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ABSTRACT

We present inverse kinodynamics (IKD), an animator friendly kine-
matic workflow that both encapsulates short-lived dynamics and al-
lows precise space-time constraints. Kinodynamics (KD), defines
the system state at any given time as the result of a kinematic state
in the recent past, physically simulated over a short temporal win-
dow to the present. KD is a well suited kinematic approximation
to animated characters and other dynamic systems with dominant
kinematic motion and short-lived dynamics. Given a dynamic sys-
tem, we first choose an appropriate kinodynamic window size based
on accelerations in the kinematic trajectory and the physical proper-
ties of the system. We then present an inverse kinodynamics (IKD)
algorithm, where a kinodynamic system can precisely attain a set
of animator constraints at specified times. Our approach solves the
IKD problem iteratively, and is able to handle full pose or end effec-
tor constraints at both position and velocity level, as well as multi-
ple constraints in close temporal proximity. Our approach can also
be used to solve position and velocity constraints on passive sys-
tems attached to kinematically driven bodies. We show IKD to be
a compelling approach to the direct kinematic control of character,
with secondary dynamics via examples of skeletal dynamics and
facial animation.

Index Terms: I.3.7 [Three-Dimensional Graphics and Realism]:
Animation—

1 INTRODUCTION

Physical simulation is now a robust and common approach to recre-
ating reality in virtual worlds and is almost universally used in the
animation of natural phenomena, ballistic objects, and character ac-
cessories like clothing and hair. Despite these strides, the animation
of primary characters continues to be dominated by the kinematic
techniques of motion capture and above all traditional keyframing.
Two aspects of a primary character in particular, skeletal and facial
motion, are often laboriously animated using kinematics.

We note from conversations with about half a dozen master an-
imators that there are perhaps three chief reasons for this. First,
kinematics, unencumbered by physics, provides the finest level of
control necessary for animators to breathe life and personality into
their characters. Second, this control is direct and history-free, in
that the authored state of the character, set at any point in time, is
precisely observed upon playback and its impact on the animation
is localized to a neighborhood around that time. Third, animator in-
teraction with the time-line is WYSIWYG (what-you-see-is-what-
you-get), allowing them to scrub to various points in time and in-
stantly observe the character state without having to playback the
entire animation.

The same animators expressed the utility and importance of sec-
ondary dynamics overlaid on primarily kinematic character motion

to enhance the visceral feel of their characters. Various approaches
to such secondary dynamics have been proposed in research litera-
ture [7, 11, 13], some of which are available in commercial anima-
tion software. Overlaid dynamics, unfortunately compromise the
second and third reasons animators rely on pure kinematic control.

A kinematic solution incorporating secondary dynamics called
kinodynamic skinning [4] was suggested in the context of volume
preserving skin deformations. With this approach, a kinodynamic
state at any time is defined as a kinematic state in the recent past,
physically simulated forward to the given time. In this paper we
develop this idea of kinodynamics (KD) as a history-free kinematic
technique that can incorporate short-lived dynamic behavior. Note
that the above usage of the term “kinodynamic”, while similar in
spirit, is distinct from its use in the context of robot motion plan-
ning where it addresses planning problems where velocity and ac-
celeration bounds must be satisfied [9].

We begin by formulating an appropriate KD window size for a
given kinematic motion and physical parameters: both long enough
to ensure a temporally coherent KD trajectory that captures the nu-
ances of system dynamics, and short enough for interactive WYSI-
WYG computation and temporal localization of the influence of
animation edits on system state. Many goal directed actions such
as grasping, reaching, stepping, gesticulating, and even speaking,
however, involve spatial relationships between the character and its
environment, that are best specified directly, as targets states that the
character (or parts of the character) must observe at given times.
Techniques such as inverse kinematics (IK) and space time opti-
mization algorithmically infer the remaining system states and an-
imation parameters from these animator specified spatio-temporal
targets. However, IK does not give the secondary dynamics, and
space time optimization is typically computationally expensive.
Analogous to these techniques we develop an inverse kinodynam-
ics (IKD) algorithm allowing animators to prescribe position and
velocity constraints at specific points in time within a KD setting.

The contribution of this paper is thus the development of a us-
able kinodynamic framework for interactive character animation,
where animators can leverage a direct history-free kinematic work-
flow, coupled with the benefits of arbitrary physically simulated
secondary dynamics. Toward this, we present the first IKD algo-
rithm.

