
Comparison of UDDI Registry Replication Strategies

Chenliang Sun, Yi Lin, Bettina Kemme
School of Computer Science

McGill University
Montreal, Canada

{csun1, ylin30, kemme}@cs.mcgill.ca

Abstract

UDDI registries are intended to become the world-wide
lookup mechanism for web-services. As such, the registry
has to provide high throughput, low response times, high
availability, and access to accurate data. Replication is of-
ten used to satisfy such requirements. Various replication
strategies exist, favoring different subsets of the above per-
formance metrics. In this paper, we have a closer look at
two very different replication strategies. One strategy fol-
lows the UDDI specification, the second uses a middleware
based replication tool. In this paper, we provide a compar-
ison of these two approaches focusing on performance and
ease of integration with an existing UDDI implementation.

1 Introduction and Motivation

Universal Description, Discovery and Integration
(UDDI) is a specification for distributed web-based infor-
mation registration of web services [3]. A UDDI registry
stores information about service providers and their
web-services. Service providers are typically companies,
organizations, or institutions. The information stored ina
registry follows a relatively straightforward schema, and
many implementations use a relational database system
as storage manager. The interface to a registry provides
two main functionalities. Firstly, the information in the
registry must be maintained, that is, it can be registered and
updated. Secondly, users can query the registry to retrieve
information about service providers and their services.

With the rapid development of web services technology,
web services are becoming the standard interface for B2B
and B2C interaction. For those applications, the entries in
the UDDI registry are likely to be modified seldomly, but
the read load can become very high. However, we envi-
sion that more and more other types of applications will
take advantage of the web-service paradigm. These appli-

cations might be quite different in their nature, and hence
put different requirements on the functionality of UDDI reg-
istries. For instance, web-services are an attractive comput-
ing paradigm for peer-2-peer and grid computing environ-
ments, where individual sites are willing to share CPU and
storage resources in order to cooperate in a common com-
putation [18]. Finding resources, evaluating the capacity
of sites to execute certain services, and deciding on work
distribution are crucial tasks in these environments. UDDI,
or at least deviations of UDDI, could be an important build-
ing block to support performing these tasks. They might not
only store information about the services different providers
offer and on which sites they are located, but also the capac-
ity and connectivity of these sites, and maybe even their re-
cent average load. However, such information is much more
volatile, and will change frequently. Furthermore, compo-
nents that query the registry to determine the machines that
are able to execute their tasks, require up-to-date informa-
tion in order to achieve the desired level of quality of ser-
vice. Hence, in order for UDDI registries to be the medi-
ating force between providers and users, UDDI might have
to handle high loads of modifications, and accuracy of the
data is crucial to reflect the dynamic behavior.

In any case, as the community using web-services grows,
the UDDI registry is a crucial entry point that needs to pro-
vide high throughput, low response times, high availabil-
ity, and access to accurate data. Replication is often used
to satisfy such requirements. Without replication, a central
registry and the network links toward this site can easily be-
come a bottleneck, and a single point of failure. Replicat-
ing the registry on several sites, the query load can be dis-
tributed, and the UDDI service is available despite the crash
of individual sites. However, replication has the challenge
of replica control, i.e., guaranteeing that the replica arecon-
sistent despite updates. This means that updates require
communication among the registries, and must be executed
at all sites. As such, replication will only lead to increased
throughput if the percentage of updates is reasonably low.
Furthermore, synchronizing access to data items across the

1



replicas requires advanced communication and transaction
processing algorithms. Ensuring that the implementation of
a replica control protocol guarantees the promised degree of
data consistency is not a trivial task.

This paper takes two quite different replication strate-
gies, and evaluates their suitability for UDDI replication.
Our choices cover two important classes of replica control
[15]. Usinglazy replication, an update is first executed and
committed at one site, and coordination takes place only af-
ter the user receives the response. This provides fast re-
sponse, however, data at remote sites not always reflects
the latest updates. Ineager replication, the replicas coor-
dinate before the user receives a response leading generally
to higher response times. The advantage is data consistency
at all times, and no lost updates in case of failures. For both
strategies, many different protocols have been proposed (re-
cently, e.g., [7, 23, 9, 24, 15, 22, 20]). This paper does not
attempt to invent yet another strategy. Instead, we focus
on the impact of replication on UDDI. Of the existing algo-
rithms we analyze to representatives: the lazy approach pro-
posed in the UDDI specification [2], and an eager scheme
that uses a middleware based replication tool [21]. Section2
presents these algorithms in more detail.

