
Postgres-R(SI): Combining Replica Control with Concurrency Control based on
Snapshot Isolation

Shuqing Wu Bettina Kemme
School of Computer Science, McGill University, Montreal

�swu23,kemme�@cs.mcgill.ca

Abstract

Replicating data over a cluster of workstations is a
powerful tool to increase performance, and provide fault-
tolerance for demanding database applications. The big
challenge in such systems is to combine replica control
(keeping the copies consistent) with concurrency control.
Most of the research so far has focused on providing the tra-
ditional correctness criteria serializability. However, more
and more database systems, e.g., Oracle and PostgreSQL,
use multi-version concurrency control providing the iso-
lation level snapshot isolation. In this paper, we present
Postgres-R(SI), an extension of PostgreSQL offering trans-
parent replication. Our replication tool is designed to work
smoothly with PostgreSQL’s concurrency control provid-
ing snapshot isolation for the entire replicated system. We
present a detailed description of the replica control algo-
rithm, and how it is combined with PostgreSQL’s concur-
rency control component. Furthermore, we discuss some
challenges we encountered when implementing the proto-
col. Our performance analysis based on the TPC-W bench-
mark shows that this approach exhibits excellent perfor-
mance for real-life applications even if they are update in-
tensive.

1. Introduction

For a long time, data replication has been considered
an excellent solution to increase throughput (more repli-
cas can serve more requests), decrease response times (dis-
tribute the load and access the local replica), and pro-
vide fault-tolerance. Replication, however, has the chal-
lenge of replica control. Changes submitted to one replica
have to be applied at the other replicas such that the differ-
ent copies of the database remain consistent despite con-
current updates. Standard correctness criteria is 1-copy-
serializability, i.e., the concurrent execution of a set of trans-
actions on the different replicas should have the same effect
as a serial execution on a centralized database. As such,

replica control has to be combined with or at least must
be aware of the concurrency control mechanism that de-
termines the serialization order at each individual replica.
Early research solutions focused on fault-tolerance [5], and
were seldomly implemented in commercial systems, which
mostly offered ad-hoc solutions violating traditional trans-
actional properties in order to achieve acceptable perfor-
mance [15]. A thorough analysis by Gray et.al. in 1996 [16]
claimed that existing approaches scale badly, and are not
suitable for modern applications. Their analysis revived re-
search in database replication leading to many new solu-
tions that attempt to eliminate the limitations pointed out
by [16], while still providing global serializability, e.g.,
[3, 27, 7, 18, 21, 6, 22, 26, 25, 30, 1, 19, 8, 23, 14, 2].

For instance, Postgres-R [21] implements a lock-
ing based replica control algorithm by extending Post-
greSQL, version 6. It uses special multicast primitives
provided by group communication systems to propa-
gate write operations. These primitives order concurrent
messages and deliver them to all replicas in the same or-
der. All replicas execute conflicting operations according to
this order guaranteeing global serializability.

While many of the other proposals were analyzed using
analytical or simulation based studies, very few were im-
plemented as prototypes or real systems. Of those, most use
a middleware layer and keep the database replicas nearly
unchanged. As such, the middleware has to implement its
own concurrency control component, and faces the chal-
lenge that only the SQL statements are visible but not the in-
dividual tuples to be accessed. In contrast, Postgres-R [21]
integrates replica control into the kernel of a database sys-
tem. The main advantage of such approach is that it can take
advantage of internal components. For instance, it can di-
rectly interact with the often tuple-based concurrency con-
trol of the database system, and does not need to implement
its own concurrency control mechanism. Furthermore, di-
rect access to the tuples and/or logs is given allowing for
an efficient propagation of changed tuples. Another advan-
tage is that the replica tool comes within the same software
package as the database system making installation and us-

age easier. Commercial systems are able to sell their repli-
cation modules at high price for exactly these reasons.
However, while serializability is the predominant cor-

rectness criteria used in research, more and more database
systems only offer the isolation level Snapshot Isolation
(SI), e.g., Borland [11], Oracle [12], and version 7 of Post-
greSQL [17]. This isolation level can be implemented using
multi-version concurrency control. Snapshot isolation al-
lows some non-serializable executions, but it providesmuch
more concurrency for read-only transactions, and hence is
very useful for read intensive applications. The basic idea
is to keep several versions of a data object. Read opera-
tions read from a committed ”snapshot” of the database, and
work completely independent fromwrites. Write operations
of concurrent transactions, however, are disallowed.
In this paper, we present Posgres-R(SI), the newest ver-

sion of Postgres-R, providing replication for PostgreSQL
7.2. Posgres-R(SI) has a similar architecture as the original
Postgres-R using a total order multicast. What is new is the
integration of replica control with the multi-version concur-
rency control algorithm of PostgreSQL, version 7, in order
to detect write/write conflicts and determine the snapshot of
read operations. This required us to obtain a detailed under-
standing of PosgreSQL’s multi-version system, and made it
a challenge to extend PostgreSQL in a modular way with-
out really changing existing components.
In summary, the paper presents a thorough analy-

sis of a concurrency control mechanism providing snap-
shot isolation, and a replica control algorithm based on this
mechanism. Our implementation presents a modular ex-
tension of the PostgreSQL database system, providing
replication without significant changes to the original sys-
tem. Replication is transparent to the user providing
it with the same isolation level as the centralized sys-
tem. Furthermore, Postgres-R(SI) provides excellent
performance in terms of throughput, scalability, and re-
sponse times.
The rest of the paper is structured as follows. Section 2

presents related work. Section 3 introduces background in-
formation. Section 4 describes the algorithm, and Section
5 presents the implementation. Section 6 provides a perfor-
mance evaluation. Finally, Section 7 concludes the paper.

2. Related Work

In the last decade, a vast body of research has proposed
replica control solutions based on various concurrency con-
trol mechanisms, e.g., locking [18, 21, 22, 23, 8], optimistic
[27], multi-version [1], and serialization graph [3] based
techniques providing serializable execution, or mechanisms
that provide lower levels of isolation [21, 29]. These replica
control algorithms can be categorized by two parameters
as described in [16]. The first parameter describes the time

point of coordination among replicas. In lazy schemes, a
transactions executes locally and changes are only propa-
gated after the commit providing fast user response time but
transactions might be lost if a replica fails between commit-
ting and propagating changes. In contrast, eager schemes
coordinate before the transaction commits. This can guar-
antee consistency at all times but increases response times.
The second parameter determines where updates can be
submitted to. In a primary copy approach, only the primary
copy of a data object accepts updates propagating them to
the secondary copies. In contrast, using update everywhere,
all replicas accept updates and take charge of coordination.