2 RELATED WORK

Secondary dynamics provides a significant amount of visual real-
ism in kinematically driven animations and is an important tech-
nique for animators. In the case of tissue deformations produced by
the motion of an underlying skeleton, various methods can be used
to produce this motion through simulation or using precomputation
[7, 11, 13]. With respect to secondary dynamics of skeletal mo-
tion, it has similarly been demonstrated that tension and relaxation
of the skeletal animation can be altered through physically based
simulation [17]. These techniques provide an important richness to
an animation; while the style of the results are controllable by ad-
justing elastic parameters or gains of controllers used for tracking,
precise control of the motion itself to satisfy given constraints or



key frames is typically left to be treated as a separate problem.

The related work can be categorized into two groups. First, there
are approaches which try to control a physically based simulation to
have it meet some desired constraints. Second, there are approaches
which use kinematic editing techniques to produce animations that
meet desired constraints and exhibit physically plausibility.

Controlling physically based simulations is a difficult problem.
There has been a significant amount of work in this area on con-
trolling rigid bodies [21, 20], fluids [24, 15], and cloth [26, 6].
Other recent successes on controlling physically based animation
use gentle forces to guide an animation along a desired trajectory,
accurately achieving desired states, but also allowing physical re-
sponses to perturbations [5]. Physically based articulated character
control has received a vast amount of interest. Building on the sem-
inal work of locomotion control [22], it is now possible to have,
for instance, animation of physically based motions that respond
naturally to perturbations [28, 27, 29], and editable animations of
dynamic manipulation which respects the dynamic interaction be-
tween characters and objects [1]. Our work is very different from
these approaches, and is instead more closely related to work by
Allen et al. [2], which changes PD control parameters to produce
skeletal animations that interpolate key-frames at specific times. In
our work, however, we keep the control parameters fixed and alter
the kinematic trajectory. Jain and Liu [10] show a method for inter-
actively editing interaction between physically based objects and a
human. In this work, it is the motion of the dynamic environment
which is edited through kinematic changes of a captured human
motion. In comparison, we focus on altering and editing a kino-
dynamic motion with different styles (tension and relaxation) and
different constraints. Directly related to the problem of authoring
motion, physically correct motion can be achieved by solving op-
timizations with space-time constraints [25]. Also relevant is work
that uses analytic PD control trajectories for compliant interpola-
tion [3].

In contrast to the work on controlling fully dynamic simulations,
we are addressing a simplified problem due to the finite tempo-
ral window involved in simulating the state at a given time in a
kinodynamic trajectory [4]. This leads to benefits in the context
of animation authoring, and allows for a straightforward solution
to the inverse kinodynamic problem that we present in this paper.
In a different approach, with similar objectives to our own work,
Kass and Anderson [12] propose a method for including physically
based secondary dynamics in a key frame style editing environment
through interactive solutions of space time optimization problems.
They focus on linear or linearized space-time constraints problems,
while our work, in contrast, looks primarily at non-linear skele-
tal animation problems. Within a purely kinematic setting, Cole-
man et al. [8] create handles to edit motion extrema of different
joints clustered in time. The visual impact of secondary dynamics
is often captured in these temporal relationships. Such an approach
can, however, only exaggerate or diminish a dynamic effect already
present in the motion and cannot introduce new forces and dynamic
behaviors that the mixing of kinematics and dynamics allows. Such
mixing to get the best of both worlds also has promise for authoring
motion in real time. For instance, Nguyen et al. [18] blend kine-
matic animation and dynamic animation via a set of forces which
act like puppet strings to pull the character back to the kinematic tra-
jectory. Also of note is work on editing kinematic motion through
momentum and force [23], or with biomechanically inspired con-
straints [14]. While these different approaches use dynamic princi-
ples to control accelerations and velocity, they deal with dynamic
systems which are not necessarily short lived, and these approaches
do not share our objective of a scrubbing interface for animation
editing which computes states largely in a history free manner.

3 OVERVIEW

In this section, we provide an overview of our approach. The
animation is principally driven by a kinematic trajectory xK(t),
typically authored and edited using traditional keyframe and mo-
tion capture techniques. The kinodynamic trajectory of the sys-
tem xKD(t) at a time t is the result of a physical simulation run
over a time window δ starting from an initial position xK(t − δ )
and velocity ẋK(t − δ ). The simulation uses a PD (Proportional-
Derivative) controller to follow the kinematic trajectory, so the
xK(t) can be thought of as the target or desired trajectory. The
PD controller applies forces to the system that are proportional to
the difference between the set point xxK and the process variable
x. We also apply viscous damping, thus the forces can be written
as Kp(xK − x)−Kd ẋ, where the gain Kp can be seen as modeling
tension and relaxation, while Kd controls damping.

