

Kaleigh Smith†‡

Yunjun Liu†

Allison Klein†

Kaleigh Smith[†][‡] Yunjun Liu[†] Allison Klein[†]

[†]McGill University **‡ MPI Informatik**

Static Mosaics

Mosaic imagery - traditional and modern

Detail of Roman mosaic, Herculaneum

Magritte photomosaic, Silvers

Static Mosaics

Arrangement (packing) of objects (tiles)

Static Mosaics

- Arrangement (packing) of objects (tiles)
- Perceptual duality of mosaics:
 - Individual tiles
 - Whole depiction

Animated Mosaics

- Mosaic that changes over time
- Form of stop-motion animation
- Perceptual duality of mosaic animation:
 - Movement of tiles
 - Movement of overall scene

Animated Mosaics

- Our goal: system for creating animated mosaics
- Challenges:
 - I. Per-frame Quality
 - 2. Temporal Coherence
 - 3. Performance

Outline

- Introduction
- Related Work
- Process Overview
- Challenges and Approach
- Packing
- Results and Conclusions

Outline

- Introduction
- Related Work
 - Process Overview
 - Challenges and Approach
 - Packing
 - Results and Conclusions

Related Work : Static Mosaics

Simulating Decorative Mosaics [Hausner, 2001]

- Restricted tile shapes
- Point-based centroidal Voronoi diagram for tile placement.

Jigsaw Image Mosaics [Kim, Pellacini, 2002]

- Library of tiles
- Specified mosaic quality metric

Related Work : Static Mosaics

Rendering traditional mosaics [Elber, Wolberg, 2003]

- Stack tiles along contour lines
- Restricted tile shapes

Beyond stippling - methods for distributing objects on the plane [Hiller et al., 2003]

- Centroidal area Voronoi diagrams
- Stipple primitives

Related Work : Animated Mosaics

Painterly rendering for animation [Meier, 1996], Processing images and video for an Impressionist effect [Litwinowicz, 2000].

- NPR primitives (strokes) tied to underlying geometry (explicit or derived)
- Primitives can blend, grow and warp

Coherent stylized silhouettes [R. Kalnins et al., 2004].

Propogate NPR stylized contours

Outline

- Introduction
- Related Work
 - Process Overview
- Challenges and Approach
- Packing
- Results and Conclusions

Process Overview

Input Containers

Packed Containers

- **Containers** are input bounding shapes
- Tiles are packed into containers
- SVG defines container contours and deformations

Process Overview

Input **Containers**

Containers are input bounding shapes

Tiles are packed into containers

SVG defines container contours and deformations

Process Overview

- For each container, make an initial packing of tiles
- User specifies the tile shapes and number of tiles

- Propogate initial packing to pack subsequent frames
- Tiles are **advected** to following frame
- Add/remove tiles and adjust tile positions

- Result: coherent packing of container over time
- Render frames or use tile positions as key frames

Animation

Outline

- Introduction
- Related Work
- Process Overview
- Challenges and Approach
 - Packing
 - Results and Conclusions

Challenges

I. Static Mosaic: Per-frame Quality

- Dense, evenly spaced packing
- Appropriate tile alignment
- Arbitrary tile shapes
- Multiple tile shapes within a single container

Challenges

I. Static Mosaic: Per-frame Quality

2. Temporal Coherence

- Packings should change smoothly over time.
- Tiles should appear attached to depicted object.
- Minimize tile appearances and disappearances ("pops").

Input Container

Packings

Challenges

- I. Static Mosaic: Per-frame Quality
- 2. Temporal Coherence
- 3. Performance
 - Efficient packing method
 - Fast for single frames
 - Supports incremental changes
 - Interactive control for animator

Perceptual Approach

- Ultimate challenge: create a visually appealing animosaic
- Use grouping theory and perceptual aspects of HVS to:
 - Understand our perception of animated mosaics
 - Create animated mosaics that will simplify visual processing

pealing animosaic pects of HVS to:

Static Mosaic Perception

Group tiles to simplify and segment a scene according to:

- Similarity (colour, shape, orientation)
- Tile proximity
- Likeness to common shape

eption ne according to:

Static Mosaic Perception

Group tiles to simplify and segment a scene according to:

- Similarity (colour, shape, orientation)
- Tile proximity
- Likeness to common shape

eption ne according to:

Animated Mosaic Perception

Maintain previous grouping and make changes coherent:

- Common movement of grouped tiles
- Insertion and deletion of groups, not individuals
- Maintain emphasis of contours

Observation: uncoordinated changes among groups of tiles will yield distracting, incoherent animations, even if individual tiles have temporal smoothness.

