
C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 1

COMP 208
Computers in Engineering

Lecture 02

Jun Wang
School of Computer Science

McGill University
Fall 2007

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 2

Computer Architecture
� We will briefly look at the structure of a modern

computer
� That will help us understand some of the concepts that

occur in Fortran and C

– information representation
– binary numbers
– major hardware components

• memory
• CPU

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 3

Representing information
as numbers

� functionally, a computer processes information
according to instructions
– for example, a web browser takes the information stored in an

html file and displays a web-page

� Computers store all information as numbers:
– numbers
– text
– graphics and images
– audio
– video
– program instructions

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 4

Representing information
as numbers: example

� American Standard Code for Information
Interchange (ASCII)
– a widely used text encoding scheme based

on English alphabet
– defines coding for 128 characters

99c67C63?
98b66B46.

97a65A43+

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 5

Another example

H i , H e a t h e r .

72 105 44 32 72 101 97 116 104 101 114 46

COMP 208 – Computers in Engineering

C
O

M
P

20
8

-L
ec

tu
re

 0
2

6

A
S

C
II

C
od

e

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 7

Computers use
numbers to represent all information.

binary

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 8

Decimal numbers (base 10)

� Examples:
– “45 students registered for this course”
– “Fortran was first introduced in 1957”

� Observations:
– decimal number has 10 basic digits: 0 ~ 9
– positions of digits matter: 45 != 54
– 45 is shorthand of 4 x 101 + 5 x 100

– 1957 = 1 x 103 + 9 x 102 + 5 x 101 + 7 x 100

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 9

Binary numbers (base 2)
� 2 basic digits, 0 and 1

• 4510 = 1011012

• 1011012 = 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 +
1 x 20

• recall: 1957 = 1 x 103 + 9 x 102 + 5 x 101 + 7 x 100

2p10pweight
210digits

binarydecimal

bp

b
base-b

A single binary digit (0 or 1) is called a bit.

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 10

Hexadecimal numbers (base 16)

� Has 16 basic digits, 0 ~ 9, A, B, C, D, E, F

15F1111770111

14E1110660110

13D1101550101

12C1100440100

11B1011330011

10A1010220010

991001110001

881000000000

dechexbindechexbin

� one-to-one mapping between 1 hex digit and 4
binary digits.

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 11

Von Neumann Machines
� Modern computers are called Von Neumann
Machines

� John Von Neumann is credited with the idea
that programs can be encoded and stored in the
memory just like data

� There is one CPU (Central Processing Unit)

� A control unit transfers instructions from the
memory into registers so that a processing unit
can execute them

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 12

The 5 Classic Components

CPU

Computer

Control

Registers

Memory

Input
Devices

Output
Devices

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 13

The Von Neumann Model

Central
processing
unit (CPU)

Memory

I/O devices

Bus • hard disk
• keyboard
• monitor
• etc.

� programs loaded from disk to memory, and executed
in CPU

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 14

Memory

� Main memory is divided
into many memory locations
(or cells)

� Each memory cell has a
numeric address, which
uniquely identifies it

� Memory contents are lost
when power off

9278
9279
927A
927B
927C
927D
927E
927F
9280

Address
Cell

Memory goes from address
0 to N-1 where N is the amount

you purchased.

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 15

Storing Information

9278
9279
927A
927B
927C
927D
927E
927F
9280

Large values are
stored in consecutive
memory locations

For example, a integer
may take 4 bytes

Each memory cell stores a
set number of bits (usually
8 bits, or one byte)

10011010

1 byte = 8 bits

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 16

CPU

Control unit

Registers

Arithmetic/logic
unit (ALU)

� Registers are storage units
• general-purpose and special registers
• names instead of addresses
• Program Counter (PC), a.k.a. Instruction Pointer (IP),
points to the memory address of the next instruction.

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 17

Fetch-decode-execute

fetch next instruction
from memory as
indicated by PC

decode the
instruction and
increment PC

execute instruction
(might change PC)

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 18

Input / Ouput

Input Output

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 19

The Von Neumann Model

� Input devices (keyboard, pda, cell
phone, . . .) allow us to place data (and
programs) into memory

� Output devices allow us to display values
stored in memory (on screen, pda, cell
phone, . . .)

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 20

How to program this machine?

