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Figure 1: Learned center-of-mass reference trajectories enable anticipatory control for a variety of tasks, including (from left to right): fast

changes of pose; punching; catching and lifting; and pushing.

Abstract

A hallmark of many skilled motions is the anticipatory nature of
the balance-related adjustments that happen in preparation for the
expected evolution of forces during the motion. This can shape
simulated and animated motions in subtle-but-important ways, help
lend physical credence to the motion, and help signal the character’s
intent. In this paper, we investigate how center of mass reference
trajectories (CMRTs) can be learned in order to achieve anticipa-
tory balance control with a state-of-the-art reactive balancing sys-
tem. This enables the design of physics-based motion simulations
that involve fast pose transitions as well as force-based interactions
with the environment, such as punches, pushes, and catching heavy
objects. We demonstrate the results on planar human models, and
show that CMRTS can generalize across parameterized versions of a
motion. We illustrate that they are also effective at conveying a mis-
match between a character’s expectations and reality, e.g., thinking
that an object is heavier than it is.
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1 Introduction

The adept control of balance is second nature to humans. How-
ever, it is surprisingly difficult to model in simulation. Good so-
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lutions would enable the much broader adoption of physics-based
character simulations, given the many nuances and interactions that
are effortlessly achieved using simulation and which are difficult to
achieve using other means. Research on balance strategies over the
past two decades has largely focused on the problems of achieving
robust standing balance and that of robust locomotion.

Balance controllers have been developed around a variety of princi-
ples, including linear momentum control, angular momentum con-
trol, model-predictive control, and virtual model control. They vary
greatly in the assumptions about the nature of the balance or move-
ment tasks, the abstractions used, and their reactive or anticipative
nature.

In this paper we develop a method for learning anticipatory balance
strategies that allows for highly dynamic motions, such as fast pose
transitions, as well as dynamic interactions with the environment,
such as what would occur during a strong push or kick. The key to
the approach lies with optimizing the center-of-mass reference tra-
jectory (CMRT) in a way which allows the center of mass to be used
in task-specific or motion-specific ways. For example, the character
can fall forward to give a large push to an object, knowing that the
reaction to the push will then also result in balance being restored.
While previous methods allow for the use of CMRTs, this compo-
nent of the control is often assigned a fixed default value, such as
keeping the CM at the center of the support polygon, or they are
initialized from motion capture data. Thus, no practical mecha-
nisms are provided for creating suitable CMRTs for new motions
that users may wish to author.

We show how the CMRT can be optimized to guide a robust linear-
and-angular momentum balance controller towards achieving sev-
eral types of anticipatory behavior. We demonstrate that CMRTs
can be interpolated to achieve anticipatory motions across a param-
eterized family of motions. A mismatch between the character’s
expectation and reality is also effectively conveyed using the antic-
ipatory balance strategies. All our results are for planar motions,
although we expect that they will generalize well to 3D motions.

2 Related Work

The control of balance has been a topic of interest in computer an-
imation, robotics, and biomechanics for several decades. In this
review, we touch on the most closely related work and in particular
work related to animation and physics-based character simulation.



Linear momentum regulation is a simple and prevalent strategy for
balance control. In its simplest form, this can take the form of
a virtual spring-and-damper to compute the force required to pull
the center of mass to a desired position and velocity. This force
can then be realized using internal joint torques that are most com-
monly computed using the Jacobian transpose or similar abstrac-
tions [Wooten 1998; Faloutsos et al. 2001; Zordan and Hodgins
2002; Coros et al. 2010]. When motions are derived from motion
capture data, the existing center-of-mass trajectory is commonly
used as a reference and the parameters of the controllers can be
optimized to yield the best overall behavior for a given motion or
set of motions [Lee et al. 2010; Geijtenbeek et al. 2012].

Balance controllers can also be designed around optimized inverse
dynamics methods, which either uniquely solve for, or optimize for,
the joint torques at a given time step in order to achieve a combina-
tion of task goals and balance goals. This type of approach was first
developed more than two decades ago [Stewart and Cremer 1992],
and has since been extended in many ways that typically solve a
quadratic program (QP) optimization at each time step [Abe et al.
2007; da Silva et al. 2008; Jain et al. 2009; Macchietto et al. 2009;
de Lasa et al. 2010; Stephens and Atkeson 2010]. The control be-
haviors are authored indirectly through the design of the objective
functions, and the regulation of the linear momentum is typically
one of the key objectives. Because these methods optimize for the
current time step, they cannot anticipate the upcoming motion ex-
cept for the anticipation that is effectively designed into the objec-
tive function.

