̇ replaced with this 6× 3 matrix H ′ and the reduced

set of contact coordinates velocities (u̇, v̇, ψ̇)T from Equation 4.39. We solve this

smaller system to compute the reduced contact coordinate accelerations. We still

need to integrate the original q̇, however, to get the new contact configuration q.

This is done at each derivative computation step by computing q̇ using Equation

4.36. We use the reduced contact coordinate velocities resulting from the integration

of the reduced contact coordinate accelerations.
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4.4.3 No-Slip and No-Spin Friction

We can likewise additionally restrict the free object from spinning. This reduces the

degrees of freedom to two. We get no-spin by requiring ωz to be zero in the contact

frame. We can write this requirement as

H3,1..2

⎛
⎝ṡ
ṫ

⎞
⎠ +H3,3..4

⎛
⎝u̇
v̇

⎞
⎠ +H3,5 ψ̇ = 0. (4.41)

Since 1c
H3,5 = 1 (see Section 4.2 or Appendix A for more details), and using

D from Equation 4.36 we can write

ψ̇ = −(H3,1..2 D +H3,3..4)

⎛
⎝u̇
v̇

⎞
⎠ . (4.42)

Thus Equation 4.39 with the additional requirement of no spin becomes,

φ = H ′′

⎛
⎝u̇
v̇

⎞
⎠ (4.43)

where H ′′ =

⎛
⎜⎜⎜⎝

...

H1..6,1..2 D +H1..6,3..4 +H1..6,5(−(H3,1..2 D +H3,3..4)
...

⎞
⎟⎟⎟⎠ . (4.44)

This 6 × 2 matrix along with u̇ and v̇ replace H and q̇ in our dynamics

equations of Section 4.3. After integrating the computed ü and v̈ to get u̇ and v̇,

we use Equations 4.36 and 4.42 to compute q̇.

4.4.4 Changes in Friction

We can simulate a better friction model by changing between our static and dynamic

friction models at appropriate times. As mentioned before, although our sliding fric-

tion model can do a reasonable job imitating no-slip friction, objects which appear

to be at rest will be slowly moving.
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To switch between models we must monitor the constraint force and slip

velocity. When in no-slip friction mode we check to see if

|ft|
|fn| ≤ µstatic. (4.45)

Recall that the tangential and normal components are easily extracted from the

constraint force when it is written in the contact frame. If the inequality is not

satisfied then we switch to sliding friction. When in sliding friction mode, if the

magnitude of the slip velocity falls below some threshold then we switch back to

no-slip friction. Note that when switching to slipping friction, the objects should be

given a chance to start sliding before switching back to no-slip friction.

The no-spin condition suggests that the contact area is large enough to trans-

mit frictional torques. In this case we might also want to compare the torque about

the z axis with the magnitude of the normal force. That is, if the inequality

|1cfc3|
|fn| ≤ µspin static (4.46)

is violated then we switch to sliding friction.

4.5 Traversing Patch Boundaries

Object models are commonly a collection of surface patches. In Figure 4.3, the bowl

at the left consists of 56 triangular patches and the plate on the right consists of 192

triangular patches. A robust method of evolving a contact across patch boundaries

is needed.

Although the surfaces depicted in Figure 4.3 are subdivision surfaces, recall

that any surface that can be evaluated parametrically is suitable for our contact

evolution technique. For our boundary traversal method, an object can consist of

any mixture of patches, from simple Bézier or NURBS patches (see [39, 45]) to more

complicated surfaces, as long as tangent plane continuity exists between all pairs of

neighbouring patches.
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Figure 4.3: A bowl shape and a complex shallow bowl showing patch boundaries.

We assume that the domain of a patch is a polygon, which we describe by a

counter clockwise list of points in the plane, Pi ∈ R
2, i = 1 . . . n. For every edge in

the domain polygon we need to know both the adjacent patch and the corresponding

domain edge. That is, for a given patch A and its domain edge PAi P
A
i+1 mapping to

a curve in R
3, we have a corresponding patch B with domain edge PBj P

B
j+1 which

maps to the same curve in R
3. We call the edge PAi P

A
i+1 edge i of patch A.

We also need to know how to find points on edge j of patch B which map

to the same location in R
3 as points on edge i of patch A. One way of describing

the relationship between these two boundaries is to write the boundary curve as a

single parameter function. Edge i of patch A whose shape is described by cA(u, v)

can have its boundary curve written as

cAi (u) def= cA(PAi+1u+ PAi (1 − u)). (4.47)

Then we need to know the invertible reparameterization function

g : R → R (4.48)

such that cBj (u) = cAi (g(u)). (4.49)

In many cases this function will turn out to be quite simple. In our case, all

boundary curves are of the same form and are equivalent to quartic Bézier curves.
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Figure 4.4: Domain boundaries and functions involved in a transition

The adjacent curves are identical (the control points in the Bézier basis will be the

same) giving us a very simple function g(u) = 1 − u. It is not the identity because

the domain polygons are described in counter clockwise order. Thus the curves,

although identical, start at opposite ends.

Trimmed NURBS surfaces, as created by many commercial design packages,

would cause a problem here. Trimmed NURBS are usually the result of a boolean

constructive solid geometry operation and result in sharp edges. The sharp edged

curves are often described in a piecewise linear fashion in the domain since surface

surface intersections result in very high degree curves making it impractical to define

the boundary by a curve in the domain (see [48]). That said, we do not address curve-

curve or surface-curve contacts because they require a different contact coordinate

parameterization (see [1]), but [35] addresses the issue of finding boundary points
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in the domains of adjacent trimmed NURBS surfaces.

Here are the steps for doing a domain edge traversal:

• compute the state of the system at the time of crossing;

• compute the contact coordinates of the system using the adjacent patch;

• compute the new contact coordinate velocities.

We use the following notational convention. We assume, without loss of

generality, that the contact moves from patch A to patch B on body 1 while the

contact remains in patch C of body 2. When the state of the system is at a patch

boundary we use a superscript to denote the patch whose coordinate system is

being used. For example, qA would denote the system configuration using patch A.

Likewise HA denotes the contact kinematics equations using patch A.

4.5.1 Time of Crossing

A boundary crossing is detected when the contact coordinates fall outside of the

domain of the patch. This is easy to check when the domain polygon is convex in

which case we check if the point falls to the left or right of the domain edges. If the

point is on the right of any edge of the convex domain, then it is outside.

Once it is determined that the contact is leaving the domain of a patch we

must back up the state of the system to the time of the traversal.

One approach is to revert to the previous system state and integrate with

smaller time steps until the contact position in the domain of the patch being tra-

versed is sufficiently close to the boundary. The point can then be projected onto

the boundary.

An alternative is to assume that the evolution of the contact is linear on the

scale of the step size of the integration technique. In this case we can compute a

line segment intersection to compute the new state of the system. Suppose the line
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Figure 4.5: The boundary crossing as the location of intersection.

segment PAi P
A
i+1 is the domain boundary edge being crossed and (u, v)t(u, v)t+∆t is

the line segment described by the inside and outside contact locations. Let α, β ∈
[0, 1] describe the location of the intersection on each segment as a proportion of the

distance along each segment (see Figure 4.5). We can take the state of the system

at the boundary to be

qA
def= qAt+β∆t ≈ βqAt+∆t + (1 − β)qAt , (4.50)

q̇A
def= q̇At+β∆t ≈ βq̇At+∆t + (1 − β)q̇At (4.51)

and the location of the contact on the boundary will be cAi (α). Note that we define

qA and q̇A to be the state of the system at the boundary for the convenience of not

specifying the time of crossing in a subscript. As mentioned before, the superscript

denotes that the contact coordinate and contact coordinate velocity use patch A.
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4.5.2 Contact Location on Adjacent Patch

We can write the state of the system at the boundary of patch B by using the

function g defined in Equation 4.48.

qB =

⎛
⎜⎜⎜⎝
PBj+1g(α) + PBj (1 − g(α))

qA3..4

ψB

⎞
⎟⎟⎟⎠ (4.52)

Note that the third and fourth component of the contact coordinate remain

unchanged. Note that if there is a simultaneous patch transition on the other object

it will be handled after this transition is complete. Knowing the coordinates on

the adjacent patch, we still need to compute ψB . This is done by adding to ψA

a correction to reflect the angle between the x axes of the contact frames at the

crossing position of the adjacent patches. Since cos−1(xA · xB) is computed as an

angle in the range [0, π]1, we check to see if xA× xB points in the opposite direction

of the surface normal in which case we negate the correction angle. Thus we can

write

ψB = ψA + sgn((xA × xB) · z) cos−1(xA · xB). (4.53)

Note that if xA× xB = 0 then cos−1(xA · xB) is either 0 or π making the sign

correction irrelevant. Figure 4.6 shows the case where xA × xB points in the same

direction as the normal.

