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Abstract. Grid technologies have matured over the last few years. This level of
maturity is especially true in the field of scientific computing in which grids have
become the main infrastructure for scientific problem solving. Due to its success,
the use of grid technology rapidly finds its introduction into other fields. One of
such fields is enterprise computing in which grids are seen as a new architecture
for data centers. In this paper, we describe the vision of enterprise grids, current
scientific achievements that will leverage this vision, and challenges ahead.

1 Introduction

Grids have succeeded in providing an infrastructure for deploying parallel applications
in a distributed setting with a high degree of automation. The definition of grids has been
redefined along the years. Initially grids were defined as an infrastructure to provide
easy and inexpensive access to high-end computing [17]. Then, it was refined in [11] as
an infrastructure to share resources for collaborative problem solving. More recently, in
[12] the grid definition evolves to an infrastructure to pool and virtualize resources and
enable their use in a transparent fashion.

Grid infrastructure exhibits several interesting features. One of the main functionali-
ties is that a grid hides the heterogeneity of its underlying components such as hardware,
operating systems or storage systems, and serves as a middleware that provides seam-
less connectivity of the components it manages. Another interesting characteristic is the
transparent pooling of many kinds of resources such as computing power, storage, data,
and services. This pooling enables applications deployed on the grid to transparently
share resources and utilize the provided capacity more effectively. A related attribute
is the ability to allocate and reserve virtualized resources. Virtualization facilitates the
sharing of resources: it allows the preservation of quality of service guarantees for time
critical applications, and at the same time offers true resource scavenging by taking
advantage of unused resources to perform batch computations.

These features make grid computing attractive for enterprises which want to con-
vert it into their infrastructure for deploying enterprise applications. This interest has
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resulted in minting a new term,Enterprise Grids. Enterprise Grid computing reflects
the use of grid computing within the context of a business or enterprise rather than for
scientific applications. A proof of interest for Enterprise Grids is the recent creation
of Enterprise Grid Alliance with the mission of developing a common Enterprise Grid
reference model [9] and fostering the use of grids for enterprise computing.

Despite the progress in grid technologies and the will to address the needs of en-
terprise applications [12] there is still a significant gap between what is required by
enterprise grids and what is currently provided by grid technology, with significant
technical and scientific hurdles in the way. This gap is mainly due to the many differ-
ences between scientific and enterprise applications. Examples are the stateful nature
of business applications, the typical underlying multi-tier architecture, the existence of
transactional data, and the need for transactional interaction between the different ap-
plication components. In this paper, we aim at identifying the gap between what grid
infrastructures currently provide and what enterprise grids need to offer. From there,
we survey recent achievements in the field of distributed computing that will help to fill
this gap, and identify the open challenges to realize the enterprise grid vision.

The paper is structured as follows. First, in Section 2 we identify some of the main
requirements in Enterprise grids and contrapose them with current functionality pro-
vided by grid systems to characterize the gap between them. Then, we describe some of
the recent advances in distributed systems that will help to fill this gap in Section 3. We
continue in Section 4 by identifying the existing open scientific challenges to realize
the Enterprise Grid vision. Finally we present our conclusions in Section 5.

2 The Gap between Grids and Enterprise Grids

Gap 1: Support for Online Applications.
Traditional enterprise computing is usually composed of a mix of batch and on-

line applications. Grids already have a good grip on batch applications and provide
sophisticated automation making batch applications run efficiently on large distributed
infrastructures. Abstractions such as “task bags” can very well serve as a basis for au-
tomating the programming and execution of batch enterprise applications. Additionally,
the use of scavenging will enable the use of idle resources for executing them.

However, there is a large fraction of enterprise applications that are inherently in-
teractive, and we refer to them as online applications because an end user is directly
connected to the system. Online applications require timely execution of requests and
provisioning of appropriate responses to the client. This requires a very well oiled ma-
chinery where a single bottleneck can lead to unsatisfying performance. Current grid
technology provides little help in this regard since it is more oriented to batch style ap-
plications where the emphasis is put on achieving high throughput, i.e., serving a large
set of tasks, without paying attention to the response time of individual requests. In
contrast, for online applications the main performance metrics is the average response
time, often with strict constraints on its statistical distribution. This need is clearly doc-
umented in benchmarks for online systems such as TPC-C for database applications,
ECPERF for information systems, or TPC-W for web based systems.