We will have kinodynamic states which deviate from the kine-
matic trajectory because we are using a simulation with control
forces to generate the KD trajectory. This is desirable because we
want to include the effects of secondary dynamics in the animation
(see Figure 1). However, there may be specific times in the anima-
tion where we need constraints to be met.

Figure 1: KD trajectories for the green ball: Kinematically the green
ball is rigidly connected to the keyframed red ball, with spring dy-
namics overlaid. A number of frames of the KD trajectory (δ = 15)
are shown, with the full dynamics solution for the green ball overlaid
in blue (top). KD trajectories with 3 window sizes are shown in rela-
tion to a full dynamics solution (bottom). Note how the history-free
KD trajectories capture the visual behavior of the actual dynamics
over a wide range of window sizes (see video).

Suppose target pose xi must be produced at time ti. This tar-
get state could be a pose in the original kinematic trajectory, or
something different. If the pose belongs to the original kinematic
trajectory, a simple solution would be to stiffen the PD control in
the vicinity of the desired pose so that it is tracked precisely. Note,
however, that stiffness is an inherent attribute of the motion’s sec-
ondary dynamics under animator control and altering it to inter-
polate a target pose imbues the animation with a different style.
Instead, we iteratively compute a modification to the kinematic tra-
jectory which results in a KD state that satisfies the constraint.

Example trajectories are likewise illustrated in Figure 2, where
a red kinodynamic trajectory follows a green kinematic trajectory
(suppose it is lower due to gravity). At left we can see an illus-
tration of how the temporal window for computing kinodynamic
state must be long enough for any impulse (smaller than a given
maximum) to come sufficiently close to rest that it can not be per-
ceived (e.g., based on screen pixels). At right in the figure we can
see a dotted green kinematic trajectory with an added bell shape
correction, which produces the dotted red kinodynamic trajectory
satisfying the constraint at time ti. This smooth modification of the



kinematic trajectory is the approach we use to solve the IKD prob-
lem (we use a Gaussian, as described in Section 6).
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Figure 2: An illustration of how we modify a kinematic trajectory to
create a kinodynamic trajectory that satisfies the constraint that the
original kinematic state be produced at time ti.

3.1 Inverse kinodynamics
Let SimulateKD(xK , ti, δ ) be the procedure for computing xKDi,
the KD state at ti for kinematic trajectory xK . We first compute the
IKD error in meeting the target as

ei = xi−xKDi, (1)

and from this we form bell shaped correction curves eiφi(t) that
we add to kinematic trajectory (note that ei is a vector of same di-
mension as the state, and each coordinate of the state will have a
bell shaped correction of a different magnitude). The bell shaped
basis function φi(t) provides a local correction, has its peak value
of 1 at ti, and can be defined as a low degree polynomial or Gaus-
sian. More importantly, it has a local support (i.e., a small tem-
poral width, σ ) which is selected by the artist. Conceptually, this
IKD error correction introduces an additional spring force propor-
tional to eiφi(t) in a small temporal neighborhood around ti. This
correction will not be sufficient, however, and our modified KD
state x̃KDi = SimulateKD(xK + eiφi, ti,δ ) will not meet the con-
straint. This is because the correction did not take into account
the dynamics of the system, but we can fix this by boosting the
correction to account for the dynamics, assuming that the system
dynamics are approximately locally linear (see Figure 3). Letting
di = x̃KDi− xKDi, we project the error onto this initial correction
result to compute the scaled correction

f(t) = ∆xiφi(t), (2)

where ∆xi =
(
ei ·di/||di||2

)
ei. Without this linear prediction step,

the convergence is significantly slower.
Using xK + f, the process is repeated, until the system state con-

verges to within a numerical threshold of xi at ti. That is, we find
the new kinodynamic state at ti, compute the error ei, the modified
kinodynamic state using xK + f+ eiφi, the correction result di, and
finally an update to the correction function

∆xi← ∆xi +
(

ei ·di/||di||2
)

ei. (3)

