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Figure 1: An overview of our method. We start with a rest pose, and an intuitive selection of specific modes to provide a sketch for the control
of a jogging animation. A visual user interface allows an animator to give priority to certain modes (green) as well as ask the system to avoid
others (red). An optimization transforms the user sketch of ground and flight phases into a physically based locomotion controller.

Abstract

Control for physically based characters presents a challenging task
because it requires not only the management of the functional as-
pects that lead to the successful completion of the desired task, but
also the resulting movement must be visually appealing and meet
the quality requirements of the application. Crafting controllers to
generate desirable behaviors is difficult because the specification of
the final outcome is indirect and often at odds with the functional
control of the task. This paper presents a method which exploits
the natural modal vibrations of a physically based character in or-
der to provide a palette of basis coordinations that animators can
use to assemble their desired motion. A visual user interface allows
an animator to guide the final outcome by selecting and inhibiting
the use of specific modes. Then, an optimization routine applies
the user-chosen modes in the tuning of parameters for a fixed loco-
motion control structure. The result is an animation system that is
easy for an animator to drive and is able to produce a wide variety
of locomotion styles for varying character morphologies.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: motion control, optimization, physically based simu-
lation, modal analysis

1 Introduction

Generating high-quality locomotion for physically based charac-
ters is a challenging animation problem because the visual quality

of the motion is integrally tied to the function of the controller pro-
ducing the behavior. In order adjust the components which lead to
appearance, an animator must tune the input parameters of the con-
troller without breaking its function. But there is often a non-linear
and non-intuitive relationship between the input parameters and the
output motion. Thus, while generating a range of motions is possi-
ble as in [Sims 1994; Ngo and Marks 1993; Wampler and Popović
2009; de Lasa et al. 2010; Coros et al. 2010], guiding the controller
to behave in a specific manner is still a difficult problem.

We propose the use of natural vibration modes as an aid in creat-
ing control for locomotion with a specific style. Our hypothesis
is that the style of locomotion is derived from naturally occurring
oscillations. This claim is supported by other researchers both in
robotics [Thompson and Raibert 1990] and in biology [Alexander
1996]. Through a modal decomposition of the dynamics, a palette
of oscillations can be generated for the character of interest. Such
a decomposition has been used in animation for various applica-
tions [Pentland and Williams 1989; James and Pai 2002; Kry et al.
2009; Barbič et al. 2009; Jain and Liu 2011], though none have
explored its application for controlling stylized behaviors of physi-
cally driven characters.

While the proposed modal basis is merely a reorganization of the
character’s individual degrees of freedom (with the same size and
complexity), it is powerful because it provides a set of natural coor-
dinations that can oscillate together at different frequencies. Kry et
al. [2009] show that by focusing on specific low frequency modes,
either selected by an animator or automatically, characteristic mo-
tions that resemble familiar behaviors arise. In this paper, we ex-
ploit this powerful basis to demonstrate its use in the construction
of locomotion control for physically based animation.

2 Related work

There has been a vast amount of work on building locomotion con-
trollers for computer animation. The earliest work in this area
includes hand-crafted control for legged locomotion [Raibert and
Hodgins 1991; Hodgins et al. 1995], evolution of control for virtual
creatures [Sims 1994], and optimization for balanced locomotion



[de Panne and Lamouret 1995]. Much of the recent computer ani-
mation work focuses on making more robust locomotion control for
characters that can perform in various scenarios [Yin et al. 2007;
Sok et al. 2007; Da Silva et al. 2008; Muico et al. 2009; Lee et al.
2010; de Lasa et al. 2010; Sok et al. 2010; Coros et al. 2010].

In contrast, our work is more closely related to space-time opti-
mization [Witkin and Kass 1988; Ngo and Marks 1993]. While this
previous work uses physical equations of motion as constraints, it is
also possible to do such optimization using forward simulation from
specified initial conditions. We employ such an approach in this pa-
per to derive control for locomotion with specific characteristics. In
contrast to other space-time optimizations, the use of forward sim-
ulation allows us to avoid the problem of dealing with non-physical
sample trajectories in the search space and frees us from the tricky
problem of specifying ground contact constraints within the opti-
mization. Instead, we use a forward simulation which is implicitly
constrained to its dynamics and we can employ a standard contact
formulation.