Gap 2: Support for Transactional Data.
Business applications are often data-intensive. They access, process and manipulate

large amounts of data, most of which resides in database repositories. Access to such



data is nearly always in the context of transactions in order to guarantee consistency
and durability of changes to the data. Another challenge is the requirement of contin-
uous availability of such data since clients want to have access to their data anytime
from anywhere, and lack of availability usually results in financial losses. Current grid
technology lacks proper support for scalable, reliable and transactional data processing.
Current provisioning in grids focuses mainly on stateless applications, and sometimes
on applications that access read-only persistent data. Read-only data is easy to scale by
simply providing as many data copies as needed. While data replication can be used
even for update intensive transactional data, consistency and scalability are non-trivial
challenges not only in wide-area settings but even for localized computing.

There has been some work related to “data grids” but the emphasis has been on data
integration and management of large collections of data. The goal of data integration
has been to provide a homogeneous view of heterogeneous data schemas containing
similar information. Data integration can be an important issue in some enterprise ap-
plications in which data from different domains exhibit different schemas and a homo-
geneous view and access means should be provided. Additionally, there is the trend of
converting data access into services. In this context, the OGSA-DAI [31] middleware
provides support for integrating relational and XML data and exposing them through a
homogeneous web service interface, which can be a very useful abstraction for business
applications. Business applications might also take advantage of the support grids pro-
vide for automated storage and management of large collections of data in the order of
petabytes or higher. This includes fast efficient remote access to such data collections.
One of the solutions consists in moving the application close to the data. This tech-
nique, also known as function shipping or batching design pattern [35] saves expensive
WAN interactions. The idea is that instead of running the computation which accesses
the data on a resource which is far from the data storage, the client code is moved to the
data domain so it can access the data locally. When the computation is done the result
is returned to the client side.

Gap 3: Support for Stateful and Transactional Applications.
Business applications do not only access transactional data residing in backend data-

bases, they often maintain state themselves. This data might also be accessed within the
same transactions that control the execution at the backend database. Furthermore, this
state often reflects the interactions between an online client and the application (such
as session information or a shopping cart). Thus, data consistency across tiers becomes
a challenge, typically ignored by current grid technology. Another problem in this con-
text is that a failure of a site can result in losing important application state. Business
processes can last for days, weeks, months, or even years. This is very common for
workflows and orchestrated web services. The loss, e.g., of a stateful interaction, would
be unacceptable in this context. One additional aspect is that in this context, advanced
transaction models are often used [18] to relax isolation that is problematic for long
running transactions. In the advent of a failure one possibility to attain consistency is to
abort all running transactions. However, for long running transactions this is not really
an option since they have to progress forward despite failures, unless it is impossible to
attain their goal. Grids fail to support transactional applications and stateful applications
requiring high availability.



Gap 4: Support for Multi-tier Architectures
Enterprise applications are typically deployed on multi-tier architectures consisting

of web, application server and database tiers. As mentioned in gaps 2 and 3, manag-
ing each of the individual tiers on the grid is challenging, in particular because of the
state they manage. Providing a grid solution that supports multiple tiers is even more
complicated due to the interaction patterns between the tiers. For instance, transactions
can span execution across several tiers. This means, gridification of multi-tier applica-
tions needs to preserve consistency across tiers despite data and execution dependen-
cies between the tiers. Also failures need to be handled appropriately. That is, failover
should be performed in such a way that consistency is still preserved. Certainly, grid
systems provide support for multiple applications and servers. However, this support
tends to deal with different servers as isolated entities. In order to extend functional-
ity to multi-tier systems, a systematic approach is needed to understand the interaction
patterns between adjacent tiers, the execution across all tiers, and the impact of both
on the gridification process. Current support in grid systems fails to address multi-tier
architectures, what is one of the significant gaps for attaining enterprise grids.

Gap 5: Autonomic support
Another important goal for the Enterprise Grid vision is that of autonomic man-

agement [24]. Autonomic management encompasses several attributes such as self-
healing, self-provisioning, self-optimizing, and self-configuring.Self-healing capabili-
ties, which allow to tolerate failures, provide the Enterprise Grid a continuous availabil-
ity. Fault tolerance is typically attained by replication. Another facet required to realize
a self-healing enterprise grid and the associated high availability is the ability to recover
failed sites. Most approaches to recovery of replicas imply stopping system operation
in order to obtain a quiescent state and transfer it to the recovering replica. Once the
recovery is completed the system operation is resumed. However, this offline recovery
goes against the initial goal of high availability. On the other hand, recovery is needed
to maintain a particular level of availability. Otherwise, replicas will fail and eventually
the system will become unavailable. Therefore, there is a need for performing recovery
in a non-intrusive fashion maintaining the system online. Currently, grid systems pro-
vide self-healing facilities but mainly for stateless applications. Sites can join and leave,
but little is done to keep the consistency between the state of working sites and the sites
joining the grid. Therefore, there is still a large gap between the needs of Enterprise
Grids and what is provided by current grid systems relative to stateful applications.

