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Abstract We study the problem of approximating a solid with a union of overlap-
ping spheres. We introduce a method based on medial spheres which, when com-
pared to a state-of-the-art approach, offers more than an order of magnitude speed-
up and achieves a tighter volumetric approximation of the original mesh, while us-
ing fewer spheres. The spheres generated by our method are internal to the object,
which permits an exact error analysis and comparison with other sphere approxima-
tions. We demonstrate that a tight bounding volume hierarchy of our set of spheres
may be constructed using rectangle-swept spheres as bounding volumes. Further,
once our spheres are dilated, we show that this hierarchy generally offers superior
performance in approximate separation distance tests.

1 Introduction

The choice of representation of 3D volumetric data is an important question in mo-
tion planning, solid modeling, computer vision, computer graphics, medical imag-
ing and computer aided design. Whereas representations that approximate shape
boundaries with triangles are popular, representation of solids as a union of spheres
are a valuable alternative. In 1994, Ranjan and Fournier advocated the use of a union
of spheres for representing volumetric data and argued that this representation cap-
tures the significant features of a shape robustly with respect to noise and resolu-
tion [1]. In recent years, a number of applications have made use of sphere-based
representations. Particularly, hierarchies of spheres are used for collision detection
in [2] because sphere-sphere intersection tests are fast and simple. Sphere approxi-
mations are also used for fast soft shadow generation [3] where a low-frequency ob-
ject representation is sufficient. Additionally, sphere-based representations are used
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Fig. 1 A mesh (left), sphere centers given by Voronoi vertices (center), sphere centers computed
with our method (right). Note that the Voronoi vertices are highly clustered at the centers of the
osculating spheres of the 8 corners of the object, while the sphere centers produced with our method
are distributed nearly uniformly.

for efficient level-of-detail rendering [4], shape matching [5], and shape deforma-
tion [6]. Typically, the boundary of the object is first represented as a triangle mesh,
and next the interior of the mesh is approximated using a union of spheres.

In the above applications, it is desirable to generate a sphere-based approximation
of a solid that 1) has a small number of spheres, 2) provides a tight fit to the original
shape, and 3) is fast to compute. To find the minimum number of spheres that cover
a set of points on the object boundary is a hard computational problem. In fact, it
can be shown to be NP-hard by reduction from Set Cover [7]. Therefore, to find a
small set of approximating spheres to an object boundary heuristics are used.

A popular strategy for approximating an object with a small number of well-
fitting spheres is to start by computing the Voronoi spheres of a set of boundary
points [2, 7, 8]. As we shall see in our subsequent discussion, the centers of these
spheres, the Voronoi vertices, are inherently clustered at rounded corners of objects
(cf. Fig. 1(center)). Subsequently, to generate a small number of well-fitting spheres,
such methods require an optimization step to remove and redistribute spheres, mak-
ing them computationally expensive.

Recently, Stolpner et al. [9] proposed a method to compute an alternative rep-
resentation of a solid as a union of spheres such that the sphere centers are “well-
distributed” on the medial surface of the object. The distribution of the sphere cen-
ters generated with this method is shown in Fig. 1 (right). In the current article, we
observe that by working directly with this distribution, we avoid the expensive post-
processing steps of adding, deleting, or redistributing spheres. In comparison with
the state-of-the-art, we show that this sphere-generation method works significantly
faster, generates fewer spheres, and provides a tighter fit to the original object in
terms of volumetric error.

The spheres that we generate have the special property that they are internal
to the bounding surface of the object. This fact allows us to quickly compute the
exact volumetric error of our approximation and to compare the error with that of a
sphere approximation that is not necessarily internal. Further, we demonstrate how
our spheres may be quickly dilated in order to provide improved boundary coverage
for approximate separation distance computation.
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2 Background and Previous Work

We begin by providing some necessary definitions. The complete (generically, in-
finite) set of spheres whose union corresponds to a solid is given by the Medial
Surface Transform. Given a solid Ω ⊂ R3 with boundary B, the medial surface
MS of Ω is the locus of centers of maximal inscribed spheres in Ω . A maximal
inscribed sphere in Ω is called a medial sphere; the set of all medial spheres is the
Medial Surface Transform of Ω .

When approximating an object with spheres, a popular strategy is to start with a
subset of the spheres of the medial surface transform of the object. A useful tool for
doing this is the following discrete analogue of the medial surface transform.

