
Fine-Granularity Access Control in 3-tier Laboratory Info rmation Systems

Xueli Li ∗ Nomair A. Naeem+ Bettina Kemme+

∗ Macromolecular Structure Group, Biotechn. Research Institute, National Research Council of Canada
+ School of Computer Science, McGill University, Montreal

Abstract

Laboratory information systems (LIMS) are used in life
science research to manage complex experiments. Since
LIMS systems are often shared by different research groups,
powerful access control is needed to allow different access
rights to different records of the same table. Traditional ac-
cess control models that define a permission as the right
of a user/role to perform a specific operation on a spe-
cific object cannot handle the enormous amount of objects
and user/roles. In this paper we propose an enhancement
to role-based access control by introducing conditions that
can be added to the traditional concept of permissions in or-
der to keep the number of permissions small. Furthermore,
we present an implementation of our access control model
at the application programming level. Although access con-
trol is performed for every single database access, our solu-
tion completely separates access control from the applica-
tion logic by using aspect-oriented programming. With this,
access control can be integrated into a legacy 3-tier infor-
mation system without changing the application programs.

1. Introduction

Laboratory information systems (LIMS), e.g., [9, 11, 16,
10, 12], have become a crucial asset in life science research
to manage the setup and execution of complex experiments,
and to analyze the resulting data. Many recent systems are
based on a three-tier architecture. Access is via the web, the
application programs reside within an application server,
and the data is stored within a database system.

With the fast development of such systems comes the
need for equally sophisticated access control since research
groups often collaborate in research projects. This requires
to set up LIMS systems that are shared by different groups
so that they all have access to common or project related
data. But at the same time, each group wants to protect its
private data from other groups. For instance, only project
members might be allowed to access project related data
before it becomes mature and stable. Furthermore, each in-

dividual member of a research group might have different
responsibilities, and hence, access rights to the data. Al-
though many powerful access control models exist, many
of the current LIMS systems use quite simple access con-
trol. LIMS often start as small systems being used by a
single group, and hence have not been developed with so-
phisticated access control in mind. As a result, integrating
access control into such legacy systems is a challenge.

In this paper we propose a practical solution to integrate
sophisticated access control into three-tier informationsys-
tems. Although we focus on LIMS systems, we believe that
the main concepts introduced in this paper can be used for
other three-tier information systems. In particular, our pa-
per makes two major contributions.

Firstly, our solution enhances the traditional role-based
access control model (RBAC) [20] by introducing the con-
cept of conditions. Conditions allow the specification of
fine-granularity access control policies in a multi-level ap-
proach. The idea is to keep objects on a rather coarse level,
i.e., an object is a database table, and a permission is the
right of a roler to perform a certain operationop on a cer-
tain tablet. Additionally, conditions are attached to this
permission. If a user with roler wants to performop on a
data record oft, then theop is only allowed if the condi-
tions attached to the permission are fulfilled. These condi-
tions are checked at runtime, when the concrete records are
accessed. This allows us to keep the number of permissions
small (since they are on coarse objects) but still allows us to
check access on the level of individual records.

Secondly, we present an elegant and modular way to in-
tegrate our access control module into an existing system.
In principle, checking conditions can be performed in form
of triggers within the database system. However, this re-
quires all information needed to check conditions to reside
in the database which might be difficult to achieve for ses-
sion related data (e.g., user currently logged in). The sec-
ond alternative is to perform access control within the ap-
plication programs. For example, one can directly include
access control measures into the interface provided to the
user and/or the SQL methods sent to the database system.
For instance, a student logged into a student database may

only see a single link “my data”. At the same time the id
of the student is maintained in a session variablesid, and
all SQL statements accessing the student information con-
tain aWHERE student id = sid clause guaranteeing the
student can only see his/her own data. This approach is
quite inflexible since a change in access control require-
ments might require major changes to the application code.

In contrast, we propose an access control module im-
plemented in the application layer but separated from the
original application programs. This is achieved by using an
aspect-oriented programming language like AspectJ [15].
In AspectJ, the developer of the access control module de-
fines the routines to check data access, and specifies in a
declarative manner at which points in the application pro-
grams these routines should be called. The application pro-
grammer, on the other hand, does not need to consider ac-
cess control in his/her development. This allows a quite
easy integration of access control into an existing system
without changing the existing code. We are not aware of any
other access control implementation that allows for such
modular integration of access control into legacy systems.