Another essential aspect of enterprise grids is performance and the need forself-
optimization. Underlying middleware and database systems have numerous parameters
that enable to tune them to maximize its performance. Unfortunately, these parameters
are set manually and require a highly qualified administrator. What is more, the right
value for these parameters depends on the actual workload. An enterprise grid cannot
rely on human tuning and should be able to tune itself to maximize performance. At
best, human administrators will set high level goals in the form of utility functions to
hint the system in which dimensions to maximize first. Autonomic performance tun-
ing implies to monitor the system load and performance. When the system detects that
performance decreases, tuning parameters need to be adjusted in order to stabilize the
system and achieve a configuration that provides optimal performance for the the cur-



rent workload and its characteristics. This self-optimizing behavior can only be built
upon an analytical model of the system that enables to understand the system state
by monitoring the relationship between load and performance and and knowing which
parameters influence this relationship. This means that the self-optimizing support re-
quires specific work for each kind of server, and in the case of enterprise grids, for
each particular tier. Certainly, there are currently no provisions for self-optimization of
multi-tier architectures in grids.

Self-optimization at each individual site/server/tier guarantees that its performance
is maximized given the received workload. However, individual self-optimization is not
enough to maximize performance at the global level. The reason is that some sites might
be overloaded whilst others are idle, despite each site being tuned to maximize its in-
dividual performance. Thus, processing power is being lost due to the imbalance in the
load. This means that an enterprise grid should be able toself-configure itself to dis-
tribute the load across sites in a balanced way. This load balancing should be performed
on a continuous basis and in a non-intrusive fashion. There has been substantial work
in providing load balancing solutions for grid environments. However, although load
balancing techniques and policies for different kinds of applications and servers share a
common background, each server and/or application has typically very specific charac-
teristics which lead to individual load-balancing requirements. Thus, while current grid
systems offer load-balancing mechanisms that are well suited for parallel and scientific
applications they do not serve well transactional stateful applications with their many
constraints in regard to data and execution dependencies.

Another interesting challenge arises if the computing power requirements of an en-
terprise application change over time which will require some form ofself-provisioning.
If more processing power is needed, more resources need to be added to be able to cope
with the load. This should happen autonomously. Thus, a pool of free sites needs to be
available. When load submitted increases and the system feels that the given processing
power will soon be unable to handle this load, the system should self-provision itself
and increase the amount of devoted resources. Conversely, if the load is reduced the re-
sources should shrink to free unneeded resources. However, self-provisioning in enter-
prise grids is very challenging due to their stateful nature. Adding a new replica means
that state should be first transferred to it. This means that online recovery is needed to
enable self-provisioning as it was needed for attaining the self-healing property. Grid
systems have achieved significant progress in self-provisioning. This infrastructure can
be generic enough to be reused in the context of Enterprise Grids, although support
for dealing with stateful applications will have to be integrated. However, the recovery
solutions for self-healing purposes can be reused in this context.

Finally, it should be realized that autonomic management in an Enterprise Grid can-
not just rely on a component or server-based approach. Instead, autonomic management
in Enterprise Grids should adopt a holistic approach. This means that there will be an
entity in charge of management, what is known as Grid Management Entity (GME) in
the Enterprise Grid Architecture (EGA). This GME is a recursive component. There is a
GME at the global Enterprise Grid level. Then, each subsystem with the Enterprise Grid
will have its own GME that will interact with the higher level GME and the lower level
GMEs corresponding to the contained subsystems. For instance, in a multi-tier archi-



tecture, there will be a GME for the full system, and then a GME for each gridified tier,
e.g., web tier, application tier, and database tier. There will also be a GME within each
instance of the server in a tier. That is, if there aren servers in the application server
tier, each of them will have its own GME for local autonomic management. In this area,
the gap with what is currently provided by grids is significant, since grids typically deal
with independent servers or at least deal with them as if they were independent.

