Comparison of UDDI Registry Replication Strategies

Chenliang Sun, Yi Lin, Bettina Kemme
School of Computer Science
McGill University
Montreal, Canada
{csunl, ylin30, kemmig@cs.mcgill.ca

Abstract cations might be quite different in their nature, and hence
put different requirements on the functionality of UDDI reg
UDDI registries are intended to become the world-wide istries. For instance, web-services are an attractive abmp
lookup mechanism for web-services. As such, the registrying paradigm for peer-2-peer and grid computing environ-
has to provide high throughput, low response times, high ments, where individual sites are willing to share CPU and
availability, and access to accurate data. Replicationfis 0 storage resources in order to cooperate in a common com-
ten used to satisfy such requirements. Various replication putation [18]. Finding resources, evaluating the capacity
strategies exist, favoring different subsets of the abave p of sites to execute certain services, and deciding on work
formance metrics. In this paper, we have a closer look at distribution are crucial tasks in these environments. UDDI
two very different replication strategies. One strategy fo or at least deviations of UDDI, could be an important build-
lows the UDDI specification, the second uses a middlewareing block to support performing these tasks. They might not
based replication tool. In this paper, we provide a compar- only store information about the services different prevel
ison of these two approaches focusing on performance andoffer and on which sites they are located, but also the capac-
ease of integration with an existing UDDI implementation. ity and connectivity of these sites, and maybe even their re-
cent average load. However, such information is much more
volatile, and will change frequently. Furthermore, compo-
nents that query the registry to determine the machines that
1 Introduction and Motivation are able to execute their tasks, require up-to-date informa
tion in order to achieve the desired level of quality of ser-
vice. Hence, in order for UDDI registries to be the medi-
ating force between providers and users, UDDI might have
to handle high loads of madifications, and accuracy of the
data is crucial to reflect the dynamic behavior.

Universal Description, Discovery and Integration
(UDDI) is a specification for distributed web-based infor-
mation registration of web services [3]. A UDDI registry
stores information about service providers and their
web-services. Service providers are typically companies, Inany case, as the community using web-services grows,
organizations, or institutions. The information storechin the UDDI registry is a crucial entry point that needs to pro-
registry follows a relatively straightforward schema, and vide high throughput, low response times, high availabil-
many implementations use a relational database systenity, and access to accurate data. Replication is often used
as storage manager. The interface to a registry providego satisfy such requirements. Without replication, a antr
two main functionalities. Firstly, the information in the registry and the network links toward this site can easily be
registry must be maintained, that is, it can be registereld an come a bottleneck, and a single point of failure. Replicat-
updated. Secondly, users can query the registry to retrievang the registry on several sites, the query load can be dis-
information about service providers and their services. tributed, and the UDDI service is available despite thettras

With the rapid development of web services technology, of individual sites. However, replication has the challeng
web services are becoming the standard interface for B2Bof replica control, i.e., guaranteeing that the replicacane
and B2C interaction. For those applications, the entries insistent despite updates. This means that updates require
the UDDI registry are likely to be modified seldomly, but communication among the registries, and must be executed
the read load can become very high. However, we envi- at all sites. As such, replication will only lead to incredise
sion that more and more other types of applications will throughput if the percentage of updates is reasonably low.
take advantage of the web-service paradigm. These applifurthermore, synchronizing access to data items across the

1 notify_change

replicas requires advanced communication and transaction RecordsAvailable
processing algorithms. Ensuring that the implementatfon o A B
a replica control protocol guarantees the promised dedree o

data consistency is not a trivial task. o notify_change
H H H H H b dsAvailabl
_ This paper takes two quite d_lfferent repllcatlon_ strate- o ggpfrecoshvaiaie asendg change [st) e
gies, and evaluates their suitability for UDDI replication Change Recprds Refords | change
. . . ecoras il
Our choices cover two important classes of replica control 7 send_ChangeRecords praiavie
[15]. Usinglazy replication an update is first executed and D 6 get_ChangeRecords c
committed at one site, and coordination takes place only af- ~—
ter the user receives the response.. This provides fast re- notfy_changeRecordsAvaiable
sponse, however, data at remote sites not always reflects
the latest updates. leager replication the replicas coor- Figure 1. UDDI Replication Protocol accord-