In the rest of the paper, Section 2 provides an example
LIMS application, and the need for access control. Section
3 describes our role based access control design using con-
ditions. Section 4 presents our aspect-oriented implemen-
tation of access control. Section 5 discusses related work,
and Section 6 concludes the paper.

2. Example Application

In order to illustrate our approach and show its feasi-
bility in practice, we have taken a simple LIMS system,
called Exp-DB [16], and extended it by an access control
module. Exp-DB is an example application from the life
sciences that keeps track of experimental data on protein
expression, purification, crystallization and determination
of three-dimensional structure of the protein. In this sec-
tion, we outline the database design and the architecture of
Exp-DB, and the tasks individual users perform. Then, we
discuss how user access to the LIMS system should be re-
stricted.

2.1. Data Model

Figure 1 shows a simplified version of the entity-
relationship model (syntax taken from [18]) proposed by
an ongoing standardization process among scientists con-
ducting crystallography research [17]. The data model pre-
sented here is very simplified and leaves out many entitiy
and relationship sets. All experiments are conducted in the
context of projects. TheProject table lists general infor-
mation about all projects. TheExperiment table contains

� � � � � � � � � 	 � �
 � � � �

 � �

� � � � �
 � � � � � � � �
 � � � � 	 �
� � 	 � �� � �

� � � 	 � �

 � �

� � � 	 � � �
� � 	 � �

� � � 	 � � �
� � 	 �� � �

Figure 1. Data Model

common information about each individual experiment con-
ducted. For instance, each experiment has a unique identi-
fier, and start and end dates. Many different types of ex-
periments are conducted, often in a certain sequence. For
instance, in our example application the first two steps of a
typical experiment workflow are to insert a DNA sequence
into a plasmid (a DNA molecule of a bacteria), and to then
import the plasmid into a host cell (often Ecoli) that pro-
duces many copies of the corresponding protein. Further
steps produce protein crystals and analyze them via X-ray to
determine the 3D structure. Other experiment types and ex-
periment suites exist. For each experiment type (e.g. Plas-
mid, Production), a special entity set stores the information
about experiments of that specific type. Input and output
data of experiments is recorded in theSample table and be-
longs to a sample type. A sample can be output of one and
input of other experiments. There also exist tables not re-
lated to particular projects (e.g., general information about
chemicals used in experiments). We defer the description
of user related tables to Section 3.

2.2. Architecture

Figure 2 shows Exp-DB’s three-tier architecture. Users
(client tier) interact with the system through a standard
browser. The middle tier is responsible for the presenta-
tion and application semantics. The runtime environment
is an Apache Tomcat 4 server using Java Technology [13].
The backend tier can be any relational database system (cur-
rently PostgreSQL). The internal architecture of the mid-
dle tier follows the well-known MVC (Model View Con-
troller) pattern. The presentation logic generates the web-
pages (view) using JavaServer Pages (JSP). The application
logic is implemented as a combination of Java Servlets and
JavaBeans. The JavaBeans (model) encapsulate the data ac-
cess to the database system and represent the data in an ab-
stract interface to JSPs and Servlets. Finally, the Servlets
controlhow the different components should be called.

The system consists of several modules implementing
different functionality. Users can modify experiment or
sample data, modify non-experiment tables, search the
database for entries and submit queries, or ask for access to

Cli ent Tier

Browser

Middle Tier

Web Container

Servlet
(Controll er)

<JSP>
(View)

Java Beans
(Model)

User
Action

System
Response Redirect

Backend Tier

Data

Presentation Layer

Application Logic

Figure 2. Architecture of Exp-DB

a specific database entry. All requests are filtered through a
controller servlet that forwards it to the corresponding mod-
ule. A special module is the login module. Only registered
users can access the system. Otherwise, there was no access
control within Exp-DB. Once a user has logged in, he/she
is referred to an initial web-page that provides him/her with
the different functionality choices.