Primary copy approaches allow for a loose coupling be-
tween replica and concurrency control, only requiring that
secondaries apply conflicting updates in the same order they
were executed at the primary. [7, 26, 25, 30, 14, 29] fol-
low this approach putting their emphasis on how to guaran-
tee that read-only transactions on the secondary copies read
consistent data. Among them, [30, 29] provide middleware
based prototypes. The main problem of primary copy ap-
proaches is its restrictive handling of updates. Updates may
only be submitted to the primary and transactions that want
to update objects with different primaries are disallowed.

Update everywhere is more flexible but requires a more
sophisticated integration with concurrency control. If com-
bined with lazy propagation, the problem arises that con-
flicts of transactions executing on different replicas can only
be determined after transaction commit requiring to undo
committed transactions. Hence most research focuses on
eager solutions. Many proposals use, as we, group com-
munication systems with total order multicast to help se-
rializing transactions, e.g. [27, 18, 21, 22, 25, 23]. Except
of Postgres-R, they are only evaluated on a simulation ba-
sis [27, 18, 22] or within a middleware [23]. In other ap-
proaches, a middleware based scheduler provides concur-
rency control on a table basis [8, 1]. [23, 2] additionally an-
alyze load-balancing issues in middleware based systems.
Most of them require to know all tables accessed by a trans-
action in advance limiting flexibility.

There has been little work so far to combine replica con-
trol with concurrency control based on snapshot isolation.
[29] presents a primary-copy based middleware solution
which relies on the underlying database system for concur-
rency control. [31] provides a snapshot isolation algorithm
for a federated database which could also be used for replica
control. In [22], we propose a replica control solution based
on snapshot isolation. Clearly, the work we present here
has been inspired by our previous work. However, the con-
currency control algorithm of PostgreSQL is very different
than the one assumed in [22]. Version labeling and man-
agement is different, and PostgreSQL uses locking to de-
tect write/write conflicts while [22] proposes an optimistic
scheme. As such, the algorithm within Posgres-R(SI) has

little to do with the algorithm proposed in [22].
Most commercial systems provide replication solutions

that are integrated into the database kernel, providing var-
ious replication schemes. Most of them, however, are lazy,
primary copy schemes [28].

3. Background

3.1. Transactions and Isolation Levels

A transaction �� is a sequence of read ����� and write
operations ����� on data objects X. �� must run atomi-
cally, i.e., either all operations succeed and � � commits (��),
or none of its operations has effect on the database and it
aborts (��). We define two transactions to be concurrent if
neither terminated (commit/abort) before the other started.
Isolation levels describe how the system handles conflict-
ing operations of concurrent transactions. Two operations
conflict if they are from different transactions, access the
same object and at least one is a write. The strongest isola-
tion level is serializability guaranteeing that the concurrent
execution of a set of transactions has the same effect as a se-
rial execution. [4] introduces an isolation level called snap-
shot isolation (SI) which is used by several multi-version
database systems where write operations create new object
versions. We denote an object version to commit once the
transaction that created the version commits. A concurrency
control system providing SI must obey the following rules.
(i) Each first ���� of a transaction � on object � creates
a new version of � , (ii) subsequent ��������� of � ac-
cess the newly created version, and (iii) a ���� of � not
preceded by a ���� of � , reads the last version of � that
committed before� started. Finally, if two concurrent trans-
actions write object� , at least one of them must abort.
SI separates read and write operations. Reads, never

blocking or being blocked, do not interfere with writes since
they read from a committed snapshot. However, SI does not
guarantee serializability. Assume �� and �� both read ob-
jects� and � and then update one of the objects. SI allows
the execution ������ ������ ���� �� ���� �� ������ ���� �
since the transactions update different objects. However, it
is not serializable since in any serial execution either ��

would have read the update performed by � � or vice versa.

3.2. Group Communication Systems (GCS)

In a group communication system (GCS) [9], a group
consists of a set of members. A member can multicast a
message (via the GCS) to all group members (including it-
self) or send point-to-pointmessages. Messages are guaran-
teed to be delivered if no failures occur, otherwise at-most-
once. Different multicast protocols provide different order-
ing and reliability properties. In our context, we are inter-

ested in uniform-reliable delivery (if any member receives
a message – even if it fails immediately afterwards – all
members receive the message unless they fail) guaranteeing
basically all-or-nothing on the message level. Furthemore,
we are interested in totally ordered messages (if two mem-
bers receive messages 	 and 	�, they both receive them
in the same order). GCS also maintains a view of the cur-
rently connected members. Whenever the view configura-
tion changes, the GCS informs all member applications by
delivering a view change message. The typical property for
group membership is virtual synchrony: If members
 and �
receive both first view � and then � �, they receive the same
set of messages while members of � . The GCS provides ex-
plicit join and leave primitives. Additionally, crashed mem-
bers are automatically removed from the view using a fail-
ure detection mechanism. Since failure detectors cannot be
perfect in asynchronous environments, the GCS might ex-
clude a correct member. In this case, we assume that the
replica shuts down itself and is considered failed. Current
GCS have excellent performance in LANs. For instance,
Spread [32] only needs a few miliseconds for a total or-
der uniform-reliable message delivery, and is able to handle
hundreds of messages per second of this message type.

3.3. Replica Control based on GCS

In this paper we follow the approach of [22] to ex-
ploit GCS for replica control, and we present the princi-
ple ideas very shortly. A transaction �� can be submitted to
any replica. This replica is ��’s local replica and �� is local
at this replica. All other replicas are remote replicas for ��
and �� is remote at these replicas. �� is first completely exe-
cuted at the local replica, and write operations are collected
within a writeset. At commit time, the writeset is multicast
to all replicas using the total order multicast. All replicas
now use the total order delivery to determine the serializa-
tion order. Whenever two operations conflict they must be
executed in the order the writesets were delivered. Since this
is the same at all replicas, all replicas serialize in the same
way. No complex agreement protocol or distributed con-
currency control is necessary. The different protocols pro-
posed in [22] use different local concurrency control pro-
tocols as their basis. Furthermore, uniform-reliable deliv-
ery is used to avoid lost transactions. When the sender re-
ceives a writeset itself it knows that everybody else will or
has received it. Hence, it is safe to commit/abort a transac-
tion locally because the other replicas will do the same. This
model is different than the model assumed by [16] for ea-
ger update everywhere replication, and hence, avoids many
of the limitations pointed out by [16]. Instead of having
messages for each operation, only one message exchange
occurs per transaction. Instead of running an expensive 2-
phase-commit requiring each replica to execute the trans-

action before it can commit, it can commit locally without
waiting that other replicas have executed the writeset. This
leads to decreased response times and conflict rates.
When replicas fail, the GCS informs the remaining repli-

cas. They simply can continue as a smaller group. Recovery
requires to transfer the current database state to the recover-
ing replica. We will shortly discuss this in Section 4.3.

4. Replica Control providing SI

In this section, we first present the centralized concur-
rency control algorithm of PostgreSQL, version 7.2, which
we call SI-P. Then, we propose a replica control algorithm
SI-PR, which is based on SI-P. For simplicity of descrip-
tion, we only consider SQL update statements. It is easy to
extend the algorithms for insert and delete statements, and
Postgres-R(SI) supports them.