Gap 6: Support for Service Level Agreements
An important class of enterprise applications provide service provision governed

by service level agreements (SLAs). SLAs set a contract between client and provider
regarding the offered service, quality of service, cost vs. service tradeoffs, tracking of
the quality service offered, etc. One of the main concerns is that by sharing resources
across different clients, the demand from one client can lead to violations of the SLA
of another client. This problem can be addressed by resource virtualization. The idea
is to split the resources of a site into multiple isolated execution environments that can
be assigned to different clients. The performance isolation achieved by virtualization
enables to adopt policies to maximize the fulfillment of SLAs. Grid computing has
produced many results regarding resource virtualization that can be exploited to attain
Enterprise Grids. However, there is still an important gap regarding how to handle SLAs
and the mapping of resource virtualization to clients, especially when the resources are
spread across different tiers in a multi-tier architecture.

3 Filling the Gap: Recent Advances in Distributed Systems

Database Replication.
Database replication is important to support the gridification of stateful and transac-

tional online applications and the database tier itself. Database replication has been an
active research topic for many years. One of the challenges is to keep replicas consistent
despite updates. The first textbook solutions for data replication [4] defined one-copy
serializability (1CS) as the universal correctness criteria for replicated, transactional
data and provided protocols satisfying consistency but very poor performance and no
scalability. The famous paper from Jim Gray et al. [15] analytically characterized the
lack of scalability of these solutions. This paper triggered research in different direc-
tions trying to overcome the shortcomings of the existing solutions.

Several different approaches looked at lazy replication where updates are executed
only at one replica and updates a propagated only after commit to the other replicas.
For instance, in [5], serializability is provided by assigning each object a master and
only the master can accept and propagate updates; furthermore assignment of objects
to masters and the propagation topology is restricted to guarantee correct executions. A
different research line aimed at making the lack of consistency explicit to the user, pro-
viding different degrees of data freshness to the user [32, 41, 33]. Freshness measures
the amount of updates that might have been missed by transactions and therefore quan-
tifies the staleness of the data read by a transaction. Another set of lazy approaches, such
as IceCube [25] and its clustered extension [27], has been devoted to reconciliation in
optimistic replication. Replicas are allowed to proceed in parallel without any measure



to prevent conflicts. Later, conflicts due to concurrent accesses are fixed by means of
semantic corrective actions.

A different line of research looked at scalable solutions for eager data replication,
where updates are propagated before commit, hence providing much better consistency
guarantees. Most of these approaches look at solutions providing 1CS. May of them,
such as [37, 34] built on group communication to guarantee consistency in advent of
any failure scenario. They additionally exploit asymmetric update processing [20] in
which update transactions are only fully processed at one replica (typically, different
transactions are fully processed at different replicas), while other replicas only apply the
updated tuples. This asymmetric processing is essential to attain scalability for update
workloads [20]. Other eager approaches were based on schedulers [1] that provided the
necessary message ordering and consistency guarantees. All these approaches attained
some reasonable scalability up to several tens of nodes while providing full consistency.

A new breed of protocols and systems exploit a more scalable isolation level, known
as snapshot isolation (SI) [44, 8, 26, 39]. SI is the highest isolation provided by some
databases such as Oracle and PostgreSQL, and provided by others such as the just re-
leased SQLServer. SI is based on multi-version concurrency control and has the ad-
vantage that there are only write-write conflicts what is crucial to enable high levels
of concurrency, a requirement for high scalability. SI can be extended to a replicated
setting creating the notion of one-copy snapshot isolation (1CSI) that has been formally
defined in [26]. 1CSI benefits from the high level of concurrency allowed by 1CSI and
by the underlying multi-version concurrency control that fits very well in a replicated
model in which each replica can be considered a different version.

Clustering in Multi-Tier Architectures.
The research in clustering of multi-tier architectures will be useful to support grid-

ification of multi-tier architectures and the stateful and transactional applications that
are typical in these architectures.

The replication of the web server tier has been studied very heavily during the last
decade [6]. The research has basically set the ground work for virtualizing IP addresses
in different ways, typically through a router. The result is a virtual IP address that can
be served by a pool of servers with different physical IP addresses. When moving web
clusters to a grid environment, additional problems have to be solved. Currently, most
routers guarantee that a request is sent to a working server, but there are no guarantees
about serving the request, since the server can crash before completing request exe-
cution. What is lacking is a solution that provides end-to-end exactly-once semantics
to enable a transparent fault-tolerant and highly available interaction. Furthermore, in
order to integrate the self-optimizing and self-provisioning features of the grid system
into IP virtualization, it must be possible to change the set of sites serving a virtual IP
address dynamically.