2.3. Roles and Tasks

Our work has been motivated by the needs of the Maro-
molecular Structure Group of the Biotechnology Research
Institute (BRI) at the National Research Council of Canada
(NRC). This group works in protein crystallograhpy and
and uses a LIMS system that follows a similar data model
and architecture as described above. They want to open
their system to external research groups with which they
collaborate. As such, they are very concerned about pro-
tecting their data from illegal use. Below is the description
of the different users, their roles, and how they should be
restricted in their access to the data. We believe that these
requirements are similar in nature for many different scien-
tific systems, and we are not aware of any other publication
that would present such requirements in such detail.

The basic operations on the data are the usualread,
insert, update, anddelete. Additionally, some specific
operations exist. For instance, after a project is success-
fully completed, all project related data becomes mature,
and should not be changed anymore. For this, the relevant
tables have an additional attributestatus. Upon insertion
of a record, this attribute is set to “unfixed”, and can later
be changed to “fixed” by thefix operator. As such,fix is
an update operation with a special meaning.

The users are the subjects of the system and depend-
ing on their role (i.e., job), they have to perform certain
job functions. For instance, initiating a new project is a
job function of a group leader. Functions translate into per-
missions to perform operations on the data records and ta-
bles. For instance, project initiation requires to insert adata
record into the project table. We have elaborated several
roles that can be defined along two scopes. Most of the

Role Job functions

Admin. can do everything
Head (i) insert new users and groups

(ii) divide users into groups
(ii) assign group leaders

Group read all fixed data of projects
Member his/her group is participating
Group (i) add new users to his/her own group
Leader (i) initiate projects

(iii) assign groups to project
(iv) decide on project leader
(v) do all operations on initiated projects

Project (i) decide on which of his/her
Leader group members participate in project

(ii) do all operations on specific project
Project (i) insert data into project

technican (ii) update/delete own data
Proj. reader read all fixed data of project
Internet user read public attributes of some data

Table 1. Roles

data in the system belongs to a project, and a user might be
restricted to only access data of specific projects. Further-
more, users are divided into research groups. We might al-
low a group member to read data that was created by mem-
bers of his/her group. Hence, this defines a project and a
group scope. There might be roles that do not fit in any of
the two categories, like a general system administrator.

The roles we determined for the needs of the Macro-
molecular Structure Group, and their corresponding job
functions are depicted in Table 1. Some functions trans-
late to permissions that allow an operation on a table (e.g.,
insert a new project), others translate to permissions that
allow an operation on specific data records within differ-
ent tables (e.g., update all records associated with a specific
project). Some job functions are of administrative nature.
For instance, assigning a group member to a project assigns
the role project technician to a user. Other tasks are on the
standard experimental data. In our implementation, we have
separated these two types of tasks as common for RBAC but
for simplicity, we do not discuss this separation here.

We will only discuss some job functions in more de-
tail. Within each group, there is usually onegroup leader.
He/she can initiate a new project, and invite other groups
to collaborate on the same project. Each group participat-
ing in a certain project has its ownproject leaderassigned
by the group leader of this group. There are severalproject
techniciansin a project responsible for the detailed techni-
cal work. A project technician can insert a project related
record into an experiment table, but may only update and
delete data inserted by him/herself, and may not fix a record.

� � � � � ! �" # � $ � %
� & ' �

(�) � & $
� & ' �

* � + '
� & ' �

(�) � & $

* � + '

� ,

Figure 3. User/role assignment (UA)

Some specific users might be given the right to access ma-
ture parts of given projects. We call this roleproject reader.
After the project is completed, we would like to show the re-
sults to the public. For this, we introduce theinternet user,
who is only able to read public attributes of fixed data. A
user may be entitled to more than one role. One can be
group member of group g1 and project technician of project
p2. In the current system we have not specified role hierar-
chies since the number of roles is relatively small.

Group leader and group member havegroup scope.
Project leader, project technician, and project reader have
project scope. Administrator, head and internet reader have
generalsystem scope. This is, however, only one option of
partitioning roles. In some cases, a project scope might be
too big. Different technicians might only perform very spe-
cific experiments, and hence, will only be allowed to change
data related to these experiment types. Clearly, it is quite
easy to define such experiment scope.