4.5.3 Computing New Contact Coordinate Velocities

Now that the contact coordinates q are known on both sides of the boundary we

can compute q̇B from q̇A. We equate the relative spatial velocity on each side of

the boundary using 2c
HA and 2c

HB . The spatial velocity is computed in a contact

frame allowing us to drop the z component of the velocity (which is zero) resulting

in a system of equations which are not over-constrained. The contact frame of body

1e.g. by Java’s Math.acos().
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Figure 4.6: To compute contact coordinates on patch B, the angle ψ has θ added to
it. We add positive θ because xA × xB points in the same direction as the normal.

2 is used as it is unaltered while the contact frame of body 1 changes from patch A

to patch B. Hence, we solve for q̇B in

2c
ĤA q̇A = 2c

ĤB q̇B , (4.54)

where 2c
Ĥ is a 5 × 5 matrix equivalent to the matrix 2c

H with the bottom (zero)

row removed.

Knowing the system state after the boundary traversal (qB , q̇B), we can run

the integrator again with a step size of (1 − β)∆t to bring us to the target time,

t + ∆t. If additional boundary crossings occur in this time interval, then they are

treated in exactly the same manner.

4.5.4 Corner Transitions

We might ask what happens if the contact goes directly through a corner. In this

case, although the contact may not end up in one of the adjacent patches (one sharing

a boundary rather than just a vertex with our current patch), we still transfer the

contact to an adjacent patch. Once in the adjacent patch the contact may evolve

through the corner again. The process is repeated until we end up in a patch where

the contact coordinate velocity evolves the contact into the interior of the domain.
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Figure 4.7: Transition through a corner

If we have n patches meeting at a point, we may need to perform n − 1 traversals

before we end up in the final destination patch (see Figure 4.7). This is because we

take the first domain edge which intersects the state trajectory line segment. That

is if the contact goes through Pi+1 then both PiPi+1 and Pi+1Pi+2 will intersect

with the path. Consistently choosing the edge which ends rather than begins at the

traversal point will prevent oscillating transitions between two adjacent patches.

4.5.5 Avoiding Traversal Problems

To increase robustness, we also allow the contact to remain on a patch if it is outside

but within epsilon of the patch boundary. This is at a small expense of accuracy,

however, as the patch shape outside the boundary does not describe the shape of

the surface.

This epsilon extended boundary eliminates the problem of oscillating patch

transitions which might occur when a contact exactly follows a patch boundary.

To perform transitions when the patch is crossing the epsilon extended boundary

we project the contact location back onto the boundary edge before making the
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transition and then displace the contact location by an equivalent amount into the

adjacent patch after the traversal. In doing this we must be careful not to compute

a contact location in the new patch which is outside the epsilon extended boundary.

4.6 Algorithm Summary

At this point it may be useful to review the entire algorithm. Everything is centered

around the computation of q̈. For a single contact there is a constant amount of

work to do this computation.

While the integrator has not achieved the target time for the next frame in

the animation we try to step the integrator (note that this may result in crossing a

patch boundary). The integrator gives us the current state and we must compute

the derivatives of this state. That is we get (q, q̇) and need to produce (q̇, q̈). This

only involves computing q̈ as we can use the q̇ provided with our current state. The

whole process can be summarized briefly by the steps that follow.

• First we evaluate the surfaces. That is, we must compute the position of the

contact point on each surface and all the partial derivatives of order up to

three. Because the basis functions of parametric surfaces are smooth and due

to the symmetry of mixed partials (c,uv = c,vu), only ten sets of basis functions

are needed to do this evaluation.

• Next we must compute the position and orientation of the bodies in world co-

ordinates. This is necessary for computing any external forces such as gravity.

We do this by computing 2
1E from Equation 4.9 using the surface evaluations

we just computed. The absolute position and orientation of the objects are

also used to render the animation.

• We then compute H with the method described in Appendix A. We transform

H to the free body reference frame and compute φ using q̇ from the current

state.
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• We now have everything we need to solve for q̈. We do this by solving Equation

4.23 for the frictionless case, or by solving Equation 4.34 for the friction case.

This is accomplished with an LU decomposition of HTMH in the frictionless

case, or FMH in the friction case.

Recall that since contact coordinates are used the constraints are automatically

satisfied and there is no need for constraint stabilization. Back substituting q̈

into the second row of Equation 4.22, we get the contact wrench fc which can

be monitored to detect contact breaking.

• If the integrator computes a new contact coordinate which is outside the cur-

rent domain boundary then we backup to the time of the crossing, traverse

the boundary as described in Section 4.5 and repeat the entire process from

the first step until we have arrived at the target time.
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Chapter 5

Surface Representation

We primarily use Loop subdivision surfaces to describe the boundaries of objects

because of their popularity in the graphics community. Note that although subdivi-

sion surfaces are similar in many ways to other popular surface representations such

as NURBS, they pose some special difficulties with respect to our contact evolution

technique. In this chapter we describe the considerations that are needed to use

Loop subdivision surfaces with our technique. We end the chapter with a general

description of the features of our implementation.

5.1 Subdivision Surfaces

Subdivision surfaces have become popular in recent years for modelling objects [12].

This is because they provide an easy mechanism for converting meshes with arbitrary

topology into smooth surfaces. The original mesh provides an easy way for the user

to edit the shape of the smooth surface. Another advantage is that subdivision

surfaces are not hard to implement. We will give a short introduction to subdivision

surfaces in this section. The SIGGRAPH course notes [12] discuss the details in

much greater depth (see also Schwitzer’s PhD thesis, [47]).

A subdivision surface algorithm consists of rules for subdividing a polyhedral

mesh where all faces have the same number of sides. The rules are applied recursively
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to get finer and finer meshes. In the limit the rules define a smooth surface with

nice continuity properties (they typically are C1 or C2 at patch boundaries, but C∞

almost everywhere).

The mesh which defines the surface is usually but not necessarily a closed

manifold. In the case of the Loop subdivision rules the faces are triangular, while for

the Catmull Clark rules the faces are rectangular. These are the two most common

types of subdivision. There are others with various interesting properties, such as

the Butterfly scheme which interpolates mesh vertices.

3 3
8 8

1
8

8
1

10
16
1

16
1

11
16 16

1616

16

1 1

Figure 5.1: Loop subdivision rules

The subdivision rules define a

finer mesh by moving the existing ver-

tices (or not in an interpolating scheme)

and inserting new vertices to make new

smaller faces (see figure 5.2). The rules

state where a vertex moves, or where a

new vertex should be created, based on

the positions of vertices in a small neigh-

bourhood. In the refined mesh, the new

vertices are called odd vertices while the

vertices which were in the original mesh are called even vertices. This naming con-

vention comes from one dimensional subdivision curves because when the vertices

are stored in a zero indexed array they occur at even and odd indices.

Figure 5.1 shows the affine combinations, also called vertex maps, for the

Loop rules. The odd vertices have their position defined by an affine combination of

their position and the positions of their neighbours. The even vertices are an affine

combination of the surrounding vertices.

For the Loop subdivision rules, any vertex in the mesh which does not have

a valence of six is referred to as an extraordinary vertex. Although there are slightly

different subdivision rules at extraordinary vertices, the new position of the vertex
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Figure 5.2: Three levels of subdivision of an octahedron. Note how the number of
extraordinary vertices does not grow with subdivision.

is still an affine combination of its position and the positions of its neighbours. Al-

though there are multiple ways of choosing the weights (see [54]) the actual values

are not important to us as we only require that the surface be smooth. Unfortu-

nately, the resulting surfaces are typically less smooth at extraordinary vertices.

Most meshes will have extraordinary vertices since only shapes which are

topologically a torus can have all mesh vertices with valence six. This can be seen

by evaluating the Euler characteristic to compute the genus. This relationship is

given in [18] by,

V − E + F = 2 − 2g (5.1)

where V is the number of vertices, E is the number of edges, F is the number of

faces and g is the genus. If a mesh consists of triangular faces and vertices of degree

six, then we can count the edges and vertices from the number of faces. Each face

has three vertices, each of which are shared among six faces (V = 3
6F ). Each face

also has three edges which are shared with one other face (E = 3
2F ). Substituting

these equalities into Equation 5.1 gives g equal to one, independent of the number

of faces.