Also related to our work is that which finds solutions to constrained
motion optimization problems through the aid of reduced search
spaces. Safonova et al. [2004] exploit such low-dimensional spaces
to create solutions with a specific behavior or style. Their reduced
space comes from a principal component analysis of motion cap-
ture, while in our work we focus on natural vibrations as a basis.
Alternatively, Fang and Pollard [Fang and Pollard 2003] use a set
of physics constraints based on aggregate quantities to simplify the
optimization problem for efficient synthesis of motion through a set
of sketched poses.

Most similar to our own work, Wampler and Popović [2009] also
optimize cyclic motion to create a variety of running creatures. One
difference is that their work includes morphological parameters in
the optimization while our work focuses on generating controllers
for a character of fixed morphology. In our work, we propose to
limit our search to controllers that exploit the character’s morphol-
ogy in an energy-efficient manner, through its natural modal vibra-
tions. This difference both narrows the search space and grants an
animator greater power to guide the outcome of the final motion.
Without the modal basis and without the animator input, our frame-
work is very similar to Wampler’s. For contrast, we highlight the
effects derived from different bases and different degrees of user
input in our experimental results. Another example of such cyclic
motion optimization can be found in work on controlling the flight
of an animated bird along a given path [Wu and Popović 2003]
where parametric wing beats are used to structure the search space.

3 Motivation

Research in animation, such as [Raibert and Hodgins 1991], has
recognized that the skeletal system stores energy during locomo-
tion through the compression of elastic joints. In recent years, the
passive behavior of musculoskeletal structures has been exploited
with the goal of improving the quality of character animations [Liu
et al. 2005; Kry et al. 2009; Wampler and Popović 2009]. In nature,
restorative rebound is a common strategy that appears in natural
gaits [Alexander 1988]. This effect is produced by exploiting the
musculoskeletal structure to reuse energy stored in opposing mus-
cles, tendons and ligaments. Novacheck [1998] suggests that mus-
cles can be thought to work like springs and dampers, and under
this model the restorative energy is derived from the passive return
of a muscle “spring” under the influence of its passive stiffness.

Our investigation of modal vibrations is motivated by the claim that
beyond the effect of storing energy in individual muscles, the over-
all shape of skeletal structure plays an important role in how energy
is stored. What we see in low energy vibrational modes is the way in

which specific structures efficiently use this effect to treat the body
holistically as a restorative energy device. Even though this phe-
nomenon merely builds on the same energy “savings” provided by
the individual muscles, the savings go farther by coordinating pas-
sive dynamic oscillations across the body over time. In this vein,
we hypothesize that biological systems exploit natural vibrations in
the production of dynamic motion, and that these vibration modes
are a useful basis for building locomotion simulations.

4 Control

Our control scheme takes advantage of passive dynamics in combi-
nation with the modes through two energy-conserving mechanisms
layered over a basic state-machine driven locomotion controller. To
produce energy-efficient control, we employ an elastic-restorative
model that allows a low-level passive controller to exploit the re-
covery of energy derived from the elongation of springlike actua-
tors. In addition, we compute a modal basis from the characters’
dynamics about a given rest pose, and purposefully actuate our lo-
comotion controller along the coordinations embedded in the modal
basis. An added benefit of using a limited number of modes for a
specific locomotion controller is that it limits the search space of
the control parameters.

We can summarize the process of building the controller (Figure 1)
as the following sequence of steps:

• Character specification, to set the hierarchical structure and
geometric and physical properties of the character;

• Rest pose definition, to choose the neutral body posture for
the character;

• Modal analysis, to calculate the flight modes (Φf ) and the
ground modes (Φg) from the chosen rest pose and passive
controller gains (Section 4.2);

• Sketch construction, to specify the desired locomotion using
priority modes and the selection of excluded modes, for both
flight and ground phases (Section 5);

• Controller optimization, to obtain a cyclic physically based
animation controller from the input sketch (Section 6).