3. Access Control Design

Our approach is based on role based access control
(RBAC) [6, 20, 8] which first assigns users to roles (UA as-
signment), and then assigns permissions to perform opera-
tions on objects to roles (PA assignment). We have extended
the basic RBAC system in two ways. Firstly, we allow roles
to have a group or project scope. Secondly, we indicate that
permissions can be either on tables or data records within
tables. We store most but not all data relevant for access
control in the database in form of administrative tables. We
describe our design using the entity-relationship model.

The UA assignment is depicted in Figure 3. There are not
only users and roles but also projects and groups in order to
capture the different role assignments. System level roles
can be directly assigned to users. Group roles, however,
are always associated with a group. Similar issues arise for
project level roles. Therefore, group and project level roles
are represented by a ternary relationship between user, role

- . / 0 1 2 3 4 5

6 4 7 /

- 8 9 / : 2; / 0 < 3 = = 3 4 5

; >

(a) traditional

? @ A B

C D E B F GH B I J K L L K @ M

H N

C O B I P G K @ M

Q @ M R K G K @ M

(b) adjusted

Figure 4. Role/Permission assignment (PA)

and project/group. For instance, user U1 is project techni-
cian in project P1, and project leader in project P2. Alter-
natively, we could have created a project technician and a
project leader role for each project. With this, role would
contain entries “project technician P1”, “project leader P1”,
“project technician P2”, etc. Then, there would not be a
project entity set, and users would only be assigned to roles.
The disadvantage is that we would have many more roles
leading to many more PA assignments. However, the PA
assignments for all roles of the same type, e.g., all project
technician roles, are very similar in nature. Hence, it would
lead to redundancy if we indicated the PA assignments in-
dividually for roles of the same type.

Figure 4(a) shows the traditional way to assign a permis-
sion (association of an operation and an object) to a role
in form of an aggregation (see [18] for aggregation). If we
choose this option we can use tables and/or data records
as our granularity for an object. For instance, project initia-
tion translates to the permission for a project leader to insert
into the project table. For some of the permissions, such
a table level assignment is enough. However, many other
permissions have conditions associated with them. For ex-
ample, a project leader can assign only users of his/her own
group the role of project technician. Also, he/she can per-
form all operations on experiment related tables, however,
only on data records that belong to the project for which
he/she is the project leader. The complexity of these condi-
tions can be arbitrary. Some of the conditions can be easily
checked within the database system. For instance, data that
is fixed cannot be updated anymore. To check this condi-
tion we only have to look at the status attribute. However,
other conditions might require runtime dependent data that
is not stored in the database, for instance, the user id of the

user that attempts to perform the operation. The conditions
might also require some complex joins on several tables.
As such, we have decided to implement the programming
logic that tests for such conditions outside the database sys-
tem, that is, within the middle-tier of the 3-tier architecture.
Within the database, however, we keep track of which con-
ditions exist. For each condition, there will be one program
that will test whether the condition is true. Figure 4(b) now
shows the permission as a ternary relationship set connect-
ing operation, object (a table), and condition. The role is
again associated with the permission in form of an aggrega-
tion. Condition is simply a textual description. For instance,
for a project leader to update an experiment related record,
there are the conditions “data record may not be fixed”, and
“user must be involved in project data record belongs to”.
A project technician must additionally fulfill the condition
“user must be the one that inserted the data record”. Some
permissions do not have any conditions associated with it.
For instance, the head can enter users into the system. Such
permissions have a dummy condition “none”.

When a user with a specific role does a specific opera-
tion on a specific data record, the associated conditions can
be easily found in the PA table that results when translating
the model into relations1. Conditions allow us to specify
access control on the level of a data record, to include con-
text information, and to use few quite general roles (group
member, project technician) instead of many specific roles
(project technician P1, project technician P2, etc.).

4. Access Control Implementation

4.1. Overview

Our enhancement of Exp-DB performs access control in
three steps. After successful login, the system checks in
the database which scope specific roles the user has and lets
the user choose one of the roles. For instance, if a user is
member of group 1, and project technician of project 1 and
2, then he/she can choose one of these three roles. He/she
can later explicitly change the role if necessary. We say
access control reachesrole level.

