
Database Replication Techniques: a Three Parameter Classification∗

Matthias Wiesmann? Fernando Pedone† André Schiper?

Bettina Kemme‡ Gustavo Alonso‡

?Département de Systèmes de Communication †Software Technology Laboratory
Swiss Federal Institute of Technology in Lausanne Hewlett-Packard Laboratories

CH-1015 Lausanne, Switzerland Palo Alto, CA 94304, USA

‡Institute of Information Systems
Swiss Federal Institute of Technology in Zürich

CH-8092 Zürich , Switzerland
E-mail: dragon@lsemail.epfl.ch

Abstract

Data replication is an increasingly important topic as
databases are more and more deployed over clusters of
workstations. One of the challenges in database replication
is to introduce replication without severely affecting perfor-
mance. Because of this difficulty, current database products
use lazy replication, which is very efficient but can com-
promise consistency. As an alternative, eager replication
guarantees consistency but most existing protocols have a
prohibitive cost. In order to clarify the current state of the
art and open up new avenues for research, this paper anal-
yses existing eager techniques using three key parameters.
In our analysis, we distinguish eight classes of eager repli-
cation protocols and, for each category, discuss its require-
ments, capabilities, and cost. The contribution lies in show-
ing when eager replication is feasible and in spelling out
the different aspects a database replication protocol must
account for.

1. Introduction

In the distributed systems community, software based repli-
cation is seen as a cost effective way to increase availability. In
the database community, however, replication is used for both
performance and fault-tolerant purposes thereby introducing
a constant trade-off between consistency and efficiency. In
fact, many commercial [16, 26] and research databases [35]
are based on the asynchronous replication model (also called
lazy update model) where changes introduced by a transac-
tion are propagated to other sites only after the transaction has
committed. This results in minimal overhead but inconsisten-
cies among the copies may arise. This characteristic trade-off
does not necessarily imply that consistency is not important
in databases. It is well known to users and designers that the
inconsistencies created by lazy replication techniques can be
very difficult to solve. It is also well known that such incon-

∗Research supported by EPFL-ETHZ DRAGON project

sistencies can be eliminated by using synchronous replication
models (also called eager replication, i.e., a transaction syn-
chronises with all copies before it commits). Unfortunately, it
is by no means trivial to design efficient eager replication pro-
tocols. In practice, given the serious limitations of traditional
data replication techniques (deadlocks, overhead, lack of scal-
ability, unrealistic assumptions), many database designers do
not regard eager replication as a feasible option [13].

It has been only recently that efficient eager replication
protocols have started to appear. Most of these new protocols
are based on group communication primitives and the results
obtained so far seem to indicate that this approach can solve
most of the problems associated with eager data replication.
These efforts are the main context for our work. In the last few
years, as part of the DRAGON project [17], we have focused
on enhancing database replication mechanisms by taking ad-
vantage of some of the properties of group communication
primitives. We have shown how group communication can
be embedded into a database [1, 28, 29] and used as part of
the transaction manager to guarantee serialisable execution of
transactions over replicated data [19, 18]. We have also shown
how some of the overhead associated with group communica-
tion can be hidden behind the cost of executing transactions,
thereby greatly enhancing performance [20]. These results
prove the importance of finding synergies between distributed
systems and database replication techniques and the need for
a common understanding of the models used by the two com-
munities in order to address complex research issues.

As part of this work, we have systematically explored the
space of eager database replication strategies [38]. In this pa-
per, we present the results obtained in an attempt to further
clarify the spectrum of possible eager replication protocols
and to point out new directions for research. One of the novel
aspects of our classification schema is that it integrates pro-
tocols from both databases and distributed systems. Existing
taxonomies of data replication techniques take into account a
broad spectrum of replication schemes, including many with
weak consistency and availability properties, but either with-
out including techniques based on group communication [7],

or considering only simple cases [8]. Our classification is
much more concise than existing attempts and emphasises the
synergy between communication and transaction management.
The benefits of our classification effort are numerous. First, it
has allowed us to identify the key components of a database
replication protocol. Second, it has led us to better understand
the role played by each component and its influence on the na-
ture of the protocol. Some of the strategies we consider have
been described in the literature, but not all. Third, the clas-
sification forms the basis for quantitative comparison of the
various replication strategies identified, an endeavour in which
we are currently engaged. These quantitative comparison will
shed light on many different aspects of eager replication and
the role that transaction management and group communica-
tion play in implementing eager replication protocols.

The rest of the paper is structured as follows. Section 2
describes our replicated database architecture and the system
model. Section 3 introduces the classification parameters.
Section 4 discusses the various replication techniques obtained
by combining these parameters. Section 5 describes the role
and impact of each parameter and concludes the paper.

2. System Model and Architecture

We consider a set of database clients, and a set S =

{s1, s2, ..., sn} of database servers (see Figure 1). The
database is fully replicated on every server si, i.e., every server
contains a copy of the whole database. A client connects to one
of the database servers, say si, to execute a transaction. Trans-
actions are sequences of read and/or write operations followed
by a commit or abort operation. Transactions that contain only
read operations are called queries, and transactions that con-
tain read and write requests are called update transactions.
Once a client is connected to a database server si, it sends the
operations of the transaction to si for execution. The trans-
action can be submitted either operation by operation, or in a
single message. In the former case, called interactive trans-
action, after submitting an operation, the client waits for an
answer from the server (e.g., the results of a read request), after
which it sends the next operation. Sending the transaction as
a single message is called a service request [6], that is, a call
to a procedure stored on the database servers.

Once the transaction is completed, the server si sends the
transaction outcome to the client and the connection between
the client and si is closed. If the transaction was submitted
operation by operation, the outcome is a commit or abort con-
firmation. In case of a service request, the transaction outcome
also includes the results of the request. If si fails during the ex-
ecution of the transaction, the transaction aborts. In this case,
it is up to the client to retry the execution, either by connecting
to a different database server sj , or to the same server si later
(after si recovers).