4.1. SI-P: Concurrency Control in PostgreSQL

In PostgreSQL, each transaction �� is assigned a unique
identifier ��� when it starts. This identifier will be used
for labeling tuple versions and detect conflicts.

Version System In PostgreSQL, each update on tuple �
creates a new version of � . We denote a version cre-
ated by a transaction that committed (aborted) a commit-
ted (aborted) version. An important characteristic is that a
write operation ���� have to acquire an exclusive lock on
� which is only released at the end of transaction. As a
result, there are never two transactions concurrently creat-
ing new versions of the same tuple. With this, we define
as valid version of � , the version of � created by the last
committed transaction that updated � . There is always ex-
actly one valid version of � . Finally, we denote as active
version of � , a version created by a transaction that is still
active. There is at most one active version of � in the sys-
tem. In Figure 1 at time ��, both � � and � � are committed,
� � is valid, and � � is active.
Each tuple version � is labeled with two ��s. � �	��

is the �� of the transaction that created � , and � �	�� is
the �� of the transaction that invalidated � due to an up-
date creating a new version. That is, when a transaction � �

performs an update on a tuple � , it takes the valid version
� of � , and makes a copy � � of � . Furthermore, it sets
� ’s � �	�� and � �’s � �	�� to ���. In Figure 1 at time
��, �� takes the version � � to make a new version � �.
Two concurrent transactions may not perform write op-

erations on the same tuple � . Therefore, before a transac-
tion �� performs its first write operation on tuple � , it per-
forms a version check to see whether there is any concurrent
transaction �� that updated � and already committed. For
that, �� looks at the valid version of � and checks whether
� �	�� is the ��� of a concurrent transaction �� . If this

Time

t1

b0
w0(X)

c0
b1
w1(X)
b2
w2(y)
c1
w2(X)
a2
b3
w3(X)
b4
r4(X)

t3

t2

t4

t_xmin: T0
t_xmax: Null

X: V0

t_xmin: T0
t_xmax: T1

X: V1

t_xmin: T1
t_xmax: Null

X: V0

t_xmin: T0
t_xmax: T1

X: V1

t_xmin: T1
t_xmax: T3

X: V2

t_xmin: T3
t_xmax: Null

X: V0

Figure 1. Version creation during execution

is the case, a conflict is detected, and �� will abort. In Fig-
ure 1, ��must abort at time �� because of valid version � �
with � �	�� � �� and �� committed after �� started.
When a transaction �� performs a read operation on �

after writing� , it reads its own, newly created version. Oth-
erwise, it reads the version created by transaction �� such
that �� committed before �� started and there is no other
transaction �� that updated� and committed after �� com-
mitted and before �� started. We denote this as ��’s visible
version of � . Using � �	�� and � �	��, the visible ver-
sion can easily be determined. � �	�� must be the ���

of transaction �� such that �� committed before �� started.
� �	�� must be either NULL, refer to an aborted transac-
tion, or refer to a concurrent transaction (invalidation is ig-
nored by �� independently of whether the concurrent trans-
action is active or already committed). With this, � � reads
the last committed version as of the time of ��’s start. Note
that read operations do not change the � �	���� �	�� of
any version. In Figure 1 at time ��, �� reads � � (�� com-
mitted before �� started), and not � �.

Determining the snapshot In order to determine valid and
visible tuple versions, a transaction must know the status
of other transactions. PostgreSQL keeps information about
each active transaction �� in shared memory. Among this
information is a snapshot struct containing �	��, the
�� for the next transaction which will start just after ��,
and ��
, a list of the ��� of all active transactions at the
moment when �� starts. We denote as � ����

� � ��� �
��
 � �� � �	��� the set of concurrent transactions
whose updates are invisible to ��. All others have already
terminated before �� started. If they committed, their ver-
sions might be visible. We denote these transactions as
� ���
� � ������ �� � ����

� and ���	 committed�. In
order to keep track of the outcome of transactions, when-
ever a transaction terminates, PostgreSQL inserts a com-
mit/abort log entry into a file called ����. The tail of ����
is kept in main memory, and ���� provides a fast method
that takes as input a �� and returns the outcome (com-

mit/abort) of the corresponding transaction. As an exam-
ple, when �� starts in Figure 1 at ��, ��
 is �����,
�	�� � ���, and ���� contains a commit entry for ��.

The SI-P protocol Each transaction �� has two phases

Execution Phase
� When �� performs ����� on tuple� for the first time,
it first performs a version check. It reads the valid ver-
sion � of � and checks whether � �	�� � � ����

� .
If this is the case, then �� is aborted (see termination
phase). Otherwise (� �	�� � � ���

�), �� requests an ex-
clusive lock for � . If the lock is granted immediately,
�� makes a copy � � of � , and sets � �	�� of the old
version � and � �	�� of the new version � � to its own
���

1. If there is already a lock on � , ��’s request
is appended to a waiting queue for � . Upon being wo-
ken up by the transaction releasing the lock on � , � �

starts all over again with the version check.

� When �� performs a successive write �����, it simply
uses the previously created version � �.

� When �� performs �����, it reads its own version � �

if existing, or it reads the visible version � of � , i.e.,
� �	�� � � ���

� and � �	�� �� � ���
�

2.
Termination Phase. Upon the commit request or abort for
��, �� updates ����, releases all locks, and wakes up all
transactions waiting for one of these locks.
Note that the version check happens before requesting

the lock and will be repeated if the transaction has to wait
for the lock. When a transaction �� holding the lock com-
mits and wakes up a waiting transaction �� , ��’s version
check will fail since now ��’s version is valid and �� is con-
current to �� . If �� aborts, ��’s check will succeed, and it
will again request the lock. If several transactions are wait-
ing, all are woken up and perform the check, and either
abort, or compete again for the lock. For example, in Fig-
ure 1, assume that �� submits ����� at the time the figure
shows�����. At this time, �� holds a lock on� . When ��
releases the lock at ��, �� repeats and fails the check.

4.2. SI-PR: Replica Control based on SI-P

Global Transaction Identifiers (GID) ��� are local at
each replica and will differ at the different replicas (which
all have different read-only transactions). Many compo-
nents of PostgreSQL use ��� in different ways, and
hence, we do not want to change their generation. There-
fore, each transaction receives a local �� at start as be-
fore. In order to compare transactions across replicas, each
update transaction additionally receives a global identifier

1 Since � is valid, �� passed the check and has a lock, � ���� of � is
either ���� or the �	
 of an aborted transaction.

2 Here, � ���� might contain the �	
� of concurrent transaction �� ,
but � is still visible to �� because �� ignores �� ’s invalidation of � .