dinate before the user receives a response leading ggnerall nqg to Specification
to higher response times. The advantage is data consistency

at all times, and no lost updates in case of failures. For both
strategies, many different protocols have been proposed (r
cently, e.qg., [7, 23, 9, 24, 15, 22, 20]). This paper does not
attempt to invent yet another strategy. Instead, we focus
on the impact of replication on UDDI. Of the existing algo-
rithms we analyze to representatives: the lazy approach pro
posed in the UDDI specification [2], and an eager scheme
that uses a middleware based replication tool [21]. Se&ion
presents these algorithms in more detail.

Another important factor when choosing a replication
solution is the implementation overhead, and how easy the
replication module can be integrated into an existing sys-
tem. The ideal situation arises if (1) extending an existing
UDDI registry with a replication component can be per-
formed without major changes to the existing system, (2)

the primary of the data item. The primary can change if
the owner wants this or because of failures. Only the owner
can change the data item and has to do so at the primary.
This primary generates a local sequence number (identifier)
and performs the update locally. A propagation process is
started periodically propagating all update requestsesinc
the last propagation. The specification suggests thated si
build a logical ring, and communication is along this ring.
In case of failures backup communication paths are used.
The propagation process is started at one site. This site ad-
vertises its changes to its neighboring site. If the neighbo
is missing some of these changes, it requests (pulls) these
the replication implementation is relatively independeint changgs from the advertiging site, an.d then forwards its.own
advertisement along the ring. Each site keeps two additiona

the exact UDDI specification in order to also work with en- bl S ble h qf hsi in th
hanced systems, and maybe even other forms of registriest,a es. AStatus table has a record for each site B in the

(3) different UDDI registries can cooperate in a common system con'Fainir_wg the latest sequence number of & request
replicated environment even if they have different intérna for which B is primary and A has already executed this up-

implementations. Section 3 gives a detail description ef th dﬁ‘te rsquest. The tatﬂf\hangeRgcord%our?al r(ra]c_ords :
replica control implementation. It also discusses whether &' UPdate requests. An entry describes for each incoming

alternative integration techniques are feasible. update request tl'_1e web-service to be ca_lled, the input_pa-
Both the replication strategy (eager vs. lazy) and the im- ramgters, and Whlch sequence numberthls request received.
plementation of the replica control algorithm, have a con- Figure 1 depicts an example execution. Assume a UDDI

siderable impact on the performance. Section 4 provides aregis_try cons?sts_ offour site; .(A’ B, C'. and D) forming alog-
detailed analysis not only of the influence of eager vs. pri- !cal fing. Per|od|cglly, A natifies B of its statu§ table (gen
mary, but show that implementation decisions can have ang @ SOAP notify _ChangeRecordsAvailable

considerable impact on the performance of the system. Re_message). B compares it's own status with As status. If

sults cover both local and a wide area networks. Section 5A does not have any new information, B sends its own sta-

discusses related work, and Section 6 concludes the paper.tus table to C (example of figure). The same message ex-
change now happens between B and C. Assume C misses

some information. It asks B to send the missing changes (a

2 Replication Protocols get _ChangeRecords request). In this message, C sends
o o B it's own status table. For each record in the status ta-
2.1 Lazy Replication (UDDI Specification) ble where B has a higher sequence number than C, B sends

the corresponding records @hangeRecordJournal
According to the UDDI specification [3], when a user C executes the requests sent by B. Then, C sends its own
inserts a new data item at a specific site of the replicatedupdated status table to D. From there the process continues
registry, the user becomes tbenerand the site becomes between D and C, and C and A. However, after one round,