From there, the user is only presented with tables and
operations according to the PA assignment (ignoring condi-
tions) of his/her current role. For instance, a group member
may not access any administrative tables like user, role, etc.
Hence, the web-based interface does not even show these
tables. If a user is only allowed to read data from a table,
the table appears on the web-page but no links to modifying
operations are provided. Access control reachestable level.

Finally, when a user with roler attempts to perform a
certain operationop on a specific data recorddr1 of a ta-

1The PA table represents the PA relationship sets and contains four at-
tributes referring to role, operation, table, and condition.

ble t, the success ofop depends on the specified condi-
tions. The system scans the PA table for entries (r, op, t,
someCondition), and checks the conditions one by one. If
all conditions are true, the operation succeeds. Otherwise
the user receives a message indicating the first unsatisfied
condition. We say the access control reachesrecord level.
This step is the soul of the access control module and de-
scribed in more detail in the next section.

This 3-step approach has several advantages. Firstly,
working under one role allows the system to only show
those tables and operations that are relevant for the role.
This helps the user in navigating through the system for the
specific task to be performed. Secondly, it supports the prin-
ciple of least privilege suggested for RBAC. A user should
always invoke the role that is most suitable for a given task.
Powerful roles should only be invoked when needed. Fi-
nally, fixing the role simplifies what data access the system
is supposed to control. When the user attempts to access a
specific data record, the system already knows that the user
has, in principle, the right to do such an operation on the
table. The only thing that remains to be done is to check
the associated conditions. If access is denied, a clear and
meaningful error message can be returned.

4.2. Aspect-oriented implementation

Integrating access control into a legacy system is a chal-
lenging task since each data access requires access con-
trol, and data access might be spread across many modules.
Hence, altering the existing code to include access control
would require to perform changes in all these modules.

Aspect-oriented programming (AOP) [5], as provided,
e.g., by the AspectJ programming language [15], provides a
means to implement such a cross-cutting concern in a more
elegant way. The access control developer implements all
methods needed to perform access control in a special mod-
ule, calledaspect. One of these methods, could be, for in-
stance, anupdate-checkmethod. It takes as input context
information (e.g., user and role), and the record identifierof
the record to be updated, and checks whether the user has
the permission to update the record according to the con-
ditions. This method should be executed every time before
an update takes place. The interweaving of the application
code performing the update, and the access control method
performing the check is done in a declarative manner. In As-
pectJ, the access control developer must first decide which
methods in the application programs require access control.
These methods are defined asjoin points. Then, he/she has
to group join points that require the same type of access con-
trol (e.g.,update-check). These groups are calledpoint-
cuts. Finally, he/she has to indicate what access control ac-
tions have to be performed for the join points in the pointcut
and when these actions should be performed (e.g., before,

after or instead of the execution of the join point method).
This is called anadvice. An aspect is the combination of
join point, pointcut, and advice declarations. A special As-
pectJ compiler compiles application code and aspects into
one common executable with interweaved calling structure.

Read OperationsFor read operations (SQL select) only
those data records that fulfill all conditions should be
returned to the user. However, in order to check conditions
we must retrieve information like the status of the record or
the project the record is associated to. Hence, we must first
execute the SQL select statement and then remove those
records from the result set that do not fulfill the conditions.
If necessary we have to perform additional SQL statements
to retrieve further information from other tables or extend
the original SQL statement to retrieve attributes that we
need in order to check the conditions. Let’s have a look at
a simplified example. Assume the application code has a
single reading methodVector read(UInfo info, String

table, Vector check, Vector crit)

which internally simply performs the SQL statement
SELECT * FROM table WHERE check[1] = crit[1] AND

check[2] = crit[2] AND ...

Then, we define a pointcut with one join point as:

pointcut read_chkp (UInfo info, String table,
Vector check, Vector crit):

// read is a join point
execution(public Vector read(UInfo,String,Vector,
Vector) && args(info,table,check,crit));

We pass the context information (e.g, current user and
role) in form of theUinfo object, and the parameters of the
method to the pointcut. This allows the advice to use this
information for its internal processing. The advice is the
actual access control execution at the pointcut. As described
above, for read operations, we have to retrieve first the data
records and then only return those that fulfill all conditions.
For this we use anaround advice. It replaces the original
execution of the join point method with the advice.