��, which will be the same at all replicas. The ��
of a transaction will be used to match the different lo-
cal ��s created on different replicas. We generate ��s
without extra coordination overhead by using the total order
in which writesets are delivered.We keep a�� counter at
each replica.Whenever a writeset is delivered, the counter is
increased and its current value assigned as �� to the cor-
responding transaction. Furthermore, each replica keeps an
internal table that allows for a fast matching between ��
and corresponding��.

The protocol In SI-PR, we have to distinguish between lo-
cal and remote transactions. As in SI-P, local transactions
perform operations step by step whenever a statement is
submitted. Remote transactions, however, only have write
operations that are all known at the time of writeset delivery.
Furthermore, we must guarantee that conflicting operations
of both local and remote transactions are executed in the or-
der of writeset delivery. In order to achieve this without too
much complexity, we first present an algorithm that exe-
cutes all remote transactions serially. More precisely, when-
ever a writeset is delivered for either local or remote trans-
action, the transaction has to completely terminate before
the next writeset is delivered. We indicate this as atomic in
the algorithm. At the end of this section, we extend the al-
gorithm to allow execution of non-conflicting writesets.

Local Transaction
Execution Phase: The execution phase of a local transac-
tion �� is the same as in SI–P with some additions. For
each ����� that passes the version check (on ���) and
receives the lock, �� takes the valid and visible version �
created by �� (� �	��=���), makes its own copy � � of
� and performs the update on � �. At the same time, it re-
trieves the��� of �� from the internal table. Both the new
version � � of� and ��� are added to the writeset.
Send Phase:When �� submits the commit request, and �� is
read-only, it commits immediately. Otherwise the writeset
��� is multicast to all replicas using total order multicast.
Commit Phase (atomic): Upon delivery of the writeset of
��, its ��� is generated. If �� was not yet aborted, ���

is added to the internal table together with ���, ���� is up-
dated (commit entry), and all locks of � � are released wak-
ing up all transactions waiting for one of these locks.
Abort Phase: Upon abort, ���� is updated (abort entry), and
all locks are released. If the first waiting transaction for a
lock is a remote transaction, only the remote transaction is
woken up. Otherwise, all waiting transactions are woken up.
(Explanation see below).

Remote Transaction (atomic): Upon delivery of a remote
writeset ���, a transaction �� is started, its ��� gener-
ated, and (���/���) added to the internal table.
Version Check and Early Execution: For each tuple version
� � of� in���, the following actions are performed.

1. �� retrieves the local valid version � of � . Instead of
performing the version check according to local ���,
it performs it using the ���. That is, it retrieves from
the internal table the ��� belonging to � �	�� of � ,
and compares it to the ��� attached to � � in���.

2. If the ��s are different, a transaction had updated�
and committed since �� executed on its local replica.
Hence, the check fails, and �� aborts.

3. If the��s are the same, the valid version of� is still
the same as when �� executed at its local replica. The
version check succeeds, and �� requests a lock for� .

4. If the lock is granted immediately, � � sets � �	�� of �
and � �	�� of � � to its own ���.

5. If there is already a lock on � , this lock belongs to an
active local transaction �� which either has not yet sent
its writeset or whose writeset has not yet been deliv-
ered (no other remote transaction is active; and local
transactions whose writesets had been delivered are ter-
minated). �� should be aborted because ��’s writeset is
delivered first, and hence, �� should be serialized before
��. However, we do not abort immediately but wait un-
til �� has passed the checks on ALL tuples in���.

Late Execution: If �� has not yet aborted, it has passed the
version checks for all tuples, and performed some of the
updates. At this time point, we know that �� will commit. It
now has to perform the updates on the tuples for which local
transactions have locks. Hence, for each such tuple� , � � re-
quests again a lock, and if the local transaction �� still holds
it (it might have aborted in between), � � sends an abort re-
quest to ��. �� aborts and releases the lock which is directly
granted to �� (different to SI-P which wakes up all waiting
transactions). Now �� can perform the update.
Commit Phase: After all updates are performed, � � updates
���� and releases all locks, waking up transactions.

Note that if there is no lock active on a tuple then an up-
date is performed at the same time as the version check,
avoiding to access a tuple twice whenever possible. Note
also that there is no version check upon writeset delivery
of a local transaction. If there is any conflict between a lo-
cal transaction �� and a remote transaction �� whose write-
set is delivered before ��’s writeset, �� would have been
aborted by �� in ��’s late execution phase. Hence, upon de-
livering the writeset for ��, if it is still alive, it has already
passed the version check implicitly. Note also that a local
transaction can commit when its writeset is locally deliv-
ered. The GCS guarantees that the writeset will be deliv-
ered, and hence, eventually executed at all replicas.
We will first give a simple example of execution as de-

picted in Figure 2. An initial transaction �� with ��=0
has updated � at replicas R1 and R2. Now assume �� is
local on R1 updating X, and �� is local on R2 and also
updates � . Both multicast their writesets which are de-
livered �� before �� at both replicas with ��=1 and

R1 R2

X: V0

t_xmin: T0
t_xmax: Null

X: V0

t_xmin: T0
t_xmax: Null

X: V0

t_xmin: T0
t_xmax: T1

T0:GID=0
T0: commit

X: V0

t_xmin: T0
t_xmax: T2

X: V2

t_xmin: T2
t_xmax: Null

X:V1, GID=0

T1:GID=1
T1: commit

T0:GID=0
T0: commit

T1: GID=1
T2:abort
T1: commit X: V0

t_xmin: T0
t_xmax: T1

X: V2

t_xmin: T2
t_xmax: Null

X: V1

t_xmin: T1
t_xmax: Null

T2:abort

discard

X:V2, GID=0

TimeTime

X: V1

t_xmin: T1
t_xmax: Null

Figure 2. Example execution of SI-PR

��=2 respectively. Both contain new versions of � to-
gether with��=0. At R1, �� simply commits without fur-
ther check. At R2, the valid version was created by �� with
��=0. Hence, the check succeeds. However, local trans-
action �� holds a lock and is aborted. When �� is deliv-
ered at��, there is a valid version created by transaction ��

with ��=1. ��’s writeset, however, piggybacks ��=0.
Hence, the conflict check fails, and �� aborts. At R2, ��’s
writeset is discarded because �� already aborted. If there
were a third replica R3, �� would succeed the version check
while �� would fail because ��’s version would be valid at
the time of version check. That is, all replicas commit ��

and abort ��. Note that the �� counter is increased even
when writesets of aborting/aborted transactions are deliv-
ered to guarantee that all replicas produce the same ���.