Another important factor when choosing a replication
solution is the implementation overhead, and how easy the
replication module can be integrated into an existing sys-
tem. The ideal situation arises if (1) extending an existing
UDDI registry with a replication component can be per-
formed without major changes to the existing system, (2)
the replication implementation is relatively independentof
the exact UDDI specification in order to also work with en-
hanced systems, and maybe even other forms of registries,
(3) different UDDI registries can cooperate in a common
replicated environment even if they have different internal
implementations. Section 3 gives a detail description of the
replica control implementation. It also discusses whether
alternative integration techniques are feasible.

Both the replication strategy (eager vs. lazy) and the im-
plementation of the replica control algorithm, have a con-
siderable impact on the performance. Section 4 provides a
detailed analysis not only of the influence of eager vs. pri-
mary, but show that implementation decisions can have a
considerable impact on the performance of the system. Re-
sults cover both local and a wide area networks. Section 5
discusses related work, and Section 6 concludes the paper.

2 Replication Protocols

2.1 Lazy Replication (UDDI Specification)

According to the UDDI specification [3], when a user
inserts a new data item at a specific site of the replicated
registry, the user becomes theownerand the site becomes

A B

 5 notify_changeRecordsAvailable

3 get_
Change
Records

4 send_Change
Records

CD

 2 notify_
change
Records
Available

 8 notify_change
RecordsAvailable

 1 notify_change
RecordsAvailable

6 get_ChangeRecords

7 send_ChangeRecords

9 get_
Change
Records10 send_

Change
Records

Figure 1. UDDI Replication Protocol accord-
ing to Specification

the primary of the data item. The primary can change if
the owner wants this or because of failures. Only the owner
can change the data item and has to do so at the primary.
This primary generates a local sequence number (identifier),
and performs the update locally. A propagation process is
started periodically propagating all update requests since
the last propagation. The specification suggests that all sites
build a logical ring, and communication is along this ring.
In case of failures backup communication paths are used.
The propagation process is started at one site. This site ad-
vertises its changes to its neighboring site. If the neighbor
is missing some of these changes, it requests (pulls) these
changes from the advertising site, and then forwards its own
advertisement along the ring. Each site keeps two additional
tables. AStatus table has a record for each site B in the
system containing the latest sequence number of a request
for which B is primary and A has already executed this up-
date request. The tableChangeRecordJournal records
all update requests. An entry describes for each incoming
update request the web-service to be called, the input pa-
rameters, and which sequence number this request received.

Figure 1 depicts an example execution. Assume a UDDI
registry consists of four sites (A, B, C, and D) forming a log-
ical ring. Periodically, A notifies B of its status table (send-
ing a SOAP notify ChangeRecordsAvailable
message). B compares it’s own status with A’s status. If
A does not have any new information, B sends its own sta-
tus table to C (example of figure). The same message ex-
change now happens between B and C. Assume C misses
some information. It asks B to send the missing changes (a
get ChangeRecords request). In this message, C sends
B it’s own status table. For each record in the status ta-
ble where B has a higher sequence number than C, B sends
the corresponding records inChangeRecordJournal .
C executes the requests sent by B. Then, C sends its own
updated status table to D. From there the process continues
between D and C, and C and A. However, after one round,

2



B has not yet received any changes from C and D, and C
has not yet received any changes from D. Hence, A starts
a second round after which all changes that existed in the
system at the time A started the first round are guaranteed
to have propagated through the entire system.

One important issue is how to determine the time inter-
val for generating the timer event. If it is too long, the data
at remote sites will be stale for a long time. But if it is too
short, the communication overhead can become unaccept-
able, especially when the number of sites are big.

Another important issue is that all sites must be prede-
fined in a replication configuration file. If a new site wants
to join the registry, the replication site structure has to be
changed, so does removing a site from a registry.