4 KD ANIMATION AND IKD SCENARIOS

In this paper, we look at a number of scenarios that can largely be
described as either pose constraints (as described above) or end ef-
fector constraints (Section 4.1). For instance, we may want a kino-
dynamic skeletal animation of a dance to produce some key poses,
or a kinodynamic skeletal animation of a punch that actually hits

Figure 3: Two steps of the IKD iteration for a constraint at time ti. At
bottom left, xKDi0 is the initial KD state at time ti, which is far from
target xi. A correction based on e results in the modified KD state
x̃KDi1 , which does not take into account the system dynamics. We
project the error onto di = x̃KDi1 − xKDi0 to determine a scaling of
the correction that would produce a KD state as close as possible
to xi assuming linear system dynamics. Using the scaled correction
(Equation 3), we produce the new KD state xKDi1 , and repeat the
process until ||e|| falls below a threshold.

the desired target at a specific time. Alternatively, another scenario
which is important to consider is the case where we drive a de-
formable mesh animation to follow a target mesh animation. In
contrast to joint angles, this case involves a state vector formed by
the Cartesian position of vertices in the mesh. In Section 4.5, we
show how this approach can be used for facial animation.

We note that the blending of the correction can be done in a num-
ber of ways. If we only have one position constraint to satisfy in
the entire animation, then it would be possible to naively apply a
constant offset to the kinematic trajectory in order to meet the con-
straint at time ti. Typically we will have several constraints at dif-
ferent times, so we only make a local edit to the desired trajectory
(see Section 4.2). Any of a number of smoothly shaped curves with
compact support will serve this purpose, as discussed in Section 6.
The shape and width of the correction basis functions are an impor-
tant artist control, much like setting ease-in ease-out properties in a
key frame animation.

4.1 Skeletal animation end effector IKD
In the case of an articulated character, the state x is a set of joint
angles, and the simulation uses a PD controller to follow the kine-
matic trajectory. The gains of the controller set the level of tension
or relaxation of the character [17].

When editing a skeletal motion, we may wish to set constraints
on the entire pose, as described above, but it is also important that
we are able to constrain only part of the state at the time of a con-
tact event, for instance, a point on a hand or foot (we will call such
points end effectors). Suppose the end effector position of an artic-
ulated character is given by p(x), and that it must reach position pi
at time ti. In this case, we have the constraint p(xKDi) = pi, and we
use an inverse kinematics solution to map the end effector error to
an error in the state.

Figure 4 shows an example of how we solve the IKD problem of
punching a target. While the motion in Figure 4(a) hits the target at
the desired time, we change the motion style by adjusting the track-
ing gains of the physically simulated character shown in orange, to



(a) (b) (c) (d) (e)

Figure 4: Illustration of how IKD is used to produce an animation of a relaxed character that punches a target. (a) shows the motion capture at
the time of contact in both wire-frame and solid orange. (b) the solid orange character shows the KD state of the relaxed character, which fails to
reach the target at the time of contact. (c) inverse kinematics produces the pose of the character in dark blue. (d) iteratively computing the error
and modifying the kinematic trajectory produces a KD state which hits the target (orange). Here the modified motion capture pose is shown in
wire-frame. (e) shows the result of using a smaller temporal width for the bell shaped correction curve, which results in more of an upper cut.

produce the more relaxed KD motion show in Figure 4(b). This
relaxed motion fails to hit the target, but we can solve an inverse
kinematics problem to adjust the joints of our relaxed character so
that the end effector does hit the target. This IK solution pose is
shown in dark blue in Figure 4(c). We could make a purely kine-
matic fix to our KD trajectory by simply layering this IK solution
on top our KD trajectory, using a bell shaped curve to slowly ease
the correction in and out. However, this does not respect the relaxed
dynamics of the character (see the accompanying video). Instead,
we modify the kinematic trajectory used to produce the kinody-
namic animation. By editing the kinematic trajectory, we produce
a natural looking motion that exhibits a relaxed style with a follow
through motion. This modification is shown in Figure 4(d) and (e)
for two bell shaped correction curves of different widths.

The algorithm iterates as described in the previous section, us-
ing an update to the correction curve that is based on an inverse
kinematics solution,

ei = SolveIK(xKDi, pi) (4)

where SolveIK computes a state displacement ei such that
p(xKDi + ei) = pi. Note that the correction function update must
be modified to use the end effector error, ∆pi = pi− p(xKDi), in-
stead of the state displacement ei. The update becomes

∆xi← ∆xi +
(

∆pi ·di/||di||2
)

ei. (5)

where di = p(x̃KDi)− p(xKDi).