The correctness criterion for transactions that we consider
is one copy serializability [2]. It ensures that any interleaved
execution of transactions is equivalent to a serial execution of
these transactions on a single copy of the database. Further-
more, we concentrate on eager replication techniques. Using
eager replication, updates are propagated to the replicas within
the boundaries of a transactions, and hence, conflicts are de-
tected before the transaction commits. This approach provides

Client 1

Request

Client 2

Request

Client 3

Request

Server
S1

Server
S2

Server
S3

Server
S4

Network

Figure 1. System architecture

data consistency in a straightforward way.
Database servers communicate among each other via point-

to-point or 1-to-n communication. The latter is provided by
group communication systems. We consider group communi-
cation primitives that differ in two parameters: reliability of
message delivery and ordering. Regarding delivery guaran-
tees, reliable broadcast ensures that a message sent by a cor-
rect database server, or delivered by a correct database server,
is eventually delivered to all correct database servers. Uni-
form reliable broadcast ensures that a message delivered by
any server (i.e., it can be correct or fail directly after deliver-
ing the message) is eventually delivered to all correct database
servers. Regarding ordering semantics, there might be no or-
dering requirements (messages might be delivered in arbitrary
orders at the different sites) or a total order delivery of mes-
sages, i.e., if two database servers deliver both messages m and
m′ then they deliver them in the same order. This semantics
is provided by the so-called total order broadcast, also called
atomic broadcast.

3. Classification Criteria

Eager replication protocols can be organised according to
three parameters that determine the nature and properties of
the protocol (and, in some cases, also its performance). These
parameters are: the server architecture (primary copy or update
everywhere), how changes or operations are propagated across
servers (on a per operation or a per transaction basis), and the
transaction termination protocol (voting or non voting).

3.1. Server Architecture

The first key parameter to consider is where transactions
are executed in the first place. Gray et al. [14] have identified
two possibilities:

Primary copy replication requires to have a specific site –the
primary copy– associated with each data item. Any update
to the data item must be first sent to the primary copy where
it is processed (executed or at least analysed to establish its
serialisation order). The primary copy than propagates the up-
date (or its results) to all other sites. In [38] it was shown that
primary copy approaches closely resemble what in distributed
systems is known as passive replication [15]. As expected,
primary copy approaches introduce a single point of failure
and a bottleneck. These limitations can be solved by making
the protocol more complicated. Thus, if the primary crashes,

one of the other servers takes over the role of primary which
requires an election protocol. Similarly, to avoid bottlenecks,
databases do not make a single site the primary for all data
items. Instead, the data is partitioned and different sites be-
come the primary for different data subsets. In what follows,
we will mostly ignore these aspects of the protocols since they
are orthogonal to the discussion in the paper.

Update everywhere replication allows updates to a data item
to be performed anywhere in the system. That is, updates can
concurrently arrive at two different copies of the same data
item (which cannot happen with primary copy). Because of
this property, update everywhere approaches are more graceful
when dealing with failures since no election protocol is nec-
essary to continue processing. Similarly, in principle, update
everywhere introduces no performance bottlenecks. However,
update everywhere may require that instead of one site doing
the work (the primary copy) all sites do the same work. If one
is not careful with the design, update everywhere may affect
performance much more than primary copy approaches.

3.2. Server Interaction

The second parameter to consider involves the degree of
communication among database servers during the execution
of a transaction. This determines the amount of network traffic
generated by the replication algorithm and the overall overhead
of processing transactions. This parameter is expressed as a
function of the number of messages necessary to handle the
operations of a transaction (but not its termination). Moreover,
the type of primitive used to exchange these messages will also
play a role in determining the properties of the protocol from
a serialisation point of view. We consider two cases:

Constant interaction, which corresponds to techniques
where a constant number of messages is used to synchro-
nise the servers for a given transaction, independently of the
number of operations in the transaction. Typically, protocols
in this category exchange a single message per transaction by
grouping all operations of the transaction in a single message.

Linear interaction, which typically corresponds to tech-
niques where a database server propagates each operation of
a transaction on a per operation basis. The operations can be
sent either as SQL statements or as log records containing the
results of having executed the operation in a particular server.

3.3. Transaction Termination

The last parameter to consider is the way transactions ter-
minate, that is, how atomicity is guaranteed. We distinguish
two cases:

Voting termination requires an extra round of messages to
coordinate the different replicas. This round can be as com-
plex as an atomic commitment protocol (e.g., the two-phase
commitment protocol (2PC) [2]), or as simple as a single con-
firmation message sent by a given site.

Non-voting termination implies that sites can decide on their
own whether to commit or abort a transaction. Non-voting
techniques require replicas to behave deterministically. This,
however, is not as restrictive as it may appear at first glance

since the determinism only affects transactions that are seri-
alised with respect to each other. Transactions or operations
that do not conflict can be executed in different orders at dif-
ferent sites. Many of the issues related to determinism in
databases when communication primitives are used have been
studied in detail in [1] and are beyond the scope of this paper.

4. A Plethora of Replication Techniques

In this section, we explore all the combinations that result
from the classification parameters in Section 3. In each case,
the general framework of replication techniques that fit the
combination of parameters is described. Existing replication
techniques matching this combination are also listed. For each
combination, the requirements needed to build a replication
technique fulfilling the classification criteria are given. Those
requirements are expressed either for the communication in-
frastructure, or the database system on each server. Require-
ments on the communication system are usually ordering or
uniformity constraints on the delivery of messages to database
servers. For the database the requirement is determinism.

Update Everywhere Primary Backup

C
on

st
an

t
Li

ne
ar

N
on V

oting
V

oting

SERVER ARCHITECTURE

S
E

R
V

E
R

 IN
T

E
R

A
C

T
IO

N

V
oting

T
R

A
N

S
A

C
T

IO
N

 T
E

R
M

IN
A

T
IO

N

§ 4.1.1

§ 4.1.2

§ 4.1.3

§ 4.1.4

§ 4.2.1

§ 4.2.2

§ 4.2.3

§ 4.2.4

Figure 2. The different techniques
Figure 2 summarises the different classification parameters.

Each entry in the table represent one possible combination of
parameters. For each combination, the section discussing the
combination is indicated.