B has not yet received any changes from C and D, and C clent clent

has not yet received any changes from D. Hence, A starts I

a second roun(_j after which all ch_anges that existed in the Repicigor . Repicgr o
system at the time A started the first round are guaranteed = —— [commmor | L CommMgr
to have propagated through the entire system. TranMgr TranMgr
One important issue is how to determine the time inter- ConnMgr | ConnMgr
val for generating the timer event. If it is too long, the data
at remote sites will be stale for a long time. But if it is too
short, the communication overhead can become unaccept-
able, especially when the number of sites are big. Database Database
Another important issue is that all sites must be prede-
fined in a replication configuration file. If a new site wants Figure 2. Middle-R Architecture

to join the registry, the replication site structure has ¢o b
changed, so does removing a site from a registry.

determined and a conflicting requegt should have been
2.2 Eager Middleware Replication executed first (because it is befdgan the total order), then
R will be aborted and restarted. But if there does not exist

Jiménez-Peris et.al. [21] propose an eager replicationsuch conflicting request, the execution was successful and
protocol based on group communication. The group com-overlapped with determining the total order — reducing the
munication system provides support for group maintenanceoverall response time. (ii) The secondary sites do not reexe
(automatically removing failed sites from the group, joi cute the entire request. Instead, the primary sends the phys
new and recovering sites to the group), and reliable multi- ical values of the affected records. Applying such changes
cast. The replication protocol allows individual requésts is much faster than re-executing the entire request.
update an arbitrary set of data items, and performs its own The protocol is implemented as a Java based middle-
concurrency control to guarantee serializability acré®s t ware called Middle-R similar to the one presented in [21].
system. Since the UDDI specification indicates that only the Figure 2 depicts the architecture. Middle-R consists of a
owner of a data item can later modify it, we only present a transaction manager controlling the execution of the trans
simplified protocol here. We partition the data by ownership actions, a communication manager that interacts with the
and assume that each owner has a primary site. A client cargroup communication system, and a connection manager
submit an update request to any Sitd his site will imme- that submits the individual transactions to the underlying
diately multicast the request to all sites. The multicast pr DBMS. We use the open-source version of the group com-
vides a total order, i.e., although different sites might-mu munication system Spread (v. 3.16.2) [26]. Spread was
ticast messages concurrently, all sites will receive timeesa changed to support optimization (i) mentioned above: a
order of multicast messages. This order is used as executiomessage is delivered to the application once when it is
order for conflicting requests that want to access the samephysically received from the network, and a second time
data. Since each site receives the same order, all sites wil(only confirmation) when the total order is determined. As
order conflicting requests in the same way. Although the DBMS, we use PostgreSQL 7.2. It was modified to support
request is received by all sites, only the primary execudites i optimization (i) [21]. Two functions are provided to the-ap
commits locally, and multicasts the physical changes trig- plication, one to get the changes performed by a transaction
gered within the database to the other sites. The other site$n form of a write-set, and a second that takes this write-set
then apply all changes in correct order. The approach isas input and applies these changes without re-executing the
eager because the execution order of conflicting requests iSQL statements. The current version of Middle-R provides
determined at all sites before the transaction commitsyat an only a quite restrictive API. A request must be submitted in
site. If the primary fails, another site will become primary form of a sequence of SQL statements.
of the data the failed site owns. Hence, if a primary fails
after committing but before sending the changes, the newg Implementations
primary will re-execute the request in the same order due to
the totgl order mglticgst. Two op_timizations speed up the 3.1 Implementation Strategies
execution [21]. (i) Since determining the total order can

take a long time, especially in a WAN, the primary can start We can use three different approaches to extend an exist-
executing a requegt once it receives it physically and be- ing UDDI registry to support replication

fore the total order is determined. Once the total order is 1.) A naive approach alters the existing code of all methods
INote that this is more flexible than the approach of Sectidn 2. implementing update requests (denotedpdate methods

For example, in the lazy approach, we would extend each @
update method in order to generate a new sequence number, @

include a new record into thehangeRecordJournal - C 2 >
and update th&tatus table. cente ; j;\ ilTlTintS\;
SOAP/INTP .