We now want to give an example why a remote transac-
tion should not immediately abort a local transaction whose
writeset has been sent but not yet delivered. Assume three
replicas and objects � and � (with valid version referring
to��=0). Now assume R1 has transaction �� updating X,
R2 has transaction �� updating first Y and then X, and R3
has transaction �� updating Y. All three send their writesets
concurrently. Assume the delivery order is �� (��=1) be-
fore �� (��=2) before �� (��=3). With this, �� should
commit, �� should abort because it is concurrent to �� and
also updates� , and �� should commit since it does not con-
flict with ��. At R1, this will happen since at delivery of
��, �� has committed and created a valid version of � la-
beled with ��=1. Hence �� will abort, and as a result
�� can again commit. At R2, �� aborts upon delivery of
��, and hence, �� and �� can commit. At R3, �� commits.
When �� gets delivered, assume that it performs first the
check on � . It passes the check, but local �� holds the lock.
�� should not abort �� because it will later fail the conflict
test on � and will eventually abort. If it aborted �� prema-
turely, �� would commit at R1 and R2 but abort at its local

replica. That is, a remote transaction �� should only abort a
local transaction �� once �� knows it will commit.

Correctness For space reasons, we do not provide a full
proof of correctness. Instead, we will show informally that
a transaction �� either commits at all replicas or at none. Let
�� be local at� and remote at��. (i) If �� aborts at� before
sending the writeset, then �� will not even receive a write-
set. (ii) Assume �� has already multicast its writeset and is
later aborted at �. Since �� has already completed execu-
tion before sending the writeset, this can only happen when
the writeset of a remote transaction �� is delivered before
��’s writeset, conflicts with �� on a tuple � and commits.
Without loss of generality, assume there is no other trans-
action �� after that that also updates � . We show now that
�� will not pass the version check at ��. When �� starts ex-
ecution at ��, �� has already committed �� (serial com-
mit/execution of writesets). The version of� created by � �

will be the valid version against which �� will perform its
version check. Of course, this is not the version that � � ac-
cessed when it performed the update on local replica� (be-
cause �� executed before �� started at �). Hence, a mis-
match between ��s will be determined at � � and �� will
abort. (iii) Assume �� commits at its local replica �. This
means, no conflicting transaction’s writeset is delivered be-
tween ��’s execution and its writeset delivery. Hence, when
�� is executed at ��, the valid version for tuple� at � � was
created by the same transaction that created the version � �

accessed during its local execution at � and the two ��s
are the same. As a result, the check succeeds.

Executing remote transactions concurrently A lo-
cal transaction on replica � might be indirectly delayed
by the serial execution of remote transactions execut-
ing locally on �. [22] proposes to only execute the ver-
sion check for remote transactions serially and then execute
non-conflicting transactions in parallel. This allows a lo-
cal transaction to commit before previously received,
non-conflicting remote transactions have finished execu-
tion. The problem is that the version check requires to
retrieve all valid versions which is the most time consum-
ing part of an update.
Instead, we suggest to perform what we call a pre-lock

phase which requires a special lock table �� (independent
from PostreSQL’s locking). For space reasons, we only out-
line the approach. Upon delivery of a writeset �� �, lock
requests are included into �� for all tuples in ��� in an
atomic step (i.e., pre-lock phases of all transactions are se-
rial). Once all locks are appended (which is fast), the next
writeset can be processed. Once all locks for a local trans-
action �� are granted, �� can commit and release the locks.
When all locks for a remote transaction �� are granted, we
continue with the version check and early execution phase.
We release the locks in�� once �� fails or completely com-

mits. If �� aborts a local transaction �� who has already
performed the pre-lock phase (but still waits for the locks),
��’s locks are removed from �� . If �� had already sent the
writeset but it was not yet delivered, we have to catch and
discard the writeset.
For instance, if we receive the writeset for �� accessing

� , and then for �� accessing � , they do not conflict, and
hence, acquire both the locks and can be executed and com-
mitted cocurrently. However, if both � � and �� access� , ��
must wait until �� terminates and releases its locks so that
operations are executed in the correct order. Note that even
if a remote transaction has all locks in �� granted, it must
perform the version check and hence, might fail.
Using this scheme the following can happen. If � � and ��

do not conflict, one replica�might commit � �, start a trans-
action �� reading both � and � , and then commit � � , and
another replica �� might commit �� , start a transaction �

reading both� and � , and then commit � �. Although SI is
provided individually at each replica, a centralized system
executing the same set of transactions could not have pro-
vided these different snapshots to �� and �
. Note that our
previous solution does not have the problem since all repli-
cas commit all transactions in the same order.

4.3. Recovery

When a crashed replica rejoins or a completely new
replica joins an existing replica group, the GCS delivers a
view change message to all replicas (including the joining
replica). For any writeset message in the system, it is either
delivered before the view change message to all old replicas
or after the view change message and then also to the join-
ing replica. Recovery now requires a peer replica to pro-
vide the joining replica with the database state including all
writesets delivered before the view change message.
If a crashed replica rejoins, it looks into its internal ta-

ble to determine the �� of the last transaction it com-
mitted. The peer has to send the writesets, assembled from
its log, of all committed transactions with higher ��s
up to the last writeset before the view change. The joining
replica applies them serially, creating a new transaction for
each writeset, and maintaining the ��s in its internal ta-
ble accordingly.No version check is necessary because only
writesets of committed transactions are sent. During this re-
covery procedure the other replicas can continue executing
transactions. The new replica will receive their writesets and
buffer them. Once recovery has finished, it will execute the
buffered and newly arriving writesets using the SI-PR pro-
tocol. Since all��s are correctly maintained, it will make
the correct commit/abort decisions for these writesets. It can
also start local transactions.
For a completely new replica, the peer will first apply all

writesets that were delivered before the view change mes-

sage. Then, it starts a long read transaction that reads the
entire database. For each tuple, the visible version is trans-
ferred to the new replica together with the�� of the trans-
action that created it. At the new replica, the tuple versions
are installed with the necessary �� information. After
that the new replica switches to normal processing as above.
At restart after a total failure, the replica with the largest

�� in its internal table will start a new replica group. The
others can join and perform recovery as described above.

5. Implementation

Postgres-R(SI) uses the same basic architecture as
Postgres-R [21], and the writeset functionality has changed
little. However, transaction execution and the interac-
tion between components has changed considerably.

5.1. Writesets

Write operations are bundled into a single writeset mes-
sage during normal processing. For each SQL DML state-
ment (i.e., update, delete, insert), the writeset contains for
each changed tuple (i) the �� of the transaction whose
version � was copied, (ii) all modified attribute values and
the corresponding attribute identifiers, and (iii) the primary
key values of the tuple. For SQL DDL statements (e.g., cre-
ate table, create function, etc.) the writeset simply contains
the query text 3. Remote replicas process the statements in
the order they appear in the writeset. For DDL statements,
the execution path is the same as it is for a local transac-
tion (parser, planner, etc.). For DML statements, for each
tuple to be changed, the remote backend retrieves directly
the valid version of the tuple using the primary key index
skipping most of the normal planning and execution steps.

