
Exercise Sheet #1, Computer Science, 308-251A
M. Hallett, Kaleigh Smith, X Fall 2002

Due: Sept. 26, 2002, midnight
Drop Box: 308-251 drop box (McConnell, 1st Floor, North Wing)

Hand in solutions to questions that gave you difficulty, if you are unsure if you have the correct
answer or, if you would like advice from the TAs.

Question 1: [Asymptotic Growth] (from 2001)

1. Prove (n + a)b = Θ(nb), for any real constants a and b, where b > 0.

2. Prove or disprove: 2n+1 = O(2n)

3. Prove or disprove: 22n = O(2n)

4. Prove or disprove: 2logbn 6= Θ(2logan), if a 6= b.

5. Is dlg ne! polynomially bounded?

6. Is dlg lg ne! polynomially bounded?

7. Show log(n!) = Θ(nlogn).

8. Show Σn
i=1i

−1 = Θ(logn).

Question 2: [Pure Induction] (from 2001) Prove by induction that the ith Fibonacci number
satisfies the equality Fi = (φi − φ̂i)/

√
5, where φ is the golden ratio and φ̂ is its conjugate.

Question 3: [Bounding] (from 2001) Give bounds on the following summations:

1. Σn
k=1k

r, r ≥ 0.

2. Σn
k=1lg

sk, s ≥ 0.

3. Σn
k=1k

r · lgsk, r, s ≥ 0.

Question 4: [Recurrences] (from 2001) Let α be a constant, 0 < α < 1. Solve the following
recurrence:

T (n) = T (α · n) + T ((1− α) · n) + n.

Question 5: [Recurrences] IMPORTANT QUESTION (4.7 in CLR ed. 1, page 75; 4.6 in
CLRS ed. 2, page 88)

Question 6: (midterm 2001)
Let A =< a1, a2, . . . , an > be a list of integers. Also, let X = {x1, x2, . . . , xk} be a set of integers,
where k is a constant. Suppose we knew that each ai, 1 ≤ i ≤ n, is restricted to a value xj ∈ X for
some j, 1 ≤ j ≤ k.

(a) Give an O(n) algorithm to sort A. This must be a comparison sort.

(b) Suppose k was not a constant but a function of n (call it f(n)). Given a tight upper bound
on f(n) for which your algorithm from part (a) is asymptotically no worse than the lower bound

1



for ComparisonSort.

(c) Consider the following variant of the problem from part (a) where we know that each ai

takes one of k values from the set Xi = {xi1 , xi2 , . . . , xik}. That is, each ai has its own private set
of k values.

Does the Ω(n · log n) lower bound for Comparison Sort hold for this problem? If “yes”, give
a concrete example of why. If “no”, give an algorithm that is o(n · log n).

Question 7: (midterm 2001) The version of MergeSort we saw in class splits the input array
A into two (almost equal) halves. An obvious question is “it is advantegeous to split A into more
than 2 pieces at each level of the recursion?”. Suppose we split A into b

√
nc pieces of roughly b

√
nc

elements.

(a) Give a recurrence describing the running time of this algorithm.

(b) Draw a recursion tree for this recurrence. Make sure you label it with the size of the
subarray, the degree of branching, and the total work done at each level of the tree.

(b) Give a tight upper bound on this recurrence. Try to make it as far as you can in the time
permitted. Bound what you can.

Question 8: (2002) Practice Proof Prove (carefully and very clearly) that o(g(n))∩ω(g(n)) = ∅.

Question 9: (2002) Suppose that we can show that algorithm Φ is O(nd) where n is the size of the
input and d is a constant. This means that Φ can be computed in polynomial time (as compared to
super-polynomial or exponential time). However, the algorithm might not be practical. Although
the running time of the algorithm is bounded by a polynomial there may be certain things the
big − O notation hides that make it effectively impractical. Give two examples of how big − O
notation can be abused.

Question 10: (2002) Let S be a binary sequence of length n. That is, S = s0s2 . . . sn−1 where
si ∈ {0, 1}. We say that σ is a substring of S iff there exists i, j, 0 ≤ i ≤ j ≤ n − 1, such that
sisi+1 . . . sj = σ.

If S is a binary cyclic sequence, then consider sn−1 to be adjacent to s0. In other words, sn = s0.

A de Bruijn sequence Bk for k ∈ N, k > 0, is a binary cyclic sequence of length 2k such that
every possible binary string with k bits is a subtring of Bk exactly once.

For example, B3 = 00011101. Verify that every 3 bit sequence is present in B3 exactly once.

(1) Construct B4.

(2) Try to find an algorithm to find Bk for any k that runs in time 22k · k.

(3) (hard) Try to prove your algorithm correct. Use your intuition but do not use more than
1/2 a page.

2



Question 11: (2002) You are given an ordered sequence A =< a1, . . . , an > where A is a per-
mutation of {1, . . . , n}. You now pick an element e1 from A, and remove e1 from A. This is
your first pick. You pick a second element e2 from A and remove e2 from A. This is your sec-
ond pick. You do this a total of k times. What is the probability that e1 < e2 < . . . < ek? What
is the probability that e1 ≤ e2 ≤ . . . ≤ ek if you don’t remove ei, 1 ≤ i ≤ k, from A when you pick it.

Question 12: (midterm 2002)
You are given 7 natural numbers a1, . . . , a7 and you are asked to find the median (the element ai

that has rank 4, 1 ≤ i ≤ 7). Give a lower bound for the number of comparison operations needed
and show your work.

Question 13: (midterm 2002)
Consider the following variant of MergeSort:

LazyMergeSort(A, p, r, α)
if p < r then

Choose a random number z between 0 and 1.
If z ≤ α, then

q ← b(p + r)/2c
LazyMergeSort(A, p, q, α)
LazyMergeSort(A, q + 1, r, α)
Merge(A, p, q, r)

else
for i from p to r do

A[i]← −i
od

The input A is a set of n distinct positive natural numbers and α is a real number, 0 < α < 1.
The output is a set A of n numbers (not necessarily positive). What is the probability that the
array A is sorted into ascending order after calling LazyMergeSort(A, 1, n, α)?

Question 14: (midterm 2002)
Intel releases a new chip that has the following features:

• There are two registers r1 and r2 that each hold an integer;

• Only three operations can be performed on r1 and r2:

– (Equality operation) We can test for equality between r1 and r2. This test returns true
iff the contents of r1 equal the contents of r2. false otherwise.

– (Add operation) We can add 1 to register r1 or r2. That is, we can perform ri ← ri + 1,
for i = 1 or 2.

– (Subtract operation) We can subtract 1 from register r1 or r2. That is, we can perform
ri ← ri − 1, i = 1 or 2.

– We can not do anything else to register r1 or r2.

• All other typical programming constructs are available (for or while loops, multiplication,
divisions, variables, etc.).

3



Part (a): Suppose there is an integer in r1 and an integer in r2. Give an algorithm to find the
maximum of the value in r1 and the value in r2 (thereby implementing a < operator). Try to
minimize the number of Equality, Add, and Subtract operations.

Part (b): Give a tight upper bound on the number of Equality, Add and Subtract operations
performed by your algorithm (use “big-Oh” notation).

Part (c): Give an upper bound on how many Equality operations are performed by your algo-
rithms. Do not use “big-Oh” notation (You do not need to show a proof.)

4


