
C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 1

COMP 208
Computers in Engineering

Lecture 05

Jun Wang
School of Computer Science

McGill University
Fall 2007



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 2

Review
� Arithmetic expression

– arithmetic operations on operands

– Precedence of arithmetic operators
• ** is right associative

� Assignment statement

+  - *  /  **

variable = expression

()

**

* /

+ -

high

low



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 3

Review

� Data types
– FORTRAN has 5 intrinsic (built-in) data types:

• INTEGER, REAL, COMPLEX, LOGICAL, CHARACTER

� REAL
– decimal form: 1.23, .123, 123.
– exponential form: 1.0E-3



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 4

Back to The Speed of Light

� How long does it take light to travel from 
the sun to earth?

� The result we got was a decimal number 
of minutes

� We’d rather have the number of minutes 
and seconds



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 5

Minutes and Seconds

PROGRAM light_travel
IMPLICIT NONE
REAL :: light_minute, distance, time
REAL :: light_year = 9.46 * 10.0**12
INTEGER :: minutes, seconds

light_minute = light_year/(365.25 * 24.0 * 60.0)
distance = 150.0 * 10**6
time = distance / light_minute

minutes = time
seconds = (time - minutes) * 60

write (*,*) "Light from the sun takes ", minutes, &
" minutes and ", seconds, " seconds to reach earth."

END PROGRAM light_travel



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 6

Integer Numbers (literals)

� Integers are whole numbers represented using 
32 bits (or sometimes 16 or even 64 bits)

� For 32 bit numbers whole numbers with up to 
10 digits can be represented (-231 ~ 231-1, or 
-2147483648 ~ 2147483647)

0

-987

+17

1234567890



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 7

Integer Arithmetic

� The result of performing an operation on 
two integers is an integer

� This may result in some unexpected 
results since the decimal part is truncated

12/4 � ?

13/4 � ?

1/2 � ?

2/3 � ?

3

3

0

0



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 8

Some Simple Examples
1 + 3 � 4

1.23 - 0.45 � 0.78

3 * 8 � 24

8.4/4.2 � 2.0 (not 2)

-5**2 � -25 (not 25 -- precedence)

3/5 � 0 (not 0.6)

3./5. � 0.6



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 9

Another Example
2 * 4 * 5 / 3 ** 2 

--> 2 * 4 * 5 / 3 ** 2
--> 2 * 4 * 5 / 9
--> 2 * 4 * 5 / 9 
--> 8 * 5 / 9
--> 8 * 5 / 9
--> 40 / 9
--> 4

The result is 4 rather than 4.444444 since the operands are all 
integers.



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 10

Mixed Mode Assignment

In the speed of light example, we assigned an 
real value to an integer variable

minutes = time

The value being assigned is converted to an 
integer by truncating (not rounding)

When assigning an integer to a real variable, the 
integer is first converted to a real (the internal 
representation changes)



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 11

Mixed Mode Expressions

In the speed of light example, we subtracted the 
integer value, minutes, from the real value, time
seconds = (time - minutes) * 60

If an operation involves an integer and a real, the 
integer is first converted to a real and then the 
operation is done. 

The result is real.

The example has two arithmetic operations, an 
assignment and forces two type conversions



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 12

Mixed mode expressions - summary

� In an arithmetic expression, if both operands are 
INTEGER, the operation is INTEGER and result is 
INTEGER

� If one operand is REAL, the other is INTEGER, the 
INTEGER is converted to REAL, and the result is REAL

� When an INTEGER is assigned to a REAL variable, it is 
converted to REAL

� When a REAL variable is assigned to an INTEGER 
variable, the fractional part is discarded



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 13

Mixed Mode Examples
1 + 2.5 � 1.0 + 2.5 � 3.5 

4.0**(1/2) � 4.0**0 � 4.0**0.0 �

1.0 (since 1/2 � 0)

-3**2.0 � -3.0**2.0 � -9.0

2.0/8 � 2.0/8.0 � 0.25

1/2.0 � 1.0/2.0 � 0.5



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 14

Example of mixed mode arithmetic 
operations

25.0 ** 1 / 2 * 3.5 ** (1 / 3)
� 25.0 ** 1 / 2 * 3.5 ** (1 / 3)
� 25.0 ** 1 / 2 * 3.5 ** 0
(25.0 ** 1.0)

� 25.0 / 2 * 3.5 ** 0
� 25.0 / 2 * 1.0
� 12.5 * 1.0
� 12.5



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 15

Your turn: midterm 05 question

What does the following 
program output?

PROGRAM midterm
REAL :: A, B, C
INTEGER :: I, J, K

A = 3.5
I = A
J = 5.25
K = I*2
B = A*I
C = J/3

WRITE (*,*) A,B,C,I,J,K

END PROGRAM midterm

A. 3.5 10.5 1.      3 5    7
B. 3.5 12.25 1.      3 5    6
C. 3.5 10.5 1.      3 5    6
D. 3.5 10.5 1.75  3 5    6
E. None of the above



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 16

Something’s Not Right Here
program light_travel

implicit none
real :: light_minute, distance, time
real :: light_year = 9.46 * 10 ** 12

light_minute = light_year/(365.25 * 24.0 * 60.0)
distance = 150.0 * 10**6
time = distance / light_minute

write (*,*) "Light from the sun takes ", time, &
"minutes to reach earth."

end program light_travel



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 17

What Happened?