5.2. Architecture

Figure 3 depicts the architecture of Postgres-R(SI). In
PostgreSQL, the postmaster process listens for a connec-
tion request from a client, and then creates a dedicated
backend process which will connect to the client and ex-
ecute its transactions. Postgres-R(SI) extends PostgreSQL
with three new processes: remote backend, replication man-
ager and communication manager. The original backends
are now called local backends, and execute local transac-
tions. A remote backend processes the writesets of remote
transactions. The communication manager’s only purpose
is to hide the details of the GCS (currently Spread [32]). We
will not further mention it. The replication manager (RM)
is the coordinator of the replica control algorithm.

3 Not all DDL statements will be replicated. [10] discusses which state-
ments to replicate, which to only executed at the replica they are sub-
mitted to, or which to disallow in a replicated system.

P�o�s�t�m�a�s�t�e�r�

R�e�p�l�i�c�a�t�i�o�n�
M�a�n�a�g�e�r�

S�p�r�e�a�d�

C�o�m�m�u�n�i�c�a�t�i�o�n�
M�a�n�a�g�e�r�

P�o�s�t�g�r�e�s�-�R�s�e�r�v�e�r�

R�e�m�o�t�e�
B�a�c�k�e�n�d�

L�o�c�a�l�
B�a�c�k�e�n�d�

L�o�c�a�l�
B�a�c�k�e�n�d�

C�l�i�e�n�t�C�l�i�e�n�t�

N�e�t�w�o�r�k�

P�o�s�t�m�a�s�t�e�r�

R�e�p�l�i�c�a�t�i�o�n�
M�a�n�a�g�e�r�

S�p�r�e�a�d�

C�o�m�m�u�n�i�c�a�t�i�o�n�
M�a�n�a�g�e�r�

P�o�s�t�g�r�e�s�-�R�s�e�r�v�e�r�

R�e�m�o�t�e�
B�a�c�k�e�n�d�

L�o�c�a�l�
B�a�c�k�e�n�d�

C�l�i�e�n�t�P�o�s�t�g�r�e�S�Q�L�

Figure 3. Architecture of Postgres-R

begin

Local
Execution

commit

Send

Term-
ination

WS

REC.
+GID
OK

READY

Version Check
and

Early Execution
Late Execution

GCS WS+
GID

Local
Backend

Repl
Mgr

Repl
Mgr

Remote
Backend

Time

(2)

(1)

(2)

(1) Block channel
(2) unblock channel

(1)

Figure 4. Transaction Execution

5.3. Transaction Execution

Figure 4 describes the execution of a successfully com-
mitting transaction � . � and the local execution phase starts
at the local backend upon receiving a begin statement from
the client (PostgreSQL also supports individual SQL state-
ments to be transactions). During query execution, if there
is any update performed, the changed tuples are added to the
writeset. Upon receiving a commit request, the local back-
end checks the writeset. If it is empty, � commits. Other-
wise, the writeset will be sent to the RM which multicasts
it using the total order multicast of the GCS. Upon receiv-
ing this message from the GCS, each RM first generates the
��. If the writeset is for a local transaction, the �� is
sent in a RECEIVED message to the local backend. If it
is for a remote transaction, the �� is sent together with
the writeset to the remote backend. To guarantee serial ex-
ecution of writesets, the RM stops listening for any mes-
sages from the GCS. When the local backend gets the RE-
CEIVED message, it commits � , and sends an OK to the

RM. When the remote backend receives a writeset, it starts
� ’s execution. Once it terminates it sends a READY mes-
sage to the RM. Upon receiving the OK or READY mes-
sage, the RM accepts the next writeset from the GCS.
Both local and remote transactions might abort. If a re-

mote transaction fails the version check, its READY mes-
sage to the RM contains the abort information. If a local
transaction aborts before sending the writeset it does not
need to notify the RM. If it aborts after sending the write-
set, it must inform the RM with an ABORT message so that
the RM can discard the writeset when it receives it from the
GCS. Such an abort can only be triggered by a remote trans-
action since local execution has already finished.When a re-
mote transaction aborts one or more local transactions, the
RM might receive the READY message and corresponding
ABORT messages in any order. It will wait until it has re-
ceived all such messages before accepting the next write-
set from the GCS. Furthermore, the RM might receive the
ABORT message of a transaction �� and then a new write-
set for a new transaction �� from the same local backend be-
fore receiving ��’s writeset from the GCS. Hence, the RM
must remember aborted transactions for each backend.
The current system does not allow concurrent execution

of non-conflicting remote transactions. The pre-lock phase
could be either implemented in the RM or done by the back-
ends using a lock table in shared memory. The latter ap-
proach could reuse lock functions provided by PostgreSQL.

5.4. Global Transaction Identifiers

The RM generates ��s. It keeps a �� counter that
is increased every time a writeset is received from the GCS,
and assigns it to the corresponding transaction4.
Both local and remote transactions need an efficient way

to find the �� for a given ��. They have to find the
�� corresponding to the � �	�� of the valid version � of
a tuple � they want to update. A local transaction needs to
include the �� in the writeset, a remote transaction must
compare it with the �� included in the writeset.
There are several possibilties to store ����� pairs.

The �� can be added to each tuple in addition to the
��. This would require to access tuples of local trans-
actions a second time, since the �� is only generated af-
ter writeset delivery. Alternatively, we can add it to either
PostgreSQL’s standard REDO log or the ����. This would
require to considerably change existing structures. Hence,
we have chosen a third alternative, and created a new Post-
greSQL system table pg gid with �� and �� as at-
tributes. PostgreSQL provides a cache for system tables
with very fast access. Note that pg gid is not replicated

4 One could have continuous �	
s by decreasing the counter when
aborts occur. However, this is not needed for correctness.

since it contains different data in the different replicas5. We
provide abstract functions for accessing pg gid which al-
lows an easy migration to a different implementation.

5.5. Aborting local Transactions

A remote transaction must be able to force local trans-
actions to abort. For that, we first have to understand how
PostgreSQL handles aborts. In the simple cases, a transac-
tion aborts due to failing a version check, a deadlock, or be-
cause the client submits an abort command. The backend
simply executes an abort routine, informs the client about
the abort, and awaits the next input. In a more difficult sce-
nario, the backend receives a query–cancel signal (the client
has sent a cancel connection request in the middle of exe-
cution) or shutdown signal from the postmaster. When the
backend receives such signal, it can be in the middle of ex-
ecuting any function, e.g., a low-level subroutine manipu-
lating main memory data structures. There is no guarantee
that the database would remain consistent if the transaction
would abort immediately. Therefore, PostgreSQL declares
some variables indicating the state of the backend. Only if
the backend is in a ’safe’ state, the signal is treated as an ex-
ception leading to the immediate execution of the abort rou-
tine. If it is not safe, a flag is set. During query processing,
the backend checks the flag at some safe spots and executes
the abort routine if the flag is set.
If a remote transaction now wants to abort a local trans-

action it has to inform the local transaction. We decided to
use signals for that. However, we must again make sure
that the local transaction only aborts in a safe state. Ad-
ditionally to the different states in the centralized system,
we have several new situations. First, when the writeset is
sent, the backend will wait for the writeset delivery confir-
mation. This is a safe state and we want the transaction to
abort immediately. Second, when the local transaction sends
the writeset to the RM, we do not want it to be interrupted in
the middle of the transmission to avoid having partial mes-
sages left in the socket between backend and RM. Third, a
transaction cannot be aborted when it is waiting for the in-
put from a client or it is in the middle of input transmission.
Otherwise, partial client requests might be left in the com-
munication channel. Note that the original PostgreSQL al-
lows to abort a transaction when the backend is waiting for
client input only in case that there is a disconnection re-
quest from the client or the database is going to shutdown,
in which case such partial results do not play a role.
In order to handle the last two cases, additional variables

and flags have been added to the transaction context indi-
cating whether and when a local transaction can abort. Note
that it is possible that a remote transaction sends an abort

5 None of the system tables is replicated.

signal to an aborting transaction. In this case, PostgreSQL
guarantees to abort the transaction only once.