Outline

- Introduction
- Related Work
- Process Overview
- Challenges and Approach
- Packing
 - Results and Conclusions

Packing: Tile Positioning

- No previous method packs multiple and arbitrary tile shapes in interactive time.
- Pack with centroidal area Voronoi diagram (CAVD).

Standard Voronoi Diagram

Area Voronoi Diagram

Packing: Tile Orientation

- Tiles oriented to nearest container edge.
- Fast to compute using AVD.
- Small container deformations yield coherent changes to tiles orientations.

Container

Container's **Orientation Field**

Resulting Packing

Packing: Tile Orientation

- Also supports equivalent tile orientations
- Better packing with no impact on packing speed

Without Equivalent Orientations

With Equivalent Orientations 3CA 05

Packing: Tile Orientation

- Tile orientations respect and reflect container shape
- Continuous changes in continuous container regions
- Sharp changes in discontinuous container regions

Packing: Result

Input **Containers**) (7

Packing: Result

- Tightly packed tiles.
- Arbitrary and multiple tiles shapes.

Input Containers)

Packing: Result

- Tightly packed tiles.
- Arbitrary and multiple tiles shapes.
- Placement and orientation respects and reflects the container shape.

Input Containers)

Packing: Tile Advection

Temporal Coherence:

- Translations and rotations easy
- Deformations are hard because tiles must be displaced, added and deleted

Packing: Tile Advection What would happen if tiles were advected uniformly

- over the container area?
- Example: map tiles to the next frame according to all container edges.

Packing: Tile Advection What would happen if tiles were advected uniformly

- over the container area?
- Example: map tiles to the next frame according to all container edges.

No tiles close to container edge

Frame 0

Uniform Tile Advection

No space to place new tiles

Packing: Tile Advection

Recall, in order to promote perceived coherence:

- Related tiles should move in groups
- Avoid individual tile insertions by concentrating insertion locations
- Concentrate deletions
- Emphasize container contour

Packing: Tile Advection

We propose two tile advection methods:

- Anchor Point Mapping
- Nearest-Edge Mapping

Previous techniques in NPR animation do not target group motion or perceptual grouping.

Anchor Point Mapping

- Appears that the tiles are being added to the border of the existing packing.
- During container contraction, outlying tiles are deleted.

Anchor Point Mapping

Uses container center point as anchor point

Anchor Point Mapping

Uses container center point as anchor point

Nearest-Edge Mapping

- Container boundaries coherent and strongly preserved
- Tiles added in a group at the center of the container
- Overlapping tiles are removed from center of container during container contractions

Nearest-Edge Mapping

3CA 05

Nearest-Edge Mapping

3CA 05

Outline

- Introduction
- Related Work
- Process Overview
- Challenges and Approach
- Packing
 - Results and Conclusions

Conclusions

New techniques for static mosaic creation

- Multiple tile shapes
- Improved tile orientation

New characterization of temporal coherence

- Group movement
- Underlying geometry not necessary

New system for mosaic animations

- Easy animation specification
- Original, stylized results

Future Work

- Further applications of perceptual grouping laws
- Make system choices more automatic
- Consider optimizing tile orientation according to the placement of neighbouring tiles

Acknowledgements

- Natural Sciences and Engineering Research Council of Canada
- Le Fonds québécois de la recherche sur la nature et les technologies
- ATI Technologies Inc. and Alias Systems Corp.
- Karol Myszkowski and Hans-Peter Seidel of MPI Informatik
- Louisa Sage
- Chansoo Kim and Yorico Murakami of UCLA Animation

Project: http://www.cs.mcgill.ca/~kaleigh/publications/animosaics