Given a set of point sites S = {s1,s2, . . . ,sn}, si ∈ R3, the Voronoi diagram of S
is a partition of R3 into Voronoi cells V (si) with respect to the Euclidean distance
dE , such that

V (si) = {x ∈ R3 | d2
E(si,x)≤ d2

E(sj,x), ∀ j 6= i}. (1)

A Voronoi cell of a site si is, hence, the set of points that are closer to the site si than
to any other site in S. A vertex of V (si) is called a Voronoi vertex and is the center
of a Voronoi sphere that touches 4 or more sites of S, but does not contain any sites
in its interior.

When the points S are sampled on the boundary B of an object Ω , Amenta et
al. [10] show that a subset of the Voronoi vertices of S, the poles, converges to the
medial surface of Ω as the sampling density of S approaches infinity, and hence, the
union of a subset of Voronoi spheres converges to Ω . This property is the basis for
several methods that approximate a solid with spheres.

We now overview methods that approximate a solid with spheres with the goal
of providing a tight approximation to the object using a small number of spheres.
An early method for the approximation of an object with spheres [11], bounds each
mesh triangle with a sphere but does not necessarily offer a tight fit. Also, a number
of methods have been proposed recently for the simplification of sphere represen-
tations [7, 12], but these methods do not explicitly share the same goal of ensuring
tightness of fit.

There are two methods which approximate an object Ω with tight-fitting spheres,
starting with a set of Voronoi spheres. Hubbard [8] greedily selects adjacent Voronoi
spheres for merging when their bounding sphere has the best tightness of fit. Brad-
shaw and O’Sullivan [2] improve the tightness of fit of Hubbard’s algorithm by
using an adaptive greedy strategy that adds sample points to the boundary of Ω to
generate new Voronoi spheres as needed. Tightness of fit is evaluated as the maxi-
mum distance between each sphere and Ω . As this quantity is difficult to compute
exactly, an approximation is used. Methods that initialize sphere centers to Voronoi
vertices of a set of boundary points face the inherent problem that some of these
vertices may be clustered; for example, rounded parts of the object boundary gener-
ate many Voronoi vertices near the center of the osculating sphere of such regions,
as these are points which are equidistant from 4 boundary points.
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In more recent work, Wang et al. [3] propose a variational optimization method
that achieves tighter fits than the method of [2], but is only feasible for approxi-
mations having up to a small number of spheres (around 128 spheres). The error
measure used is an approximation to total sphere volume outside the object Ω . Ap-
proximate volumetric error is also used in [13] to compare the performance of the
methods of [8], [2], and an octree-based method for approximating deforming ob-
jects with spheres. In the present article we use also use a volume-based error mea-
sure.

3 Computation of Spheres

Fig. 2 The boundary of an object is shown in
black and its medial surface is in red. Left, ar-
rows show ∇D, the directions to nearest loca-
tions on the boundary of the object. In this ex-
ample, the medial surface intersects the line seg-
ment (b,opp(b)) because ∇D(b) 6=∇D(opp(b)).
Right, the object angle of circle m1 is is
greater than that of circle m2 since ∠A1m1B1 >
∠A2m2B2.

In this section, we describe how we ap-
proximate the object Ω with spheres
such that the centers of the spheres are
“well-distributed” and lie near a subset
of the medial surface.

We will compute a set of approx-
imate medial point locations using
a method based on the analysis of
the gradient of the Euclidean distance
transform ∇D of Ω described in [9].
This gradient, ∇D : R3→ R3, is a vec-
tor field that assigns each point in Ω the
direction to its closest point on B. ∇D
is a smooth vector field everywhere in-
side Ω , except on the medial surface
where it is multi-valued. In order to
generate a well-distributed set of ap-
proximate medial points, we find those
voxels of a regular grid that are inter-
nal to Ω , analyze the values of the ∇D vector field in each grid cell, and, if the
presence of the medial surface is likely, we look for approximate medial point lo-
cations in these grid cells. At most one approximate medial point is output per grid
cell. This property ensures the “well-distributed” nature of our approximate medial
points. To find approximate medial points, we use the property shown in [14], that
states that the medial surface intersects a line segment (p,q) interior to Ω , where
q = p+ γ ·∇D(p), iff ∇D(p) 6= ∇D(p), for any scalar value of γ . Refer to Fig. 2,
left, for an illustration. This property allows us to find the location of medial points
within a user-chosen distance of the medial surface by performing binary search
on line segments (p,q) intersected by the medial surface. When the radius of the
spheres at the approximate medial points is chosen to be the distance from these
points to their nearest boundary points, such spheres are internal and tangent to
the boundary B. We compute nearest points on the mesh boundary to query points
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quickly using a version of the PQP software [15] modified for efficient point-to-
mesh distance queries. Additional details of the algorithm can be found in [9].