2.) In the above solution, the newly inserted code might

be similar for all update methods. If this is the case, the \/ [e e
replication related code should be put into its own class. Servlet

The update methods then call the replication related meth- f
ods. For lazy replication, the replication class could con- [sava crasses |

tain one methodecord _update , that performs the three ieb Sorver Java classes

steps mentioned above. Each update method has then a sin- eb Server

gle, parameterized call tecord _update . As such, we

have concentrated replication related code into one module

However, calls to replication functionality is still soated
across all update methods. Database Database
3.) A more elegant way to weave business semantics (up- (a) without (b) with
date methods) with the cross-cutting aspect replication is reptication replication
use aspect-oriented programming. The idea is to implement
the business logic as if there was no replication, and the
replication module as a separate aspect. Additionallyethe
is a mechanism to declare that methods of the aspect (repli-
cation) should be called whenever specific business meth-message, and then invokes the method of the appropriate
ods are executed. We are aware of two main ways to per-Java class. All UDDI data is stored in PostgreSQL 7.2. The
form aspect-oriented programming. UDDI server interacts with the database via JDBC.
e One is to use an aspect-oriented programming language
like AspectJ [17]. This language is an extension of Java. 3 3 Lazy Replication
It allows to implement aspects, and to declare how the
aspect should be linked with the business methods. The . .
. Our lazy approach uses aspect-oriented programming
aspect can be called before, after, or even instead of theba

) L ; sed on filter technology. The new UDDI architecture is
business method. At compile time, aspect and business, . — .
: depicted in Figure 3.b. Each client request passes through
methods are weaved together in one executable.

) S the replication filter. If it is not an update request, theefilt

* A second way is to use filter/interceptor technology of- goes nothing and immediately forwards the request to the
fered by current server technology. For instance, Javaypp) serviet. If it is an update request, the filter queries
Servlet 2.3 [4] introduces a new component called filter. i message, generates the sequence number, updates the
A filter dynamically intercepts requests and responseSgijie's status table, and inserts the update information
to Servlet to transform or use the information contained i the ChangeRecordJournal table. These opera-
in the requests or responses. As such, an aspect can byng occur within the context of a single database trans-
implemented as a filter. Filter and business logic are 4¢tion called "logger”. Then the filter forwards the request
compiled independently. At deployment of the business 1 serviet. After the update method finishes, the response
logic, one has to specify which filters should be exe- again passes through the filter. If the method was success-
cuted before a certain servietis called. The real "weav- | the response is sent back to the client. Otherwise, the

Figure 3. UDDIe Architecture

ing” takes place only at runtime. logger transaction will be compensated to undo its effects.
o Although the logger and the update method run in different
3.2 Original System transactions, the net effect of both transaction is as if ev-

erything had executed in a single transaction. The response
We use an open source UDDI implementation UD- time of the client, is the sum of both transactions. The sys-
Dle [25] as our experiment platform. Figure 3.a depicts the tem uses a connection pool to the database for optimization.
original structure. Each UDDI site is running in Tomcat ver- Update propagation is independent of the normal re-
sion 4.1.27. Interaction with the client (request/resgdns quest processing since it completely relies on the infor-
uses SOAP via HTTP. A single servlet is the entry point mation in thestatus and ChangeRecordJournal
and dispatcher of the system. For each method in the UDDItables. It follows exactly the specification, using SOAP
interface there exists a Java class implementing this detho messages to communicate between the UDDI sites. The
Upon receiving a client’s request, a servlet parses the SOAPoriginal servlet was extended to be able to receive the

new SOAP message types. Remember that the records of the lazy approach since we relied on an existing repli-
ChangeRecordJournal contain update requests. Each cation tool.