It is interesting to note that the number of extraordinary vertices does not

change as the mesh is subdivided. This can be seen in the sample subdivision of an

octahedron in Figure 5.2.
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5.1.1 Parametric Evaluation of Subdivision Surfaces

Although subdivision surfaces were not designed with parametric evaluation in mind,

it turns out that they can be evaluated parametrically. Loop and Catmull Clark

surfaces happen to be quite simple away from extraordinary vertices. Away from

extraordinary vertices, Loop surfaces can be described as quartic box splines, while

Catmull Clark surfaces can be described by bi-cubic Bézier surfaces.

Because the subdivision rule for a vertex is a simple affine combination of

its neighbouring vertices, a subdivision matrix can be used to describe how a neigh-

bourhood of points moves at each subdivision step. In [52, 51], Stam shows that the

eigenstructure of the subdivision matrix is useful for evaluating the surface next to

an extraordinary vertex. The idea is to subdivide the surface until the point being

evaluated is no longer in a patch with an extraordinary vertex. Subdivision to the

desired depth is achieved by computing a power of the subdivision matrix. This is

easily performed with the eigenvalue decomposition.

In Stam’s formulation each face can only have one extraordinary vertex. This

is easy to guarantee as we can perform one subdivision on our mesh to get a new

mesh which has this property. In the new mesh the odd vertices will have degree

six and no two even vertices will be adjacent.

For transitions between patches, we define the domain of a Loop patch to be

the triangle with vertices P1 = (0, 0), P2 = (1, 0) and P3 = (0, 1) (we treat extraor-

dinary patches differently in Section 5.2). Although planar domain coordinates can

be converted to barycentric coordinates for our quartic box spline representation, we

do not need to do this in our implementation as we write the basis functions solely

in terms of the two coordinates by simple substitution. That is, although the Loop

basis functions are given by Stam (see [51]) in terms of barycentric coordinates u,

v, and w, we replace occurances of w with 1 − u− v.
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5.1.2 Non-regular Parameterization

Because the contact coordinates use the parameterization of the surface, the algo-

rithm is sensitive to poor parameterizations. Excessive twisting in a surface causes

problems which are not always overcome with smaller step sizes. For an example

where smaller step sizes work, consider a planar surface defined by a Bézier surface

where the equiparameter lines twist left and right in the plane. For an object, such

as a sphere, rolling in a straight line on this plane the contact coordinates will need

to follow a non linear path in the domain of the twisty plane.

Loop surfaces near extraordinary vertices using the natural parameterization

are unpleasant. When the valence of the extraordinary vertex is less than six the

partial derivatives of the patch at the extraordinary vertex are zero. That is,

lim
(u,v)→(0,0)

cdeg<6
,s (u, v) =0, cdeg<6

,s (0, 0) = 0, (5.2)

lim
(u,v)→(0,0)

cdeg<6
,t (u, v) =0, cdeg<6

,t (0, 0) = 0. (5.3)

When the valence is greater than six the partial derivatives at the extraordinary

vertex are undefined. In this case, the magnitude of the partial derivatives become

large without bound as we approach the extraordinary vertex. That is,

lim
(u,v)→(0,0)

|cdeg>6
,s (u, v)| =∞, cdeg>6

,s (0, 0) = undefined, (5.4)

lim
(u,v)→(0,0)

|cdeg>6
,t (u, v)| =∞, cdeg>6

,t (0, 0) = undefined. (5.5)

An additional concern with both cases is that the isoparametric lines which come

close to the extraordinary vertex make very sudden and sharp bends.

These effects are visible in Figures 5.3 and 5.4. The patches shown in these

figures are flat with the extraordinary vertices in their lower right corners. The con-

trol points are placed such that n copies could be placed sharing and completely sur-

rounding a degree n extraordinary vertex. The equiparameter lines become tightly

bunched together near the extraordinary vertex in the degree three patch, while

they become spaced further apart in the degree ten patch. The sharp bends within
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Figure 5.3: A planar valence 3 patch
showing tight bunching of equiparame-
ter lines near the extraordinary vertex.

Figure 5.4: Valence 10 patch showing
larger spacings between equiparameter
lines near the extraordinary vertex.

the plane are also visible. In the valence three patch the isoparametric lines bend

towards the extraordinary vertex, while they bend away from the extraordinary

vertex in the degree ten case.

If a contact is moving at constant speed near an extraordinary vertex, this

will result in either very large or very small contact coordinate velocities (depending

on the valence). The more noticeable problem, however, is that ψ̇ will also become

very large to accommodate the twists of the isoparametric lines. When a contact

is evolving near an extraordinary vertex, the contact coordinate ψ will have large

accelerations. These accelerations may not integrate out leaving one body spinning

like a top on the other. Another consequence is that H becomes poorly conditioned.

The interior of a regular Loop patch, being a polynomial surface, is C∞.

Note that there is normally a discontinuity in the third derivative at patch bound-

aries, except when the adjacent patches describe the same function. Because of the

subdivisions necessary to get a regular patch near an extraordinary vertex, there

exists a spider web of discontinuities in the third derivative.

One possible remedy is to reparameterize the extraordinary patch to make it

regular. Stam suggests reparamaterizing based on the characteristic functions which

correspond to the two partial derivatives (see the updated version of [51] which ap-

pears as a part of [12]). This unfortunately involves inverting these functions which
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is impractical since they are quartic polynomials in two variables. Additionally,

derivatives of the inverted characteristic functions are needed for computing the

derivatives of our reparameterized surface.

Another possible solution is to use a different subdivision rule at extraordi-

nary vertices. Loop recently developed a method of using a vertex map with larger

support which results in a surface with bounded curvature. This research can be

found in the technical report [26]. To use Loop’s result we would need the eigen-

structure of the new subdivision matrices. Unfortunately, the rules are identical to

the original rules when the valence is three. Thus the new scheme does not alleviate

the non-regular parameterization problem for the valence three case. Additionly,

we did not consider this as a possible solution to our problem since this report did

not come to our attention until after we implemented the solution outlined in the

following sections.

5.2 Surface Replacement

Given all the problems discussed in the previous section, we feel that the best option

for avoiding these problems is to replace the portions of the subdivision surface near

extraordinary vertices with surfaces which are better behaved.

Part of our justification for replacing the surface is that subdivision surfaces

are not an exact model of anything. Their main purpose is to produce a smooth

surface which approximates a desired shape, using a control mesh. If we are using a

subdivision surface to model a real world object, it will be at best an approximation

of this object. In this line of reasoning it is not unreasonable to change the shape

of the surface slightly to create a surface with better properties.

This is a similar idea to what Peters does in [37]. He shows a method for

building a minimal number of maximally sized NURBS surfaces which match a

Catmull Clark subdivision surface exactly, except near extraordinary vertices where

they are within a given small epsilon. This would be useful if we were using Catmull
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Figure 5.5: An four sided S-patch fit to an extra-ordinary vertex of a bowl. Note
the gentle twisting in the equiparameter lines.

Clark subdivision surfaces.

Since we are using Loop subdivision surfaces, our solution involves cutting a

hole in the surface around an extraordinary vertex and replacing it with an S-patch.

S-patches, developed by Loop and DeRose in [27], are a multi sided generalization

of a Bézier surface. We will give a description of S-patches in the next section.

Figure 5.5 shows the result of replacing the surface near one of the degree

four extraordinary vertices in the bowl on the left of Figure 4.3. Although it is hard

to tell from the figure, the four sided S-patch matches the original surface quite

closely being only slightly flatter than the original surface.

5.2.1 S-patches

S-patches are defined by two maps. The first map is an embedding E from a polygon

in the plane into an n-dimensional simplex. The second map, B, is the standard

multidimensional Bézier map from the n-dimensional simplex into R
3. When the

54



E

B

P

v

1

n

2

1v

vn

P

P2

S
P

∆

Figure 5.6: S-patch maps

maps are composed, the result is a surface given by the image of the two dimensional

manifold within the simplex defined by the embedding. In other words, the S-patch

function mapping the polygon P to R
3 is given by the composition S = B ◦ E as

shown in Figure 5.6.

The domain polygon is defined by the vertices of a regular n sided polygon

centered at the origin and with the first point, P1, lying on the positive u axis.

We let the polygon be of unit area to help match the magnitude of derivatives

of adjacent patches. This is desirable for contact evolution. We do not want our

contact coordinate velocities to be dominated by any component as this will coincide

with a less desirable condition number for H.

The simplex is defined by the vertices vi. A convenient way to think about

these n dimensional vertices is to let their coordinates all be zero except for a one

in the ith position.

The embedding is designed to map edges in the polygon to edges in the

simplex (Loop and DeRose call this property edge-preserving). A walk around the

polygon in the plane would map to a walk which goes in straight lines in each

dimension and then returns to the starting point along the diagonal.