Suppose that a medial point m ∈MS is equidistant from two points A,B ∈B.
Angle ∠AmB (see Fig. 2, right) is the object angle. The complete medial surface of
a polyhedron can be a complex structure; for example, it includes bisectors of each
pair of mesh faces that meet convexly. Our goal is to locate a few medial spheres
such that the volume of their union approximates the volume of Ω well. As proven
in [16], removal of spheres having a small object angle has a small impact on the
volume of the reconstructed object (refer to Fig. 2, right). As we will be looking
for a set of spheres whose volume is close to that of the original solid, we will
look for those medial points having a large object angle. For an approximate medial
point computed, only one point of tangency is known exactly (the nearest point on
B to the approximate medial point), while the other point is approximated. In our
experiments, we use a threshold of 0.6 radians for the object angle.

Figure 1 shows a distribution of approximate medial points computed with our
method and that computed with a Voronoi-based method of [10]. Voronoi-based
methods approximate the medial surface using a set of boundary samples as input
and the density of the medial surface approximation depends on the distribution of
the boundary points. In contrast, the distribution of medial points produced by our
distance-based method depends on the sampling strategy of the interior of the object
and allows one to control the density of the medial points produced.

The larger the grid resolution, the larger the radius of the smallest sphere com-
puted. As small spheres contribute less to the volume of the reconstructed object
than large spheres, by choosing a large grid resolution and a large object angle
threshold, we generate a small number of spheres that provide good volumetric ob-
ject coverage, as shown experimentally in Section 4.3. A possible limitation of our
approach is that to approximate objects with long narrow parts well we would have
to use a fine grid, resulting in a large number of spheres. Such objects may be better
approximated with primitives other than spheres, such as oriented bounding boxes
or rectangle-swept spheres.

Although fast approximate GPU-based methods for distance field computation
exist [17,18], our use of exact point-to-mesh distance allows us to compute spheres
that are guaranteed to be interior to the object boundary. This property is essential
to allow efficient comparison of volumetric error in Section 4.3.

4 Volumetric Error for Unions of Spheres

In this section, we evaluate the quality of our sphere-based approximation. In Sec-
tion 4.1, we compute lower bounds on the volumetric error of the approximation of
an object with a union of spheres. We discuss the combinatorial structure of a union
of spheres in Section 4.2 and review a formula for the exact computation of the vol-
ume of a union of spheres. We use the error bounds and this formula to compare
volumetric error of our approximation and that of a leading method in Section 4.3.
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(a) (b) (c) (d)

Fig. 3 (a) A union of a set of disks; (b) its power diagram overlayed; (c) the union of the set of
disks decomposed using the power diagram; (d) the dual of the decomposition.

4.1 Volumetric Error: Exact or Lower Bound

We evaluate tightness of fit of an approximation of Ω with a set of spheres S as the
volume of S outside Ω plus the volume of Ω outside S. Let vol(·) denote volume
and A be the complement of a set A. Then the error of the approximation of Ω with
S is given by:

ErrΩ (S) = vol(S∩Ω)+vol(Ω ∩S)

It is easy to show that

Lemma 1. max{vol(S)− vol(Ω),vol(Ω)− vol(S)} ≤ ErrΩ (S) and when vol(S∩
Ω) = 0,vol(Ω)−vol(S) = ErrΩ (S).

4.2 Unions of Spheres: Tools

The combinatorial structure of a union of spheres has been the subject of much
recent research. In this brief overview, let us define a special space filling diagram
for a set of sphere sites, called the power diagram [19]:

Given a set of spheres, S = {(c1,r1),(c2,r2), . . . ,(cn,rn)}, with centers ci ∈ R3

and radii ri ∈ R, the power diagram of S, denoted PD(S), is a partition of R3 into
convex power cells P(si), such that

P(si) = {x ∈ R3 | d2
E(ci,x)−r2

i ≤ d2
E(cj,x)−r2

j ,∀ j 6= i}. (2)

Power cells, eq.( 2), are identical to Voronoi cells, eq.( 1), when all the sphere radii
are the same. Figure 3 shows a 2D example of the power diagram of a set of disks.