More recently, methods regulating angular momentum have
been developed, which demonstrate impressive balance capabili-
ties [Macchietto et al. 2009; Geijtenbeek et al. 2012; Borno et al.
2014]. Our work further enhances the capabilities of this con-
trol strategy by allowing for anticipatory behavior, as implemented
via a motion-specific or task-specific optimization of the reference
center-of-mass trajectory. This allows for balance during more dy-
namic motions and for motions that involve significant force-based
interactions with the environment.

Model predictive control is another common methodology for bal-
ance control. This offers anticipatory control, as it involves solving
for state trajectories and action trajectories for a forward-looking
window of time. If this can be computed efficiently, the plan can
be recomputed at every time step, i.e., online, in order to cope with
unforeseen events as they arise. In the context of humanoid balance
control, ZMP preview control [Kajita et al. 2003; Wieber 2006] is
the most well known example and this has been applied with suc-
cess in many humanoid robot controllers. The trajectories of the
center of mass (CM) and center of pressure (CP) are both treated as
free variables and are optimized to satisfy objectives such as min-
imal CP-excursion and minimal jerk. The simplest versions of the
problem can be solved analytically for a point-mass model that re-
mains at a constant height, while more complex versions are often
posed as QPs, which often can be solved online. In another re-
cent work an efficient algorithm to perform online trajectory opti-
mization has been proposed to synthesize complex human behav-
ior, such as getting up from an arbitrary pose on the ground [Tassa
et al. 2012]. This method requires smooth differentiable evaluation
functions.

In our work, we rely on a highly capable momentum balance con-
troller to handle disturbances and opt to compute optimized desired
CM trajectories offline using derivative-free methods. This method-
ology allows for more arbitrary constraints, objectives, and scenar-
ios, including unknown contact-times and the non-linear dynamics
of the full body that are not captured by the simplified models often
used for preview control. These benefits come at the cost of re-
quiring offline optimization to compute. However, we shall demon-

strate that the the computed reference CM trajectories (CMRTs) can
be generalized and interpolated to allow for online balance control
of wider classes of motion.

Other approaches have also been explored, including controllers
that have their design informed by biomechancics [Abdallah and
Goswami 2005] or by motion capture data [Yin and Van De Panne
2006]. Animation also allows for kinematic-dynamic hybrid meth-
ods, where kinematic motions can be filtered [Tak et al. 2000; Ya-
mane and Nakamura 2003; Tak and Ko 2005], sequenced [Zordan
et al. 2005], modified [Metoyer et al. 2008], or optimized [Atkeson
and Stephens 2007] to produce physically-plausible trajectories for
balanced motions on a variety of models (some very much simpli-
fied, some not) and with varying degrees of generality. We focus
our work on controllers that can be used with forward dynamics
simulations, with the long term objective of being able to directly
simulate wide classes of motion.

3 Momentum Balance Control

There are several features that are important for measuring the pos-
tural stability of a simulated character: the center of mass (CM),
the center of pressure (CP), the ground reaction force (GRF), and
the base of support (BS). A character has static postural stability
if the gravity line from its CM falls within the BS defined by the
convex hull of the feet, and the GRF at the CP in the BS passes
through the CM [Shih 1996]. For a dynamic character, a criteria for
stability is that its current state is within the set of viable states, i.e.,
those states for which a control trajectory exists that will prevent a
fall [Wieber 2000]. For any given character with joint and torque
limits, it is difficult to indentify the complete set of viable states
and appropriate control trajectories. Instead, it is easier to design a
controller that drives the character towards a configuration of static
stability, even though this will only prevent falls on a subset of the
viable states.

We use momentum control for character balance as introduced by
Macchietto et al. [2009]. This controller moves the character to-
ward static postural stability with a combination of linear and angu-
lar momentum control. Linear momentum control guides the center
of mass on a trajectory defined by the differential equation

Laes = kim(cy — ¢) + di(mé, — L) D

where m is the character mass, ¢, and c are the reference and cur-
rent CM positions, and k; and k4 are gains that specify the temporal
properties of the desired CM trajectory. The reference ¢, is fixed
with zero velocity at a position above the center of support, while
the gains are designed to produce a slightly under-damped oscil-
lation that quickly brings the CM to rest at the reference position.
Angular momentum control is achieved by choosing a trajectory for
the center of pressure which will keep it away from the edges of the
BS, thereby avoiding situations where support rotation can occur.