4.1 Locomotion controller

We employ a simple locomotion controller which uses a state ma-
chine to structure locomotion into flight and ground phases. Within
each phase, active torques, τ , are applied in short bursts at the be-
ginning of each state, as shown in Figure 2. Torques τf are ap-
plied for a duration of δf seconds in the flight state, and τg for a
duration of δg seconds in the ground state. We choose a square
profile to apply the torques for simplicity, but also with inspiration
from bang-bang style solutions to optimal control problems. We
also experimented with ease-in-ease-out torque profiles to produce
smoother cyclic locomotion controllers, but found little benefit.

State transitions are all based on timing, with the period of the en-
tire cycle given as T seconds. The duration of the flight phase is αT
and the duration of the ground phase is (1−α)T , where α ∈ [0, 1]
parameterizes this timing information. For bipedal locomotion, our
controller parameterizes one foot only and uses symmetry to pro-
vide the timing and activation of the other foot.

4.2 Modal basis and coordination

To achieve our goal of exploiting the character’s natural vibrations,
we use torques that uphold coordinations derived from a modal de-
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Figure 2: The locomotion controller state machine has a flight state
and a ground state for each foot, with transition times specified at
precise times in the period. Torques are applied for a short duration
at the beginning of each phase.

composition and activate only user-selected mode oscillations. In
this way, the active torques excite a passive-elastic “muscle” system
(Section 4.3) which is then left to produce a restorative response.
The most common way to represent the active joint torques is to
use a standard full-joint basis with coordinate values representing
torques for each specific degree of freedom. We call this represen-
tion the canonical basis. In contrast, the natural modes of vibration
form their own basis, which we employ in our system to compute
the active torques. These torques are related to the passive system
through the common choice of a neutral rest pose and a set of pas-
sive joint stiffness values.

We calculate the modes of a constrained multi-body system with
the approach described by Kry et al. [2009]. This analysis provides
us with a modal transformation matrix, Φ, in which each column φi

represents one of the natural vibration modes of the character. To
match our locomotion phases, we compute Φf for the flight modes
and Φg for the ground modes. The latter uses a bilateral contact
constraint positioned at the stance toe to account for the influence
of the ground contact in the resulting modes. Thus, at each state,
we use the respective modal transformation matrix to get the active
torques in joint coordinates from the modal coordinates, ψ, as τf =
Φf ψf and τg = Φg ψg . With the torques represented using this
modal basis, we can define our active control simply through the
relative torque amplitudes of the desired modes. Intuitively, this
allows us to use the modes as a palette of natural coordinations. We
use an interface, described below, to build “sketches” of different
stylized motions from this palette.

4.3 Passive elastic controller

For restorative response, our controller includes low-level passive
torques consisting of a set of simple joint springs with a static neu-
tral pose. This pose is achieved in the absence of gravity and muscle
forces and is equivalent to the equilibrium of all passive opposing
muscle, tendon and ligament forces.

Along with the user-specified neutral pose, we calculate low-level
torques at each joint,

τp = ks(θr − θ)− kd(θ̇), (1)

where θ is the current joint angle, θr is the rest joint angle, θ̇ is the
current joint angular velocity, and ks and kd are the stiffness and
damping gains. Note, τp only depends on the given neutral body
posture and passive stiffness, both defined by the user. In all of our
examples, we set kd = 0.1 ks. At each simulation time step, the
active and passive torques are summed and applied to the character.

Through this low-level controller, we account for restorative energy
using a simple approach. Namely, any displacement away from the
neutral body posture is credited against the cost of the action, while
any movement toward the neutral pose is applied to the character
without any energy overhead, as if it is simply converting the stored
elastic potential energy into kinetic energy.

5 Sketch construction

Our interface provides the animator with a palette consisting of all
of the modes, and displays each mode with an animation (see Fig-
ure 1). A “sketch” of the desired motion is built by combining
modes to form the ground and flight phases. Visual feedback of
the resulting sketch is displayed using a simulation of the character
without gravity. Building a sketch from modes is straightforward
since typically only a few modes are necessary to create a sketch of
a desired locomotion style. The accompanying video shows exam-
ples of this process.