Consider the decomposition of the union of spheres by intersecting each sphere
with its power cell. The dual of this decomposition, DC(S), is a simplicial complex
that captures the topology of S. As shown in [20], to find the total volume of the
union of spheres si, vol(∪isi), one need only consider the spheres corresponding
to vertices, edges, triangles and tetrahedra of DC(S): vol(∪isi) = ∑i∈DC(S) vol(si)−
∑(i, j)∈DC(S) vol(si ∩ s j) +∑(i, j,k)∈DC(S) vol(si ∩ s j ∩ sk)−∑(i, j,k,l)∈DC(S) vol(si ∩ s j ∩
sk ∩ sl) We use this formula to compute the exact volume of a given union of
spheres S, vol(S). Since computing vol(Ω) is easy, using the result of Lemma 1,
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we can compute either the exact volumetric error of an approximation of a solid
with spheres or a lower bound on the error.

4.3 Experimental Results

|SV |= 512 482 506 348 496 497 493 498 484 431 474 503
|SD|= 344 367 249 163 393 406 468 436 233 108 179 396

nerr(SV )≥ 0.035 0.015 0.17 0.021 0.266 0.054 0.284 0.051 0.018 0.016 0.017 0.050
nerr(SD) = 0.034 0.010 0.133 0.009 0.195 0.052 0.178 0.051 0.016 0.014 0.016 0.046

Time(SV ) = 2342 7428 1890 25698 1930 2672 1515 1581 3078 3421 4049 9479
Time(SD) = 45 184 15 98 30 29 14 107 75 77 134 51

Table 1 Sphere sets SD are generated with our distance-based method, while sphere sets SV are
generated with a Voronoi-based method of [4]. Timings are given in seconds. SD provides a tighter
approximation using fewer spheres significantly faster than SV . Volumetric error evaluates the
global quality of fit of the sphere approximation. Shown is the smallest computed set of spheres
SD such that the volumetric error of SD is smaller than SV .

Given a representation of an object using its triangulated boundary, applications
such as soft shadow generation can benefit from an alternative representation of this
object using a small number of well-fitting spheres. We use our method described in
Section 3 to compute a set of internal spheres whose centers are “well-distributed”
on the medial surface of the object and then use tools developed in Section 4.3 to
evaluate the exact volumetric error of our approximation with respect to the origi-
nal boundary. Recall that approximate volumetric error has been used in the litera-
ture [3, 13] to evaluate the quality of sphere approximations and provides a global
measure of fit. Wang et al. [3] provides a tighter fit than [2], but is only feasible for
generating small sphere sets (approximately 128 spheres). Reference [2] is a state-
of-the-art method for approximating objects tightly with a large number of spheres.
As our method is able to generate a large number of spheres quickly, we compare it
to that of [2].

Let SD be the approximation to Ω computed with our distance-based method
described in Section 3 and let SV be the approximation to Ω computed with the
Voronoi-based AMAA method of [2]. As explained in Section 3, the sphere set SD
is completely contained inside Ω , i.e., vol(SD ∩Ω) = 0. By Lemma 1, vol(Ω)−
vol(SD) gives the exact error of the approximation of Ω with SD, while vol(SV )−
vol(Ω) is a lower bound on the error of the approximation of Ω with SV . We will
define a normalized error nerr(S) = ErrΩ (S)/vol(Ω). Thus, nerr(SD) = (vol(Ω)−
vol(SD))/vol(Ω) and nerr(SV )≥ (vol(SV )−vol(Ω))/vol(Ω).

We tabulate the exact error of SD given by nerr(SD), and a lower bound on the
error of SV , nerr(SV ), in Table 1. Note that the set of spheres SV does not necessar-
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ily contain the object Ω being approximated, so the computation of exact error in
this case is a challenging computational problem. In finding the appropriate set of
spheres SD, the voxel resolution was iteratively increased until the error of the ap-
proximation given by our method was smaller than that of AMAA. Table 1 compares
the performance of the two methods for a number of models for a fixed maximum
number of AMAA spheres. Timings are shown on a 3.6 GHz Pentium IV processor
with 3 GB of RAM. As can be seen from Table 1, our method generates a set of
tighter fitting spheres significantly faster than AMAA.

AMAA construction proceeds top-down by building a hierarchy of a fixed
branching factor and depth. For the timings in Table 1, SV are the leaves of an 8-ary
hierarchy of depth 4. Fast construction of a tight binary hierarchy for the spheres SD
is discussed in Section 5.2.