update request is logged in form of the SOAP message con- 4 | Middle-R had provided a different interface, integra-
tai_ning this update, i.e., in the same for_m the primary re- tion would have been different. (1) If it provided a
ceived the request. Hence, when a site receives such a jpBc interface, integration would have been basically
record during update propagation it simply calls the same oy free. (2) Even an interface in which application pro-
Java class that was called by the primary when it received grams can be deployed in the middleware (as servlets
the request from the user. The main characteristics of the g¢ deployed in the web-server) would have made the
implementation are: integration process more transparent. In this case, we
e The original UDDIe code remained unchanged. would have kept the servlet in the web-server, and de-
e The replication module is relatively independent of ployed the Java classes implementing the business logic

the UDDI registry implementation as long as the reg-
istry uses a web-server that supports filter technology.
Minor changes have to be performed to link a web-
service request received through update propagation to
the method within the server that executes this request.

in the middleware. The servlet then, instead of calling
the Java classes directly, would have called the Middle-
R to execute them. That is, the business logic itself
would have remained the same but deployed at a differ-
ent place, the servlet would have needed adjustments.

e We believe that the implementation can also support e In its current form, we do not see a possibility to link
other web-based applications (not only UDDI) with the Middle-R in the form of an aspect with the UDDI
only minor restrictions. The filter must, in general, only server. But we believe that a simplified version of the
be able to distinguish whether the incoming request is replication protocol provided in Middle-R (as needed
read-only or an update request. The actions of the busi- by UDDI) can quite easily be implemented as an aspect.
ness logic upon an update request are independent of
the replication module. This is true because at the sec- . .]
ondary sites, the entire request will be executed by the4 Experiment Results and Discussion

same business method that executed it at the primary.

e Thefilterintroduces an additional indirectionduringex- 4.1 Parameters of the Experiments

ecution for both read-only and update requests. Update

requests have additional database access in form of a))

logger transaction. We could have implemented the log- e have run experiments in both a LAN and across

ging and the standard update requests within one transihe Intermnet (WAN). Four machines in Canada (Intel P4,

action. In this case, however, we would have had to 3:0GHz, 1 GB memory, Red Hat Linux) connected by a

intertwine the original UDDIe implementation with the ~Fast Ethernet are used for LAN experiments. WAN ex-

replication component much more severely. periments were conducted in Planetlab [5], an open, glob-
ally distributed computing infrastructure. The machines w
used are located in North America. They all have similar
parameters (mostly Intel P4, 2.4GHz, 1 GB memory, Red
Hat Linux). We did not have exclusive access to them.

For eager replication, the UDDI server becomes a client Our experiments focus on response and execution
of Middle-R (see Figure 2). Each site has an instance of jma5 Hence, one client is connected to the UDDI reg-
the extended UDDI server and Middle-R running. Only gy submitting requests serially. The requests call the
Middle-R connects to the database system. _ save _business method. This method reads three at-

Using an existing middleware tool we had to adjust to yipytes of one table (to verify the user authorizationyd an
the interface provided by this middleware. As such, we had {hen performs modifications on four further tables to insert
to _adjust the business logic in the UDDI server. Instead of (or delete, update) business details, descriptions, disgo
using JDBC, the SQL statements had to be submitted to thes and contacts. . In lazy replication, we couple regaiest
Middle-R. For some update methods, two requests had toyiih propagation. There is only one request per propaga-
be sent to Middle-R. That is, the implementation follows {jon period. That is, our analysis of the propagation period
implementation strategy (2) described in Section 3.1. We ghows the best case scenario where only very little infor-
can summarize the integration effort as follows: mation is exchanged between the sites, i.e., it basicafly ca

e The original UDDle implementation had to be changed tyres the minimum communication and execution overhead.
at several places to adjust to the new interface. Replica-gach test run contains as many requests as are necessary to
tion Is not transparent. achieve a 95% confidence interval for the mean that does

e The implementation overhead was still smaller than in not vary more than 3% from the shown mean.