55



We will now give definitions of the maps. We will start with the multidimen-

sional Bézier map. We use n dimensional barycentric coordinates,

(u1, . . . un) ∈
[
0, 1

]n
(5.6)

where
n∑
j=1

uj = 1, (5.7)

to write the Bernstein polynomials of dimension n and degree d. We also need a n

dimensional multi-index for the degree d polynomials. It is defined as

	i = (i1, . . . in) ∈ N
n (5.8)

with
n∑
j=1

ij = d. (5.9)

Note that N refers to non-negative integers including zero. We can now write the

	ith degree d Bernstein basis function as,

Bern
(d)
�i

(u1, . . . un) =
(
d
	i

) n∏
j=1

u
ij
j . (5.10)

Here we use the multinomial coefficient instead of a binomial coefficient. It is defined

as, (
d
	i

)
=

d!
i1!i2! . . . in!

. (5.11)

Thus, given control points V�i corresponding to the multi-indices, we can

write the Bézier map as

B(u1, . . . un) =
∑
�i

V�i Bern
d
�i
(u1, . . . un). (5.12)

The embedding giving us the n dimensional barycentric coordinates we need
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is described by the following functions.

αi(p) = det

⎛
⎜⎜⎜⎝
pu P ui P ui+1

pv P vi P vi+1

1 1 1

⎞
⎟⎟⎟⎠ (5.13)

πi(p) =
∏

j �=i−1,i

αj(p) (5.14)

li(p) =
πi(p)

π1(p) + · · · + πn(p)
(5.15)

Here, p is a point in the polygon P . We use the superscripts u and v to denote

the components of our two dimensional domain points. The function αi defines the

signed area of the triangle PiPi+1p (all subscripts to the domain points are to be

taken modulus n). Note that this area is zero when p falls on the edge PiPi+1.

The function πi being the product of all but two adjacent αi functions will be zero

around the entire boundary of the polygon except at the edges Pi−1Pi and PiPi+1.

Each πi is normalized by dividing by the sum of all of the πi functions to produce

a function li. It is easily seen that the li functions partition unity as the sum of

the numerators is equal to the common denominator. The functions li provide the

barycentric coordinates we need for the multidimensional Bézier function. Loop and

DeRose write the embedding function with the letter L when the domain polygon

is a regular n-gon. This embedding, which we can write as

L(p) =
n∑
i=1

li(p)vi, (5.16)

has some useful properties. One such property is that

li(Pi(1 − u) + Pi+1u) = u. (5.17)

This makes it very easy to do transitions from the adjacent Loop patches into an

S-patch. The fact that domain edges map to Bézier curves (this is true for any

embedding E which maps edges to edges) combined with the property stated in

Equation 5.17 implies that the function g(u) introduced in Equation 4.48 is equal
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to 1 − u. The other important property is that we can easily maintain continuity

between the S-patches and other adjacent polynomial patches (rational or non-

rational).

5.2.2 Matching Continuity

The blossomed version of a polynomial function is the unique affine symmetric func-

tion which is equal to the original function when all the parameters are equal. For

example the cubic function f(u) = u3 + u2 has the blossom

f∗(u1, u2, u3) = u1u2u3 + 1/3(u1u2 + u2u3 + u1u3). (5.18)

The blossom is said to be affine because it is linear in each parameter when the

others are held fixed. It is symmetric because the order of the parameters does not

matter.

The power of the blossomed form is that the representation of f in the Bézier

basis is easy to compute using the blossom. The weights for the Bernstein basis

polynomials are computed by evaluating the blossom with various combinations of

the domain end points. For our cubic curve above, defined on the interval [0, 1], we

have Bézier control points f∗(0, 0, 0), f∗(1, 0, 0), f∗(1, 1, 0) and f∗(1, 1, 1). A proof

of this can be found in [41].

The result is similar for multi-variable functions. In this case they are multi-

affine functions rather than affine functions since the parameters are no longer one

dimensional. Ramshaw has written two tech reports, [41, 42] which discuss blossoms

and their properties in much greater depth.

Using the blossomed form of an adjacent triangular Bézier patch, Loop and

DeRose show that continuity can be maintained between an S-patch and an adja-

cent triangular patch. This technique (also demonstrated in [41] for maintaining

continuity for curves and surfaces of the same type) involves placing the domains

side by side and then evaluating the blossom with all combinations of the corners of
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Figure 5.7: A triangular domain adjacent to a five sided domain

our domain. Note that these points will be on the boundary or outside the domain

of the blossomed function.

To illustrate this further, suppose we have a triangular patch of degree d de-

fined by the function f with blossom f∗. To find the control points for an adjacent

n sided S-patch, we build an equilateral triangle domain polygon, T , for our trian-

gular patch such that it shares an edge with the S-patch control polygon. Figure

5.7 shows this where we match up the desired edge j on the triangular patch with

edge i on the n sided S-patch. When written in the barycentric coordinates of the

triangle T , let the points Pi of the S-patch domain polygon be written as xi. We

can then write the control points of the S-patch which exactly match our function

f as

V�i = f∗(
d︷ ︸︸ ︷

x1, . . . , x1︸ ︷︷ ︸
i1

, x2, . . . , x2︸ ︷︷ ︸
i2

, . . . xn, . . . , xn︸ ︷︷ ︸
in

). (5.19)

The collection of parameters corresponding to a control point and used to evaluate a

blossomed function is referred to as an argument bag. Recall the ik for k = 1 . . . n are

the components of the multi-index 	i and should not be confused with our arbitrary

choice of edge i on the S-patch.

Setting all the control points for the S-patch in this way will give us an
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Figure 5.8: An example of 5 triangular patches meeting at an extraordinary vertex.
The middle refinements are shown shaded and the boundary of the S-patch is shown
with a dotted line.

adjacent patch which defines the exact same surface. If the S-patch is of equal or

higher degree than the triangular patch then we will have C∞ continuity at the join.

In our case, we want to match continuity with n patches for a degree n

extraordinary vertex. The n patches we use are the center refinements of the ex-

traordinary patches sharing the extraordinary vertex (see Figure 5.8). The center

refinement not having any extraordinary vertices can be treated as a quartic trian-

gular Bézier patch.

Through our choice of where to fit the replacement surface we define the

four sided domain boundary of all extraordinary patches. The domain polygon has

points P1 = (0, 1), P2 = (0, 1
2), P3 = (1

2 , 0) and P4 = (1, 0). Note that (0, 0) is

always the domain point corresponding with the extraordinary vertex. Thus, each

extraordinary patch at a given extraordinary vertex shares its P2P3 edge with an

edge of the S-patch.
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Figure 5.9: A non uniquely determined control point. This control point is at a
distance of one from a boundary of both triangular patches A and B.

Ck continuity is maintained by adjusting the positions of control vertices

which are within a distance of k of the boundary. That is these control points

correspond to argument bags with a maximum of k points which are not endpoints

of the shared edge.

By choosing to maintain C2 continuity between the degree four S-patch and

the surrounding Loop patches, we completely determine the shape of the S-patch.

Although all control points are defined by a boundary, they are not defined uniquely.

Consider two adjacent edges, Pi−1Pi and PiPi+1 as shown in Figure 5.9. The two

edges border on different patches, but both patches will want to set the control

point corresponding to the argument bag (Pi−1, Pi, Pi, Pi+1) because the control

point corresponding to this bag is at a distance of one from both boundaries.

Our solution is to set these control points which have multiple possible set-

tings on a first come first serve basis. The desired shape is preserved since the

patches adjacent to our two consecutive edges are C1, regardless which patch we

use to set the control point.

We can demonstrate why this happens using a property of the Bézier curve

control polygon. Consider a corner vertex where two triangular patches meet an
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Figure 5.10: The dark rectangle shows the tangent plane at vertex 2. Corner control
points are shown as black circles while boundary control points are shown as empty
circles. For clarity, this diagram shows the case of cubic triangular patches. The
interior control points of the triangular patches are omitted for clarity. The segment
of all the boundary Bézier curves involving vertex 2 lie in the tangent plane. This
is also true for the curve defined by V555, V552, V522, V222 even though it may not
actually lie on the five sided S-patch.
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S-patch as shown in Figure 5.10. The corner vertex and the control points at a

distance of one on the triangular patches will all lie in the same plane if the surface

is G1 (there will be additional restrictions on their position if it is C1). This is

because the derivative of a Bézier curve at its endpoint is a multiple of the second

last control point subtracted from the last control point. The multiple is equal to

the order of the curve. All the control points of the S-patch at a distance of one

from this corner vertex must also lie in the plane because of how we computed them.