5.6. Locking

Another problem to be solved is how a local transaction,
aborted by a remote transaction, hands over a lock to the re-
mote transaction. In theory, this should not be a problem. In
PostgreSQL, when a process joins the waiting queue, it is
normally appended to the end of the queue. We could sim-
ply adjust this procedure and put the lock request of the re-
mote transaction at the head of the waiting queue.
However, in PostgreSQL, upon releasing a lock, all wait-

ing processes are woken up. Although they are woken up in
the order in which they are waiting, this does not guarantee
that the lock is actually granted to the first one in the queue
due to possible race conditions of UNIX process schedul-
ing. Hence, we had to change the lock release procedure
slightly. If a remote transaction �� requests a lock held by
local transaction �� , we put the lock request of �� at the
head of the waiting queue, and send an abort signal to � � .
When �� aborts and releases the lock, it determines that the
first waiting transaction �� is a remote transaction, and only
wakes up ��. The rest of the waiting queue is passed to ��.
When �� receives the lock, it wakes up the rest of the pro-
cesses in the waiting queue (in order to continue with the
standard PostgreSQL procedure).
Note also that remote transactions can only abort when

failing a version check. Hence, remote transactions should
never invoke the deadlock detection routine.We achieve this
by not setting the timer for the deadlock detection.

5.7. Implementation Overhead

Code was mainly added in form of new compo-
nents (replication manager and remote backend). The re-
mote backend has a different execution logic than the local
backend but otherwise mainly calls PostgreSQL inter-
nal functions. Changes and adjustments to existing Post-
greSQL code (e.g., locking, local commit, etc.), were not
very large. We are currently adjusting a recovery compo-
nent developed for a primary copy approach [10] to work
with the new replica control algorithm.

6. Evaluation and Discussion

We evaluated the performance of Postgres-R(SI) using
various tests. The first test uses the TPC-W benchmark to
evaluate our system on a real application. The others all test
special cases and use a database consisting of 10 tables with
10000 tuples each. All experiments are performed on a clus-
ter of PCs (2.66 GHz Pentium 4 with 512M RAM) running
RedHat Linux. For each experiment, we run at least 20000

transactions to achieve stable results. Each test run has a
fixed set of clients. A client submits a transaction and then
sleeps (thinks) for a certain time in order to achieve the de-
sired system wide throughput measured in transactions per
second (tps).

6.1. TPC-W Benchmark

In order to evaluate our system against a real-world
application, we performed our first exerpiment using the
OSDL-DBT-1 benchmark [24]. It is a simplified version of
the TPC-W benchmark [13] simulating an online bookstore.
It has three different workload types by varying the ratio of
browsing to buying transactions.We have chosen the brows-
ing workload, which contains 80% browsing and 20% or-
dering transactions. We have set up a two-tier testbed where
the OSDL-DBT-1 driver is the front-tier which directly con-
nects to the database. There are 8 tables in the schema. The
database size is determined by the items and clients in the
system. We use a very small configuration with only 1000
items and 40 clients. Larger sizes will only decrease con-
flict rates and increase disk I/O which will favor the repli-
cated approach. We performed the experiment with a fixed
number of 40 client connections. The number of clients on
each server and the load on each client is evenly distributed.
We run the experiment with a centralized, non-replicated

server, and then with 5 and 10 replicas. Figure 5 shows the
client response time for browsing transactions, and Figure 6
shows the response time for ordering transactions when we
increase the overall load to the system. For all graphs, the re-
sponse time increases with increasing load since more trans-
actions concurrently compete for resources. The response
time of the centralized system is much worse than our repli-
cated configuration, and can achieve a much lower maxi-
mum throughput. The reason is that the server is overloaded
very fast while in the replicated systems read-only transac-
tions are distributed among the replicas. Additionally, the
centralized server has problems handling many clients. The
10-replica system has smaller response times than the 5-
replica system for a given throughput because read-only
transactions are distributed over even more replicas. The
only exception are update transactions at 20 tps where the 5-
replica system is better than 10 replicas. The reason might
be that with 10 replicas, more update transactions are re-
mote, and hence, it is more likely that a local update trans-
action has to wait for a remote transaction whose writeset
is received earlier. At higher throughputs this disadvantage
does not show because the 10-replica system is much less
loaded. In these experiments, abort rates were always well
below 1%, which shows that SI can handle real world con-
flict rates even for very small database sizes.
However, scalability is not unlimited. Updates have to be

performed at all replicas. If the update load increases, each

Figure 5. TPC-W: Browsing (read-only)

Figure 6. TPC-W: Ordering (update)

replica has less resources to execute queries. Hence, the per-
formance gain from 5 to 10 replicas is not as big as from the
non-replicated system to 5 replicas. More about this phe-
nomena can be found in [20].
In summary, this experiment proves that the performance

of our system is excellent for a real world situation where
most of the transactions are read-only. Our replication so-
lution performs better than a centralized approach by dis-
tributing the load and clients throughout the replicas in the
system. Hence, eager update everywhere replication based
on SI is feasible for real-world applications.

6.2. Replication Overhead

In order to evaluate the delay incurred by replication,
we tested a system with a single client on our 10 table
database submitting transactions that update 10 random tu-
ples. A replicated system of 5 replicas needs 5.5 ms more
to finish the transaction than a non-replicated PostgreSQL
server. We consider this quite acceptable considering that
it includes the overhead of generating the writeset and for-
warding it through the replication manager and Spread.

6.3. Update Intensive Workloads

The third experiment has a closer look at the behavior
for update transactions at higher loads. The workload con-
sists of 100% update transactions. A transaction performs

Figure 7. Update Workload: Response Time

10 updates, each on a random tuple. This is a worst case
scenario where we can expect the replicated system to al-
ways perform worse than a central system. The setup in-
cludes a non-replicated PostgreSQL and a replicated sys-
tem with 5 nodes, and either 5 or 20 clients in the system.
Figure 7 shows the response time with increasing load.

