
Don’t be a Pessimist: Use Snapshot based Concurrency Control for XML

Zeeshan Sardar Bettina Kemme
McGill University, Montreal, Canada

{zsarda,kemme}@cs.mcgill.ca

1 Introduction

As native XML database systems (e.g., [3, 7, 8]) get in-
creasingly popular, fine-granularity concurrency control be-
comes imperative in order to allow different clients to con-
currently access the same documents. Existing concurrency
control approaches for XML are mainly based on locking
[2, 3, 4, 6, 5]. However, the experiments of [5] have shown
that the locking overhead, especially for read operations,
can be tremendous. In this paper, we present two snapshot
based concurrency control mechanisms that avoid locking.
Instead, transactions access a committed snapshot of the
data. OptiX is a variation of optimistic concurrency control
adjusted to use snapshots and work on XML data. SnaX
provides the isolation level of snapshot isolation [1] and has
similar semantics as the concurrency control mechanisms
implemented in, e.g., Oracle or PostgreSQL. Both proto-
cols are optimized to XML data in several ways. Firstly, we
implement snapshots using an efficient node-based multi-
version mechanism. Secondly, we take ancestor/descendant
relationships into account when we identify what a transac-
tion reads and writes. Lastly, we use the semantics of the
update operations to provide better concurrency.

2 XML

XML documents consist of elements which have a name,
can have text and/or elements as children, and can be own-
ers of attributes. In the tree representation of a document,
each element, text and attribute is a node of the tree. Ele-
ment and text siblings are ordered while attributes are not
ordered in regard to sibling nodes. Query languages such
as XQuery provide mechanisms to express constraints on
the structure of the tree as well as on the content. Path
expressions (e.g.,/site/*/region) select nodes at specific lo-
cations in the tree, and predicates are filters on text or at-
tribute nodes (e.g.,region = ’africa’). [9] suggested to ex-
tend XQuery to support various types of updates. An update
statement identifies via standard path and predicate con-
straints one or more target nodes for the update. Letp be
such a node, and lettree(p) be the subtree rooted atp. (i)

delete(p)deletestree(p). (ii) In replace(p,tree(q)), if p and
q are elements, thentree(p) is replaced withtree(q). For
text nodes the content is changed. For attributes, the value
of the attribute is changed. (iii)rename(p,pname)changes
the name of the element or attributep to pname. (iv) insert-
into(p,tree(q))insertstree(q) as a subtree below element
p. There is no requirement on the position ofq in regard
to already existing children ofp. (v) insert-after(p,tree(q))
insertsq as a new right sibling ofp. Since attributes are un-
ordered,p andq can either be element or text nodes.insert-
before(p,tree(q))is defined similarly, and hence, omitted
from the further discussion.

3 Snapshots

We implement snapshots via a multi-version system.
When a transactionTi starts, it receives a unique identifier
ID(Ti). Each nodep in an XML tree has avalid timestamp
V (p) which is the identifier of the transaction that created
this node.p also has aninvalid timestampIV (p) identify-
ing the transaction that invalidated this node. If no transac-
tion has invalidatedp so far, thenIV (p) = NULL. Insert-
ing a node or subtree creates valid timestamps at the inserted
nodes, deleting a node or subtree adds invalid timestamps to
the nodes. The replace operator has the effect of a combined
delete and insert. For rename, we maintain a stack of names
that have been given to the node and associate valid and
invalid timestamps with these names.

In order for a transactionTi to access a snapshot of the
tree as of start of transaction, we maintainEB(Ti) as the
set of allID(Tj) such thatTj committed beforeTi started
plus ID(Ti) itself (Ti can see its own changes). Then,Ti

can accessp if V (p) ∈ EB(Ti) ∧ IV (p) /∈ EB(Ti).

4 Snapshot based Concurrency Control

In both concurrency control mechanisms that we pro-
pose, transaction execution is split into working phase, vali-
dation phase, and update phase. Two transactionsTi andTj

are concurrent ifTi started the working phase beforeTj fin-
ished the update phase and committed, or vice versa. Dur-

1



ing theworking phaseof transactionTi all read and write
operations are executed on the snapshot accessible byTi.
The read setRS(Ti) denotes the nodes read byTi and the
write setWS(Ti) denotes the nodes written byTi. Once
Ti wants to commit, it goes into thevalidation phase. No
two transactions can be concurrently in validation phase. If
Ti passes validation, theupdate phasewrites the changes
performed byTi into the database and commitsTi. Up-
date phases of different transactions can be executed con-
currently. If Ti fails validation, it must abort: new nodes
created byTi are removed, and any invalid timestamps it
has set are undone. Since we use snapshots, read-only trans-
actions do not need to perform validation but can commit
immediately. Hence, read-only transactions never abort.

