
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

An ant colony optimization algorithm to improve software quality prediction
models: Case of class stability

D. Azar a,⇑, J. Vybihal b

a Department of Computer Science and Mathematics, Lebanese American University, Byblos 1h401 2010, Lebanon
b McGill University, School of Computer Science, 3480 University St., Montreal, Quebec, Canada H3A 2A7

a r t i c l e i n f o

Article history:
Received 23 December 2009
Received in revised form 29 November 2010
Accepted 30 November 2010
Available online 14 December 2010

Keywords:
Software quality
Metric
Search-based software engineering
Ant colony optimization

a b s t r a c t

Context: Assessing software quality at the early stages of the design and development process is very dif-
ficult since most of the software quality characteristics are not directly measurable. Nonetheless, they can
be derived from other measurable attributes. For this purpose, software quality prediction models have
been extensively used. However, building accurate prediction models is hard due to the lack of data in the
domain of software engineering. As a result, the prediction models built on one data set show a signifi-
cant deterioration of their accuracy when they are used to classify new, unseen data.
Objective: The objective of this paper is to present an approach that optimizes the accuracy of software
quality predictive models when used to classify new data.
Method: This paper presents an adaptive approach that takes already built predictive models and adapts
them (one at a time) to new data. We use an ant colony optimization algorithm in the adaptation process.
The approach is validated on stability of classes in object-oriented software systems and can easily be
used for any other software quality characteristic. It can also be easily extended to work with software
quality predictive problems involving more than two classification labels.
Results: Results show that our approach out-performs the machine learning algorithm C4.5 as well as
random guessing. It also preserves the expressiveness of the models which provide not only the classifi-
cation label but also guidelines to attain it.
Conclusion: Our approach is an adaptive one that can be seen as taking predictive models that have
already been built from common domain data and adapting them to context-specific data. This is suitable
for the domain of software quality since the data is very scarce and hence predictive models built from
one data set is hard to generalize and reuse on new data.

� 2010 Elsevier B.V. All rights reserved.

1. Problem statement

Software quality is defined as the degree to which a software
component or system meets specified requirements and specifica-
tions [37]. It is measured in terms of characteristics such as main-
tainability, reusability, etc. With the complexity of software
systems on the rise, there is an increasing need for measuring such
quality characteristics at an early stage of the software develop-
ment cycle but this is not possible before the system is deployed
and used for a certain period of time. However, a software system
has attributes that can be used as good indicators of its quality
characteristics. For example, in [33], the authors establish a rela-
tionship between reusability of software components and their
complexity and volume. They show that highly reused components
tend to have complexity and volume measures lower than those of

less reused components. Reusability is one software quality char-
acteristic that cannot be directly measured and complexity and
volume are software attributes that can be measured and used as
indicators of it. Several metrics have been proposed for measuring
software attributes [9,11,15,17,25,31]. Examples of such metrics
are: NOM (number of methods in the class) and NOC (number of
children of the class). In this context, we speak of software quality
estimation models which can be used to build relationships
between the measurable attributes on the one hand and the soft-
ware quality characteristic of interest on the other. These models
can be either statistical models (such as regression models
[21,28]) or logical models [1,12]. Our approach deals with logical
models. These have been extensively used to predict several soft-
ware quality characteristics due to their simplicity and intuitive as-
pect [46]. Moreover, they have a two-fold advantage since they
give the prediction itself and they provide guidelines to attain a
certain software quality characteristic. These guidelines can be
incorporated at the early stages of software development to pro-
duce software components with a better quality characteristic.

0950-5849/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2010.11.013

⇑ Corresponding author. Tel.: +961 9 547254x2408; fax: +961 9 547256.
E-mail address: danielle.azar@lau.edu.lb (D. Azar).

Information and Software Technology 53 (2011) 388–393

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof



Author's personal copy

Logical models can be either decision trees or rule sets. The latter
can be represented by logical expressions which aim at classifying
a software component into one of several categories according to
some tests on the metrics. However, the data used to build logical
models is scarce. The reason is that companies do not systemati-
cally collect data and when they do, the data is company-specific.
As a result, it becomes hard to generalize, to cross-validate or to re-
use the models on new unseen data. In our work, we focus on one
sub-characteristic of software maintainability namely stability
[26]. During its life-time, software undergoes several changes
and modifications. It is important for the software component to
remain stable across different versions of the system. A component
(a class in an OOP system) is said to be stable across two versions of
the system, if it keeps its public interface; otherwise the class is
unstable. In this context, we focus on the syntactic stability of the
classes only. i.e. changes in the header of the methods not in the
body or the semantics. The class is considered unstable if the use
of its method (syntactic) has changed between different versions
of the system. Addition and deletion of methods to the public
interface of the class also incurs instability. We formulate our
problem as a search-based software engineering one, a term first
coined by Harman and Jones [24]. Search-based software engineer-
ing is a field that formulates software engineering problems as
optimization problems and applies meta-heuristics techniques
(genetic algorithms, simulated annealing, tabu search, etc.) to solve
them [16,34]. The field has shown a lot of promise when applied to
problems in project management [3,5,14], prediction in software
engineering management [18,29], project planning and quality
assessment [2,13,29], and software testing [23,32,41]. In this pa-
per, we present an ant colony optimization (ACO) algorithm that
adapts rule-based models built on one data set to new unseen data.
This can be seen as adapting models that were built from one do-
main (possibly common domain) to context-specific data (could be
company-specific data). The remainder of this paper is organized
as follows. In Section 2, we give an overview of related work in
the area of software quality prediction. In Section 3, we formulate
the problem at hand and introduce the notation borrowed from the
machine learning domain. In Section 4, we give a brief overview of
ant colony optimization algorithms. In Section 5, we describe
the ant colony optimization algorithm that we propose for
the problem. In Section 6, we describe the experiments we
performed and the obtained results. In Section 7, we conclude with
a summary of the technique and a description of possible future
work.