Determinism Point. One important notion while describ-
ing non-voting replication techniques is determinism. Because
the different replica cannot communicate to check if they all
reached the same serial order, they need to behave in a de-
terministic way from some point in time to ensure one-copy
serialisability. We define the determinism point as the point
in the execution of a transaction after which the processing
will be deterministic. Formally, the determinism point dp of
transaction t, is the first operation of transaction t such as any
operation o after dp executes in a deterministic way. This
means that once dp is executed, the execution of the rest of
transaction t is deterministic. The main implication is that
once this point is reached the position of the transaction in the
serial history can be determined.

The notion of a determinism point is related to the notion of
a serialisation point [6]. Serialisation points (sp) are used to
enforce a strict ordering upon a database system. By definition,
if the sp1 of transaction t1 executes before sp2 of transaction
t2, then t1 is before t2 in the serial history. In other words,
once the serialisation point of a given transaction t has been
executed, then the position of transaction t in the serial history
is known and fixed. Therefore serialisation point are also
determinism points. The reverse is not true.

Note that the determinism point is a property given by the
local database system of each replica: depending on the form
of the transaction accepted by the server and the type of con-
currency control, the database server can have different deter-
minism points, for instance at the beginning of the transaction
(dp = begin), or at the end (dp = commit or dp = abort),
etc.

4.1. Update Everywhere

In update everywhere techniques, the clients can send their
requests to any server. The server contacted will act as the
delegate for the requests submitted by the client. The delegate
will process the requests and synchronise with the other servers
to ensure one copy serializability.

4.1.1 Update Everywhere – Constant Interaction –
Non-Voting Techniques

Description Figure 3 shows the basic structure of such a
replication technique. In the discussion that follows, we
assume that there is only one network interaction between
servers. This simplification makes the description clearer and
does not leave out any important detail. The protocols in this
category execute according to the following steps:

① The transaction starts on the delegate server.
② The transaction is processed in a non-deterministic way.
③ The determinism point is reached.
④ The transaction is sent to all servers using an atomic

broadcast primitive.
⑤ Processing continues on all replicas in a deterministic

way.
⑥ Each replica terminates the transaction in the same way.

Transaction
Begin

Transaction
End

Server
Interaction

Total Order
Broadcast

}

Processing
(Deterministic)

Processing

} Delegate Server

}

Processing
(Deterministic)

Transaction
EndDeterminism

Point

Other Server

Figure 3. Update everywhere, constant interac-
tion, non-voting

References. Previous works following the Update Every-
where – Constant Interaction – Non-Voting model can be di-
vided according to where the determinism point is placed.

If the point of determinism is at the beginning of the trans-
action, the whole transaction processing is deterministic, and
the role of the delegate server is simply to forward the trans-
action using the total order broadcast primitive (step 2 in the
description above does not really apply). The delegate simply
acts as a proxy for the client, contacting all servers to process
the client’s request. This approach closely correlates with ac-
tive replication [33]. An early example of such an approach
can be found in [31]. The technique described in [20] also uses
total order broadcast and an early determinism point extended
by certain forms of optimistic transaction execution.

Techniques with the determinism point at the end of the
transaction processing are called certification techniques [29,

19, 18]. In this case, the whole transaction is handled in a non-
deterministic way by the delegate, and only the last stage of
the processing, the certification, is deterministic. This certifi-
cation stage is executed at all sites and decides if a transaction
will be committed or aborted. In [29] information about both
read and write operations is sent to all sites in order to detect
conflicts during the certification phase. [19, 18] use snapshot
isolation instead of serializability to avoid conflicts between
read and write operations, and hence, the certification phase
is restricted to write operations. In all cases, the certification
phase is deterministic.

Requirements. We discuss correctness by distinguishing
transaction isolation (one copy serializability) from transac-
tion atomicity (i.e., all or none of the databases commit a
transaction).

Independently of where the determinism point lies, the
mechanism used to guarantee one copy serializability is al-
ways the same. The total order used in the broadcast acts as a
guideline to all sites. Each site guarantees that its local serial-
isation order will follow the total order, and thus all sites will
produce the same serialisation order (since they see the same
total order). The differences in the protocols lie on the deter-
minism point. For protocols that place the determinism point
at the beginning of the transaction, the total order suffices. For
protocols that place the determinism point at the end of the
transaction, things are a bit more complicated. In particular,
when confronted with situations where a transaction needs to
be aborted, a delegate server can only abort transactions not yet
seen by other sites. The protocol must ensure that as soon as
transactions are seen by other sites, there will be no problems
with their scheduling or that all sites will end up aborting the
transaction.

Related to this, techniques in this category do not need a
distributed deadlock detection system. Since transactions are
sent in one step using a total order broadcast, locks for the
whole transaction can be acquired atomically and in the same
order at all sites thereby preventing deadlocks.

Transaction atomicity is enforced by a uniform reliable
broadcast of the messages, and the deterministic behavior of
the different servers. This guarantees that whenever a server
delivers a message and commits the transaction, each server
will deliver the message (uniformity) and commit the transac-
tion (determinism).

Discussion. A determinism point at the beginning of the
transactions usually implies that the datasets of the transac-
tions are known in advance, e.g., stored procedures. Thus,
what it is being sent to all sites is the invocation of the pro-
cedure. It follows that all sites must execute this procedure
deterministically since there is no voting phase. This is one
of the limitations of these approaches since making all sites
completely deterministic can be difficult in practice.

Using determinism points at the end of the transactions
might be more feasible. It does not require to know the trans-
actions in advance since it can be implemented by deferring
writes to the end of the transactions or by executing the trans-
action on a shadow copy. Nevertheless, the fact that the deter-
minism point comes at the end of the transaction has several
implications. The main one is that there is a degree of opti-
mism in the execution. Servers accept many transactions but

might abort some of them. There is a tradeoff between early
determinism points and abort rate. Having the determinism
point early means low aborts due to conflicts. Having this
point late implies having higher chances of conflicts. Interme-
diate solutions, where the determinism point is in the middle
of the transaction would be a compromise. One way of imple-
menting such a solution would be to execute all the reads in
the beginning of the transaction, and then do all the writes in
an atomic and deterministic step. In this case, the determinism
point would be the first write operation.