Vector around(UInfo info, String table, Vector res,
Vector check, Vector crit):

read_chkp(...) {
Vector res = proceed(info, table, check, crit);
for each record in res check conditions

if at least one not fulfilled remove from res
else keep

return res;}

The proceed in the advice calls the original read
method to retrieve all records. After that, conditions are
checked on each returned data record. In case we only
need to check whether a data record is fixed, it is enough
to look at the data record itself. Otherwise the check
might require to perform additional SQL statements. For
instance, in order to check that a user’s group is involved
in the project the data record belongs to, we need a state-
ment like SELECT project id from project group

where group id is this user’s group id. For
these nested read operations access control should not be
triggered. AspectJ allows us to specify such behavior but
we have omitted that in above example for simplicity.

Theread method above is quite simple. A more com-
plicated read method could indicate a subset of attributes to
be selected. In this case, if we needed additional attributes
to check conditions (for instance, the status attribute), we
could perform an additional SQL statement to retrieve the
additional attributes within the check loop. Alternatively,
we callproceed with the attributes needed for access con-
trol added as input parameters. Similar issues arise for joins.

Write Operations For write operations, access control
should be performed before the execution of the operation
to avoid undo in case access is denied. In order to have all
data necessary to perform checks the access control method
might have to perform additional read operations if the data
is not yet available within the application logic. However,
we can expect that the old and new values of the written
data record to be available already before the write opera-
tion takes place. This is trivially true for most inserts. For
other operations, the user often first views a data record be-
fore modifying it. Again, we use thearound advice to in-
tercept write operations. We perform the checks, and if ac-
cess is allowed, we callproceed to execute the operation,
otherwise we return an error message.

Access Control in Exp-DB In Exp-DB, database access
was controlled by few classes leading to only few pointcuts.

5. Related Work

We are not aware of any access control implementation
that uses aspect-oriented programming (AOP). [7] provides
a basic RBAC implementation but does not describe how to
integrate it into a legacy system. [19] implements RBAC
administration in Oracle via stored procedures. We are not
aware of any LIMS system that implements RBAC.

Many application and web servers provide what is called
“filters” or “interceptors” that could be an alternative to us-
ing an AOP language like AspectJ. The server intercepts
client requests before they are forwarded to the appropri-
ate method and responses before they are returned to the
client. It is possible to inject access control at these inter-
ceptor points. That is, at the time of interception, the server
gives control to the access control module which can per-
form some tasks before forwarding the request to the called
component and before returning the response to the client.
The basic concepts are similar to AOP. In case of the web-
server used, Apache Tomcat, the filter technology was less
powerful than AspectJ, and hence, we chose AspectJ.

Previous enhancements to the basic RBAC model intro-
duce role hierarchies (RBAC1) and constraints (RBAC2)

[20]. We can consider our newly introduced conditions as a
new form of constraint on permissions to achieve record-
level access control. Parameterised roles allow a role to
adjust to the current context. For instance, [1] presents a
health care environment where a user with the role doctor
may only see the entire patient’s record if he/she is one of
the treating doctors of that patient. That is, the parameters
included in an access request are used to determine whether
the policies associated with a permission are fulfilled. Such
policies have similarities to our conditions. The authors
propose to present all policies in a controlled English and
then translate them to higher order logic. We believe that
such automatism can only be used in specific cases. Instead,
we are more pragmatic, testing conditions by application
programs that can be as complex as necessary to perform the
checks. Other “context-aware” approaches look at tempo-
ral conditions [3], environment roles [4], and context-based
policy classification [2]. Although they all increase the flex-
ibility of expressing constraints on permissions, none is re-
ally focused on providing a more fine-granularity access
to data. In contrast, our 3-level approach provides a sim-
ple way to express permissions on tables, and a constrained
based way to express restrictions to access specific records.
In [14], objects can be grouped to views which is similar to
grouping all data relevant to a given project. The authors
propose a first-order language to express all conditions but
do not explain how the current values for the parameters
given in the condition formulas are determined during run-
time. Similar to us, they probably need to retrieve them by
reading different records from the database.