• Understand where high-level
languages come from

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 21

CPU instruction set
� CPU only understands a small set of pre-

defined instructions – its instruction set
– arithmetic/logic operations; data movement

� Each instruction tells the CPU to carry out a
basic operation

� For example, Intel 80x86 CPU:
– move the byte at address 1000 to the register AL:

10100000 00000000 00010000 (opcode data)
(a0 00 10 in hex)

– add 1 to the register CX:
10000000 10100001 00000001 00000000
(80 a1 01 00 in hex)

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 22

3 generations of programming
languages

� generation 1: machine language

� generation 2: assembly language

� generation 3: high-level language

a0 00 10 // move byte at 1000 to AL

02 05 01 10 // add byte at 1001 to AL

a2 02 10 // move AL to 1002

mov al, x // move byte x to AL

add al, y // add byte y to AL

mov z, al // move AL to z

z = x + y;

• give each
instruction a
mnemonic name
• use symbols to
represent
memory locations

symbols representing memory locations are called variables

each line of high-level
program usually
translates into many
lines of machine code

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 23

variables are symbols representing
memory locations

� task:
1. put the number 20 in a memory cell
2. put the number 4 in another cell
3. add the 2 numbers and put result in a third cell
4. print the number in the 3rd cell

� machine code
1. put the number 20 in memory cell 1000
2. put the number 4 in cell 1001
3. add the 2 numbers and put result in cell 1002
4. print the number in the cell 1002

� generation 2 and beyond
1. put the number 20 in memory cell x
2. put the number 4 in cell y
3. add the 2 numbers and put result in cell z
4. print the number in cell z

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 24

Low Level Programming
� Programmers in the late 1940�s had to use binary
numbers to encode the instructions and the data

� This was very time consuming and error prone so
written mnemonic codes were created. Programs were
written using these codes and then translated into
binary by hand

� Soon programs were written to convert these
symbols to binary. These programs are called
assemblers and the instruction names are called
assembly language

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 25

Assembly Program Example

We may want to evaluate the expression
f = (g + h) – (i + j)

Assembly program (where all the names refer
to registers)
add t0, g, h

add t1, i, j

sub f, t0, t1

Load and Store instructions are part of the
assembly language and allow transferring
data values between memory and registers

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 26

Assembly Language

� Low level language
� Simple instructions of the form
op result, arg1, arg2

� Machine dependent – each
processor has its own assembler

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 27

Native Code

An assembler translates this code into a
binary sequence of instructions

add t0, g, h -> 0110100000010010

add t1, i, j -> 0100100100110100

sub f, t0, t1 -> 0101010110001000

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 28

High Level Languages
Programming in assembly language is

still difficult and tedious
Programs are very specific to specific

machines
High level languages provide a more

natural mathematically based formalism
for expressing algorithms

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 29

High Level Languages
High level languages
� Hide details of memory allocation and hardware

details
� Allow expressing complex operations together, not

just one step at a time
� Provide a more natural way of programming
� Allow programs to be ported from one machine to

another
� Liberate programmers from low-level hardware

issues, so they can focus on problem solving, and
program structures

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 30

High Level Languages
These languages make it easier to write

programs but they are still very formal,
precisely structure languages that follow
very specific syntax rules

In addition to learning how to formulate
algorithms for the computer, we will have
to learn the rules for these languages

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 31

From high to low

� High-level programs must be translated into
machine code for CPU to execute

� Compiler:
translates high-level program into assembly
program

� Assembler:
translates assembly program into machine code

� A compiler usually combines the two

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 32

The Translation Process

��������

source program

assembly program

assembler

native code

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 33

Source Program

� A program written in a high level
language (FORTRAN, C, Java, C++, Ada)

� Created with a text editor in human
readable form

� File name extension often says what
language is used (a1.f90, a4.c, test.java)

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 34

Compiler

� A program that analyses the source
program and translates it into a form the
computer can understand

� Result is not readable by humans
� Each high level language requires its own

compiler

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 35

Linker/Loader

� The Linker combines the assembler code
with other programs that were compiled
another time or are standard programs
available in libraries (sin, sqrt, etc)

� The Loader puts the complete program in
memory and begins execution with the
first instruction

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 36

Portability of high-level
programs

a FORTRAN program

FORTRAN compiler
for Intel CPUs

FORTRAN compiler
for Sun CPUs

FORTRAN compiler
for Motorola CPUs

Intel CPU Sun CPU Motorola CPU

C
O

M
P

 208 –
C

om
puters in E

ngineering

COMP 208 - Lecture 02 37

A First FORTRAN Program

PROGRAM hello
IMPLICIT NONE
!This is my first program

WRITE (*,*) “Hello World!”

END PROGRAM hello