2.2 Eager Middleware Replication

Jiménez-Peris et.al. [21] propose an eager replication
protocol based on group communication. The group com-
munication system provides support for group maintenance
(automatically removing failed sites from the group, joining
new and recovering sites to the group), and reliable multi-
cast. The replication protocol allows individual requeststo
update an arbitrary set of data items, and performs its own
concurrency control to guarantee serializability across the
system. Since the UDDI specification indicates that only the
owner of a data item can later modify it, we only present a
simplified protocol here. We partition the data by ownership
and assume that each owner has a primary site. A client can
submit an update request to any site1. This site will imme-
diately multicast the request to all sites. The multicast pro-
vides a total order, i.e., although different sites might mul-
ticast messages concurrently, all sites will receive the same
order of multicast messages. This order is used as execution
order for conflicting requests that want to access the same
data. Since each site receives the same order, all sites will
order conflicting requests in the same way. Although the
request is received by all sites, only the primary executes it,
commits locally, and multicasts the physical changes trig-
gered within the database to the other sites. The other sites
then apply all changes in correct order. The approach is
eager because the execution order of conflicting requests is
determined at all sites before the transaction commits at any
site. If the primary fails, another site will become primary
of the data the failed site owns. Hence, if a primary fails
after committing but before sending the changes, the new
primary will re-execute the request in the same order due to
the total order multicast. Two optimizations speed up the
execution [21]. (i) Since determining the total order can
take a long time, especially in a WAN, the primary can start
executing a requestR once it receives it physically and be-
fore the total order is determined. Once the total order is

1Note that this is more flexible than the approach of Section 2.1.

client client

Database

 Comm
ReplicMgr

CommMgr

TranMgr

ConnMgr

ReplicMgr

CommMgr

TranMgr

ConnMgr

Database

Group

Figure 2. Middle-R Architecture

determined and a conflicting requestR
′ should have been

executed first (because it is beforeR in the total order), then
R will be aborted and restarted. But if there does not exist
such conflicting request, the execution was successful and
overlapped with determining the total order – reducing the
overall response time. (ii) The secondary sites do not reexe-
cute the entire request. Instead, the primary sends the phys-
ical values of the affected records. Applying such changes
is much faster than re-executing the entire request.

The protocol is implemented as a Java based middle-
ware called Middle-R similar to the one presented in [21].
Figure 2 depicts the architecture. Middle-R consists of a
transaction manager controlling the execution of the trans-
actions, a communication manager that interacts with the
group communication system, and a connection manager
that submits the individual transactions to the underlying
DBMS. We use the open-source version of the group com-
munication system Spread (v. 3.16.2) [26]. Spread was
changed to support optimization (i) mentioned above: a
message is delivered to the application once when it is
physically received from the network, and a second time
(only confirmation) when the total order is determined. As
DBMS, we use PostgreSQL 7.2. It was modified to support
optimization (ii) [21]. Two functions are provided to the ap-
plication, one to get the changes performed by a transaction
in form of a write-set, and a second that takes this write-set
as input and applies these changes without re-executing the
SQL statements. The current version of Middle-R provides
only a quite restrictive API. A request must be submitted in
form of a sequence of SQL statements.

3 Implementations

3.1 Implementation Strategies

We can use three different approaches to extend an exist-
ing UDDI registry to support replication.
1.) A naive approach alters the existing code of all methods
implementing update requests (denoted asupdate methods).

3



For example, in the lazy approach, we would extend each
update method in order to generate a new sequence number,
include a new record into theChangeRecordJournal ,
and update theStatus table.
2.) In the above solution, the newly inserted code might
be similar for all update methods. If this is the case, the
replication related code should be put into its own class.
The update methods then call the replication related meth-
ods. For lazy replication, the replication class could con-
tain one methodrecord update , that performs the three
steps mentioned above. Each update method has then a sin-
gle, parameterized call torecord update . As such, we
have concentrated replication related code into one module.
However, calls to replication functionality is still scattered
across all update methods.
3.) A more elegant way to weave business semantics (up-
date methods) with the cross-cutting aspect replication isto
use aspect-oriented programming. The idea is to implement
the business logic as if there was no replication, and the
replication module as a separate aspect. Additionally, there
is a mechanism to declare that methods of the aspect (repli-
cation) should be called whenever specific business meth-
ods are executed. We are aware of two main ways to per-
form aspect-oriented programming.
• One is to use an aspect-oriented programming language

like AspectJ [17]. This language is an extension of Java.
It allows to implement aspects, and to declare how the
aspect should be linked with the business methods. The
aspect can be called before, after, or even instead of the
business method. At compile time, aspect and business
methods are weaved together in one executable.