An angular momentum change H will occur when external forces
produce a torque about the center of mass. As such, the angular and
linear controllers are coupled because the linear momentum control
effectively dictates the GRF, and thus, through selecting the angular
momentum H ., the ground force can be placed at a desired CP,
which is likewise on a designed trajectory toward static stability.

Momentum control for balance also takes into account a reference
character trajectory 6, (t), though the motion may ultimately con-
flict with the goals of static and dynamic stability. The tracking
control equation

Odes = kie(0r — 0) + di (0, — 0) + 6 2)



can have low gains k; and d; due to the feedforward velocity and
acceleration terms, thus allowing compliant reactions to perturba-
tions. Macchietto et al. define three control objectives,

Cy = ||Laes—L|? 3)
Ch = HHdes - HH2 (4)
Ci = |W(baes — 0)|1%, (5)

where each is a quadratic function of the acceleration 6 and depen-
dent on the current state. They solve for the optimal acceleration 6*
in the quadratic program

min 5;C; + rCr + 5:Ct  s.t. .]Sé + J59 =a 6)
6

where the linear equality constraint uses the support-foot Jacobian
Js to ensure that the foot remains on a moving support surface with
acceleration a. The weights (3 allow a tradeoff between tracking and
balance, and the diagonal matrix W allows the tracking of some
joints to be sacrificed more than others to minimize the balance
objectives.

The optimal accelerations are typically computed at a lower rate
than the simulation, which saves on computation and can introduces
a natural delayed response to perturbation. However, the balance
control is exclusively reactionary, and does not address the fact that
it is sometimes advantageous to let the CM move away from the BS
temporarily in order to improve stability, for instance, where there
are interactions with the environment.

4 Reference Trajectory Synthesis

It is by modifying the CM reference trajectory in Equation 1 that
we can give our balance controller the ability to anticipate. With
anticipatory balance control, the character can throw its CM for-
ward or backward in advance of interactions with the environment,
or tricky balancing scenarios due to fast motions or unstable poses
in the reference pose trajectory 6, (t).

Given that the support can slip, we define the CMRT as a displace-
ment relative to a coordinate frame at the center of the base of sup-
port. We use a smooth function to specify the trajectory, using a
piece-wise cubic interpolating spline with varying knots. We typi-
cally use 4 control points because this provides the CMRTs a suf-
ficient opportunity to pull back and forth on the CM several times
(for instance, both in anticipation and in reaction); the small number
of control points is also helpful in simplifying our search for opti-
mal CMRTs as we discuss below. We constrain the spline curve
to go through zero displacement with zero slope at the start and
end because we only wish to introduce a temporary modification
into the balance controller. Finally, we make the simplification that
the trajectory only includes horizontal displacement. This is rea-
sonable, noting that Macchietto et al. only track the CM projection
in the ground plane. Likewise, it is horizontal displacements that
have the largest direct effect on postural stability. Just the same,
we note that vertical fluctuations of the CM could be important as
they would generate fluctuations in the GRF that might be useful in
some scenarios, such as to ensure the necessary friction forces for
tracking motions with large angular components.

4.1 Balance performance optimization

With our strategy of modifying the balance controller, we still need
a metric for determining what modifications are appropriate. We
choose to measure the performance of the balance controller based
on how far the CP strays from the center of the support. One inter-
pretation of this is that the balance controller will be more robust in
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Figure 2: Example CP trajectory optimization for the fast bending
motion. The top and the bottom plots show the CP before and after
applying CMRT.
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Figure 3: Example CMRT trajectory for the fast bending motion.

dealing with perturbations when the simulated character has its CP
at the center of the base of support. That is, when the CP is near
to the edge of the boundary of the support, it becomes easier for an
external push to result in the undesired rotation of the support foot.