For 5 clients, the central system has always considerably
faster response times than the replicated system until the
maximum throughput for 5 clients is achieved (no sleep
time between transaction submission). This shows the repli-
cation overhead for update transactions similar to the pre-
vious experiment. For 20 clients, however, the results are
very different. At low throughputs, the central system has
faster response time. However, once the throughput passes
40 tps, the central system starts to be overloaded and experi-
ences increasing response times while the response time in
the replicated system remains low. Not shown in the figure,
abort rates are between 1% and 1.5% for the replicated sys-
tem, for the central system they start at 0.2% at 20 tps and
increase to nearly 7% at 120 tps due to the increase in re-
sponse time. The main reason for the sharply increasing re-
sponse times and abort rates is that the central system has
difficulties to manage 20 clients. Although the clients are of-
ten idle (waiting between two submissions), they put a con-
siderable administrative burden on the system. This shows
that replicationmight even pay off in update intensive work-
loads in cases it enables to distribute other kinds of work, for
instance, client management.

6.4. Comparison with other Approaches

We cannot provide direct comparison with the original
Postgres-R based on locking because the underlying sys-
tems, version 6 vs. version 7, differ extremely in their buffer
management and other modules. In general, however, the
relative performance of both approaches is similar. This
proves that the general approach of executing transactions
locally, multicasting writesets at the end of the transaction
and applying them efficiently, works well in a LAN setting.

We think that a direct comparisonwithmiddleware based
solutions, even if they have been evaluated using the TPC-
W benchmark [1, 29, 2], is unfair since the setups are al-
ways quite different.

7. Conclusion

This paper presents the design, implementation and in-
tegration of an eager, update everywhere database repli-
cation approach based on snapshot isolation within the
open-source database system PostgreSQL. Replication is
transparent to clients which can submit transactions to any
replica, and perceive the same level of isolation as a central-
ized system. In fact, existing application code can remain
completely unchanged (except of, maybe, a load-balancing
routine, or a routine that will switch to another replica in
case of a failure). Our experiments in a cluster of worksta-
tions show that the replicated system provides scalability
and keeps response times small. Its integration as an ad-
ditional module into a database system makes its installa-
tion and use simple. Hence this approach is well suited to
migrate databases from overloaded centralized servers to a
cluster architecture. We are currently making our solution
open-source under the pgreplication project of PostgreSQL
at http://gborg.postgresql.org/project/pgreplication/.

References

[1] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed
versioning: Consistent replication for scaling back-end
databases of dynamic content web sites. In Middleware’03.

[2] C. Amza, A. L. Cox, and W. Zwaenepoel. A compara-
tive evaluation of transparent scaling techniques for dynamic
content servers. In Int. Conf. on Data Engineering, 2005.

[3] T. Anderson, Y. Breitbart, H. F. Korth, and A. Wool. Repli-
cation, consistency, and practicality: Are these mutually ex-
clusive? In ACM SIGMOD Conf., 1998.

[4] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil,
and P. E. O’Neil. A critique of ANSI SQL isolation levels.
In ACM SIGMOD Conf., 1995.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison
Wesley, 1987.

[6] K. Böhm, T. Grabs, U. Röhm, and H.-J. Schek. Evaluat-
ing the coordination overhead of synchronous replica main-
tenance in a cluster of databases. In Euro-Par, 2000.

[7] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and
A. Silberschatz. Update propagation protocols for replicated
databases. In ACM SIGMOD Conf., 1999.

[8] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC:
Flexible database clustering middleware. In USENIX An-
nual Technical Conference, 2004.

[9] G. V. Chockler, I. Keidar, and R. Vitenberg. Group commu-
nication specifications: A comprehensive study. ACM Com-
puter Surveys, 33(4), 2001.

[10] M. Chouk. Master–slave replication, failover and distributed
recovery in PostgreSQL database. Master’s thesis, McGill
University, June 2003.

[11] B. S. Corporation. Interbase Documentation, 2004.
[12] O. Corporation. Oracle 9i Replication, June 2001.
[13] T. P. P. Council. TPC Benchmark W, 2000.
[14] K. Daudjee and K. Salem. Lazy database replication with or-

dering guarantees. In ICDE, 2004.
[15] R. Goldring. A discussion of relational database replication

technology. InfoDB, 8(1), 1994.
[16] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers

of replication and a solution. In ACM SIGMOD Conf., 1996.
[17] T. P. G. D. Group. PostgreSQL 7.2 Documentation, 2001.
[18] J. Holliday, D. Agrawal, and A. E. Abbadi. The performance

of database replication with group communication. In Int.
Symp. on Fault-tolerant Computing, 1999.

[19] J. Holliday, R. Steinke, D. Agrawal, and A. Abbadi. Epi-
demic algorithms for replicated databases. TKDE, 15(5),
2003.

[20] R. Jiménez-Peris, M. Patiño-Martínez, G. Alonso, and
B. Kemme. Are quorums an alternative for data replication.
ACM Transactions on Database Systems, 28(3), 2003.

[21] B. Kemme and G. Alonso. Don’t be lazy, be consistent:
Postgres-R, a new way to implement database replication.
In Int. Conf. on Very Large Databases, 2000.

[22] B. Kemme and G. Alonso. A new approach to developing
and implementing eager database replication protocols. ACM
Transactions on Database Systems, 25(3), 2000.

[23] J. M. Milan-Franco, R. Jiménez-Peris, M. Patiño-Martínez,
and B. Kemme. Adaptive middleware for data replication. In
Middleware, 2004.

[24] Open Source Development Lab. Descriptions and Documen-
tation of OSDL-DBT-1, 2002.

[25] E. Pacitti, P. Minet, and E. Simon. Replica consistency in
lazy master replicated databases. Distributed and Parallel
Databases, 9(3), 2001.

[26] E. Pacitti and E. Simon. Update propagation strategies to im-
prove freshness in lazy master replicated databases. VLDB
Journal, 8(3), 2000.

[27] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting atomic
broadcast in replicated databases. In D. J. Pritchard and
J. Reeve, editors, Euro-Par, 1998.

[28] PeerDirect. Overview and comparison of data replication ar-
chitectures. White Paper, Nov. 2002.

[29] C. Plattner and G. Alonso. Ganymed: Scalable replication
for transactional web applications. In Middleware, 2004.

[30] U. Röhm, K. Böhm, H.-J. Schek, and H. Schuldt. FAS - a
freshness-sensitive coordination middleware for a cluster of
olap components. In VLDB, 2002.

[31] R. Schenkel, G. Weikum, N. Weienberg, and X. Wu. Fed-
erated transaction management with snapshot isolation. In
Transactions and Database Dynamics, Int. Worksh, on
Found. of Models and Lang. for Data and Objects, 1999.

[32] Spread. homepage: http://www.spread.org/.