• A second way is to use filter/interceptor technology of-
fered by current server technology. For instance, Java
Servlet 2.3 [4] introduces a new component called filter.
A filter dynamically intercepts requests and responses
to Servlet to transform or use the information contained
in the requests or responses. As such, an aspect can be
implemented as a filter. Filter and business logic are
compiled independently. At deployment of the business
logic, one has to specify which filters should be exe-
cuted before a certain servlet is called. The real ”weav-
ing” takes place only at runtime.

3.2 Original System

We use an open source UDDI implementation UD-
DIe [25] as our experiment platform. Figure 3.a depicts the
original structure. Each UDDI site is running in Tomcat ver-
sion 4.1.27. Interaction with the client (request/response)
uses SOAP via HTTP. A single servlet is the entry point
and dispatcher of the system. For each method in the UDDI
interface there exists a Java class implementing this method.
Upon receiving a client’s request, a servlet parses the SOAP

Web Server

Servlet

clients

Database

Filter

Servlet

Web Server

Database

clients

(a) without 
replication

(b) with 
replication

SOAP/HTTP SOAP/HTTP

Java classes

Java classes

Figure 3. UDDIe Architecture

message, and then invokes the method of the appropriate
Java class. All UDDI data is stored in PostgreSQL 7.2. The
UDDI server interacts with the database via JDBC.

3.3 Lazy Replication

Our lazy approach uses aspect-oriented programming
based on filter technology. The new UDDI architecture is
depicted in Figure 3.b. Each client request passes through
the replication filter. If it is not an update request, the filter
does nothing and immediately forwards the request to the
UDDI servlet. If it is an update request, the filter queries
the message, generates the sequence number, updates the
site’s status table, and inserts the update information
into theChangeRecordJournal table. These opera-
tions occur within the context of a single database trans-
action called ”logger”. Then the filter forwards the request
to servlet. After the update method finishes, the response
again passes through the filter. If the method was success-
ful, the response is sent back to the client. Otherwise, the
logger transaction will be compensated to undo its effects.
Although the logger and the update method run in different
transactions, the net effect of both transaction is as if ev-
erything had executed in a single transaction. The response
time of the client, is the sum of both transactions. The sys-
tem uses a connection pool to the database for optimization.

Update propagation is independent of the normal re-
quest processing since it completely relies on the infor-
mation in thestatus and ChangeRecordJournal
tables. It follows exactly the specification, using SOAP
messages to communicate between the UDDI sites. The
original servlet was extended to be able to receive the

4



new SOAP message types. Remember that the records of
ChangeRecordJournal contain update requests. Each
update request is logged in form of the SOAP message con-
taining this update, i.e., in the same form the primary re-
ceived the request. Hence, when a site receives such a
record during update propagation it simply calls the same
Java class that was called by the primary when it received
the request from the user. The main characteristics of the
implementation are:
• The original UDDIe code remained unchanged.

• The replication module is relatively independent of
the UDDI registry implementation as long as the reg-
istry uses a web-server that supports filter technology.
Minor changes have to be performed to link a web-
service request received through update propagation to
the method within the server that executes this request.

• We believe that the implementation can also support
other web-based applications (not only UDDI) with
only minor restrictions. The filter must, in general, only
be able to distinguish whether the incoming request is
read-only or an update request. The actions of the busi-
ness logic upon an update request are independent of
the replication module. This is true because at the sec-
ondary sites, the entire request will be executed by the
same business method that executed it at the primary.

• The filter introduces an additional indirection during ex-
ecution for both read-only and update requests. Update
requests have additional database access in form of a
logger transaction. We could have implemented the log-
ging and the standard update requests within one trans-
action. In this case, however, we would have had to
intertwine the original UDDIe implementation with the
replication component much more severely.

3.4 Eager Middleware Replication

For eager replication, the UDDI server becomes a client
of Middle-R (see Figure 2). Each site has an instance of
the extended UDDI server and Middle-R running. Only
Middle-R connects to the database system.

Using an existing middleware tool we had to adjust to
the interface provided by this middleware. As such, we had
to adjust the business logic in the UDDI server. Instead of
using JDBC, the SQL statements had to be submitted to the
Middle-R. For some update methods, two requests had to
be sent to Middle-R. That is, the implementation follows
implementation strategy (2) described in Section 3.1. We
can summarize the integration effort as follows:
• The original UDDIe implementation had to be changed

at several places to adjust to the new interface. Replica-
tion is not transparent.