4.1.2 Update Everywhere – Constant Interaction –
Voting Techniques

Description. Figure 4 shows the basic structure of a replica-
tion technique in this category. This technique is similar to the
one in the previous section, in that all the interactions are done
using one communication phase. Additionally, a final voting
phase is executed at the end of the transaction’s execution to
ensure that all replicas agree on the outcome. The execution
is done in the following way:

Other Server

Transaction
Begin

Transaction
End

Server
Interaction }

ProcessingProcessing

} Delegate Server

Voting Broadcast }

Processing

Transaction
End

Figure 4. Update everywhere replication, con-
stant interaction, voting

① The transaction starts on the delegate server.
② The transaction is processed in a non-deterministic way.
③ The transaction is broadcast to all servers.
④ Processing continues on all replicas.
⑤ A voting termination phase takes place.
⑥ Each replica terminates the transaction according to the

voting protocol.

References. As an example of this technique, in [11] the
delegate server broadcasts a transaction to the other sites im-
mediately when it is submitted and a total order broadcast is
used (the total order being derived using synchronised clocks).
Also here, the total order is used as a guideline at every site
to serialise transactions. The final voting phase is only used
to ensure atomicity in the case of different types of failures.
Because these failures can occur at any site, a 2PC protocol is
needed.

Another example of constant interaction with voting is the
serializability based protocol presented in [19, 18]. In this
protocol, the transaction is locally executed at the delegate site
and then sent to the other sites using a total order broadcast
primitive. Here, the delegate site is the only one to decide
whether the transaction can commit or must abort. Because
the situation leading to an abort (due to serialisation problems
of local reads and global writes) is not seen by all sites, the
delegate site needs to communicate the decision to all other
sites. This means that the voting is not a 2PC protocol, but a
single message that indicates whether the delegate server has

committed or aborted the transaction. As a consequence, while
the delegate site has the choice to commit or abort the transac-
tion unilaterally, the other sites must behave deterministically
in the sense that they have to obey the commit/abort decision
of the delegate.

A third example is the optimised form of 2PC described
in [2]. In this protocol, write operations are deferred to the end
of the transaction, and the first phase of 2PC (vote request) also
contains the transaction updates. Participants in the protocol
respond with a yes vote if they can obtain the locks for those
updates. Otherwise they respond no and the transaction is
aborted. In this case, the only interaction is the enhanced
version of the 2PC protocol.

Requirements. In principle, protocols of this type could
use any form of broadcast primitive. However, the type of
broadcast primitive used determines the voting phase. If the
primitive cannot guarantee that all sites will do the same, then
the voting phase can only be 2PC and, as part of this phase,
discrepancies among sites must be resolved. Furthermore,
distributed deadlocks might occur and must be resolved. If the
broadcast is totally ordered, then the requirements are similar
to those of Section 4.1.1 (e.g., also no need for global deadlock
detection).

How atomicity is guaranteed depends on the protocol. If
2PC is used, then it guarantees the atomicity. Otherwise,
the primitive used for broadcasting the transaction must be
uniform.

Discussion. Having a voting phase relaxes the determinism
requirements on the database servers. In practice, and given
that complete determinism in a database server is difficult to
achieve, many protocols include a voting phase in one form or
another. Nevertheless, some limited form of determinism and
the use of a total order broadcast considerably simplifies the
protocols.

While a total order broadcast will still help to decrease con-
flicts, having a voting phase consisting of a complete atomic
commitment allows to relax the requirements on the total or-
der, e.g., uniformity [39]. Also weaker forms of total order
can be used, e.g., a most of the time total order: the total or-
der condition is maintained most of the time, but sometimes
performance failures occur and out of order delivery might
happen [9]. Such performance failures would be detected and
corrected at commit time, taking advantage of the voting phase.

4.1.3 Update everywhere – Linear Interaction – Non-
Voting Techniques

Description. This category is somewhat misleading. Non-
voting implies that there is no round where the fate of the
transactions can be agreed upon. Therefore, these protocols
must be fully deterministic. Sending operations one at a time
requires that all sites treat them in exactly the same way. Nev-
ertheless, at the end the delegate site has to indicate that the
transaction has finished. This implies that there is a termina-
tion message. Assuming this termination message is not used
for voting, the general structure of techniques in this category
are outlined in Figure 5:

① The transaction starts on the delegate server.
② The first operation is sent to all servers using an atomic

broadcast.

③ The first operation is executed on all servers.
④ Items (2) and (3) are repeated until the transaction ends.
⑤ The delegate sends a termination message to indicate the

end of the transaction.

Other Server

Total Order
Broadcast

Processing
Operation 1

}

Processing
Operation 1

} Total Order
Broadcast

Transaction
Begin

Transaction
End

Delegate Server

Transaction
End

Total Order
Broadcast

Processing
Operation n

}

Processing
Operation n

}

Figure 5. Update everywhere, linear interaction,
non-voting

References. An example of this techniques is presented in
[1]. Each operation (reads included) is broadcast (uniform total
order) to all sites, and sites must behave deterministically in
order to react identically to each operation. Techniques in this
category are very similar to replicated persistent objects [23].

Requirements. Since there is no voting phase, atomicity
can only be guaranteed by sending operations using uniform
reliable broadcast. 1-copy-serializability is the result of the
local concurrency control mechanism used at each site, and the
determinism across sites. Because sites are fully deterministic,
deadlocks must be assumed to be resolvable in a deterministic
fashion [1].

Discussion. This technique has the major drawback of re-
quiring absolute determinism on all sites, which is a very strong
requirement. In addition, there is considerable network over-
head since each operation results in a totally ordered broadcast.
In general, this technique has not been pursued in the literature
as a viable option.

4.1.4 Update everywhere – Linear Interaction – Voting
Techniques

Description. This form of database replication technique is
the most studied in the literature. Among its many variations,
one of the best known is the read-one-write-all technique [2].
Figure 6 shows the interactions of techniques in this category:

① The transaction starts on the delegate server.
② Each operation is broadcast to a quorum of sites.
③ Each operation is executed on its quorum.
④ Items (2) and (3) are repeated until the transaction ends.
⑤ A voting protocol is executed.
⑥ Each replica terminates the transaction according to the

voting protocol.