Look at this assignment:
light_year = 9.46 * 10**12

Precedent rules tell us that 10**12 is evaluated 
first

Type rules tell us that the result is an integer
Integers can only have about 10 digits, not 13



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 18

How do we fix it?

Let’s change
light_year = 9.46 * 10**12

to
light_year = 9.46 * 10.0**12

That works, but why?



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 19

Selection in Fortran

conditional actions



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 20

Why selections?

� Programs so far all have 1 sequence of 
statements, which are executed unconditionally

� Real problems often require actions taken 
based on certain conditions

� A simple program:
– 1. Ask user to input an integer
– 2. If it is odd, print “odd”, otherwise,  print “even”



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 21

Back to roots of a quadratic

� Let’s have another look at our program 
for finding the roots of a quadratic 
equation

� We used the classic formula that involved 
finding the square root of the discriminant

� What if the discriminant is negative?



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 22

! --------------------------------------------------
! Solve Ax^2 + Bx + C = 0
! --------------------------------------------------
PROGRAM QuadraticEquation 
IMPLICIT NONE 

REAL :: a, b, c 
REAL :: d 
REAL :: root1, root2 

! read in the coefficients a, b and c   
WRITE(*,*) 'A, B, C Please : ' 
READ(*,*) a, b, c 

! compute the square root of discriminant d 

d = SQRT(b*b - 4.0*a*c)

! solve the equation 

root1 = (-b + d)/(2.0*a) ! first root 
root2 = (-b - d)/(2.0*a) ! second root 

! display the results 

WRITE(*,*) 'Roots are ', root1, ' and ', root2 

END PROGRAM QuadraticEquation 



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 23

A Run Time Error

If  the discriminant is negative, attempting 
to take the square root would cause an 
error during execution

This is called a run time error and the 
program would either abort or return a 
meaningless result



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 24

Selection

What can we do?
– Every programming language must provide a 

selection mechanism that allows us to control 
whether or not a statement should be 
executed

– This will depend on whether or not some 
condition is satisfied (such as the 
discriminant being positive)



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 25

Quadratics example: flow-chart

d=b*b – 4.0*a*c

D>=0.0

Calc root1,
root2

Ouput “no 
real roots!”

true false

end

beginning of 
the program 
not shown



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 26

! --------------------------------------------------
!   Solve  Ax^2 + Bx + C = 0  
! --------------------------------------------------
PROGRAM  QuadraticEquation
IMPLICIT  NONE

! **** Same old declarations and set up ****
!  compute the square root of discriminant d

d = b*b - 4.0*a*c
IF (d >= 0.0) THEN ! is it solvable?

d     = SQRT(d)
root1 = (-b + d)/(2.0*a)
root2 = (-b - d)/(2.0*a)
WRITE(*,*)  "Roots are ", root1, " and ", root2

ELSE ! complex roots
WRITE(*,*)  "There is no real root!"
WRITE(*,*)  "Discriminant = ", d

END IF
END PROGRAM QuadraticEquation



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 27

FORTRAN Selection

Used to select between two alternative sequences of 
statements.

The keywords delineate the statement blocks.

Syntax:

IF (logical-expression) THEN
first statement block s1

ELSE
second statement block s2

END IF



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 28

Semantics of 
IF…THEN…ELSE…END IF

� Evaluate the logical expression. It can have 
value .TRUE. or value .FALSE.

� If the value is .TRUE., evaluate s1, the first block of 
statements

� If the value is .FALSE., evaluate s2, the second block 
of statements

� After finishing whichever of  s1 or s2 that was chosen, 
execute the next statement following the END IF



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 29

Flow-chart for selection

condition

statement_after_if

block s1

true

false

block s2



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 30

What’s Going On?

� What is a “logical expression” ?
� an expression that evaluates to 

either .TRUE. or .FALSE.
– a LOGICAL literal: .TRUE., .FALSE.
– a LOGICAL variable
– a relational expression
– more complex expression consisting of the 

above



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 31

Logical Data Type
� FORTRAN has a LOGICAL data type, just like it has 

INTEGER and REAL types

� Each type has its associated values

� There are only two values in the type LOGICAL, .TRUE.
and .FALSE.

� Recall a data type defines:
� the range of values it can assume
� the valid operations for that type

C does not have logical type; it uses integers instead



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 32

Logical Data Type

� We can declare variables of type 
LOGICAL

LOGICAL :: positive_x, condition

� We can assign values to them
condition = .TRUE.
positive_x = x > 0

� These variables can only take on one of 
the two values of type logical



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 33

Relational Operators

� There is no associativity
a < b < c � illegal

� Relational operators are of lower precedence 
than all arithmetic operators

2 + 7 >= 3 * 3 � .TRUE.