Given the CP trajectory p(t) and the trajectory of the center of the
support s(t), we define a CP error trajectory e(t) = p(t) —s(t). An
example of the CP trajectory before the optimization run is shown
in Figure 2 (top). For an input motion, such as a change of pose
over a given duration, we create a simulation clip with a time inter-
val of interest which includes a preparation time before the motion
for anticipatory effects and a decay time after the motion to allow
the character to approach static postural stability. We always use a
preparation time of 1 second, while we use different decay times,
typically 1 second or slightly longer depending on the duration of
transients generated by the input motion. We run the simulation at
a fixed step size to collect a time-discretized version of the clip’s er-
ror trajectory, and then compute our performance measure as the 2-
norm of the discretized error. This serves as our objective function
in the optimization of CMRTs. Note that when no ground foot con-
tact exists, we do not have a measurement of the CP error. While
we could treat this as a type of failure, we instead remove these
time steps from the error vector because we occasionally observe
intermittent contact in our simulation. This is because we use the
Open Dynamics Engine and choose to keep ground contact con-
straints ﬁ5rm with a very small constraint force mixing parameter of
7x107°.
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Figure 4: A plot showing objective function values for all samples
computed during a CMA optimization, along with the stop threshold
value. In this case the minimum of 700 samples was passed, after
which a test for slow convergence terminated the optimization.

Given that our objective function involves a physics simulation of
several seconds, we use the popular derivative free optimization
method of Covariant Matrix Adaptation (CMA) [Hansen 2006].
Our parameter space has 8 dimensions consisting of the four con-
trol points and their knot values. We typically initialize the opti-
mization with a flat spline with equally spaced knot values, but we
have also used previous optimization results as starting points when
computing CMRTs for pose changes at different speeds. As shown
in Figure 3, CMRT has 3 phases, namely preparation, task and de-
cay. Preparation is where the anticipation happens; the task refers
to the motion of interest, either a pose change or an environmental
interaction; and decay is where the character transitions between
the anticipatory and the reactionary controllers. Figure 2 (bottom)
shows the optimal CP error trajectory of the fast bending motion
using CMRT.

Figure 4 shows convergence of the optimization for a typical run.
We use a stopping threshold to permit an early optimization exit
for a result known to be good. We otherwise check for slow con-
vergence during optimization, but only after a minimum number
of samples have been computed across all of its iterations (typi-
cally 700). The stopping threshold depends on dimension of the
discretized error trajectory (i.e., the clip length and step size) and
we set the value based on experience.

The run-times of the optimizations given in Table 1. Motions typ-
ically require 1-10 minutes to optimize. However, the compute
time for the bending motions demonstrates one of the more diffi-
cult cases. The optimization times are large because the input mo-
tion is harder to balance. The interpolated motion of the start and
end poses has the ground-plane projected CM traveling mostly out-
side the base of support. Because the motion is difficult to balance,
fewer of the CMRTs randomly generated during the optimization
process will result in good balance behaviors.

4.2 Interpolation and Superposition of CMRTs

Figure 5 shows several CMRTs optimized with CMA for a bending
pose change at different speeds. Note how the anticipation changes
across the different speeds, with the first knot occurring later for
the slower motion. Furthermore, the CMRT curves have smaller
amplitudes for the slower motions.

input motion | L | | T | D |é§ | N| C

P
push dominoes | 3.0 | 1 | 035 | 1.65 | 0.6 | 149 328
catch ball 30| 1| 03 1.7 | 09 18 40
slow bend 26 | 1 12 | 04 | 09 | 328 641
fast bend 26| 1| 04 12 | 1.1 | 683 | 1366
Table 1: CMRT computation times for different motion clips, where
L is the clip duration (including prep, task and decay times), P is
the preparation time, T is the task duration (task or pose change),
D is the decay time, § is the CMA convergence threshold, N is the
number of iterations computed, C'is the computation time, and all

times are in seconds.

CMRTs for the fast bend at different speeds
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Figure 5: Example CMRT trajectories for different speeds of the
same motion clip. The start of the task motion is the same for all
and happens at 1 s, shown by a solid black line. The end of the task
motion is different for different motion speeds and are shown by the
vertical solid lines. The legend specifies the task speed in seconds
(T), and the objective function value (e). The interpolated CMRT
is shown in blue dashed line and is compared to the optimization
solution shown in blue solid line.

In order to produce a CMRT for a pose interpolation at an interme-
diate speed, we interpolate the optimal solutions found at adjacent
speeds. We perform the interpolation using the knots values and
control points. This allows the knot values to shift to accommodate
a varying anticipatory control at different speeds. Figure 5 also
shows an example of the interpolated curve in dashed lines. The
legend of the figure demonstrates that the objective function value
for interpolated and optimized curves are quite similar.

Up to now we have only explored how to modify balance control for
individual input motions, but in a real usage scenario we would like
to combine many input motions into interesting sequences. Our so-
lution for this is to superpose the displacements of adjacent CMRTs
when they overlap. This is a plausible strategy under the assump-
tion that it allows the anticipation of the next control modification
to add to those happening in the decay time of the previous. We
expect that one of the reasons why this can work well is that the op-
timal CMRTs in the decay window tend to be small. Figure 6 shows
an example of superposed CMRTs of 4 changing pose motions.