3.4 Eager Middleware Replication

Response time using Eager and Lazy Approaches in LAN
1000 — 50

—a— Lazy Response
—e— Lazy Propogation e Response
Eager Response P 626 40 Response
o 430 m
P . MiddleR
E 270 g w0
g 2
: 100 [uDDI
2 204
2 41 41 43 41
g FE— - uDDI Filter
35 38 37 39 104 H
10 . T : :) 0
0 1 2 3 4 5 Eager Lazy
Number of Sites
Figure 4. LAN: Response & Propagation Time Figure 5. LAN: Execution Time
4.2 LAN Lazy replication has an additional performance indica-

tor, that is the propagation time (also depicted in Figure 4)
Figure 4 shows the response times for a LAN when the Note that eager does not need this extra effort, the data is

number of sites increases from 1 to 4 sites, plus the propaga2Vays a:jcgurate. We c_ahn .:,]ee thatbprop?g_atlon takesha IOLOf
tion time in case of lazy replication. For both eager and lazy t'm?' a? hlnfc_reases IW't _the num ir'lo ﬁngs (rll_o_te that the
replication, response time remains the same for increasinfcaeo the figure is logarithmic). While the implicit propa

number of sites, and eager replication is only slightly ors gation in eager replication takes a few milliseconds, ietak
than lazy replication (both around 40 ms) several hundreds of milliseconds for lazy propagation. The

Figure 5 provides for a 2-site system a more detailed reason is the quite inefficient propagation technique, twhic

analysis of the response time. For eager replication, the fig is simple an(_j elegant, put requires a lot of commur_1|cat_|on

. : : . and processing cost. Figure 6 splits up the execution time
ure shows the client response time, the time spent in thefor ropagation between 2 sites. For site 2 to receive the
UDDI server, and the time spent in the Middle-R. For lazy propag '

replication, the figure shows the total client response time zwg\e éj dpgsttjesgeg(;rlrgzi?at?;s:;téir::hge:tsc?ggss atzsn'?txe- d
the time spent in the UDDI server executing the business 9 v v ubmitted.

logic, and the time spent in the filter executing the logger Although after step 7 in the figure, site 2 has accurate data,

transaction (both including access to the database). Gne caLheecgﬁées Iﬁefggs;d f((\)'\:h; tolrs rl;r;?gcseitse ssary I‘;(); tWr(()) SgeZt?our:
see that the eager approach spends most time in Middle-R; 10CESS DIODA ateZ more than one re L.est thsn Eteg < 1.3
This includes two calls to Middle-R, the multicasts within P bropag q P '

Middle-R, the database access and the housekeeping withil’;ilnnodreﬂ.r;rga;]éh;esarge'.”T&ng\f:rr;tlgfse? rizgs; Vé'” lt\laoktee
Middle-R. The impact of the total order multicast is not sig- | thl i ' q P 'tWI h ¢ 9 te th gt" b
nificant since determining the total order in a LAN is faster aiso that secondary Sites have 1o reexecute the entire web-

than executing the request at the database. This is true eveR v\ce (step 7) while the proposed eager appfoa‘:h has no
for 4 sites (and probably up to more than 20 sites). Lazy overhead at the web-servers of the secondary sites, and a re-

has database access overhead in the UDDI and the filter. Wguced overheadatthe databgse_to apply changes. Hence, in-
dependently of the propagation interval, lazy imposes more

consider the difference between both approaches n0t5|gnlfcpU overhead than the eager approach, since the eager ap-

cant, and some programming optimizations could probably L
. groach is implemented at a lower level.
decrease the response time of any of the two approache

even further. In particular, we believe that eager could out As a summary, in a LAN, lazy provides only slightly
perform lazy if it were implemented as a filter based ap- faster response time than eager, however, propagation puts
proach instead of accessing a completely separated middlea considerable burden on the system. If throughput and up-
ware server via RMI. If we compare the extra overhead of date rates are high, propagation can easily become the bot-
both approaches, then we can expect the additional databasteneck at web-server and DBMS. [21] shows that a simi-
access for logging of lazy to be more expensive than the sin-lar middleware to Middle-R can handle considerable update
gle LAN message overhead of eager. rates, leaving the web-server completely unaffected.