Note that our “well-spaced” distribution of sphere centers is suboptimal in certain
cases; for example, for the ellipsoid model in Table 1, a distribution with fewer small
spheres and more large spheres would provide better volumetric coverage than our
distribution. However, we observe that for this model as well, our method performs
better than that of [2].

5 Approximate Separation Distance

For those objects whose surface can be tightly approximated as a surface of a union
of a small number of spheres relative to the number of surface triangles, separation
distance computations can be accelerated by working with the sphere representa-
tion instead of the boundary mesh representation. Further, pairwise distance tests
are significantly faster between spheres than triangles. In this section, we show how
to quickly grow our set of spheres so as to improve boundary coverage, and how to
construct a tight bounding volume hierarchy of the set of spheres. We then evalu-
ate the performance of our sphere approximation against that of the state-of-the-art
method AMAA of [2] for approximate separation distance computation.

5.1 Improving Boundary Coverage by Conservative Dilation

In Section 4, we aimed to fill the volume of the object being approximated tightly.
However, in this section, we require our set of spheres to provide a tight approxi-
mation to the boundary of the object. We show a simple heuristic for conservatively
growing and adding spheres that allows us to achieve a more favourable approxima-
tion to the boundary.

The surface of the union of spheres S is a non-differentiable object. As explained
in Section 4.2, sphere adjacency in the union of spheres S is described by the dual
complex DC(S) of the power diagram PD(S). In DC(S), edges correspond to pairs of
spheres intersecting along circular arcs on the surface of the union of spheres, while
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(a) (b)

Fig. 4 (a) The blue circles s1 and s2 intersect at point v, whose nearest point on the boundary is m.
The radii of both blue circles are increased to create orange circles that contain m. (b) To cover the
corner of the object at u, we add a new purple circle with center along the line segment (u, t).

triangles correspond to triplets of spheres intersecting at vertices on the surface of
the union of spheres. We can solve for the locations of these vertices, called v-points,
by considering all triangles (si,s j,sk) in DC(S), finding the 2 intersection points of
spheres si, s j and sk, and retaining those intersection points that lie on the boundary
of the union of spheres. We also note which triplet of spheres contributed to the
creation of a v-point. For a v-point v, we consider the nearest location on the mesh
boundary to v. The radius of each sphere s is increased sufficiently so as to cover the
nearest mesh point to each of the v-points that is created by s. Figure 4(a) presents
a 2D example. For those edges of DC(S) that are not part of any triangles of DC(S),
we sample 2 random points on the circle of intersection of the two corresponding
spheres and proceed similarly as with v-points.

In order to further improve the fit of the union of spheres S, we introduce new
spheres at those vertices of the mesh boundary whose nearest location on the set of
spheres is more than a tolerance away—see Fig. 4(b). Let u be a vertex of the mesh
boundary B and t be the nearest point on S to u. We initially place a new sphere
s = (c,r) with radius r = ‖t−u‖2/2 centered at c = u+ r(t−u)/‖t−u‖2.

5.2 Hierarchy Construction using Rectangle-Swept Spheres

Fig. 5 Rectangle-
Swept Sphere.

In order to use our set of spheres S to perform fast proximity
queries, we fit a bounding volume hierarchy to the set of spheres
S. We observe that the medial surface simplified by object angle
is often composed of relatively flat sheets, along which the ra-
dius of the medial spheres varies smoothly. A Rectangle-Swept
Sphere (RSS) (introduced in [15], see Fig. 5) is therefore a suit-
able bounding volume for medial spheres. The hierarchy is con-
structed top-down, each parent has 2 children, and each RSS is
fitted to the set of leaf spheres it bounds. We find the orientation
of the RSS rectangle and the partitioning plane using a linear
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least square fit. The radius is found by using a procedure similar
to that in [15].

Alternatively, one may compute a bounding volume hierarchy using spheres as
the bounding volume. Given our sphere set approximation, we compute the hier-
archy using a similar top-down procedure as when using RSSs as the bounding
volume. We compute the minimum bounding sphere of a set of spheres using the
algorithm presented in [21].

5.3 Experimental Results

Timings Error
Size SH RSSH Ave. Max.