A significant body of research has looked into data caching for web servers cover-
ing issues such as cache consistency combined with caching of dynamic data. However,
distributed and replicated data caching is still an open problem. One of the main diffi-
culties is how to accomplish an independent gridified data caching tier (not recognized
as a tier in J2EE), such that its performance and resilience can be increased whilst still
providing full data coherence.



In the application server tier, most work has focused on providing availability via
primary-backup replication or active replication. Early work started with CORBA (e.g.
Eternal [30]) ignoring the interactions with other tiers. The integration of a replicated
application server with other, non-replicated tiers, and in particular, the database tier has
been first discussed for CORBA and .NET [45, 10, 2] an in general settings [14]. More
recently, research on J2EE application servers has yield several promising results in the
context of the European Adapt project [3]. For instance, [44] discusses integration of
replication of the application server with advanced execution and transaction patterns.
Some recent results show that it is possible to provide highly available transactions in
which, despite failovers, transactions are not aborted from the client perspective [38].
However, research in this area is still at an early stage in which only solutions for fault
tolerance (primary-backup) have been provided. More work is needed which takes self-
optimization and self-provisioning into account.

Furthermore, little work has been done when looking at gridification, or at least
replication, across several tiers. The X-ability framework [13] allows to reason about
correctness in a general multi-tier architecture. [23] looks at different integration ap-
proaches when several tiers are replicated. Integration can basically be achieved in two
different ways. One is that each tier is replicated independently. That is, the applica-
tion server tier is replicated independently of the database tier, also known as horizontal
replication. The second approach consists of taking a pair of application and database
server and replicating this pair. This approach is known as vertical replication [38].

Autonomic Computing.

The sheer size and complexity of modern information systems often overwhelms
even the most skilled engineers that are supposed to configure, optimize, secure, and
repair them. In fact, if the current trend of complexity growth continues, the adminis-
tration of the next generation systems will be beyond human capabilities. Even if the
complexity does not increase, it is predicted that the number of deployed systems in the
near future will be substantially higher that the number of qualified engineers to manage
them [24]. In fact, these studies have resulted in launching research initiatives in most
large software companies to create a new generation of systems able to self-manage
themselves with no human intervention except for setting high level goals or deciding
between performance and/or costs tradeoffs. Examples of these initiatives are, among
others, IBM autonomic computing, HP Adaptive Enterprise, Microsoft Dynamic Sys-
tems, and Intel Proactive Computing. The vision is to attain systems able to manage
themselves, that is, systems able to self-heal, self-provision, self-optimize, and self-
configure themselves. This vision for self-management and self-adaptation is also part
of the Enterprise Grid vision [9].

As mentioned before, self-healing requires to recover failed replicas or introduce
fresh ones. In a stateful context, this requires to transmit the state of working replicas
to these new replicas so they can join a grid of servers. Since such recovery might take
considerable time it is impossible to stop execution during this process since this would
violate the initial goal of high availability. Recent work has looked into online recovery
for self-healing databases [22, 19]. [22] proposed different ways to perform online re-
covery within the database kernel; [19] studies how to implement online recovery at the



middleware level providing toggles for a higher level self-configuration entity to adapt
the resources devoted to recovery to the current load.

The potential scalability provided by new replication approaches can only be at-
tained by resorting to autonomic protocols that self-optimize locally and self-configure
globally to maximize throughput. In the database arena, a significant effort has been
made during the last decade to develop self-tuning and self-optimization protocols, that
act locally on a particular server. One of the subsystems in a database system is memory
management. When the server overloads, the system enters into thrashing without grate-
ful degradation. Several self-management techniques have been proposed for database
memory management in [43] such as access pattern aware adaptive caching or specula-
tive, self-adapting pre-fetching policies.