site 1 site 2
Eager and Lazy approaches in WAN

1.query) 10000 _—*® 13259
current 2.notify_change .% -,
status RecordsAvailable -
wait 3.query current g
status, compare o 1000
4 .get_changeRecord with 1's E
Q
5.query g 180 190 221
change wait 2 157
records] 6.send_changeRecords ¢ 100 159 166 163
125
7.apply
it change —=— Lazy Response
wat 8.notify records —e— Lazy Propogation
; o Eager Response
% ’ 1‘ : : : :
X Number of Sites
<’l&_uﬂ-t-l-ﬁ¥——‘

Figure 7. WAN: Response & Propagation Time

Figure 6. Lazy Propagation

degree of data consistency as well as eager approaches
4.3 WAN [20, 16, 21, 6, 22] showing that eager replication can be fast
and scale well if appropriate techniques are used. We have

Figure 7 depicts the response times in a WAN for up to used the approach of [21] in our evalution. We believe that
four sites. Note that this experiment uses other machinesother approaches can be applied in a similar way with simi-
than the LAN. The machines are slower and were quite lar performance results. In the distributed systems commu-
heavily used by other processes. This results in generallynity, object replication has received considerable attent
higher response times (three times as high for a single ma-mainly for fault-tolerance [12, 19]. More recent approache
chine compared to the LAN experiment). There might be combine object replication and transactions [27, 13]. Some
also higher variations in the results due to concurrent pro-of the approaches [6, 27, 13] have looked at the integra-
cesses on the machines. We can observe that the respon$®n with component based systems like CORBA and J2EE
times for lazy remain constant with increasing number of application servers. Web services and UDDI registries are
sites since they never include communication overhead. Foroften implemented using such application servers. In fact,
eager, response times increase with the number of sites. Dethe UDDIe registry used for our application uses a similar
termining the total order in a WAN takes longer than exe- multi-tier approach.
cuting the updates locally. With four sites, eager has atoun
30% worse response times than lazy. However, the absolut®s Conclusions
numbers are still quite acceptable considering the guaran-
tee of data consistency. Of course, the response times will

| ; , In this paper we have analyzed two replication strategies
further increase when new sites are added. For lazy replica4 4 various implementation alternatives for UDDI replica-

tion, the propagation time takes now in the order of several o, | goking at the implementation alternatives we con-
seconds (compared to less than a second in the LAN), Showg,|de that an aspect-oriented approach is the most attrac-

ing that scalability will be limited if interval time is ches tive mechanism to integrate replication with the business
relatively small. logic but relying on existing tools might make such an ap-
proach not feasible. Looking at the performance results an
5 Related Work approach which allows to run replication and application in
the same runtime environment has advantage over an ap-
Replication is a well-studied field. In regard to database proach that loosely couples the two components via RMI.
replication, many eager replication strategies were gego Regarding the replication strategies, they perform sinnila
in the 80’s [8] but never implemented because of effi- LANSs, while the lazy approach is faster in WANs. How-
ciency problems. Commercial systems used lazy scheme®ver, looking at the absolute values, clients will probably
instead [14]. A provocative paper of Gray et al [15] claim- also accept the slower response time of the eager approach.
ing that eager replication will never scale, fueled new re- In regard to update propagation, the eager approach favors
search, both for lazy approaches ([11, 9]) providing some the lazy strategy in regard to overhead, and stalenessaf dat

In our current work, we test our systems on more [14] , R. Goldring. A Discussion of Relational Database
replica. Furthermore, we are experimenting with other

types of aspect-oriented programming (comparing filters to
AspectJ), and implementing an aspect-oriented version of

eager replication.

References

(1]

(2]

(3]

(4]

(5]
(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

UDDl.org, The UDDI Technical White Paper,
http://www.uddi.org/whitepapers.html, Sep., 2000.