References. This category includes all the traditional
database replication protocols: read-one/write-all, write-all-
available, and quorums [2]. Most of the effort in this area
has been devoted to provide different ways to build quo-
rums. Good surveys of early solutions are [10, 2]. Later
approaches mainly optimise quorum sizes and communica-
tion costs or analyse the trade-off between quorum sizes and
fault-tolerance [21, 32, 36]. In [34] multicast primitives with
different ordering semantics are used. The authors propose
algorithms using reliable multicast or causal multicast which

Other Server

 Broadcast

Processing
Operation 1

}

Processing
Operation 1

}

Transaction
Begin

Transaction
End

Delegate Server

Transaction
End

Processing
Operation n

}
Processing
Operation n

} Voting Broadcast Broadcast

Figure 6. Update everywhere, linear interaction,
voting

require an atomic commitment protocol to guarantee serializ-
ability.

Requirements. 1-copy-equivalence is achieved by execut-
ing each read operation on a read quorum of replicas, each
write operation on a write quorum. With this, each site follows
a local concurrency control protocol that guarantees serial-
izability, typically 2-phase-locking [37] or timestamp based
algorithms [3]. Atomicity is guaranteed by the 2PC protocol
during the voting phase.

Discussion. This technique is very well understood. How-
ever, in spite of the amount of work invested in this technique,
it is not very relevant in practice [13]. The reason is that it has
a high overhead (because of the linear number of messages)
and has proven to significantly limit scalability due to dead-
locks. In addition, when the voting phase involves a complete
atomic commitment, the client only gets the response once all
replica have committed the changes: this can result in very
long response times.

4.2. Primary Copy

In primary copy techniques, the clients must send their
requests to one particular server. This server is the primary.
Because there is only one server executing the transactions,
there are no conflicts across the servers. The only thing that
has to be assured is that there is only one primary in the system
at any time. As this problem is orthogonal to the general
architecture, it will not be discussed here. The primary copy
approach is widely used in databases to minimise conflicts
among transactions executed over replicated data. From now
on we will refer to the sites that are not the primary copy for
a data item d as backups of d. The backups only install the
changes sent by the primary. A site can be the primary for a
subset of the data, and the backup for the other data. Such a
site is called an active backup. A site that is not the primary
for any data is called a passive backup.

Backup and replication in databases. Database primary-
copy techniques are classified along two dimensions: atomicity
of transactions (1-safe and 2-safe) and recovery time (hot- and
cold-standby) [14].

An example of hot-standby is Tandem’s Remote Data Fa-
cility [5, 24, 25] where a server, the primary, uses a single
backup computer (the secondary or backup). Under normal
operation, a client sends requests to the primary, and the log
records generated at the primary are sent to the backup and

immediately applied. Thus, the backup is an exact replica
of the primary, which allows the backup to take over almost
immediately upon failure of the primary. If the secondary or
backup does not immediately install the changes, then it will
need to do so when the primary fails. Because this takes time,
there is some delay between the time the primary fails and the
time the backup can take over. For this reason, if the backup
does not apply the changes as they arrive, the mechanism is
called cold-standby.

To achieve consistency, the normal mode of operation is as
follows: a transaction takes place in the primary, log records
are sent to the secondary, a transaction applies those log records
in the secondary, and a 2PC protocol is used to guarantee the
combined atomicity of both transactions. Note that since there
are only two participants involved, the primary and the backup,
some optimisations of 2PC can be implemented [22, 14]. When
using 2PC, this approach is known as 2-safe and it is similar
in some aspects to the very-safe case of [14]. Contrary to the
2-safe policy, the 1-safe policy does not require the primary
to wait for the secondary. It commits its transaction indepen-
dently. There is, of course, the risk of data loss when the
backup takes over but in practice the 1-safe policy is often
preferred over the 2-safe policy due to its lower overhead. Al-
gorithms for the maintenance of remote copies under the 1-safe
and 2-safe policies are discussed in [12] and [4] respectively.

4.2.1 Primary Copy – Constant Interaction – Non-
Voting

Description. Techniques in this category generally corre-
spond to cold-standby scenarios. The protocols have the fol-
lowing general outline (see Figure 7):

Transaction
Begin Transaction

End
Server

Interaction

FIFO
 Broadcast

Processing

} Primary Server

}

Processing
(Deterministic)

Transaction
End

Other Server

Figure 7. Primary copy, constant interaction,
non-voting

① The transaction is executed at the primary.
② When the transaction terminates, the corresponding log

records are sent to all backups.
③ The primary commits the transaction without waiting for

the backups to install the changes.
④ The backups eventually install the changes.

The concrete nature of the protocol depends on the type of
broadcast primitive used. In its simplest form, the protocol
is based on FIFO delivery, in order to ensure that transaction
changes are installed at the backup in the same order they were
executed at the primary.

Requirements. In the case of passive backups, as long as
the transaction changes are installed in the same order as in
the primary, the backups will consistently reflect what has
happened at the primary. Thus, if the primary sends changes
in FIFO order and is producing correct histories, so do the

backups. This also holds in the case of active backups as long
as transactions only access data for which the executing site
is the primary. Care has to be taken if transactions are also
allowed to read data for which the executing site is not the
primary or if transaction are distributed (i.e., they update data
of different primaries). In this case, the scenario is similar
to that in update everywhere server architectures and it is not
enough that primaries send changes in FIFO order but a total
order is necessary.

Discussion. Lacking a voting phase, this type of protocols
are naturally cold-standby since the primary has no way of
waiting for the secondaries to apply the changes. The pri-
mary can implement a 2-safe approach by not committing
the transaction until the communication system guarantees the
transaction will be delivered at the backups. This ensures that
the protocol is 2-safe. If the primary commits the transaction
without waiting, then the protocol is 1-safe.

If the backups are passive, that is, they do not do anything
but installing the changes sent by the primary, determinism
simply requires to install the changes in the order in which
they arrive from the primary. If the backups are active and
are executing transactions on their own behalf then there must
be some rules to prevent inconsistencies. These rules can be
summarised as follows: the local serialisation order cannot
contradict the order in which the remote transactions arrive.
By ensuring this, all sites produce conflict equivalent histories.