• The implementation overhead was still smaller than in

the lazy approach since we relied on an existing repli-
cation tool.

• If Middle-R had provided a different interface, integra-
tion would have been different. (1) If it provided a
JDBC interface, integration would have been basically
for free. (2) Even an interface in which application pro-
grams can be deployed in the middleware (as servlets
are deployed in the web-server) would have made the
integration process more transparent. In this case, we
would have kept the servlet in the web-server, and de-
ployed the Java classes implementing the business logic
in the middleware. The servlet then, instead of calling
the Java classes directly, would have called the Middle-
R to execute them. That is, the business logic itself
would have remained the same but deployed at a differ-
ent place, the servlet would have needed adjustments.

• In its current form, we do not see a possibility to link
the Middle-R in the form of an aspect with the UDDI
server. But we believe that a simplified version of the
replication protocol provided in Middle-R (as needed
by UDDI) can quite easily be implemented as an aspect.

4 Experiment Results and Discussion

4.1 Parameters of the Experiments

We have run experiments in both a LAN and across
the Internet (WAN). Four machines in Canada (Intel P4,
3.0GHz, 1 GB memory, Red Hat Linux) connected by a
Fast Ethernet are used for LAN experiments. WAN ex-
periments were conducted in Planetlab [5], an open, glob-
ally distributed computing infrastructure. The machines we
used are located in North America. They all have similar
parameters (mostly Intel P4, 2.4GHz, 1 GB memory, Red
Hat Linux). We did not have exclusive access to them.

Our experiments focus on response and execution
times. Hence, one client is connected to the UDDI reg-
istry submitting requests serially. The requests call the
save business method. This method reads three at-
tributes of one table (to verify the user authorization), and
then performs modifications on four further tables to insert
(or delete, update) business details, descriptions, discovery
Urls, and contacts. . In lazy replication, we couple requests
with propagation. There is only one request per propaga-
tion period. That is, our analysis of the propagation period
shows the best case scenario where only very little infor-
mation is exchanged between the sites, i.e., it basically cap-
tures the minimum communication and execution overhead.
Each test run contains as many requests as are necessary to
achieve a 95% confidence interval for the mean that does
not vary more than 3% from the shown mean.

5



Figure 4. LAN: Response & Propagation Time

4.2 LAN

Figure 4 shows the response times for a LAN when the
number of sites increases from 1 to 4 sites, plus the propaga-
tion time in case of lazy replication. For both eager and lazy
replication, response time remains the same for increasing
number of sites, and eager replication is only slightly worse
than lazy replication (both around 40 ms).

Figure 5 provides for a 2-site system a more detailed
analysis of the response time. For eager replication, the fig-
ure shows the client response time, the time spent in the
UDDI server, and the time spent in the Middle-R. For lazy
replication, the figure shows the total client response time,
the time spent in the UDDI server executing the business
logic, and the time spent in the filter executing the logger
transaction (both including access to the database). One can
see that the eager approach spends most time in Middle-R.
This includes two calls to Middle-R, the multicasts within
Middle-R, the database access and the housekeeping within
Middle-R. The impact of the total order multicast is not sig-
nificant since determining the total order in a LAN is faster
than executing the request at the database. This is true even
for 4 sites (and probably up to more than 20 sites). Lazy
has database access overhead in the UDDI and the filter. We
consider the difference between both approaches not signif-
cant, and some programming optimizations could probably
decrease the response time of any of the two approaches
even further. In particular, we believe that eager could out-
perform lazy if it were implemented as a filter based ap-
proach instead of accessing a completely separated middle-
ware server via RMI. If we compare the extra overhead of
both approaches, then we can expect the additional database
access for logging of lazy to be more expensive than the sin-
gle LAN message overhead of eager.