We call the set of modes selected by the animator the priority
modes. These modes, which are marked in green in Figure 1, are
also assigned nominal amplitudes during the process of building the
sketch. Note, a strong benefit of using the modal basis is that each
coordinated activation is dynamically independent. When build-
ing a sketch, rather than competing, additional modes produce the
intended concatenation. Also, in practice, we find that a small num-
ber of modes is sufficient to guide a behavior. Beyond the priority
modes, we also let the animator choose an explicit set of excluded
modes (marked in red) that involve motions which are not desired
in the final animation. This gives the animator an additional way
to direct the result while greatly reducing the search space, and
thus improving the speed and tractibility of the optimization task.
For clarity in describing our results, we will call all non-excluded
modes the permissible modes; it is these modes that will have their
amplitudes optimized.

In practice, we wish to exclude most high frequency modes, and
thus the permissible modes consist of the priority modes plus any
remaining low frequency modes that could be potentially recruited
during optimization to help with the character’s locomotion. The
amplitudes chosen for the priority modes in generating the sketch
are used as lower bounds for these parameters in the optimization.
This ensures that the result of the optimization will have the same
characteristics as the sketch. The amplitudes of excluded modes are
set explicitly to zero and are ignored by the optimization.

6 Optimization

During natural locomotion, there is always a trade off between per-
formance and energy conservation. We are interested in producing
locomotion controllers that are both fast and energy efficient, and
we use optimization to find solutions that find a balance to these
conflicting goals.

6.1 Optimization formulation

Parameters. The search space for our locomotion controllers in-
cludes the following controller parameters:



• q0 and q̇0, the initial state (position, velocity) of the character,
at the start of the locomotion control cycle;

• ψf and ψg , the torques, in modal coordinates (only the per-
missible ones), for flight and ground phases;

• δf and δg , the duration of torques in each phase;

• T , the period of the cycle;

• α, the ratio of the flight phase to total period.

We do not include position or velocity information as parameters
of the optimization, except for the initial state. Therefore, unlike
other space-time approaches [Liu et al. 2005; Wampler and Popović
2009], we optimize over a search space which only contains phys-
ically valid sample trajectories. Also, we choose to optimize sym-
metric locomotion cycles only. Parameters corresponding to the
second foot are set as mirror reflections of the parameters of the
first foot. For non-symmetric controllers, we would need to opti-
mize additional parameters in order to account for asymmetries.

Locomotion speed. To ensure that we generate locomotion con-
trollers which are as fast as possible, we optimize for average for-
ward speed,

Ev = 1
/
v2
x , (2)

where vx is the forward horizontal component of the average center
of mass velocity.

Energy expenditure. We quantize energy expenditure with the
sum of the squared active torques over the duration of the cycle:

Ee =
1

n

n∑
t=1

∑
j

tτ2
j , (3)

where tτ2
j is the squared active torque at joint j at time step t. Note

that penalizing this sum encourages synchronization with passive
response, since the latter is obtained for free and, therefore, is not
counted as active energy expenditure.

Constrained optimization. We optimize for both speed and effi-
ciency simultaneously by minimizing the product of our two ob-
jective functions over the set of control parameters, which we de-
note Ω. To produce a cyclic motion, the optimization must be con-
strained such that the state of the system at the end of the cycle
matches the initial state. The optimization problem can thus be
stated as follows:

min
Ω

EvEe

s.t. q0 = qT

q̇0 = ˙qT .

6.2 Optimization solution

We use a derivative free optimization method which involves sam-
pling the search space. In order to evaluate a sample in the search
space, the control parameters are assigned, the forward dynamic
simulation is performed, and a fitness value is computed. Our ob-
jective function consists of the weighted combination of several
terms computed at each time step: the main locomotion objective;
a set of easy constraints; and a set of hard constraints. The easy
constraints are used to help convergence and are described in the
appendix. The hard constraints simply ensure a cyclic result by
matching the final state of the locomotion with the initial state. It
is critical that the physical simulation produces a repeatable cycle.
We employ the Method of Multipliers (MoM) in combination with

Covariance Matrix Adaptation (CMA) to solve this constrained op-
timization problem.