4.2.2 Primary Copy – Constant Interaction – Voting
Description. The introduction of a voting phase allows us to
ensure that both the primary and the backups install the updates.
Since the 2-safe property can be achieved independently of the
voting phase, there is no point in using the voting phase for
atomicity purposes. Instead, it is used to enforce hot-standby
behaviour (see Figure 8):

Other Server

Transaction
Begin

Transaction
End

Server
Interaction }

ProcessingProcessing

} Primary Server

Voting Broadcast }

Processing

Transaction
End

Figure 8. Primary copy, constant interaction,
voting

① The transaction is executed at the primary.
② When the transaction terminates, the corresponding log

records are broadcast to all backups.
③ The primary initiates a 2PC protocol.
④ The transaction is installed and committed at all sites.

Requirements. Compared to primary copy – constant in-
teraction – non-voting, the requirements do not change by
the introduction of the voting phase. However, since the pri-
mary waits until all backups have installed the transaction, the
system is hot-standby.

Discussion. The nature of the broadcast depends on what
has to be achieved. In principle, since the voting phase is any-

way done via 2PC, there is no requirement for the broadcast
primitive used when the transaction is sent to all backups. If
there is any problem, the transaction will abort during the 2PC.
The 2PC can be greatly optimised if used only as a synchro-
nisation point and not to guarantee atomic commitment. It is
an open research question how to balance these two aspects in
terms of cost and overhead.

If the backups are active, the use of 2PC allows to minimise
the scheduling constraints. However, experience shows that
minimising these constraints results in high abort rates. Thus,
it is probably best to use total order broadcast and locally follow
the delivery oder to avoid unnecessarily high abort rates.

4.2.3 Primary Copy – Linear Interaction – Non-voting
Description. Waiting until the transaction ends in order to
propagate the changes causes long response times if the pri-
mary waits for the other sites (2-safe or hot-standby). The
protocol could be faster if the backups work in parallel to the
primary. In order to do this, the primary sends operations as
they are executed, thereby allowing the backups to start doing
some work. If no voting phase is involved, the protocol is as
follows (see Figure 9):

Other Server

 Broadcast

Processing
Operation 1

}

Processing
Operation 1

} Broadcast

Transaction
Begin

Transaction
End

Primary Server

Transaction
End

Broadcast

Processing
Operation n

}
Processing
Operation n

}
Figure 9. Primary copy, linear interaction, non-
voting

① The transaction starts at the primary.
② Read operations are executed locally.
③ The results of write operations are broadcast to the back-

ups.
④ A termination message indicates the end of the transac-

tion.

Requirements. Since the backups receive operations and
not transactions, one has to be more careful about the order in
which changes are installed. In the case of passive backups, if
the primary produces correct histories and sends operations in
serialisation order, then FIFO delivery is enough to guarantee
correctness. In general, since what is being sent to the backups
are log records and log records are produced in serialisation
order, the primary does not need to make any extra effort to
ensure this property. If the backups are active and transac-
tions may access data across primaries, determinism is again
achieved by relying on total order. By serialising according to
this total order, overall correctness is assured.

The termination message must be sent uniformly to all sites
and the primary must wait until the message is received in
order to ensure 2-safe behavior. Otherwise, the protocol is
1-safe. Since there is no voting, whether the protocol is hot-
or cold-standby depends on whether the backups install the
changes or they only save them to disk.

Discussion. Sending the operation as they are executed at the
primary allows the backups to work in parallel but introduces

a significant message overhead. Transactions typically have
20 update operations. Thus, to sustain a throughput of 100
transactions per second, the communication system must be
capable of supporting a traffic of over 2000 broadcasts per
second across the system. In practice, this is likely to be the
biggest bottleneck when using this type of protocols.

4.2.4 Primary Copy – Linear Interaction – Voting

Description. As above, the purpose of introducing a voting
phase is to ensure hot-standby behaviour (Figure 10):

Other Server

 Broadcast

Processing
Operation 1

}

Processing
Operation 1

}
Transaction

Begin
Transaction

End
Primary Server

Transaction
End

Processing
Operation n

}

Processing
Operation n

} Voting Broadcast Broadcast

Figure 10. Primary copy, linear interaction, vot-
ing

① The transaction starts at the primary.
② Read operations are executed locally.
③ The results of write operations are broadcast to the back-

ups.
④ The primary starts a 2PC protocol.
⑤ The transaction is installed and committed at all sites.

Requirements. Compared to non-voting, correctness is not
affected by the voting phase. Nevertheless, active backups
are free to abort any transaction since they can propagate this
decision during the 2PC phase.

Discussion. As above, the use of 2PC at the end of each
transaction removes any requirements for the broadcast primi-
tive. In fact, this protocol is very similar to traditional replica-
tion protocols, and the discussions in Section 4.1 in the context
of voting techniques also apply here.

5. Discussion

One of the goals of our classification effort was to identify
the trade-off of the various replication techniques in order to
identify the most promising approaches in terms of scalability
and efficiency. When lazy techniques (those that do not en-
sure one-copy serialisability) and eager techniques (those that
ensure one-copy serialisability) are usually compared [13], the
comparison is with an expensive eager technique: update ev-
erywhere, linear interaction and a voting phase. This makes
the comparison between lazy and eager techniques unfair. In-
deed, a lazy technique will always perform better than an eager
technique since it does not involve any message overhead dur-
ing the execution of a transaction. However, eager replication
can be much more efficient than currently implemented in
commercial systems if adequate techniques are applied. We
believe that eager replication, with its consistency guarantees
and its flexibility, can be an attractive alternative to lazy repli-
cation. The classification provided shows how all the different
alternatives compare and allows us to draw clear conclusions.

5.1. Server Architecture: Primary Copy vs. Update
Everywhere

As already pointed out, update everywhere is a more elegant
solution in that, in theory, it does not introduce bottlenecks.
Thus, it may come as a surprise that most replication protocols
used in practice are primary copy techniques. However, there
are good reasons for this.