Figure 5. LAN: Execution Time

Lazy replication has an additional performance indica-
tor, that is the propagation time (also depicted in Figure 4).
Note that eager does not need this extra effort, the data is
always accurate. We can see that propagation takes a lot of
time, and increases with the number of sites (note that the
scale of the figure is logarithmic). While the implicit propa-
gation in eager replication takes a few milliseconds, it takes
several hundreds of milliseconds for lazy propagation. The
reason is the quite inefficient propagation technique, which
is simple and elegant, but requires a lot of communication
and processing cost. Figure 6 splits up the execution time
for propagation between 2 sites. For site 2 to receive the
single update performed at site 1, three messages are ex-
changed and several database accesses have to be submitted.
Although after step 7 in the figure, site 2 has accurate data,
the cycle is repeated (what is unnecessary for two sites but
becomes necessary for 3 or more sites). If a propagation
process propagates more than one request then steps 1-3,
and 4 remain the same. However steps 5 and 7 will take
more time, and step 6 will transfer a larger message. Note
also that secondary sites have to reexecute the entire web-
service (step 7) while the proposed eager approach has no
overhead at the web-servers of the secondary sites, and a re-
duced overhead at the database to apply changes. Hence, in-
dependently of the propagation interval, lazy imposes more
CPU overhead than the eager approach, since the eager ap-
proach is implemented at a lower level.

As a summary, in a LAN, lazy provides only slightly
faster response time than eager, however, propagation puts
a considerable burden on the system. If throughput and up-
date rates are high, propagation can easily become the bot-
tleneck at web-server and DBMS. [21] shows that a simi-
lar middleware to Middle-R can handle considerable update
rates, leaving the web-server completely unaffected.

6



site 1 site 2

8.notify

9.notify

10.notify

11.notify

2.notify_change
RecordsAvailable

wait

1.query 
current 
status 

5.query 
change
records

wait

3.query current
status, compare 

with 1's

wait

7.apply
 change
records

4.get_changeRecords

6.send_changeRecords

Figure 6. Lazy Propagation

4.3 WAN

Figure 7 depicts the response times in a WAN for up to
four sites. Note that this experiment uses other machines
than the LAN. The machines are slower and were quite
heavily used by other processes. This results in generally
higher response times (three times as high for a single ma-
chine compared to the LAN experiment). There might be
also higher variations in the results due to concurrent pro-
cesses on the machines. We can observe that the response
times for lazy remain constant with increasing number of
sites since they never include communication overhead. For
eager, response times increase with the number of sites. De-
termining the total order in a WAN takes longer than exe-
cuting the updates locally. With four sites, eager has around
30% worse response times than lazy. However, the absolute
numbers are still quite acceptable considering the guaran-
tee of data consistency. Of course, the response times will
further increase when new sites are added. For lazy replica-
tion, the propagation time takes now in the order of several
seconds (compared to less than a second in the LAN), show-
ing that scalability will be limited if interval time is chosen
relatively small.

5 Related Work

Replication is a well-studied field. In regard to database
replication, many eager replication strategies were proposed
in the 80’s [8] but never implemented because of effi-
ciency problems. Commercial systems used lazy schemes
instead [14]. A provocative paper of Gray et al [15] claim-
ing that eager replication will never scale, fueled new re-
search, both for lazy approaches ([11, 9]) providing some

Figure 7. WAN: Response & Propagation Time

degree of data consistency as well as eager approaches
[20, 16, 21, 6, 22] showing that eager replication can be fast
and scale well if appropriate techniques are used. We have
used the approach of [21] in our evalution. We believe that
other approaches can be applied in a similar way with simi-
lar performance results. In the distributed systems commu-
nity, object replication has received considerable attention,
mainly for fault-tolerance [12, 19]. More recent approaches
combine object replication and transactions [27, 13]. Some
of the approaches [6, 27, 13] have looked at the integra-
tion with component based systems like CORBA and J2EE
application servers. Web services and UDDI registries are
often implemented using such application servers. In fact,
the UDDIe registry used for our application uses a similar
multi-tier approach.

6 Conclusions

In this paper we have analyzed two replication strategies
and various implementation alternatives for UDDI replica-
tion. Looking at the implementation alternatives we con-
clude that an aspect-oriented approach is the most attrac-
tive mechanism to integrate replication with the business
logic but relying on existing tools might make such an ap-
proach not feasible. Looking at the performance results an
approach which allows to run replication and application in
the same runtime environment has advantage over an ap-
proach that loosely couples the two components via RMI.
Regarding the replication strategies, they perform similar in
LANs, while the lazy approach is faster in WANs. How-
ever, looking at the absolute values, clients will probably
also accept the slower response time of the eager approach.
In regard to update propagation, the eager approach favors
the lazy strategy in regard to overhead, and staleness of data.

7



In our current work, we test our systems on more
replica. Furthermore, we are experimenting with other
types of aspect-oriented programming (comparing filters to
AspectJ), and implementing an aspect-oriented version of
eager replication.