Covariance Matrix Adaptation. We choose the covariance matrix
adaptation evolution strategy [Hansen 2006] as our optimization
method because it is well-suited for non-smooth problems with a
moderate number of parameters, such as the problem we pose here.
CMA does not use or approximate gradients, and does not even pre-
sume or require that they exist. This feature has lead to a fair num-
ber of uses of CMA in character animation in recent publications
[Wampler and Popović 2009; Wang et al. 2009]. In our case, be-
cause each evaluation requires running a dynamic simulation, pro-
viding a derivative would be problematic (the objective function is
not an explicit function of the optimization parameters). Moreover,
our objective function is likely to have discontinuities and be sub-
ject to many local minima. As such, CMA is a good choice. For
brevity, we refer the reader to Hansen [2006] for details on CMA.

The main disadvantage of CMA for us is that it is an entirely uncon-
strained optimization approach, and therefore it is unable to handle
hard constraints such as our cyclic locomotion constraint. In order
to overcome this drawback, we employ the Method of Multipliers
(MoM). In contrast, Wang et al. [2009] do not handle such hard
constraints and Wampler and Popović [2009] handle them by using
a hybrid optimization approach combining CMA and space-time
constraints.

Method of Multipliers. The method of multipliers [Miele et al.
1972] is a penalty function method that allows a constrained op-
timization problem to be solved as a sequence of unconstrained
ones. Let us consider the problem of minimizing the objective
function f(x), subject to the constraint ϕ(x) = 0, where f(x)
is a scalar, x is an n-vector, and ϕ is a q-vector with q < n.
One possible attempt to solve such constrained problem is penal-
izing how much ϕ(x) is different from zero, by adding some corre-
sponding term fϕ(x) into f(x), and solving it as an unconstrained
problem. The standard penalty function, for example, is obtained
by defining fϕ(x) as a term which is quadratic in the constraint:
U(x, k) = f(x) + kϕT (x)ϕ(x), where k > 0 is the penalty con-
stant.

The main issue with such an approach is the problem of setting
the respective weights for the terms, given the trade off that exists
between fϕ(x) and f(x). While fϕ(x) requires a very high in-
fluence in order to have the constraint ϕ(x) respected, this might
cause main objective f(x) to be neglected. Thus, the idea is to ini-
tially prioritize f(x) and gradually update the weights, increasing
the influence of fϕ(x) in an adequate way. The constrained mini-
mization problem is thus replaced by a sequence of unconstrained
minimization problems that in the limit have a minimum point co-
incident with the solution of the original constrained minimization
problem.

In order to circumvent the numerical difficulties associated with the
extremely large values of k required at convergence, the method of
multipliers uses the augmented penalty function

W (x, λ, k) = f(x) + λTϕ(x) + kϕT (x)ϕ(x), (4)

which is obtained by adding to U(x, k) a term which is linear in the
constraint ϕ(x). Here, the q-vector λ is an approximation to the La-
grange multiplier. At each optimization, W (x, λ, k) is minimized
with respect to x for given λ and k. The resulting sample of the cur-
rent optimization is chosen as the starting sample of the next opti-
mization. Instead of increasing k, it remains the same and the drive
toward constraint satisfaction is supplied by automatically updat-
ing λ by λ+ 2kϕ(x) for the next optimization [Miele et al. 1972].
Thus, convergence can be achieved even with relatively moderate
values of k.



In our case, f(x) consists of our main objective and the easy con-
straints, while ϕ(x) is our cyclic constraint:

f(x) = w0EvEe +
∑
s

wsEs, (5)

ϕ(x) =

(
qT
˙qT

)
−
(
q0
q̇0

)
, (6)

where s represents each easy constraint, qT and ˙qT are the final
state of the locomotion cycle, and w0 and ws are weights. We use
w0 = 10−5. Note that any ws much larger than w0 (e.g., ws >
1010 w0) will work because the easy constraints will eventually be
all equal to zero.

To conduct the complete optimization with MoM and CMA, we
perform an initialization optimization from any given initial sample
with λ = 0 and k = 0, in order to achieve the easy constraints
and a reasonable initial sample. Then, starting from that sample,
we initiate MoM with λ = 0 and k set to a positive value (we use
k = 0.1). CMA is used for solving each individual unconstrained
optimization and it stops when either a given threshold is met or
a maximum number of generations is achieved. The entire algo-
rithm is terminated when, after each individual optimization, either
|ϕ(x)i| < ϕtoli, ∀i among the q constraints, or a maximum to-
tal number of generations is met. The tolerance ϕtol is a q-vector
defined by the user.