4.2 Multiple constraints
The process of designing an animation typically involves setting
multiple constraints at different times throughout the animation. If
these events are sufficiently far apart, we can treat each as an in-
dependent IKD problem. However, constraints in close temporal
proximity may need to be solved simultaneously. This can happen
in a variety of ways. If the bell shaped correction curve necessary
to satisfy one constraint modifies kinematic states that fall within
the temporal window used to simulate the KD state at a another
constraint, then the solution of the latter constraint will depend on
the solution of the former. This dependence can be one way, or
both ways, depending on the temporal width of the bell shaped
curves used for each constraint, and the temporal window size used

for the kinodynamic simulation. While we may be able to solve
some constraints independently, or in a specific order, for simplic-
ity we will make the assumption in our examples that all constraints
are temporally coupled and must be solved simultaneously. In our
multi-constraint examples, we typically choose correction function
widths that provide an ease-in trajectory with a duration of approxi-
mately one or two seconds, so constraints that fall within one or two
seconds of one another will need to be addressed simultaneously.

The correction f that we must add to the kinematic state to sat-
isfy a number of constraints can now be seen as an interpolation
function. That is, f interpolates a set of corrections ∆xi at ti, for
i = 1..N where N is the number of constraints. We implement this
interpolated correction function using a sum of basis functions,

f(t) =
N

∑
i

λiφi(t), (6)

where the basis function coefficients λi are computed by solving a
linear system of equations,

f(ti) = ∆xi, for i = 1..N. (7)

Note that the coefficients λi are vectors with the same dimension as
f, i.e., the dimension of the state.

At each iteration, the multi-constraint IKD solver must produce
an appropriate update to each ∆xi. In Section 3.1, we effectively
computed numerical partial derivatives with respect to the bell
shaped basis magnitudes, and found a least squares solution for the
desired update using a projection (computed with a dot product).
In the case of two constraints i and j we have di influenced by a
magnitude adjustment for constraint j, but we avoid the expense
of computing these relationships by fixing only one constraint at
a time. Thus we have an inner loop that consists of computing
the KD state at ti, the error ei, the updated KD state for trajectory
xK + f + eiφi, the update for ∆xi (using Equation 3 or Equation 5),
and then finally we recompute the interpolation function weights.
This approach, similar to Gauss Seidel iteration, works well be-
cause the effect of φi on xKDi is typically much larger than at xKD j.

The technique we use to solve the multi-constraint IKD problem
is summarized in Algorithm 1, and consists of a nested loop of ad-
justing the correction f to fix each of the violated constraints, until
all constraints are sufficiently satisfied or a maximum number of
iterations is reached.



Algorithm 1 Inverse Kinodynamics Multi-Constraint Solve
Input: constraints xi or pi at ti, for i = 1..N, δ

Output: state correction curve f
1: itr← 0
2: E← ∞

3: ∆xi← 0, for i = 1..N
4: f← SolveInterpolation( ∆x )
5: while itr++ < maximum and E > threshold do
6: for i = 1→ N do
7: xKDi← SimulateKD( xK + f, ti, δ )
8: ei← compute using Equation 1 or 4
9: x̃KDi← SimulateKD( xK + f+ eiφi, ti, δ )

10: ∆xi← compute using Equation 3 or 5
11: f← SolveInterpolation( ∆x )
12: end for
13: E← 0
14: for i = 1→ N do
15: xKDi← SimulateKD( xK + f, ti, δ )
16: E← E +‖p(xKDi)− pi‖ or ‖xi−xKDi‖
17: end for
18: end while

Solving for the basis function coefficients λi is fast. To solve
the interpolation function, we can compute an LU decomposition,
from which we can find λi using a back solve. Repeated solves
of the interpolation function can be done quickly because we can
reuse the same decomposition (the basis functions and their centers
do not change).

Note that the inner loop update could skip an update for a given
constraint if its contribution to the error was known to be small.
However, the size of this error can only be verified by recomputing
the KD state as it is influenced by other changes to f. The compu-
tation of xKDi is the bulk of the cost.