UDDl.org, UDDI Version 2.03 Replication
Specification, UDDI Open Draft Specification,
http://uddi.org/pubs/Replication-V2.03-Published-

[17

[16]

]

20020719.pdf, July, 2002. [18]
UDDl.org, UDDI Version 3.0 Specification,
http://www.uddi.org/specification.html
Java Servlet Specification Version 2.3., [19]
http://java.sun.com/products/servlet/download.html
Planet-lab homepage, http://www.planet-lab.org/.

20]

C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed
versioning: consistent replication for scaling back-end
databases of dynamic content web sitesMiddle-
ware, 2003.

T. A. Anderson, Y. Breitbart, H. F. Korth, and A. Wool.
Replication, consistency, and practicality: Are these
mutually exclusive? IACM SIGMOD 1998.

[21]

[22]

P. A. Bernstein, V. Hadzilacos, and N. Goodm@&on-
currency Control and Recovery in Database Systems
Addison Wesley. 1987.

Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, [23]

and A. Silberschatz, Update propagation protocols for
replicated database. KCM SIGMOD 1999.

E. Cecchet, J. Marguerite, and W. Zwaenepoel: Per-
formance and scalability of EJB applicationsQ@P-
SLA 2002.

P. Chundi, D. J. Rosenkrantz, and S. S. Ravi. Deferred
Updates and Data Placement in Distributed Databases.[
In Int. Conf. on Data Engineering.996.

P. Felber, R. Guerraoui, and A. Schiper. The Imple-
mentation of a CORBA Object Group ServiceThe-
ory and Practice of Object Systendg2),1998.

[24]

Replication Technology. IinfoDB, 8(1), 1994.

[15] J. Gray, P. Helland, P. O'Neil, and D. Shasha. The dan-

ger of replication and a solution. IACM SIGMOD
1996.

B. Kemme, and G. Alonso, Don't be lazy, be consis-
tent: Postgres-R, a new way to implement database
replication, Inint. Conf. on Very large Databases
2000.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J.
Palm, and W. G. Griswold. An overview of AspectJ.
In ECOOR 2001.

A. Mauthe and D Hutchison. Peer-to-peer computing:
systems, concepts and characteristic®raxis in der
Informationsverarbeitung und Kommunikation (PIK),
Special Issue on Peer-to-Peer, 26(03/a3)03.

L. E. Moser, P. M. Melliar-Smith, P. Narasimhan. A
Fault Tolerance Framework for CORBA. 8ymp. on
Fault-Tolerant Computingl 999.

F. Pedone, R. Guerraoui, and A. Schiper. Exploiting
Atomic Broadcast in Replicated DatabasesEumo-
Par, 1998.

R. Jiménez-Peris, M. Patifio-Martinez, B. Kemme,
and G. Alonso. Improving the scalability of fault-
tolerant database clusters.liit. Conf. on Dist. Comp.
Systems2002.

E. Pacitti, P. Minet, and E. Simon. Fast algorithms for
maintaining replica consistency in lazy master repli-
cated databases. Int. Conf. on Very large Databases
1999.

P. Chundi, D.J. Rosenkrantz, and S. S. Ravi. Deferred
updates and data placement in distributed databases.
In In Proc. of the Int. Conf. on Data Engineering
1996.

I. Stanoi, D. Agrawal, and A. El Abbadi. Using broad-
cast primitives in replicated databases. Int. Conf.
on Distributed Computing Systeni®998.

25] A. ShaikhAli, O.F.Rana, R. Al-ALi, and D. W. Walker.

UDDIle: An extended registry for web service.3ym-
posium on Applications and the Internet Workshops
(SAINT WorkshopsP003.

[26] Spread homepage, http://www.spread.org/.

[27] W. Zhao, Louise E. Moser, and P. M. Melliar-Smith.

P. Felber and P. Narasimhan. Reconciling Replica-
tion and Transactions for the End-to-End Reliability
of CORBA Applications. InCooplS/DOA/ODBASE
2002.

Unification of Replication and Transaction Process-
ing in Three-Tier Architectures. Imt. Conf. on Dis-
tributed Computing Systemz002.