7 Implementation details

Our approach is not particularly sensitive to the selection of the ini-
tial control parameters, Ω. However, for each character, we do as-
sign reasonable initial non-zero values for T , for the δs, and for the
height and forward velocity of the root. We initialize α = 0.5 and
set all the remaining parameters to zero. Symmetric bipeds permit
a reduction in the number of control parameters and evaluation time
because the parameters for states involving the second foot are re-
flected versions of the first foot’s parameters (i.e., τ , δ, and α). The
lag between left and right foot cycles is fixed at half way through
the cycle.

Motivated by Wang et al. [2009], we found it practical to employ
several soft constraints that are responsible for avoiding ill-behaved
regions of the search space. In practice, these constraints are sup-
posed to be easy to achieve. Once an easy constraint’s term be-
comes zero, it works like a barrier preventing CMA from entering
bad regions. Also, since the value remains zero inside the barriers,
it will not influence the other terms, which relieves the need for any
tricky weight tuning. Using these constraints, the optimizer is able
to find good results even from random initial samples, avoiding the
problem of providing a feasible starting sample. Please refer to the
Appendix A for more details about the easy constraints.

We use the Open Dynamics Engine (www.ode.org) to perform the
dynamic simulation and for collision detection. Running times for
each CMA optimization is around 1 hour, and the method of mul-
tipliers is allowed to take up to 20 optimizations. However, CMA
may easily be performed in parallel, reducing significantly the op-
timization time. Note that this depends on the dimension of the
search space that CMA uses to automatically define the number of
evaluations per iteration.

8 Results

In this paper, we provide a method for automatically creating loco-
motion for a given articulated character by optimizing control pa-
rameters. To test our method, we produce various controllers with
three different fully 3D characters: a biped, a four-armed monster

and a kangaroo, with 30, 42 and 36 internal degrees of freedom
(DOFs), respectively. The following subsections detail the different
approaches we have used to evaluate the capabilities and benefits of
our method. Please refer to the accompanying video for the visu-
alization of the examples to better evaluate the results. Filmstrips
also appear in Figure 3.

8.1 User-guided sketches

We have created a number of examples that demonstrate how
the final output animations are influenced by different locomotion
sketches. The video shows the sketch construction of a basic run
example for the biped character. It is quite easy to change the
look of the sketch, even by changing the amplitude of just a sin-
gle mode. From the basic run sketch, we can create a variety of
different sketches. For instance, the video shows examples of runs
that have been modified to include lateral swing, twisting legs, and
flapping arms.

In the twisting legs example, we note that the final result involves
motion where the whole body twists due to ground contact, which
highlights how the optimization finds a control that is physically
valid while respecting the sketch. In the lateral swing example,
we also suppress ground phase arm swing by excluding a specific
mode, demonstrating how the final motion is directable both in the
sense of the motion we want, as well as motions we do not want.

We find that even when our optimization is given a random mo-
tion sketch, it is still able to successfully find a result which follows
the style of the sketch. The key observation here is that our opti-
mization step is not just finding an arbitrary optimal solution, but is
respecting the sketch while producing a physically valid and func-
tional motion in spite of how unusual the sketch might be. We show
examples in the accompanying video.

8.2 Changing the rest pose

Editing the rest pose of a character is an easy way to change the
resulting optimized motion. The video shows an example where we
use a “squat” rest pose and create a sketch similar to the basic run to
produce a squatting locomotion gait. We also created a one-legged
hopping gait. For this example, a one-leg rest pose is crafted, and
a modified single-leg version of our biped locomotion controller is
defined in order to specify that only one leg contacts the ground
during each cycle.

8.3 Changing the character

Our method is general and applicable in a straightforward and easy
way for different characters with different morphologies. Beyond
a normal biped, we show examples for a monster with four arms
and a kangaroo (Figure 3). For the monster, we show that we can
easily change the coordination style of the arm swings by including
different modes in the sketch. Note that the motion is dynamically
adapted in order to obtain the new swing of arms, in an automatic
way. For the kangaroo character, which presents a different mor-
phology, we produce a hopping gait using the single-leg controller
described.

8.4 Comparison with other approaches

Table 1 shows how many modes we use in each phase of the con-
troller for the different examples described. Note the search space is
much smaller when optimizing only permissible modes, instead of
optimizing by using the canonical (full-joint) basis representation.