5 Results

We present results for a variety of motions and tasks, which are
best seen in the supplementary video.! We first demonstrate that

"http://www.cs.mcgill.ca/~kry/pubs/abc/
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Figure 6: Superposed CMRTs of 4 motions.

Figure 7: Fast pose-to-pose transition. Top: Without anticipation.
Bottom: With anticipation.

we can reproduce results similar to those demonstrated by Mac-
chietto [2009]. The desired kinematic trajectories for the motions
are authored using ease-in-ease-out key frame interpolation. The
CMA objectives are as outlined earlier, with the exception of the
ball catching example, where the objective heavily penalizes solu-
tions when it is not feasible to catch the ball.

Dynamic motions: We author a number of highly dynamic mo-
tions using pose-to-pose transitions. One of these is shown in Fig-
ures 7. In this figure, the two cyan dots mark the center of mass
location and its ground-plane projection, while the green vertical
line illustrates the center-of-mass reference location. The anticipa-
tion via the CMRT is critical to the success of the motions. Execut-
ing the desired pose change without anticipation results in a loss of
balance in the forward direction because of the fast leg swing. The
CMRT anticipates this and compensates by moving the center of
mass to the right in the early phases of the motion. Pose transitions
can be concatenated together in sequence, with the character briefly
coming to rest at each desired pose, as shown in Figure 6 and in the
supplementary video.

Interpolation: The spline knots that define the CMRTS can be in-
terpolated to yield valid and effective CMRTS for intermediate mo-
tions. We evaluate this using pose-to-pose transitions that are lin-
early retimed to produce a family of motions at different speeds.
Figure 5 compares the fidelity of the interpolated CMRT with
CMRT that is specifically optimized for the given motion speed.

Heavy ball catch: Figure 8 shows the effect of anticipation when
catching a 7 kg ball. The weight results in a forward loss of balance

Figure 8: Catching a heavy ball. Top: Without anticipation. Bot-
tom: With anticipations.

Figure 9: Pushing a heavy object. Top: Without anticipation.
Bottom: With anticipation.

that is not within the capabilities of the momentum-based controller
if it is seen simply as a disturbance. The CMRT draws the center
of mass to the right in anticipation of the impact of the catch. If the
ball ends up being much lighter than expected, this compensation
then becomes problematic and the character falls backwards as a
result.

Domino push: This example involves a push that topples a heavy
140 kg object. Pushing without anticipation causes the character
to fall backwards as a result of the push. The optimized reference
trajectory shifts the CM forwards early on in the motion, thereby
helping to use the character’s weight during the push, as well as al-
lowing the action of the push to result in the restoration of balance.

6 Conclusion

We introduce and evaluate a method that enables balance con-
trollers to be anticipatory. For a given desired motion or task, the
center-of-mass reference trajectory is optimized to achieve the best
performance. This allows for more dynamic motions than can be
achieved with non-anticipatory balance models, and also allows for
standing tasks that can exploit center-of-mass manipulation in or-
der to perform better at force-based interactions with the environ-
ment. Our work can also be seen as introducing an offline version
of “full body” preview control to the control of balance for physics-
based animation, coupled with a highly robust angular-and-linear
momentum balance strategy. This allows for classes of motion that
would otherwise fail with online preview control methods that use
simplified models, such as a fast rotation to a crouched position,
dynamic pushes, and more. The anticipatory shifts of the center



of mass further reflect a simulated character’s intent and expecta-
tions in performing a given action. Lastly, we demonstrate that the
learned reference trajectories can be successfully generalized using
interpolation and extrapolation.

There exist many directions for future work. We wish to extend
the method and results to fully 3D examples. Our anticipatory bal-
ance control can also be integrated with balance models that take
one or more steps in order to recover balance, and systems that
are equipped with a collection of other controllers. Currently the
method assumes that one or both feet are in contact with the ground.
We wish to explore extensions of the method that allow for flight
phases and other forms of intermittent contact with the ground or
the environment. It is likely possible to develop online versions of
motion-or-task-specific anticipatory balance control with appropri-
ate task abstractions and dynamic abstractions. We also wish to
better understand the sensitivity of human observers to perceiving
shifts of the center of mass in various contexts, and to understand
how anticipatory balance control is achieved in human motor be-
haviors.
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