References

[1] UDDI.org, The UDDI Technical White Paper,
http://www.uddi.org/whitepapers.html, Sep., 2000.

[2] UDDI.org, UDDI Version 2.03 Replication
Specification, UDDI Open Draft Specification,
http://uddi.org/pubs/Replication-V2.03-Published-
20020719.pdf, July, 2002.

[3] UDDI.org, UDDI Version 3.0 Specification,
http://www.uddi.org/specification.html

[4] Java Servlet Specification Version 2.3.,
http://java.sun.com/products/servlet/download.html

[5] Planet-lab homepage, http://www.planet-lab.org/.

[6] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed
versioning: consistent replication for scaling back-end
databases of dynamic content web sites. InMiddle-
ware, 2003.

[7] T. A. Anderson, Y. Breitbart, H. F. Korth, and A. Wool.
Replication, consistency, and practicality: Are these
mutually exclusive? InACM SIGMOD, 1998.

[8] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Con-
currency Control and Recovery in Database Systems,
Addison Wesley. 1987.

[9] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri,
and A. Silberschatz, Update propagation protocols for
replicated database. InACM SIGMOD, 1999.

[10] E. Cecchet, J. Marguerite, and W. Zwaenepoel: Per-
formance and scalability of EJB applications. InOOP-
SLA, 2002.

[11] P. Chundi, D. J. Rosenkrantz, and S. S. Ravi. Deferred
Updates and Data Placement in Distributed Databases.
In Int. Conf. on Data Engineering, 1996.

[12] P. Felber, R. Guerraoui, and A. Schiper. The Imple-
mentation of a CORBA Object Group Service. InThe-
ory and Practice of Object Systems, 4(2),1998.

[13] P. Felber and P. Narasimhan. Reconciling Replica-
tion and Transactions for the End-to-End Reliability
of CORBA Applications. InCoopIS/DOA/ODBASE,
2002.

[14] , R. Goldring. A Discussion of Relational Database
Replication Technology. InInfoDB, 8(1), 1994.

[15] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dan-
ger of replication and a solution. InACM SIGMOD,
1996.

[16] B. Kemme, and G. Alonso, Don’t be lazy, be consis-
tent: Postgres-R, a new way to implement database
replication, In Int. Conf. on Very large Databases,
2000.

[17] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, and W. G. Griswold. An overview of AspectJ.
In ECOOP, 2001.

[18] A. Mauthe and D Hutchison. Peer-to-peer computing:
systems, concepts and characteristics. InPraxis in der
Informationsverarbeitung und Kommunikation (PIK),
Special Issue on Peer-to-Peer, 26(03/03), 2003.

[19] L. E. Moser, P. M. Melliar-Smith, P. Narasimhan. A
Fault Tolerance Framework for CORBA. InSymp. on
Fault-Tolerant Computing, 1999.

[20] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting
Atomic Broadcast in Replicated Databases. InEuro-
Par, 1998.

[21] R. Jiménez-Peris, M. Patiño-Martı́nez, B. Kemme,
and G. Alonso. Improving the scalability of fault-
tolerant database clusters. InInt. Conf. on Dist. Comp.
Systems, 2002.

[22] E. Pacitti, P. Minet, and E. Simon. Fast algorithms for
maintaining replica consistency in lazy master repli-
cated databases. InInt. Conf. on Very large Databases,
1999.

[23] P. Chundi, D.J. Rosenkrantz, and S. S. Ravi. Deferred
updates and data placement in distributed databases.
In In Proc. of the Int. Conf. on Data Engineering,
1996.

[24] I. Stanoi, D. Agrawal, and A. El Abbadi. Using broad-
cast primitives in replicated databases. InInt. Conf.
on Distributed Computing Systems, 1998.

[25] A. ShaikhAli, O.F.Rana, R. Al-ALi, and D. W. Walker.
UDDIe: An extended registry for web service. InSym-
posium on Applications and the Internet Workshops
(SAINT Workshops), 2003.

[26] Spread homepage, http://www.spread.org/.

[27] W. Zhao, Louise E. Moser, and P. M. Melliar-Smith.
Unification of Replication and Transaction Process-
ing in Three-Tier Architectures. InInt. Conf. on Dis-
tributed Computing Systems, 2002.

8