Consider the curve whose control polygon connects connecting the simplex vertex

corresponding with the corner vertex to any other vertex in the simplex (vertex 2

to vertex 5 in the figure). This curve will be continuous at the join even though the

curve as a whole may not lie in the S-patch. The control points will be the same as

those we would compute if we were matching continuity for this curve alone. This

is true for each curve corresponding to each direction vi in the simplex. The result

is that the embedding is irrelevant. A directional derivative taken at our join vertex

(vertex 2 in the figure) with a direction s in the simplex will lie in the tangent plane.

By definition,
∂B

∂s
= ŝ · ∇B =

n∑
i=1

∂B

∂ui
ŝi. (5.20)

Evaluated at the corner vertex, each ∂B
∂ui

lies in the plane and thus their linear com-

bination must lie in the plane too. Note that the function may not be regular if there

is some combination of the partials equal to zero. This is only possible, however,

with meshes having an irregular collection of obtuse angle triangles meeting at an

extraordinary vertex. These meshes could be made suitable for surface replacement

either through retriangulation or through moving control vertices.

The only side effect of our first come first serve rule is some minor twisting of

equiparameter lines within the surface. This is not unexpected and can be seen in

Figure 5.5. Although it may be possible to adjust the size and shape of the adjacent

triangular domains T to achieve equal blossom evaluations for these shared control

vertices, we have not explored this avenue. Averaging the control points may also
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be a reasonable thing to do.

The only exception to the first come first serve rule is when a control point

corresponds to an edge. In this case we let the adjacent patch define the position. If

we did not do this then the control point corresponding to bag (Pi, Pi, Pi, Pi+1) on

edge i, if set by the patch adjacent to edge Pi−1Pi in order to maintain C1 continuity,

would break C0 continuity along the edge PiPi+1 leaving us a surface with a hole in

it.

5.3 More on Computing Derivatives and Blossoms

Evaluating derivatives or blossoms of regular Loop patches is relatively easy. The

terms of the basis polynomials have factors of the form ui and vj . For any given

partial derivative we can simply compute the derivative or blossom of the terms and

then evaluate the basis functions.

For example, any time u4 appears as a factor within a term of a basis function

we write u4 instead. We do this for all powers of u and v. If we are evaluating a

partial derivative with respect to u then we set u4 to 4u3, u3 to 3u2, and so on down

to u0 which we set to zero. When coding the basis polynomials it is important to

include u0 as a factor of terms which do not explicitly contain a power of u. For

example, the term v3 should be written as v3*u0 if we are to have correct derivative

computations.

This method also works for extraordinary patches since they use the same

basis functions. We should mention, however, that we had a problem with derivative

computations of extraordinary Loop patches due to a small error in [51]. Stam

points out that the magnitude of derivatives must be corrected to take into account

a remapping of the domain. This involves a sign change if the point evaluation is

performed within a triangular patch which points in the opposite direction of the

original patch. This sign change is not necessary for even derivatives, however, as

applications of the chain rule will provide and even number of negations. The code
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in the paper negates the result if the order of differentiation is odd but only if the

number of subdivisions necessary to put the evaluation point in a regular patch is

also odd.

The evaluation of blossoms is achieved in a very similar way. Each factor is

replaced with a symmetric affine polynomial whose diagonalization is equal to the

factor. Blossoms of quartic Loop patches have four parameters. Instead of u we

now have u1, u2, u3, and u4. For the factors corresponding to powers of u we set our

variables as follows.

u0 = 1

u1 =
1
4
(u1 + u2 + u3 + u4)

u2 =
1
6
(u1u2 + u2u3 + u3u4 + u1u3 + u2u4 + u1u4)

u3 =
1
4
(u1u2u3 + u1u2u4 + u1u3u4 + u2u3u4)

u4 = u1u2u3u4

The factors corresponding to powers of v are set in the same manner.

Computing the blossom of an extraordinary patch, however, does not give

expected results. Recall that we match continuity with the center refinement of an

extraordinary patch. We tried to join an edge of an S-patch with the line segment

(0, 1
2)(1

2 , 0) within an extraordinary patch. This line segment corresponds to a quar-

tic Bézier curve. The degree would be much higher for an arbitrary line segment,

but since it is an edge of the center refinement we are guaranteed that it is only

quartic and thus it will be possible for us to construct an adjacent quartic S-patch

that matches continuity.

We expected that we could match continuity with the center refinement in

this manner without performing a mesh refinement to find the control points of the

center refinement. This naive approach, however, does not yield the desired control

points. We believe the control points are displaced due to the conversion of the

extraordinary Loop patch’s control points into the eigenbasis. Although the correct
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control points can likely be computed by applying the inverse transformation, we

chose to use the center refinement because it is easier to compute.

5.3.1 Derivatives of S-patches

Because S-patches are defined by a rather complex multivariate rational polynomial,

special care is required to compute partial derivatives correctly. We used basic

automatic differentiation techniques to write this code by hand. We tested the

resulting code by comparing evaluations of all the partial derivatives at random

points with evaluations of the derivatives computed symbolically with Maple.

For each assignment statement involved in a computation, an automatic dif-

ferentiation programs creates a new variable to represent the derivative of the vari-

able on the left hand side of the assignment and creates a new assignment statement

that computes the derivative value for the new variable. For example, if we want

a partial derivative with respect to u, the assignment t=1 will cause the automatic

differentiation program to create the new variable tu and the preceding statement

tu=0. The new statement must precede the original because a variable might be used

on both sides of an equation. Consider the statement t=t*x[i]. This statement

results in the creation of the preceding statement tu = tu * x[i] + t * xu[i].

For our implementation we need both u and v partial derivatives in all combinations

up to order three.

The computation of the πi(p) functions defined in Equation 5.14 is a repre-

sentative example of applying the automatic differentiation technique. The block of

code in Figure 5.11 shows how we compute the πi(p) functions.

5.4 Implementation Description

We have implemented this algorithm in Java using Java3D for some of the data

structures and for displaying the animation.

We have a custom scene description file format for describing a system. A
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for ( int i = 0; i < N; i++ ) {
piuuu[i] = 0.0;
piuuv[i] = 0.0;
piuvv[i] = 0.0;
pivvv[i] = 0.0;
piuu[i] = 0.0;
piuv[i] = 0.0;
pivv[i] = 0.0;
piu[i] = 0.0;
piv[i] = 0.0;
pi[i] = 1.0;
for ( int j = 0; j < N; j++ ) {

if ( j == i || j == (i+N-1)%N ) continue;
// note that these are simplified due to the constant zero
// second and third order partial derivatives of alpha
piuuu[i] = piuuu[i] * alpha[j] + 3 * piuu[i] * alphau[j];
piuuv[i] = piuuv[i] * alpha[j] + piuu[i] * alphav[j] +

2 * piuv[i] * alphau[j];
piuvv[i] = piuvv[i] * alpha[j] + 2 * piuv[i] * alphav[j] +

pivv[i] * alphau[j];
pivvv[i] = pivvv[i] * alpha[j] + 3 * pivv[i] * alphav[j];
piuu[i] = piuu[i] * alpha[j] + 2 * piu[i] * alphau[j];
piuv[i] = piuv[i] * alpha[j] + piu[i] * alphav[j] +

piv[i] * alphau[j];
pivv[i] = pivv[i] * alpha[j] + 2 * piv[i] * alphav[j];
piu[i] = piu[i] * alpha[j] + pi[i] * alphau[j];
piv[i] = piv[i] * alpha[j] + pi[i] * alphav[j];
pi[i] = pi[i] * alpha[j];

}
}

Figure 5.11: Code produced with automatic differentiation techniques for computing
the πi(p) functions
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scene description file contains information about the objects in a system, how they

should be rendered, and their initial conditions. An example file can be found in

Appendix B. We used javacc to create a parser for this file format which makes it

easily altered or extended.

Rigid bodies in this file can be defined by either Loop subdivision surfaces

or they can have a limited portion of their boundary defined by a bi-cubic Bézier

patch.

The Loop subdivision surfaces are defined by meshes stored in obj format.

An example mesh file can also be found in Appendix B. These obj files can be

written by hand for simple objects. For larger objects, however, we find it more

convenient to use a modelling package such as 3D Studio Max.

Our interface is minimal as we only use it to test the underlying algorithm.

Commands can be typed in a text box to change how objects are displayed, and to

modify properties in the simulation such as friction.

Interaction with the simulation is possible by activating a spring force which

connects the center of mass of the free object to a point which the user controls with

the mouse. We find this minimal form of interaction useful for testing.