Same as (2 + 7) >= (3 * 3)

� Relational operators compare two values and 
return the result .TRUE. or .FALSE.

<  <=  >  >=   ==  /= C uses != for 
“not equal”



COMP 208 – Computers in Engineering

C
O

M
P 

20
8 

-L
ec

tu
re

 0
5

34

D
an

ge
r L

ur
ks



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 35

== or = ?

Note that == is the FORTRAN (and the C) syntax 
for a relational operator meaning “is equal to”

The expression  x == y has the value .TRUE. if x 
and y are equal and .FALSE. if x and y are not 
equal

A single equal sign (=) is the FORTRAN  (and C) 
syntax for assignment

The statement x = y means assign the value of y 
to the variable x



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 36

== or = ?

In FORTRAN you will get an error message if 
you use either operator incorrectly

Later on, when we study C, we will C that the 
program could work and give totally 
incorrect results if you confuse these 
operators



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 37

Is a Number Even or Odd?

IF (MOD(number, 2) == 0) THEN

WRITE(*,*) number, " is even"

ELSE

WRITE(*,*) number, " is odd"

END IF



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 38

Is A Number Even or Odd?
(alternate)

IF (number/2*2 == number) THEN

WRITE(*,*) number, " is even"

ELSE

WRITE(*,*) number, " is odd"

END IF



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 39

Find Absolute Value

REAL :: x, absolute_x 
x = ..... 
IF (x >= 0.0) THEN
absolute_x = x 

ELSE
absolute_x = -x 

END IF
WRITE(*,*) “The absolute value of “,& 

x, “ is “, absolute_x 



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 40

Which value is smaller?

INTEGER :: a, b, min 
READ(*,*) a, b 
IF (a <= b) THEN
min = a 

ELSE
min = b 

END IF
WRITE(*,*) “The smaller of “, a, &

“ and “, b, “ is “, min 



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 41

The Missing ELSE
The IF-THEN-ELSE-END IF form allows us to 

choose between two alternatives

There is another simpler selection mechanism 
that can sometimes be used

It allows us to choose whether or not to perform 
a single block of actions

We either perform the actions and go on, or 
skip them and go on



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 42

IF-THEN-END IF

Semantics:
� Evaluate the logical expression
� If it evaluates to .TRUE. execute s1 and then 

continue with the statement following the END 
IF

� If the result is .FALSE. skip s1 and continue 
with the statement following the END IF

Syntax:
IF (logical-expression) THEN

first statement block s1
END IF



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 43

Flow-chart for selection

condition

statement_after_if

block s1

true

false



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 44

Examples of IF-THEN-END IF

absolute_x = x 

IF (x < 0.0) THEN
absolute_x = -x 

END IF

WRITE(*,*) "The absolute value of ", x, &
" is ", absolute_x 



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 45

Examples of IF-THEN-END IF

INTEGER :: a, b, min 
READ(*,*) a, b 
min = a 

IF (a > b) THEN 
min = b 

END IF

WRITE(*,*) "The smaller of ", &
a, " and ", b, " is ", min 



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 46

Logical IF
An even simpler form is sometimes useful. 
Syntax:

Semantics: This statement is equivalent to
IF (logical expression) THEN

single-statement

END IF

The single-statement cannot be an IF or we 
might end up with an ambiguous statement

IF (logical expression) single-statement

Must be logically on a single line.



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 47

Examples of Logical IF

absolute_x = x 

IF (x < 0.0) absolute_x = -x  

WRITE(*,*) "The absolute value of ", x, &
" is" ,"absolute_x



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 48

Examples of Logical IF

INTEGER :: a, b, min 

READ(*,*) a, b 

min = a 

IF (a > b) min = b  

WRITE(*,*) "The smaller of ",&
a, " and ", b, " is ", min 



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 49

Quadratic Roots Revisited

� The problem of finding the roots of a 
quadratic is a bit more complicated than 
we have been assuming

� If the discriminant is zero there is only a 
single root



C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 05 50

! ---------------------------------------------------
!   Solve  Ax^2 + Bx + C = 0   
!   Detect complex roots and repeated roots.
! ---------------------------------------------------
PROGRAM  QuadraticEquation

IMPLICIT  NONE
! **** same old declarations and setup statements omitted ****

d = b*b - 4.0*a*c

IF (d > 0.0) THEN               ! distinct roots?
d     = SQRT(d)
root1 = (-b + d)/(2.0*a)     ! first root
root2 = (-b - d)/(2.0*a)     ! second root
WRITE(*,*)  'Roots are ', root1, ' and ', root2

ELSE                           
IF (d == 0.0) THEN           ! repeated roots?

WRITE(*,*)  'The repeated root is ', -b/(2.0*a)
ELSE                         ! complex roots

WRITE(*,*)  'There is no real root!‘
WRITE(*,*)  'Discriminant = ', d

END IF
END IF

END PROGRAM  QuadraticEquation