6. Conclusion

This paper enhances traditional RBAC offering record-
based access control without an explosion on the number of
permissions. This is achieved by defining permissions on
tables but adding conditions that restrict roles to a subset
of the records in the table. The conditions can be arbitrary
complex, and hence, are able to reflect real-life constraints.
Additionally, our RBAC model distinguishes between dif-
ferent scopes of roles, namely system, group, and project
roles since belonging to a group or participating in a project
often determines the data that can be accessed. The intro-
duction of scopes allows us to keep the number of roles, and
hence, the number of role/permission assignments small.
We believe such scoping can be useful not only for scientific
research in general, but possibly also for other applications.

Furthermore, we have integrated the proposed RBAC
model into an existing legacy 3-tier information system
using aspect-oriented programming. Although the legacy
code itself has not been changed, access control is enforced
whenever this legacy code performs database access.

References

[1] J. Bacon, M. Lloyd, and K. Moody. Translating role-based
access control policy within context. InPOLICY, 2001.

[2] A. Belokosztolszki, D. M. Eyers, and K. Moody. Policy con-
texts: Controlling information flow in parameterised RBAC.
In POLICY, 2003.

[3] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A tempo-
ral role-based access control model.ACM Trans. Inf. Syst.
Secur., 4(3), 2001.

[4] M. J. Covington, W. Long, S. Srinivasan, A. K. Dey,
M. Ahamad, and G. D. Abowd. Securing context-aware ap-
plications using environment roles. InSACMAT, 2001.

[5] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented pro-
gramming - introduction.Comm. of the ACM, 44(10), 2001.

[6] D. Ferraiolo and D. Kuhn. Role based access control. In
National Computer Security Conference, 1992.

[7] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A role-based
access control model and reference implementation within a
corporate intranet.ACM Trans. Inf. Syst. Secur., 2(1), 1999.

[8] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli.Role-
Based Access Control. Artech House Publishers, 2003.

[9] J. Frew and R. Bose. Earth system science workbench: A
data management infrascrutcure for earth science products.
In Int. Conf. on Statist. and Scient. Database Mgmt., 2001.

[10] N. Goodman, S. Rozen, L. D. Stein, and A. Smith. The
LabBase system for data management in large scale biology
research laboratories.Bioinformatics, 14, 1998.

[11] P. W. Haebel, V. L. Arcus, E. N. Baker, and P. Metcalf.
LISA: an intranet-based flexible database for protein crystal-
lography project management.Acta Crystallogr. D57, 2001.

[12] Y. E. Ioannidis, M. Livny, S. Gupta, and N. Ponnekanti.
ZOO: a desktop experiment management environment. In
VLDB Conference, 1996.

[13] Java technology, http://java.sun.com/products/.
[14] A. A. E. Kalam, S. Benferhat, A. Miège, R. E. Baida, F. Cup-

pens, C. Saurel, P. Balbiani, Y. Deswarte, and G. Trouessin.
Organization based access control. InPOLICY, 2003.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. Getting started with AspectJ.Commu-
nications of the ACM, 44(10), 2001.

[16] N. A. Naeem, S. Raymond, A. Poupon, M. Cygler, and
B. Kemme. Exp-DB: Fast development of information sys-
tems for experiment tracking. InCaise (Short Paper), 2003.

[17] A. Pajon, J. Ionides, J. Diprose, J. Fillon, R. Fogh, A. Ash-
ton, H. Berman, W. Boucher, M. Cygler, E. Deleury, R. Es-
nouf, J. Janin, R. Kim, I. Krimm, C. Lawson, E. Oeuil-
let, A. Poupon, S. Raymond, T. Stevens, H. van Tilbeurgh,
J. Westbrook, P. Wood, E. Ulrich, W. Vranken, X. Li,
E. Laue, D. Stuart, and K. Henrick. Design of a data
model for developing laboratory information management
and analysis systems for protein production.Proteins,
58(2):278–284, 2005.

[18] R. Ramakrishnan and J. Gehrke.Database Management
Systems. McGrawHill, 3 edition, 2003.

[19] R. S. Sandhu and V. Bhamidipati. Role-based administration
of user-role assignment: The URA97 model and its Oracle
implementation.Journal of Computer Security, 7(4), 1999.

[20] R. S. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
based access control models.IEEE Computer, 29(2), 1996.