We also have an option for saving a selected time range of an animation as

a Renderman rib file for rendering. The rendered images can be much more com-

pelling because they show shadows that help convey where the contact is occurring.

Unfortunately there is currently no support for shadows in Java3D. The ability to

render images from the simulation to a file is also useful for creating animations. The

ability to easily save Java3D images to a file has only recently become possible.
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Chapter 6

Simulation Results and

Evaluation

We present simulation results with a focus on how much time is spent in various

parts of the algorithm. This is important as we wish to show that this algorithm

can be used at interactive rates. We will also describe several simulation sequences

which should help demonstrate the success of our algorithm in simulating single

contact evolution.

6.1 Timings

Running the HotSpot Java virtual machine on a 350MHz Pentium II machine the

entire computation of q̈ takes about 1.2 ms. With this computation time the simu-

lation can run at 15 frames per second without using all available CPU cycles. The

bulk of the time is spent in Java3d code to draw the system.

Table 6.1 shows the time necessary to evaluate various types of surface func-

tions along with all the necessary partial derivatives for the algorithm. We per-

formed all our tests on a 350 MHz Pentium II running Java 1.3. All times reported

in this section are measured as an average of ten thousand computations to give

the HotSpot virtual machine sufficient opportunity to optimize our code. Although
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Table 6.1: Timings for calculating the ten partial derivatives necessary for the al-
gorithm. Timings are with Hotspot optimizations, run on a 350MHz Pentium II.
Times are an average of ten thousand successive computations and hence may ap-
pear smaller than they should due to caching effects.

surface type evaluation time
Loop regular 0.2413 ms
Loop extraordinary (degree 3) 0.1683 ms
Loop extraordinary (degree 5) 0.1933 ms
Loop extraordinary (degree 7) 0.2223 ms
Loop extraordinary (degree 10) 0.2654 ms
S-patch (3 sides) 0.1632 ms
S-patch (4 sides) 0.4466 ms
S-patch (5 sides) 1.1006 ms
S-patch (10 sides) 20.0248 ms
Bi-cubic Bézier 0.0801 ms

timings in the table may be smaller than in practice due to caching effects, all other

times reported in this section do not have this problem as they were measured during

an actual simulation.

We found that evaluating the surface functions takes up a substantial portion

of the time spent by the simulator. In our implementation these functions have quite

a bit of room for optimization. Surface representations which are quick to evaluate

are thus preferred for our algorithm. For two contacting cubic Bézier surfaces, the

program computes H in 0.3485 ms on our test machine. Note that Table 6.1 reveals

that half of this time is spent on surface evaluations of the two patches. The routine

which computes q̈ takes about 0.235 ms (this includes the LU factorization and back

substitution). The total computation time for the derivatives comes to about 0.9

ms in the Bézier on Bézier case. The time which is unaccounted for comes from

checking boundaries, computing object positions, velocities, and external forces.
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6.2 Bowl on Flat Frictionless Surface

The frictionless setting is useful for evaluating the correctness of a large part of our

algorithm. Without friction, the center of mass of an object on a flat surface will

not be able to have any horizontal translational motion. Observing purely vertical

motion of the center of mass validates much of our implementation.

We simulated the system shown in Figure 6.1 consisting of an oddly shaped

bowl sliding on a flat frictionless surface.

The bowl is a Loop subdivision surface while the flat surface is a Bézier

patch. The bowl’s center of mass is close to its base. We set gravity as the only

external force in the simulation.

The upper strip shows a wire frame outline of each triangular patch so that

the center of mass (the large sphere) and the contact point (the small sphere) can

be seen. The triangular patch which is currently in contact is drawn with greater

detail.

We observed that the center of mass has a purely vertical motion. This result

is shown in Figure 6.2. Over time the horizontal position of the center of mass will

change, however, as our numerical method has limited precision (this is not visible in

the figure because of the error introduced by small cusps at S-patch boundaries). To

prevent drift, we would either need to identify this special situation and formulate

it as a three degree of freedom system, or we would need to use stabilization to keep

the center of mass above the desired position in the plane.

The simulation will not handle the case of the bowl lying upside down on the

table as the level lip of the bowl would establish contact with the flat plane all at

once. In the simulation above, however, the system lacks the energy to reach this

configuration because of the initial conditions.
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Figure 6.1: Simulation of a bowl sliding on a flat surface. Our system is validated
by the vertical motion of the center of mass which can be seen as the larger sphere
in the upper sequence. The smaller sphere shows the location of the contact point.
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Figure 6.2: Graph showing the position of the center of mass in world coordinates
over time. The solid line is the z position while the dotted lines are the x and y
positions. The x and y positions do not move until a transition into an S-patch.
This suggests a small problem with S-patch transitions. We attribute this problem
to a cusp at the boundary due to an error in our implementation.
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Figure 6.3: A lumpy marble rolling on a plate. Frames are one second apart. The
free object can be seen to slide almost to the center of the plate before it starts to
roll.

6.3 Blobs in Bowls

Because our simulator only handles single contact, we can only examine the small

time segments involving a single continuous contact for interactions between arbi-

trary objects. An alternative is to restrict ourselves to objects which remain in

contact and can only ever contact at a single point. This is an interesting test case

because we can run our simulator for an arbitrary length of time.

Although these types of system may have only limited interest, they are

more interesting than the curved-flat surface interaction in Section 6.2. They help

validate our implementation as the matrix H is more complex in this case. The

matrix in the flat surface case has more zero entries because the contribution of a

flat surface’s parameter velocities to ω is zero, except for ωz which may be non-zero

if the equiparameter lines of the flat surface curve within the plane.

Figure 6.3 shows an example of curved-curved contact between a lumpy mar-

ble and a shallow bowl. Both surfaces are Loop subdivision surfaces. Again gravity

is the only external force, however due to friction the marble quickly starts to roll
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Figure 6.4: Two different rattleback tops with asymmetric shape.

after a short period of sliding towards the center of the bowl.

6.4 Rattleback Simulation

Spinning tops, in most cases, maintain a single continuous contact with the surface

on which they are spinning. This makes tops an ideal object for us to simulate with

our algorithm.

Rattleback tops, also known as celts or wobblestones, are interesting because

they can reverse their spin. Some rattlebacks will reverse their spin in both directions

while others have a spin bias and will only reverse their direction if spun in the

direction opposite to their preferred direction.

As shown in Figure 6.4, rattlebacks have a long elliptical shape. Those in

the figure have an asymmetric shape, but this is not necessary for spin reversal to

occur.

When a rattleback is spun in the appropriate direction, its spin will slow

and it will begin to wobble. The wobbling becomes larger until the top is no longer

spinning and is instead rocking back and forth. The top then starts to spin in the
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other direction and spins faster as the wobbles become smaller. It is due to the

shape and/or inertial asymmetry of the top that the spinning energy is converted

to a rocking motion and then back to a spinning motion.

Rattlebacks have been studied for a long time. The original paper which

analyzed the motion of a rattleback appeared in 1896. More recently, Garcia and

Hubbard in [16] explain how spin reversal can occur in one or both directions and

discuss the limitations of the models in previous investigations. The limitations

of previous work are mostly due to assumptions such as no-slip friction, assumed

shape, and poor modelling of energy dissipation.

Figure 6.5: Our rattleback model,
top and front views

For our simulation we build a very sim-

ple rattleback model. Our model shown in

Figure 6.4 consists of a single bi-cubic Bézier

patch. It is longest in a direction 10 degrees

off of the x axis and its width is one third of

the length. Its curved shape comes from ele-

vating the outer control points. We spin the

model about its z axis. A scene description file

including our rattleback model can be found

in Appendix B.

Although the top is symmetric, we set the inertia tensor such that it is not

in alignment with the planes of symmetry. In a physical model this can be achieved

through a nonuniform mass density. The reversal effect is due to the misalignment

of two of the principle axes of inertia with the principal axes of curvature at the

point of contact.

With this simple model, using sliding friction and rotational dissipation we

can simulate single or multiple spin reversals depending on the coefficients of rota-

tional dissipation.

The preferred direction of spin can be found by giving it a tap on one end to
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0.0 0.5 1.0 2.0 3.0 4.0 

Figure 6.6: Tapping a rattleback to start it spinning. Previous positions are shown
in grey. The top quickly starts spinning in a clockwise direction.