4.3 Constraining velocities

When constraining a pose or an end effector position, we might
also want to set constraints on velocities. For instance, we may
want the hand of a character to touch the surface of a stationary ob-
ject. The hand end effector must satisfy both position and velocity
constraints, meaning it must reach the target at the time of contact
and have zero velocity. The desired velocity can follow the orig-
inal velocity of the animation or can be set to achieve a different
velocity at the time of the constraint.

We can solve the IKD problem for constrained velocities in a
similar manner to the position problem, and likewise solve for si-
multaneously constrained position and velocity. Again, the IKD
solution comes from layering a correction overtop of the kinematic
trajectory.

Suppose that at time ti we have desired state velocity ẋi (or al-
ternatively, a desired end effector velocity ṗi). Instead of adding
a bell shaped curve to change the velocity, we will add a wiggle
to change the velocity ẋK(ti) without changing xK(ti). We use the
derivative of the bell shaped position correction basis function as a
basis function for setting the derivative,

ψi(t) =
∂

∂ t
φi(t), (8)

though this function could likewise be selected by the animator.
For simplicity, suppose we are dealing with a set of N pairs of

constraints, i.e., constraints on both position and velocity at times
ti, for i = 1...N. To deal with position and velocity constraints in
close proximity we use an interpolation of the corrections ∆xi with
velocities ∆ẋi necessary to correct the kinematic trajectory. Thus,

the interpolation function has the form

f(t) =
N

∑
i
(λiφi(t)+βiψi(t)). (9)

Again, the basis function coefficients λ and β can be found by solv-
ing the system of 2N linear equations for each dimension of the
state, given by the required corrections and correction velocities:

f(ti) = ∆xi, for i = 1..N, (10)

∂ f(ti)
∂ t

= ∆ẋi, for i = 1..N. (11)

It is important to observe that we update the desired velocity cor-
rection ∆ẋ j by comparing the desired velocity ẋ with the velocity
of the KD trajectory. The velocity of the dynamic simulation which
produces xKD(t) does not give us this KD velocity (i.e., it is not the
dynamic simulation velocity which we want to control). Instead, we
must approximate this KD state velocity from successive frames of
the KD state,

ẋKD(ti)≈
1
h
(xKD(ti)−xKD(ti−h)). (12)

We measure the difference to set the velocity error ėi, with which
we compute a new KD state, and ultimately find an update to the re-
quired velocity correction ∆ẋi (with a computation similar to Equa-
tion 3).

In the above example, we are considering a target velocity on the
entire state. If instead our constraint is only on the end effector of
a skeleton, then the approach is slightly different. In this case, we
compute the approximate KD end effector velocity,

ṗKD(ti)≈
1
h
(p(xKD(ti))− p(xKD(ti−h))). (13)

The difference between this velocity and the artist requested end
effector velocity ṗi is then mapped to a state error,

ėi = J+(ṗi− ṗKD(ti)). (14)

where J+ is a pseudoinverse of the end effector Jacobian J = ∂ p/∂x
evaluated at pose xKD(ti). Again, this error is used to update the
required velocity correction ∆ẋi, and the process is repeated until
our IKD algorithm has converged or we reach a maximum number
of iterations.

4.4 Passive deformable object IKD
While skeletal motion plays an important role in character anima-
tion, animators may wish to have more control over passive de-
formable objects attached to kinematically driven bodies. Control-
ling secondary dynamics of such deformations can be tricky since
the motion can only be indirectly edited by changing the kinematic
motion that drives the secondary dynamics.

For example, consider the scenario shown in Figure 6 (d), where
a character with a floppy hat must walk through a door without the
hat hitting any part of the door frame. In this case, the hat would hit
the top of door frame at time ti. We can use IKD to set a constraint
that the tip of the hat must be at a position just below the door frame
at time ti. In our example, the hat is a passive elastic system rigidly
attached to the head of the character, and the character motion is
purely kinematic (and it must be altered to change the trajectory of
the tip of the hat).

IKD can be used to control the tip of the hat using the skeletal
IKD technique described in Section 4.1, with a small adjustment.
At each iteration of the IKD algorithm, we fix the end effector po-
sition, i.e., the tip of the hat, based on its kinodynamic position at
time ti (even though it is not fixed with respect to the character’s
head). The IKD solution involves a change in the character’s pos-
ture, allowing the tip of the hat to miss the door frame (see the
accompanying video).