OptiX and SnaX differ in their validation of update trans-
actions. OptiX follows traditional optimistic concurrency
control. A transactionTi passes validation if for all con-
current transactionTj that already validated,WS(Tj) ∩
RS(Ti) = ∅. The motivation is that ifTi passes validation
then the execution should be equivalent to a serial execu-
tion whereTj executes completely beforeTi. In this case,
if WS(Tj)∩RS(Ti) 6= ∅, thenTi would read changes done
by Tj but it does not do so in a concurrent execution.

SnaX provides the isolation levelsnapshot isolationas
now offered by many relational systems. Snapshot isola-
tion conforms to the ANSI SQL definition of serializability
but is not conflict-serializable in the traditional sense [1].
The strength of snapshot isolation is that it can be imple-
mented without keeping track of reads. Instead, it only han-
dles write/write conflicts. That is, a transactionTi passes
validation if for all concurrent transactionTj that already
validated,WS(Tj) ∩ WS(Ti) = ∅. Since many applica-
tions are read-intensive, ignoring reads reduces not only the
concurrency control overhead, but also the number of con-
flicts because only write/write conflicts are considered.

Read and Write Sets One challenge is to identify read
and write sets given the nested structure of XML and the
various operation types that exist. In order to provide smart
conflict detection, we split read setRS(Ti) of transaction
Ti into subsetsRR(Ti), ER(Ti), andERA(Ti). RR(Ti)
contains the roots of subtrees returned as part of a query.
ER(Ti) contains the nodes that are explicitly read as part
of a predicate or path constraint, but that are not returned
within the query result. For instance, assume a statement
contains the path expression/site/regions. Then all nodes
that fulfill this path expression and their ancestors are in
ER(Ti). These nodes belong to the read set, because if
someone else changes them, the statement might have a
different result. If a path expression contains a wildcard,
e.g., /site/regions/*/items, then nodes identified by ‘*’ are
not part ofER(Ti). Finally, ERA(Ti) includes the nodes
that are read for the insertion of a sibling after them.

The write setWS(Ti) of a transactionTi is split into

Table 1. Conflict Matrix for OptiX

Ti Tj already validated
validating onp on q

D Rn I IA WS

onp RR - - -
√

-
ER - -

√ √ √

ERA - -
√

-
√

on q RS -
√ √ √

subsetsD(Ti), Rn(Ti), I(Ti) andIA(Ti). D(Ti) contains
the roots of subtrees deleted or replaced byTi. Rn(Ti) con-
tains the nodes renamed byTi. I(Ti) contains the immedi-
ate parents of any nodes inserted byTi. IA(Ti) contains the
same nodes asERA(Ti). We need this set because transac-
tions using the insert-after operation might require nodes to
be placed at a certain position. For example, if elements are
sorted in an alphabetical order, then insert-after operations
on the same node by two concurrent transactions might lead
to inconsistencies, and should be disallowed.

Validation in OptiX AssumeTi wants to validate, and
concurrent transactionTj validated beforeTi. Assume a
nodep ∈ RS(Ti) ∩ WS(Tj). Instead of immediately in-
ducing a conflict, we look at the subsets ofRS(Ti) and
WS(Tj) of whichp is a member and check the conflict ma-
trix of Table 1.

√
indicates compatibility, while - shows a

conflict leading to an abort ofTi. A conflict means that if
Ti had executed serially afterTj , then it would have pos-
sibly read a different value forp than in the concurrent ex-
ecution. Compatibility means that in a serial executionTj

beforeTi, Ti would have read exactly the same value for
p. SinceRR(Ti) andD(Tj) only contain the roots of af-
fected nodes, the matrix also considers ancestor/descendant
relationships wherebyp is assumed to be an ancestor ofq.

Generally, delete, replace and rename operations conflict
with most read operations while insert operations conflict
only with few read operations. For space reasons we only
discuss the casep ∈ I(Tj) in detail. If p ∈ RR(Ti), there
is a conflict, becauseTi’s read-only operation returns the
subtree rooted atp. If Tj executed beforeTi, thenTi would
read the data inserted byTj , the concurrent execution, how-
ever, does not. Ifp ∈ {ER(Ti), ERA(Ti)}, Ti only reads
the nodep and not its descendants, and hence, does not con-
flict with Tj ’s insert of a new child ofp. q ∈ RS(Ti) does
not cause a conflict becauseTj ’s insert of a new child ofp
has no effect on reading a descendantq of p.