Figure 3: Filmstrips from animation examples.

Table 1: Number of selected modes for each set of modes at flight
and ground states (f/g).

Priority Permissible Canonical
Example (f/g) (f/g) (f/g)
runner 3/4 5/7 30/30
hopper 2/5 6/8 30/30
monster 3/4 5/7 42/42
kangaroo 1/3 4/6 36/36

“naive” runner 3/4 12/12 30/30

Modal vs canonical basis. In order to justify the use of the modal
coordinates to represent the active torques, we compare the use of
the canonical basis in optimizing our basic run example. When us-
ing the canonical basis we lose control over the desired oscillations
that will appear at final motion. While the optimized result is valid,
it does not necessarily match a recognizable or desired style.

Permissible modes - user-guided vs “naive” selection. As men-
tioned, the exclusion of specific modes allows the animator to pre-
vent the use of undesired motions. To evaluate this feature, we
re-examine our basic run example, but this time considering all of
the first m modes at each state as a naive set of permissible modes.
Comparing the optimized results, we observe that the naive selec-
tion of the permissible modes does not restrict the resulting anima-
tion in the desired way. Thus, we conclude that leaving the choice
of the permissible modes as a task for the animator is important for
guiding the desired result.

On the other hand, if we optimize using only the priority modes
as the permissible modes, achieving the desired cyclic controller
becomes difficult for the optimizer. This is because the available
controller space is too narrow for the optimizer to find a valid result.
However, as shown in Table 1, we find that our examples typically
only need a few extra modes in addition to the priority modes.

9 Discussion and conclusion

In contrast to many other techniques for controller production, our
method does not use any reference motion data (i.e., keyframes or
captured motions) to generate the resulting control. For each char-
acter and desired locomotion, the final outcome is derived from
only a single rest pose and the input mode-based sketch.

While activating in the directions of the low frequency modal co-
ordinations realizes energy efficient control through restorative en-
ergy across passive springs, we also observe reduced interference
between the individual coordinations due to the orthogonal proper-
ties of the modes. This phenomenon is key in controlling the visual
appearance of the outcome of the controller because the modal ba-
sis provides a palette of choices that can be selected with weighted
priorities by a user. Assuming that a control can be found, these
modes appear with little mutual interference in the final motion,
since they are dynamically independent from one another. Thus, by
choosing and specifying modes, an animator can yield a high-level
control over the coordinations present in the output motion.

One limitation of this work is in the simplicity of the locomotion
controller. Recall that the ground phase thrust occurs at a specific
time in the cycle. While we can think of these ground phase torques
as pumping the system at some fixed delay after the time of contact
(and may prefer a ground contact plus delay trigger as a parame-
terization to use the controller in an interactive simulation), recall
that we are primarily concerned with finding controller parameters
that are tuned by optimization. Thus, using simply the timing of the
ground thrust as a parameter alleviates the need to identify the time
of contact in the optimization, and likewise any sensitivity to varia-
tions in the time of contact. All of this is also the case for the tim-
ing of the flight phase torques as the cycle starts from a given pose,
q0, with initial velocity, q̇0, which needs not be aligned with the
time at which the foot breaks contact with the ground. In our case,
unlike space-time constraints approaches, contacts spontaneously



main objective
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Figure 4: Easy constraint represented by a bilateral thresholded
quadratic function. Easy constraints (green) are added to the main
objective (blue) to help find the global minimum.

arise from the forward dynamic simulation and therefore need not
be explicitly addressed in the optimization.