1.0 2.0 3.0 4.0 5.0 6.0

7.0 8.0 9.0 10.0 11.0 12.0

Figure 6.7: Spin start of a rattleback. Previous positions are shown in grey. The
direction of the spin is initially counter clockwise and quickly changes to clockwise.

start it rocking. Even rattlebacks which reverse in both directions have a preferred

spin direction. They take longer to reverse their spin when spinning in the preferred

direction. Figure 6.6 shows a sequence of frames from a tap start, while Figure 6.7

shows a sequence of frames where it is spun to start. Several previous positions of

the top are drawn in grey to give an indication of the direction of motion. In the

latter simulation we start the spin slightly off the center of the top. This is necessary

because a perfect spin about the z axis results in a stable rotation.

These figures have coefficients of friction set as follows.

µ = 0.3

µr = 0.0

µs = 0.0

If we set µr = 0.003 and µs = 0.0001 we can prevent the second spin reversal. If all

friction coefficients are set to zero we do not get any reversal at all.
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23.0 24.0 25.0 26.0 27.0 28.0 

29.0 30.0 31.0 32.0 33.0 34.0 

35.0 36.0 37.0 38.0 39.0 40.0 

Figure 6.8: A sequence showing a second spin reversal. Previous positions are shown
in grey. The top spins clockwise at 23 seconds and counter clockwise at 40 seconds.



Chapter 7

Conclusions

We have described a fast contact evolution algorithm for single contact between

piecewise parametric surfaces. We first derived contact kinematics equations for

arbitrary regular parametric surfaces. Then we showed that using these equations

as acceleration constraints we can formulate the contact dynamics as an implicit

ODE in the contact coordinates. The resulting ODE can be easily integrated using

explicit integrators, without the need for constraint stabilization.

We can easily incorporate a Coulomb friction model into our formulation.

Although our implementation of friction only provides sliding friction we find that

we can still achieve a good approximation of no slip friction effects such as pure

rolling. We also show how our formulation can be modified for no-slip and no-spin

friction.

Because objects are made up of multiple patches, we derive a method for

evolving a contact across patch boundaries. We also address special transitions

such as going through a corner and propose extending patch boundaries by a small

amount to increase stability through prevention of oscillating transitions.

We implement our algorithm using Loop subdivision surfaces. Unfortunately,

the natural parameterization of Loop subdivision surfaces near extraordinary ver-

tices is not regular. Our solution to this problem is to replace the portions of the
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subdivision surface near extraordinary vertices with an n sided patch called an S-

patch. This involves computing control points of the S-patch so that continuity is

maintained at the join.

Several example simulations demonstrate the success of our formulation. We

use a frictionless system to partially validate our implementation, and we use a

simulation of a marble in a bowl to test our friction implementation. The results

also show that our technique predicts the reversal behaviour of a rattleback top.

We also measured the time used performing various calculations for our sim-

ulation and discovered that a large proportion of the time, sometimes more than

half, is spent computing partial derivatives of the parametric surfaces. This sug-

gests that surfaces which are less expensive to evaluate are more desirable with our

technique.

The main limitation of our algorithm is that we only treat single contact.

Although only a small piece of the puzzle, we feel this method of dealing with smooth

surface contact evolution is both an interesting and useful contribution to the rigid

body dynamics community.

7.1 Future Work

Extending our implementation to handle other types of contact would make it much

more useful. Flat conforming contacts as well as curve-surface and curve-curve

contacts occur frequently in reality. Likewise, multiple contacts between two rigid

bodies is a difficult problem which also occurs frequently and should be investigated.

Lastly, an implementation capable of simulating many different kinds of contact

would greatly benefit from a general framework for changing contact types.

80



Bibliography

[1] M. Anitescu, J. Cremer, and F. Potra. Formulating 3d contact dynamics prob-
lems. Mechanics of Structures and Machines, 24(4):405–437, 1996.

[2] U. Ascher. Stabilization of invariants of discretized differential systems. Nu-
merical Algorithms, 14:1–23, 1997.

[3] U. Ascher, H. Chin, L. Petzold, and S. Reich. Stabilization of constrained me-
chanical systems with daes and invariant manifolds. the Journal of Mechanics
of Structures and Machines, 23(2):135–157, 1995.

[4] U. Ascher, D. K. Pai, and B. Cloutier. Forward dynamics, elimination methods,
and formulation stiffness in robot simulation. International Journal of Robotics
Research, 16(6):749–758, December 1997.

[5] D. Baraff. Analytical methods for dynamic simulation of non-penetrating rigid
bodies. In Proceedings of SIGGRAPH ’89 (Boston), volume 23 of Computer
Graphics Proceedings, Annual Conference Series, pages 223–232. ACM SIG-
GRAPH, July 1989.

[6] D. Baraff. Curved surfaces and coherence for non-penetrating rigid body sim-
ulation. Computer Graphics, 24(4):19–28, August 1990.

[7] D. Baraff. Issues in computing contact forces for non-penetrating rigid bodies.
Algorithmica, 10:292–352, 1993.

[8] D. Baraff. Fast contact force computation for nonpenetrating rigid bodies. In
A. Glassner, editor, Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24–
29, 1994), Computer Graphics Proceedings, Annual Conference Series, pages
23–34. ACM SIGGRAPH, ACM Press, July 1994. ISBN 0-89791-667-0.

[9] J. Baumgarte. Stabilization of constraints and integrals of motion in dynamical
systems. Computer Methods in Applied Mechanics and Engineering, 1:1–16,
1972.

81



[10] C. Cai and B. Roth. On the spatial motion of rigid bodies with point contact.
In IEEE Conference on Robotics and Automation, pages 686–695, 1987.

[11] J. F. Cremer. An Architecture for General Purpose Physical System Simulation
– Integrating Geometry, Dynamics, and Control. PhD thesis, Cornell Univesity,
1989.

[12] T. DeRose. Subdivision surface course notes. SIGGRAPH Course Notes, 1998.

[13] D. DiFilippo. The AHI, an integrated audio haptics interface. Master’s thesis,
University of British Columbia, 2000.

[14] D. DiFilippo and D. K. Pai. The AHI: An audio and haptic interface for contact
interactions. In ACM Symposium on User Interface Software and Technology,
2000.

[15] R. Featherstone. Robot dynamics algorithms. Kluwer, 1987.

[16] A. Garcia and M. Hubbard. Spin reversal of the rattleback: theory and ex-
periment. Proceedings of the Royal Society. London. Series A. Mathematical,
Physical and Engineering Sciences, 418(no. 1854):165–197, 1988.

[17] S. Goyal. Second order kinematic constraint between two bodies rolling, twist-
ing and slipping against each other while maintaining point contact. Technical
Report TR89-1043, Cornell University, Computer Science Department, October
1989.

[18] M. J. Greenberg and J. R. Harper. Algebraic Topology, A First Course, chapter
Betti Numbers and Euler Characteristic. Number 58 in Mathematics lecture
note series. Addison-Wesley, 1981.

[19] J. K. Hahn. Realistic animation of rigid bodies. ACM Computer Graphics,
22(4):299–308, 1988.

[20] G. Hegron. Rolling on a smooth bi-parametric surface. In Eurographics Work-
shop on Animation and Simulation, pages 205–213, 1991.

[21] A. Jain. Unified formulation of dynamics for serial rigid multibody systems.
Journal of Guidance, Control, and Dynamics, 14(3):531–542, 1991.

[22] Y. Jia and M. A. Erdmann. Observing pose and motion through contact. In
Proceedings of the IEEE International Conference on Robotics and Automation,
1998.

82



[23] D. E. Johnson and E. Cohen. A framework for efficient minimum distance
computations. In Proc. International Conference on Robotics and Automation,
pages 3678–3684. IEEE, May 1998.

[24] C. W. Kilmister and J. R. Reeve. Rational Mechanics. American Elsevier
Publishing Company, Inc., 1966. Library of congress catalog card number 66-
11823.

[25] Z. Li and J. F. Canny. Motion of two rigid bodies with rolling constraint. IEEE
Transactions on Robotics and Automation, 6(1):62–72, 1990.

[26] C. T. Loop. Convex triangular subdivision surfaces with bounded curvature.
Technical report, Microsoft Research, 2000.

[27] C. T. Loop and T. D. DeRose. A multisided generalization of bézier surfaces.
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Appendix A

Contact Kinematics Derivation

We use the same setup as described by Equations 4.5-4.8 in Section 4.2.