Update everywhere does not necessarily distribute the load
among sites. Since the data is replicated, all sites need to
perform the updates anyway. This means that unless there is a
significant amount of read operations in the overall load (read
operations being local), the system might not scale up as more
server nodes are added. One way to improve the performances
of update everywhere is to preprocess operations at one site and
send the results to the other sites. That way, the processing does
not need to be done everywhere. Once such mechanisms are in
place, update everywhere becomes a more attractive solution
since it is more robust to failures and facilitates distributing the
load among the sites.

5.2. Server Interaction: Constant vs. Linear
The number of messages exchanged per transaction is a

key aspect of any replication protocol. As pointed out before,
sending one message per operation can quickly lead to unac-
ceptable traffic rates. In addition, these messages need to be
processed at each site, which significantly increases the load.
Finally, since operations arrive at different points in time, co-
ordinating their execution so that the overall result is correct is
much more complicated.

It is a good rule of thumb to say that the less messages
exchanged per transaction, the better. For instance, protocols
based on linear interaction in combination with update every-
where are largely infeasible in databases. It is exactly this type
of protocols that have been heavily criticised in the database
community as unrealistic [13]. In the primary copy case, things
are a bit different but the consequences of how many messages
are exchanged are not negligible. In particular, sending all
updates in one message at the end of the transaction can help
to propagate the changes of those transactions that actually
commit (sending updates on a per operation basis implies that
operations that later will be aborted nevertheless contribute to
the overall overhead).

Exchanging one message per transaction, however, intro-
duces its own problems. These protocols work especially well
for service requests where the data to be accessed is known in
advance. In this case implementation is straightforward and
abort rates are small. However, for ordinary transactions, some
form of optimism must be used to first execute the transaction
at the delegate server and then determine the serialisation or-
der. If the conflict rates are high, this optimism might result in
high abort rates.

5.3. Transaction Termination: Voting vs. Non-
voting Techniques

Non-voting techniques are more demanding in terms of
determinism requirements than voting techniques. With non-
voting protocols, each server must independently guarantee
the same serialisation as that of other servers. The typical

way to do this is to use the total order as a guideline. In
general, if two transactions conflict, their serialisation order
will be that indicated by the total order. Depending on the
protocol, sites need to known different things in order to ensure
global correctness without voting. There are protocols where
the whole transaction (read operations included) is sent. In
these protocols, each site performs the equivalent of global
scheduling for the whole system and, as long as this scheduling
is deterministic, correctness is guaranteed. This determinism
can be implemented by following the total order to serialise
transactions.

In terms of voting techniques we have considered two pos-
sibilities, one of them is based on 2PC and another based on a
confirmation message sent by the delegate or primary copy to
indicate whether the transaction can be committed or must be
aborted. The confirmation message is needed when only the
delegate server (or the primary copy) of a transaction can uni-
laterally decide on the outcome of the transaction. However,
remote sites must still behave deterministically in such a way
that they must be able to obey the commit/abort decision of the
delegate server.

When 2PC is used, each server can reject any transaction
thus relaxing the determinism requirements since there is al-
ways a chance to resolve things during the 2PC. Unfortunately,
it has been shown that in these cases, the coordination over-
head is much higher, and according to [13], conflict, abort and
deadlock rates can quickly become a bottleneck. Additionally,
when voting is also used to provide atomicity, it can only take
place when all sites have completely executed the transaction.
This means, that the delegate server waits for the slowest of all
replicas to finish processing before returning the result to the
client, increasing transaction response times considerably.

5.4. Conclusion
Comparing the characteristics of these families of proto-

cols several conclusions can be drawn. First, update every-
where has a good potential of distributing the load among the
sites. Second, since linear interactions seem to be a significant
source of overhead, realistically speaking, the only options left
are approaches based on constant interactions. This is an im-
portant conclusion from our classification efforts. Database
designers have not considered protocols on the UE-CI-V 1 or
UE-CI-NV 2 categories. These seem to be the most promis-
ing approaches to eager replication (or primary copy with ac-
tive backups, which has similar behavior and demand as up-
date everywhere). Recent results seem to support this claim
[28, 29, 19, 18], which is also strengthen by current devel-
opments that show how to reduce some of the overhead of
group communication [30, 20, 27]. Regarding determinism, a
judicious choice of the determinism point helps in designing
protocols but, with minimal additional cost, there is always the
possibility of using voting strategies where the determinism
requirements are greatly reduced.

As part of future work, we are currently developing tools
that will allow a quantitative evaluation of the different cate-
gories analysed. This will helps us to better understand the cost
of the different approaches. Parallel to this, we will continue

1Update Everywhere – Constant Interaction – Voting.
2Update Everywhere – Constant Interaction – Non Voting.

exploring the space of solutions included in the UE-CI-V and
UE-CI-NV categories.

References

[1] D. Agrawal, G. Alonso, A. El Abbadi, and I. Stanoi. Exploiting
atomic broadcast in replicated databases. In Proceedings of EuroPar
(EuroPar’97), Passau (Germany), 1997.

[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
and Recovery in Database Systems. Addison-Wesley, 1987.

[3] P.A. Bernstein, D.W. Shipman, and J.B. Rothnie. Concurrency con-
trol in a system for distributed databases (sdd-1). ACM Transactions
on Database Systems, 5(1):18–51, March 1980.

[4] A. Bhide, A. Goyal, H. Hsiao, and A. Jhingran. An efficient scheme
for providing high availability. In Proceedings of 1992 SIGMOD
International Conference on Management of Data, pages 236–245,
May 1992.

[5] A. Borr. Robustness to crash in a distributed database: A non shared-
memory multi-processor approach. In Proceedings of 10

th VLDB
Conference, Singapore, 1984.

[6] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview
of multidatabase transaction management. The VLDB Journal,
1(2):181–239, June 1992.

[7] S. Ceri, M. Houtsma, A. Keller, and P. Samarati. A classification of
update methods for replicated databases. Technical Report CS-TR-
91-1392, Stanford University, Computer Science Departement, May
1994.

[8] S. W. Chen and C. Pu. A structural classification of integrated replica
control mechanisms. Technical Report CUCS-006-92, Columbia
University, Departement of Computer Science, New York, NY
10027, 1992.