Validation in SnaX For SnaX, we ignore the read sets and
only consider write/write conflicts. Table 2 shows the corre-
sponding conflict matrix. Recall that OptiX checks whether
in a serial executionTj beforeTi, Ti would read the same
values as in the concurrent execution. We cannot perform



Table 2. Conflict Matrix for SnaX

Ti Tj already validated
validating onp onq

D Rn I IA WS

onp D - - -
√

-
Rn - -

√ √ √

I -
√ √ √ √

IA
√ √ √

-
√

on q WS -
√ √ √

such reasoning here since snapshot isolation does not guar-
antee that there is an equivalent serial execution. Instead,
we check whether there is really a write/write conflict. Note
that the matrix is symmetric since it does not matter which
write operation was performed first.

Generally, delete and replace conflict with most other up-
date types, while inserts conflict only with few. Again, we
only look closely at the case wherep ∈ I(Tj). If p ∈ D(Ti)
we have a conflict. A delete or replace spans the entire
tree(p) and hence, implicitly conflicts with a concurrent
insert into thistree(p). If p ∈ {Rn(Ti), I(Ti), IA(Ti)},
there is no conflict. There is no insert/rename conflict be-
cause the insert changes only the subtree belowp while the
rename only changesp. There is no insert/insert conflict be-
cause order does not matter. There is no insert/insert-after
conflict because the subtrees are inserted at different loca-
tions. Finally, ifq ∈ WS(Ti), there is no conflict sinceTj ’s
insert intop does not affect descendantq of p.

5 Evaluation

We integrated both OptiX and SnaX into the native XML
database systems McXML [10]. McXML supports a subset
of the XQuery language and all XQuery update statements
proposed in [9]. For space reasons we only provide a sum-
mary of one of the many experiments we performed. This
experiment used a narrow and deep tree (each inner node
has two to three children and tree height is nine), and ana-
lyzed response time and abort rate with increasing through-
put for two different workloads. When the workload sub-
mitted to the system contained only update operations (0%
read-only statements), SnaX performed slightly better than
OptiX. Although there are only updates, they include pred-
icate evaluations and path evaluations which read nodes.
This leads to higher abort rates for OptiX than for SnaX.
However, abort rates are generally small, and hence, the re-
sponse time of OptiX is only slightly worse than the one for
SnaX. With a workload that contains 50% read-only state-
ments, response times are much higher for OptiX than for
SnaX. This is due to conflict behavior. Since queries usu-
ally read more than one node, the abort rate with OptiX is

much higher with 50% reads than with 0% reads. In con-
trast, SnaX only considers write/write conflicts. Hence, the
abort rate is much lower with 50% reads than with 0% reads.

Our other experiments confirmed that SnaX performs
generally better than OptiX. However, SnaX does not pro-
vide conflict-serializability in the traditional sense. If an ap-
plication has read/write patterns that lead to many anoma-
lies under SnaX, OptiX might be the better choice.

We also run the experiments with no concurrency con-
trol in place (only the multi-version system was active and
all transactions committed despite conflicts). The response
times for this baseline experiment were less than 3% lower
than the response times for SnaX. This shows that our snap-
shot based protocols have little overhead.

6 Conclusions

This paper presented two snapshot based concurrency
control protocols for XML. OptiX extends traditional op-
timistic concurrency control while SnaX provides snapshot
isolation avoiding to keep track of reads. Our protocols con-
sider a wide range of operation types and work on the gran-
ularity of individual nodes in order to achieve low conflict
rates. Our performance evaluation shows that our protocols
have low overhead. Furthermore, SnaX outperforms OptiX
due to the simplified handling of read operations.

References

[1] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J.
O’Neil, and P. E. O’Neil. A critique of ANSI SQL isola-
tion levels. InSIGMOD, 1995.

[2] S. Dekeyser, J. Hidders, and J. Paredaens. A transaction
model for XML databases.World Wide Web, 7(1), 2004.

[3] T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J. Neu-
mann, R. Schiele, and T. Westmann. Anatomy of a na-
tive XML base management system.VLDB Journal, 11(4),
2002.

[4] T. Grabs, K. B̈ohm, and H.-J. Schek. XMLTM: efficient
transaction management for XML documents. InCIKM,
2002.

[5] M. P. Haustein and T. Ḧarder. Adjustable transaction isola-
tion in XML database management systems. InXSym, 2004.

[6] S. Helmer, C.-C. Kanne, and G. Moerkotte. Lock-based pro-
tocols for cooperation on XML documents. InDEXA, 2003.

[7] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Laksh-
manan, A. Nierman, S. Paparizos, J. M. Patel, D. Srivastava,
N. Wiwatwattana, Y. Wu, and C. Yu. TIMBER: A native
XML database.VLDB Journal, 11(4), 2002.

[8] X. Meng, D. Luo, M.-L. Lee, and J. An. OrientStore: A
schema based native XML storage system. InVLDB, 2003.

[9] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Up-
dating XML. In SIGMOD, 2001.

[10] J. Wu. Updating and indexing XML data. Master’s thesis,
McGill University, Canada, 2004.