4.5 Dynamic blend shape IKD
While the previous subsections focus on skeletal animation, the
same ideas are applicable to elastic tissue deformation. Particu-
larly in the context of facial animation, this articulated deformation
is tediously authored by animators by keyframing linearly blend
shape targets [19]. Overlaying secondary jiggle and other dynamic
nuance currently comes at the cost of letting dynamics have the
“final word” on the animation, with no guarantees of hitting cer-
tain expressions. IKD allows one to overlay this desired secondary
dynamics in a kinematic setting and further specify critical poses
as target shapes to be precisely interpolated, independent of the
kinematically authored blend shape animation. A loosened facial
animation can also be kept in sync with the environment (like tak-
ing a puff from a cigarette or sip from a glass) or an audio track
by adding checkpoints from the kinematic trajectory as IKD tar-
gets, so the final facial trajectory has a limited deviation from the
kinematic input. We implement IKD as a deformation that tracks
control points on a shape using springs and dampers as in work by
Müller et al. [16]. Figure 5 shows examples of pose constraints
applied to a kinodynamic trajectory for two different characters.

The inverse kinodynamic solution follows the same algorithm
presented above, with the correction update following Equation 3,
which is very easy to compute as we simply need the difference
between the kinodynamic state and the target. The techniques for
dealing with multiple constraints and velocity constraints are like-
wise similar to those describe above.

Figure 5: Two facial animation IKD examples (see accompanying
video). Left, a temporal pose constraint produces a head tilt. Right,
a temporal pose constraint produces a smile.

5 TEMPORAL WINDOW SELECTION

Setting the size of the temporal window δ has an important influ-
ence on the quality and cost of the kinodynamic trajectory. We want
a small window to make it cost effective to simulate kinodynamic
states on the fly, but the window also needs to be long enough to
produce the desired secondary dynamics effects.

We find that it is easy to select a reasonable window by hand.
Given some fixed gains for the PD controller, this can be done by
simulating the physical system in response to an impulse and visu-
ally selecting the time at which vibrations are no longer visible. In-
stead of an isolated impulse, we typically focus on a maximum ac-
celeration, i.e., an abrupt change, in a kinematic trajectory defined
by a motion capture clip or a keyframe animation. We alternate be-
tween adjusting the temporal window size, and scrubbing back and
forth on the time line to observe the results. We stop adjusting the
window size when we are satisfied that we have selected the small-
est window that does not prematurely truncate damped vibrations
caused by the maximum acceleration in the kinematic trajectory.
This is the technique we use for all of our examples.

6 RESULTS AND DISCUSSION

Please refer to the accompanying video for examples of our results.
Figure 6 shows snapshots from the video, highlighting different sce-
narios that demonstrate the IKD techniques presented in Section 4.
The video also includes a work-flow example demonstrating the in-
teractivity of our system for skeletal animation IKD.

In our discussion of time window selection, we noted that the
maximum acceleration in the kinematic trajectory will influence
the size of the temporal windows (large accelerations will require
longer temporal windows in order for oscillations produced by
these accelerations to become imperceptible). This is also true for
the altered trajectory which includes the correction to solve a given
IKD problem. We are using smooth bell shaped curves to add this
displacement, so generally the accelerations due to the correction
will be small. But if we set the temporal width of this curve to
be small, then the IKD solution will need to involve a very large
displacement to the kinematic trajectory to force the dynamic tra-
jectory to the desired target, thus requiring larger temporal windows
for computing a KD state. While we impose no explicit restrictions
on the physical simulation of characters, our approach is largely
suited to well-conditioned and continuous simulations.

The shape of the correction curve we use to modify the kine-
matic motion directly affects the motion which is produced. We
use Gaussian shaped curves in our examples because they are sim-
ple and smooth. We effectively treat them as if they have compact
support, and could easily use any other ease-in-ease-out curve of a
desired shape and support, and we leave the selection of this curve
to the animator. That is, the width of the Gaussian is selected by the
animator; a wide curve will produce a smooth anticipatory motion,
while a short curve will produce a motion that abruptly moves to
meet the constraint with a larger acceleration (and in turn, produces
a larger follow through). While we only look at symmetric curves,
any smooth artist created ease-in ease-out curve can be used. For
instance, a non-symmetric correction curve can be designed to cre-
ate a quick reaction followed by a slow return to the unmodified
trajectory.