Guiding the control of a physically derived motion will remain a
challenge because it will always be at odds with the appearance
of the motion itself. However, in this paper we make headway on
this problem by exploiting natural coordinations that appear in the
modal basis of a physical system. Our hypothesis is that natural vi-
bration modes contribute to energy efficient movement and indeed
we see that especially low frequency modes share similarities with
behaviors such as running and hopping (as well as other oscilla-
tory movements). We further posit that the modal basis, especially
low frequency modes, would therefore represent a good basis for
describing and building desired motions. With this set of ideas in
mind, we present a method for providing an intuitive visual mech-
anism to animators in order to allow them to choose and guide the
development of physically driven character locomotion. To realize
this effort, we employ an optimization routine which employs two
methods (CMA and MoM) for honing in on a controller that can
produce locomotion with a desired visual appearance.
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A Easy constraints

Intuitively, easy constraints represent steep penalty slopes placed
over the ill-behaved regions in order to improve the behavior of the
objective function, helping the optimizer find the desired regions
(see Figure 4). Following the work of Wang et al. [2009], we rep-
resent easy constraints using thresholded quadratic functions. We
define an unidirectional upper bound constraint function

Qu(d, ε) =

{
(ε− d)2 + h, if d < ε
0, otherwise (7)

where the height of the “barrier” is set by h and the weight asso-
ciated with each easy constraint. We find that h = 1 works well
for all of our constraints because the weights are all quite large. We
use Qu(−d,−ε) to define a unilateral lower bound constraint, with
which we can write a bilateral function Qb(d, ε) = Qu(−d,−ε) +
Qu(d,−ε), which is analogous to checking if |d| > ε. In the re-
mainder of this section, we describe each of the different easy con-
straints that we employ.

Ensure COM velocity. We penalize small minimum and average
forward speed as well as large average vertical and lateral speeds.
Because the objective is for the character to run in the positive x

direction, these functions are defined as

E1 =

n∑
t=1

Qu(tċx, 0.5), (8)

E2 = Qu(vx, 2.0) +Qb(vy, 0.25) +Qb(vz, 0.25), (9)

where tċ is the velocity of the center of mass at time step t, and v
is the average center of mass velocity.

Maximum joint velocities. For efficient locomotion, we find that
very large joint velocities are undesirable. With tθ̇j giving the an-
gular velocity of joint j at time step t, we write this constraint as

E3 =

n∑
t=1

∑
j

Qb(
tθ̇j , 20.0). (10)

Maximum energy. A maximum active energy value is set in order
to avoid very energetic regions of the search space, which are likely
to be less well-behaved:

E4 = Qu(−Ee,−500000.0). (11)

Ensure priority modes. The user’s sketch must be respected and
not dominated by other permissible modes, thus, we constrain the
search to be within the subspaces dominated by the priority modes.
For each state s, to ensure that the sum of the unsigned amplitudes
of the priority modes is greater than the sum of the unsigned ampli-
tudes of the other modes, we define the function

E5 =
∑
s

Qu

(∑
p

|ψs
p| −

∑
o

|ψs
o|, 0.0

)
, (12)

where ψs
p are the amplitudes of all priority modes at state s, and ψs

o

are the amplitudes of the other modes at state s.

Ensure upright posture. We penalize the character if it is not up-
right. With the height of the torso, tpy , and the height of the center
of mass at time step t, tcy , we write this constraint as

E6 =

n∑
t=1

Qu(tpy − tcy, 0.0). (13)

Ensure stance. The active foot must be in contact with the ground
during some portion of stance. We guarantee that a minimum dis-
tance between foot and ground, tdy , is met during the n′ time steps
following the start of ground thrust at t′ using

E7 =

t′+n′∑
t=t′

Qu(−tdy,−0.001). (14)

Minimum toe height. The character must leave the ground during
the cycle. We measure this by computing the air-travel distance of
the toe, δy:

δy =

n∑
t=1

tky(tdy − t−1dy), (15)

where tky = 1 for the active toe if specific conditions are met.
Namely, ċy must have already gone negative since the toe became
active; tċy must be positive; tċy − tḋy > −0.1; thy >

tdy; and
tdy > t−1dy . Otherwise, tky = 0. Here, thy is the minimum
distance between the heel and the ground and tḋy is the active toe’s



vertical speed. Finally, we penalize this term, δy , if it is below a
certain value using

E8 = Qu(δy, 0.02). (16)

Avoid toe stub. For biped locomotion, we ensure that the swing
foot does not stub the floor by keeping the hip to toe distance of
the swing leg shorter than that of the stance leg during the ground
contact:

E9 =

tf∑
t=tg

Qu(lg − lf , 0.0), (17)

where tg is the time the stance foot hits the ground and tf is take-
off, and lg and lf are the hip to toe distance of the stance and swing
leg, respectively.
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