S+D 520 0.524 0.085 0.012 0.074
SV 498 0.268 0.088 0.024 0.063
S+D 237 0.152 0.061 0.082 0.332
SV 397 0.502 0.084 0.104 0.454
S+D 830 0.582 0.139 0.033 0.114
SV 831 0.239 0.143 0.053 0.226
S+D 379 0.255 0.067 0.009 0.104
SV 379 0.302 0.064 0.067 0.278
S+D 293 1.024 0.171 0.019 0.056
SV 420 0.327 0.208 0.036 0.113
S+D 296 0.385 0.066 0.009 0.024
SV 439 0.133 0.123 0.020 0.075
S+D 772 0.405 0.109 0.040 0.188
SV 695 0.279 0.145 0.106 0.587

Table 2 Timing and error results for inter-object distance tests for our updated sphere sets S+D
and sphere sets SV of [2]. Average timings per frame are recorded in milliseconds. SH uses a
sphere hierarchy fitted to the sphere set, while RSSH uses a Rectangle-Swept Sphere hierarchy.
The maximum dimension of the bounding box for all objects is 10.

We evaluate the usefulness of our sphere approximation for approximate sep-
aration distance computation in terms of computation time and accuracy. In our
experiments, we perform a physics simulation by allowing pairs of the same ob-
ject to collide in a box with random gravity and measure inter-object distance both
approximately using sphere approximation and exactly using the meshes at each
frame. Such a simulation considers pairs of non-intersecting objects at a variety of
separation distances and relative orientations.

We compare the performance of approximating separation distance for the set
of spheres computed with our method and that computed with the AMAA method
of [2]. We grow and add spheres to our initial sphere set SD using the strategy out-
lined in Section 5.1 to create a new sphere set S+D . This step takes one to five sec-
onds for the models in Table 2. We compute both an RSS hierarchy and a sphere
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hierarchy of our set of spheres using the method described in Section 5.2. AMAA
constructs a bounding volume hierarchy where bounding elements are spheres. Ta-
ble 1 lists timings for building a hierarchy with branching factor eight. In proximity
query experiments, we consider hierarchies with branching factor two. Computation
of a binary AMAA hierarchy for the models shown in Tables 2 takes significantly
longer: from one hour (for the knot model) to 11 hours (for the peanut model). In
addition to a binary sphere hierarchy, we also construct an RSS hierarchy of the
AMAA spheres. Constructing an RSS hierarchy for the sphere sets considered takes
a fraction of a second on average.

We compare average per-frame time for performing approximate separation dis-
tance tests using our sphere approximations and those produced by AMAA, where
both sphere hierarchies (SH) and RSS hierarchies (RSSH) are considered. These re-
sults are summarized in Table 2. Timings are shown for a 3.6 GHz Pentium 4 CPU
with 3 GB of RAM. In our experiments, we find that building an RSS hierarchy
of spheres significantly improves distance query time compared to using a sphere
hierarchy for both our and AMAA sphere sets, as the RSS offers greater tightness
of fit. For most models, we see that the fastest performance is achieved by using our
sphere sets and the RSS hierarchy. We believe that because our spheres are nearly
medial, RSS bounding volumes provide them with a particularly tight fit.

We evaluate the inter-object distance error as the difference between the exact
distance between the meshes and the distance computed using the sphere set approx-
imation. Table 2 presents error statistics for the different sphere sets. Our sphere sets
display a smaller average error and generally smaller maximum error than those of
AMAA. When exact separation distance is not needed, for those objects that may
be approximated well using a small number of spheres relative to the number of
boundary triangles, sphere approximations can offer significant speed up at a small
cost in quality.

6 Conclusions

We have described a method to compute a tight-fitting union of spheres approxi-
mation to a solid without an expensive optimization step that improves the sphere
distribution. As such, our method is significantly faster than existing methods and
can be used to generate sphere set approximations with a larger number of spheres
than previously possible. We have shown experimentally that in comparison with the
state-of-the-art AMAA method, our method generates fewer spheres, has a smaller
volumetric error, and is significantly faster. Because our spheres are internal to the
object, it is possible to evaluate the volumetric error of our approximation exactly
and compare the quality of the approximation with a method that generates a set of
spheres that are not necessarily internal and do not cover the object boundary. We
experimentally demonstrate the benefit of using the rectangle-swept sphere bound-
ing volume for building a hierarchy of approximately medial spheres. Using this
hierarchy, we have shown that our sphere sets generally perform faster and more
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accurately than those of the AMAA method for approximate separation distance
computation. There is a wide variety of additional applications where our tight fit-
ting sphere approximations can be valuable, including path planning, point location,
shadow generation, shape matching, mesh deformation, shape morphing, shape seg-
mentation, and approximate Minkowski sums.
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