Another important area for self-optimization in databases has been adaptive load
control. It aims at choosing the optimal configuration for a changing system load. This
is especially needed when the system becomes overloaded to avoid thrashing due to
resource contention. One of the most important parameters that affect contention is the
multiprogramming level (MPL), i.e., the number of transactions effectively executed
concurrently. For instance, if the system has twenty outstanding transactions, it can
decide to execute them one by one, two by two, or all twenty concurrently. Some ap-
proaches have looked at contention occasioned by locking. [29] determines the optimal
degree of conflict and adjusts the MPL to maintain this optimal degree. [16] applies
feedback control to adjust the MPL to maximize the throughput of a dataset. [42] uses
multi-programming levels as an external scheduling mechanism based on queueing the-
ory and feedback control. [28] proposes a hierarchical self-configuration/optimization
for clustered databases. Locally each database monitors the load and the throughput
and self-optimizes the MPL to maximize throughput. Since, local self-optimization is
not enough, it is complemented with a global level self-reconfiguration in the form of a
dynamic load balancing algorithm to maximize throughput at the cluster level.

Another important requirement of Enterprise Grids is the self-provisioning capacity.
In the area of workflow, there has been some interesting work, in which replicas of the
workflow server are allocated dynamically depending on the system load [36].

4 Challenges Ahead

Boosting the Scalability of Data Grids.
Most of the existing data replication strategies assume full replication (i.e. replicat-

ing the full database at each site). However, such approach has a scalability ceiling that
might be not enough for future very large data centers. Partial replication just replicates
a subset of data at each site and can be a solution for the scalability ([7]). However,
there are still many issues to resolve in this context. One of the interesting research
problems is whether a combination of full and partial replication can yield a better scal-
ability. Another important problem is that solutions relying on pure partial replication
will likely need to resort to distributed atomic commitment that is the current bottleneck
of distributed information systems. Recent protocols for high performance distributed
atomic commitment such as the commit server [21] can be a solution to leverage partial
replication to boost the scalability of database replication.



Low-Latency Gridification across WANs.
A requirement of Enterprise Grids is the inter-connection of data centers across

WANs. This will need support for data replication across WANs. WANs differ from
LANs mainly in the latency of the communication. This higher latency becomes es-
pecially troublesome for group communication based replication approaches in which
the required ordering and reliability guarantees might require several rounds of mes-
sages. However, purely lazy replication strategies might not be acceptable for some
of the transactional, update-intensive data. Thus, new replication protocols are needed
with higher levels of scalability and lower latencies while at the same time achieving
acceptable levels of consistency.

Reducing the Overhead of Gridification.
Another aspect crucial for the successful gridification of enterprise applications is

the reduction of the inherent overhead of the coordination among sites. Modern system
area networks provide functionality that might be exploited to reduce this overhead by
delegating functions, possibly dynamically, to the underlying hardware.

Holistic Approach to Virtualization and SLAs.
Despite the advances in virtualization of the different kind of resources (storage,

networking, server tier etc.), new research is needed to adopt a holistic approach to
virtualization, in which the computational requirements of an application across various
tiers are automatically analyzed. From there, the necessary resources are devoted for
deploying and running the new application and adjusted autonomically to the changes
in the workload and priorities extracted from SLAs.

Scalable and Consistent Gridification of Multi-tier Architectures
The current state of the art has addressed solutions for some of the gridification

issues of individual tiers. Much more work has to be done, both in regard to gridification
of individual tiers, and across the entire multi-tier architecture, taking into account any
form of data and execution dependencies.

Systemic Autonomic Computing.
Most current approaches for autonomic computing focus on individual servers. New

approaches addressing the hierarchical self-management of multi-tier systems or com-
plex systems as a whole are needed. Recent advances such as [40], in which perfor-
mance bottlenecks of complex systems deployed in multi-tier architectures are auto-
matically identified, are a start in this direction.

Accurate Models for Self-Optimization and Self-Provisioning.
Despite the progress attainrf in self-* properties, the attained results do not seem to

be enough for the Enterprise Grid vision. One of the aspects that need further research
is the modeling of systems with higher accuracy and autonomic protocols with higher
guarantees than current best effort approaches.

5 Conclusions

In this paper, we analyzed to what degree current grid systems can help leveraging the
Enterprise Grid vision. At the same time, we have identified some of the existing gaps



between the current state of the art of grid technology and the envisioned Enterprise
Grids. Some recent results in the area of distributed systems and databases have been
highlighted which might be the basis for novel mechanisms that will help to bridge the
gap between grid reality and the Enterprise grid vision. This paper also aims at fostering
cross-fertilization between the grid and the distributed systems communities. Finally,
some of the still open challenges to realize Enterprise Grids have been identified.
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