[9] F. Cristian and C. Fetzer. The timed asynchronous distributed sys-
tem model. IEEE Transactions on Parallel and Distributed Systems,
10(6), June 1999.

[10] S.B. Davidson, H. Garcia-Molina, and D. Skeen. Consistency in
partitioned networks. ACM Computing Surveys, 17(3):341–370,
September 1985.

[11] A. W. Fu and D. W. Cheung. A transaction replication scheme for
a replicated database with node autonomy. In Proceedings of the
International Conference on Very Large Databases, Santiago, Chile,
1994.

[12] H. Garcia-Molina and C. A. Polyzois. Two epoch algorithms for
disaster recovery. In Proceedings of 16th VLDB Conference, pages
222–230, Brisbane, Australia, 1990.

[13] J. N. Gray, P. Helland, and and D. Shasha P. O’Neil. The dangers of
replication and a solution. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, pages 173–182,
Montreal, Canada, June 1996. SIGMOD.

[14] J. N. Gray and A. Reuter. Transaction Processing: concepts and
techniques. Data Management Systems. Morgan Kaufmann Publish-
ers, Inc., San Mateo (CA), USA, 1993.

[15] R. Guerraoui and A. Schiper. Software-based replication for fault
tolerance. IEEE Computer, 30(4):68–74, April 1997.

[16] IBM, New Orchard Road, Armonk, NY 10504 (USA). DB2: Repli-
cation Guide and Reference, June 1999. Number SC26-9642-00.

[17] Information & Communcations Systems Research Group, ETH
Zürich and Laboratoire de Systèmes d’Exploitation (LSE), EPF
Lausanne. DRAGON: Database Replication Based on Group
Communication, May 1998. http://www.inf.ethz.ch/department
/IS/iks/research/dragon.html.

[18] B. Kemme and G. Alonso. A new approach to developing and im-
plementing eager database replication protocols. ACM Transactions
on Database Systems. (to appear).

[19] B. Kemme and G. Alonso. A suite of database replication protocols
based on group communication primitives. In Proceedings of the
18

th International Conference on Distributed Computing Systems
(ICDCS’98), Amsterdam, The Netherlands, May 1998.

[20] B. Kemme, F. Pedone, G. Alonso, and A. Schiper. Processing trans-
actions over optimistic atomic broadcast protocols. In Proceedings
of the International Conference on Distributed Computing Systems,
Austin, Texas, June 1999.

[21] A. Kumar and A. Segev. Cost and availability tradeoffs in repli-
cated concurrency control. ACM Transactions on Database Systems,
18(1):102–131, March 1993.

[22] B. G. Lindsay, P. G. Selinger, C. Galtieri, J. N. Gray, R. A. Lo-
rie, T. G. Price, F. Potzulo, and B. W. Wade. Notes on distributed
databases. Technical Report RJ2571(33471), IBM, San Jose Re-
search Laboratory, 1979.

[23] M.C. Little and S.K. Shrivastava. Understanding the role of atomic
transactions and group communications in implementing peristent
objects. In Eighth International Workshop on Persistent Object Sys-
tems: Design Implementation and Use, August 1998.

[24] J. Lyon. Design considerations in replicated database systems for
disaster protection. In Proceedings of IEEE Compcon, 1988.

[25] J. Lyon. Tandem’s remote data facility. In Proceedings of IEEE
Compcon, 1990.

[26] Oracle Corporation, 500, Oracle Parkway, Redwoord City, CA
94065. Oracle8i

tm Advanced Replication, November 1998. Ora-
cle Technical White Paper.

[27] F. Pedone. The Database State Machine and Group Communica-
tion Issues. PhD thesis, École Polytechnique Fédérale de Lausanne,
Switzerland, 1999.

[28] F. Pedone, R. Guerraoui, and A. Schiper. Transaction reordering
in replicated databases. In Proceedings of the 16th Symposium on
Reliable Distributed Systems (SRDS-16), Durham, North Carolina,
USA, October 1997.

[29] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting atomic broad-
cast in replicated databases. In Proceedings of EuroPar (Eu-
roPar’98), September 1998.

[30] F. Pedone and A. Schiper. Optimistic atomic broadcast. In Proceed-
ings of the 12th International Symposium on Distributed Computing
(DISC’98, formerly WDAG), September 1998.

[31] F. Pittelli and H. Garcia-Molina. Reliable scheduling in a TMR
database system. ACM Transactions on Computer Systems, 7(1):25–
60, February 1989.

[32] S. Rangaranjan, S. Setia, and S.K. Tripathi. A fault-tolerant algo-
rithm for replicated data management. IEEE Transactions on Paral-
lel and Distributed Systems, 6(12):1271–1282, December 1995.

[33] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys, 22(4):299–
319, December 1990.

[34] I. Stanoi, D. Agrawal, and A. El Abbadi. Using broadcast primi-
tives in replicated databases. In Proceedings of the 18th IEEE Inter-
national Conference on Distributed Computing Systems ICDCS’98,
pages 148–155, Amsterdam, The Netherlands, May 1998.

[35] D. B. Terry, K. Petersen, M. J. Spreizer, and M. M. Theimer. The case
for non-transparent replication: Example from Bayou. Bulletin of the
Technical Commitee on Data Engineering, 4(21):12–20, December
1998.

[36] O. Theel and H. Pagnia. Optimal replica control protocols exhibit
symmetric operation availabilities. In Proc. of the Int. Symp. on
Fault-Tolerant Computing FTCS, 1998.

[37] R. H. Thomas. A majority consensus approach to concurrency con-
trol for multiple copy databases. ACM Transactions on Database
Systems, 4(2):180–209, June 1979.

[38] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso.
Understanding replication in databases and distributed systems. In
Proceedings of 20th International Conference on Distributed Com-
puting Systems (ICDCS’2000), pages 264–274, Taipei, Taiwan,
R.O.C., April 2000. IEEE Computer Society Los Alamitos Califor-
nia.

[39] U. G. Wilhelm and A. Schiper. A hierarchy of totally ordered mul-
ticasts. In Proceedings of the 14

th IEEE Symposium on Reliable
Distributed Systems (SRDS-14), Bad Neuenahr, Germany, Septem-
ber 1995.