As the contact point moves, so do the contact frames. The spatial velocity of

the contact frame 1c relative to the body frame 1 in terms of contact parameter

velocities, has a particularly simple form in the contact frame. If 1c
φ(1, 1c) =

(ωT , vT )T , then the spatial velocity of the contact frame 1c relative to the body

frame 1 in coordinates of 1c is⎛
⎝[ω] v

0 0

⎞
⎠ = 1c

1 E
1
1cE,s ṡ+ 1c

1 E
1
1cE,t ṫ (A.1)

Let Θ be the leading 3×3 sub-matrix of 1
1cE, and we’ll do the matrix multiplications

in Equation A.1 to get a closer look at the contributions of ṡ and ṫ to ω and v. Recall

that the rightmost column of 1
1cE is the location

[ω] = ΘTΘ,s ṡ+ ΘTΘ,t ṫ, v = ΘT c,s ṡ+ ΘT c,t ṫ (A.2)

Lets first look at ω by examining the skew symmetric matrix ΘTΘ,s (ΘTΘ,t will be

very similar).

ΘTΘ,s =

⎛
⎜⎜⎜⎝

x · x,s x · y,s x · z,s
y · x,s y · y,s y · z,s
z · x,s z · y,s z · z,s

⎞
⎟⎟⎟⎠ (A.3)
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The least complicated expressions relating ω to ṡ are those which are boxed in

Equation A.3 (x,s is less complicated than z,s which is less complicated than y,s).

Thus we can write ω as,

ω =

⎛
⎜⎜⎜⎝
−y · z,s
−z · x,s
y · x,s

⎞
⎟⎟⎟⎠ ṡ+

⎛
⎜⎜⎜⎝
−y · z,t
−z · x,t
y · x,t

⎞
⎟⎟⎟⎠ ṫ (A.4)

Now looking at the ΘT c,s and ΘT c,t components we can write,

ΘT c,s =

⎛
⎜⎜⎜⎝

x · c,s
y · c,s
z · c,s

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x · c,s
0

0

⎞
⎟⎟⎟⎠ and ΘT c,t =

⎛
⎜⎜⎜⎝

x · c,t
y · c,t
z · c,t

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x · c,t
y · c,t

0

⎞
⎟⎟⎟⎠ . (A.5)

Equations A.4 and A.5 combine to give 1c
H1.

1c
H1

def=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−y · z,s −y · z,t
−z · x,s −z · x,t
y · x,s y · x,t
x · c,s x · c,t

0 y · c,t
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.6)

1c
φ(1, 1c) = 1c

H1

⎛
⎝ṡ
ṫ

⎞
⎠ (A.7)

We can analogously define 2c
H2. This transforms to frame 1c as

1c
H2 = 1c

2cAd
2c
H2 =

⎛
⎝Rψ 0

0 Rψ

⎞
⎠ 2c

H2. (A.8)

Finally, relative spatial velocity of the two contact frames is a pure rotation
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about the surface normal, i.e.,

1c
φ(1c, 2c) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

−1

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ψ̇
def= 1c

Hψψ̇ (A.9)

We can now compute the contact matrices Hk as follows. The relative spatial

velocity of the two bodies is given by

φ(1, 2) = φ(1, 1c) + φ(1c, 2c) + φ(2c, 2)

= φ(1, 1c) + φ(1c, 2c) − φ(2, 2c).

Substituting Equations A.7, A.8 and A.9 we have

1c
φ(1, 2) =

⎛
⎜⎜⎜⎝

...
...

...
1c
H1 −1c

H2
1c
Hψ

...
...

...

⎞
⎟⎟⎟⎠ q̇

def= 1c
Hq̇ (A.10)

The contact matrixH can now be transformed to any convenient frame, for instance,

frame 1: 1
H = 1

1cAd
1c
H.

In Section 4.3 we need 1c
Ḣ as we will take the time derivative of Equation

A.10. Once 1c
Ḣ1 and 2c

Ḣ2 are computed with the current state (q and q̇) using the

chain and product rules, we can write

1c
Ḣ =

⎛
⎜⎜⎜⎝

...
...

...
1c
Ḣ1 −(1c2cȦd

2c
H2 + 1

1cAd
2c
Ḣ2) 0

...
...

...

⎞
⎟⎟⎟⎠ . (A.11)
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Appendix B

Example Files

This appendix shows example files used with our implementation. The scene de-

scription file format is the only new format that we use. Note that the subdivision

surfaces use the standard obj format while stripified versions of these objects are

stored in objf format as created by the program stripe. Texture files for Java3d and

Renderman are in standard jpeg and tiff. Note that Renderman compliant rendering

programs will generate the txt format texture files they need.

B.1 Scene Description File

Here is an example scene description file. Note there is a description of a Loop

subdivision surface commented out.

// This file simulates a rattleback

view V1 {
Translate [0 -0.355 1.2];
Rotate -130 [1 0 0];
ribFileName = "rb.rib";
frameBaseName = "z:/pgkry/frames/rb";
Format = "300 225 -1"; // size of the image... what is -1?
PixelSamples = "2 2";

};

World RBSim {
LightSource L1 ambientlight {
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intensity = 0.3;
colour = [ 0.1 0.1 0.1 ];
index = 0;

};
LightSource L2 arealight {

point = [ 0 40 40 ];
pointintensity = 1.0;
colour = [ 1 1 1 ];
intensity = 3585;
polygonp = "[-10.0 10.0 40 10.0 10.0 40

10.0 -10.0 40 -10.0 -10.0 40]";
index = 1;

};

/*
Note that obj files have a .obj ending
and stripfiles have a .objf ending
also, if strip files of the form <stripfileroot><level>.objf
don’t exist then a <objfileroot><level>.obj will be created so
that ’stripe’ can be run.

*/
/*

Object bowl Loop {
scale = [ 0.05 0.05 0.05 ];
offset = [ 0 0 0 ];
objfileroot = "data/flatbowl";
stripfileroot = "data/flatbowl";
levels = 4;
fixed = true;
texture = "data/woodbowl.jpg";
textureTiffFile = "data/woodbowl.tif";
txtFileName = "data/woodbowl.txt";

};
*/

Object rattleback Bezier {
scale = [ 0.6 0.2 0.2 ];
rotate = -0.174 [ 0 0 1 ];
offset = [0 0.0 0.2];
mass = 5;
inertia = [ 1 0 0 ] [ 0 10 0 ] [ 0 0 10 ];
fixed = false;
controlp =

[ -1.5 -1.5 -2.0] [ -0.5 -1.5 -1.0] [ 0.5 -1.5 -1.0] [ 1.5 -1.5 -2.0]
[ -1.5 -0.5 -1.0] [ -0.5 -0.5 0.0] [ 0.5 -0.5 0.0] [ 1.5 -0.5 -1.0]
[ -1.5 0.5 -1.0] [ -0.5 0.5 0.0] [ 0.5 0.5 0.0] [ 1.5 0.5 -1.0]
[ -1.5 1.5 -2.0] [ -0.5 1.5 -1.0] [ 0.5 1.5 -1.0] [ 1.5 1.5 -2.0];
};
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Object floor Bezier {
scale = [ 1.0 1.0 1.0 ];
offset = [0 0 0];
fixed = true;
controlp =

[ -1.5 -1.5 0.0] [ -0.5 -1.5 0.0] [ 0.5 -1.5 0.0] [ 1.5 -1.5 0.0]
[ -1.5 -0.5 0.0] [ -0.5 -0.5 0.0] [ 0.5 -0.5 0.0] [ 1.5 -0.5 0.0]
[ -1.5 0.5 0.0] [ -0.5 0.5 0.0] [ 0.5 0.5 0.0] [ 1.5 0.5 0.0]
[ -1.5 1.5 0.0] [ -0.5 1.5 0.0] [ 0.5 1.5 0.0] [ 1.5 1.5 0.0];
};

Contact C2 {
objectA = floor;
objectB = rattleback;
codeA = "oponoponoponoponoponopono";
codeB = "onnononno";
// tap start

// coords = 0.15 0.5 0.5 0.5 0;
// dcoords = 0 0 0 0 0;

// spin start
coords = 0.45 0.45 0.5 0.5 0;
dcoords = 0 0 0 0 -1;
// this works... but be sure to use
// wmuxy = 0 and
// wmuz = small (0 or -0.0001 is goo)

};
};

B.2 Subdivision Surface File

Subdivision surface files use the obj file format. Here is the definition of the bowl

seen on the left in Figure 4.3.

v -1.0 0.0 1.0
v 0.5 -0.866 1.0
v 0.5 0.866 1.0
v -1.0 0.0 0.0
v 0.5 -0.866 0.0
v 0.5 0.866 0.0
v -2.0 0.0 -1.0
v 1.0 -1.732 -1.0
v 1.0 1.732 -1.0
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f 9 8 7
f 4 5 6
f 4 6 3
f 3 1 4
f 6 5 2
f 2 3 6
f 5 4 1
f 1 2 5
f 2 1 7
f 7 8 2
f 1 3 9
f 9 7 1
f 3 2 8
f 8 9 3
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