While we are adding constraints to deal with contact, we require
the artist to specify these constraints. Although contacts may nat-
urally happen in the dynamic simulations that produce our kinody-
namic states, we will only have a “memory” of contacts that happen
in the temporal window. For instance, we cannot correctly handle a
braid of hair which is normally at rest down the back of a character
but flips over a shoulder with the turn of a head. As such, these
cases are comfortably handled as pure skeletally driven dynamics,
but we hope to address such scenarios in the future by analysing
collision events to adaptively vary the KD window size.

6.1 Convergence
It is important to discuss issues with the convergence of our IKD
algorithm. If there are many abrupt motions in the kinematic tra-
jectory, then the resulting simulation could be chaotic. As such, we
might not expect a small change in the joint angles to produce a pre-
dictable result, even if we smoothly and slowly blended in and out
of this desired trajectory. While we do not assume linear dynam-
ics, we do assume that the function mapping xK to xKD is smooth
“enough”, as is the case for all of our example systems.

While the convergence rate of our IKD algorithm depends on the
actual scenario, Figure 7 compares the convergence rates achieved
using different temporal widths of the correction function, for the
target punching example from Figure 4. While convergence can
be slower when very small temporal widths are used, the number
of iterations can be reduced by damping the correction adjustment
computed in Equation 3 or 5 (see curves marked scaled in Figure 7).

We find that IKD converges quickly under a wide variety of con-
straints. Figure 8 shows the error in cm after 6 iterations for vary-
ing target positions in the punch example. The error is small in all
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Figure 6: From left to right, (a) punch, (b) control panel, (c) YMCA’s ”C” Pose , (d) passive deformable hat, (e) position constraint for grasp

cases, except for target constraints which are physically out of reach
of the character.
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Figure 7: IKD convergence rates for the punch scenario using a bell
shaped correction function with big temporal width (1 sec), and a
small temporal width (0.5 sec), with error measured in cm, and error
threshold 10−2 cm. IKD convergence can be slower when a small
temporal width is used, but this can be improved slightly by damping
the correction adjustment by 0.8 (i.e., scaled).

We have noticed that our IKD algorithm can fail to make further
progress once the error falls below 10−2 cm. We believe this is be-
cause we are using the Open Dynamics Engine (ODE) to compute
the simulations that produce our KD states. While repeating sim-
ulations using the same initial conditions should produce the same
results, aggressive optimizations within ODE make use of random-
ization. This does not present a problem as the error in end effector
placement is significantly smaller than the overall size of the artic-
ulated character.

6.2 Implementation and Timings
IKD Skeletal animation examples were generated with our Java im-
plementation which uses ODE (Open Dynamics Engine) to simu-
late the forward dynamics. On an Intel(R) Core i7, 3.2 GHz pro-
cessor, the KD takes roughly 0.01 s to generate the resulting frame
for a time window of 0.3 s (30 frames), which allows for interactive
scrubbing of the time line.

IKD has also been implemented as a Maya 2011 deformer for
control point shapes that track a kinematic trajectory using a spring
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Figure 8: IKD error in cm after 6 iterations for varying target locations
in the punch scenario. The error consistently falls to less than 0.1
mm after 6 iterations, except when the target is nearly out of reach.

and damper simulation. On an Intel i7, 1.87 GHz processor, the
model in Figure 5 (approximately 1200 vertices) takes 13.56 s (of
which 7.34 s is external to the KD algorithm) to update 50 frames
with a KD window of 1 s (25 frames) resulting in a reasonable
interactivity of 8.03 fps.

7 CONCLUSIONS

A demonstration of the Maya implementation to a few keyframe
animators was positively received. From a workflow standpoint,
the animators felt they would have to consciously omit keyfram-
ing dynamic nuances but this would be a welcome change allow-
ing them focus on the primary motion. For the approach to be
used in practice they expressed a need for interface tools that make
the addition and management of IKD targets user friendly. Our
current implementation, while interactive for skeletal animation, is
only interactive for face blend shapes with around 1000 control ver-
tices. The vectorizable nature of our algorithm, however, makes it
a good candidate for a faster GPU implementation. In future work
we would like to address the coupling of kinodynamic trajectories
with fully dynamic environments via adaptive kinodynamic win-



dow sizes that are aware of collision events and other discontinuities
in a full physical simulation. In summary, we propose the concept
of Inverse Kinodynamics and present a first algorithm which opens
up new possibilities for editing traditional keyframe animations that
are augmented with secondary dynamics.

REFERENCES
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