2. Related work

Machine Learning techniques have been widely used to build
prediction models in the domain of software quality. In particular,
Porter and Selby [36] have used machine learning to build decision
trees as early as 1988. Mao et al. [33] use C4.5 [38] to build models
that predict reusability of a class in an object-oriented software
system based on the three attributes inheritance, coupling and
complexity. In [10], the authors use C4.5 to build models that esti-
mate the cost of rework in a library of reusable components. De
Almeida et al. [4] use C4.5 to build rule sets that predict the aver-
age isolation effort and the average effort. Briand et al. [11] inves-
tigate the relationship between coupling and cohesion measures
defined at the level of a class in an object-oriented system on
one hand and fault-proneness on the other. More recent work
was done by Arisholm et al. [6] and Briand and Arisholm [22] in
the domain of prediction of fault-proneness. Work in the same
domain was done by Khosgoftaar et al. [28] and Jiang et al. [27].
Lessman et al. [30] benchmarked several classification algorithms
on the problem of predicting software fault-proneness-another

software maintainability sub-characteristic, and found very little
difference in their performance. Similar to us, they argue that the
comprehensibility of the resulting classification models is very
important as it illustrates the classification procedure thus improv-
ing our understanding of the software quality characteristic that
we are studying (stability in our case, fault-proneness in their
case). However, Lessman et al. [30] benchmark classification algo-
rithms on multiple data sets hence giving a wider application to
the resulting classification models. Arisholm et al. [7] compare dif-
ferent modeling techniques in a systematic way and the impact of
selecting different types of measures as predictors. They find that
the measures and techniques quality is highly dependent on the
evaluation criteria used to assess the prediction models. In the
context of stability of classes in an OO system, Tsantalis et al.
[43] propose a methodology for assessing the probability that a
class changes in future generations. They use logistic regression
to show that the proposed probability measure is useful in predict-
ing the change proneness. Grosser et al. [44] propose a case-based
reasoning approach for the same problem. In their work, they con-
sider each software component as a point in a multi-dimensional
space where each metric represents one dimension. A distance
function is then defined to compute the similarity between compo-
nents and derive stability from it. Various search-based software
engineering approaches have been also proposed in the domain
of software quality in general. For example, Pedrycz and Succic
[35] represent classifiers as hypberboxes and uses genetic algo-
rithms to evolve existing models into new ones. Similar to our ap-
proach, this technique preserves the comprehensibility of the
classifiers and can be easily extended to a problem with multiple
classification labels. Vivanco [40] uses a genetic algorithm to im-
prove a classifier accuracy in identifying problematic components.
The approach relies on the selection of metrics that are more likely
to improve the performance of predictive models. Azar et al. [8,45]
present a hybrid approach combining different meta-heuristics
such as genetic algorithms, tabu search and simulated annealing
to re-combine existing rule sets and create new ones. The attempt
was successful and the obtained results promising. In this work, we
present a different approach which consists of adapting a single
model at a time to a new set of data. The idea behind this approach
is to see how much we can optimize one model. The technique
relies on ant colony optimization (ACO). Results show that our
ACO out-performs C4.5 and random guessing.

3. Problem formulation and objective

The prediction problem that we are dealing with is a binary
classification problem. The predictive model used for classification
takes the form of a function f that takes as input a vector of attri-
butes (a1,a2, . . . ,an) and outputs a classification label yi. In the con-
text of our work, the attributes a1, a2, . . ., an are metrics (such as
number of methods, number of children, etc.) considered relevant
to the software quality factor being predicted (stability). The clas-
sification label yi represents this software quality factor. In this
problem, yi 2 {0(stable), 1(unstable)}. Each vector of attributes de-
scribes a component i.e. a class in an object-oriented software sys-
tem. The objective is to find a function with a low error rate. The
evaluation of f is done on a data set D. The latter has the form
D = {(v1,y1), . . . , (vm,ym)} where each vi is a vector of attributes
and yi is the classification label. D is partitioned into two parts,
the training set Dtrain and the testing set Dtest. Most learning algo-
rithms take the training set as input and search the space of clas-
sifiers for one that minimizes the error on Dtrain. The output
classifier is then evaluated (tested) on Dtest. Examples of learning
algorithms that use this principle are the back propagation algo-
rithm for feed forward neural nets [39] and C4.5. The latter builds

D. Azar, J. Vybihal / Information and Software Technology 53 (2011) 388–393 389



Author's personal copy

classifiers in the form of decision trees. These can be transformed
later on to rule sets. We call the latter rule-based classifiers or
rule-based models. A rule-based classifier is a disjunction of con-
junctive rules and a default classification label. The following
example illustrates a rule-based classifier that predicts the stability
of a component based on the metrics NOM (number of methods)
and CUB (number of used classes).

Rule1: NOM > 10 ? 1
Rule2: CUB 6 2 ^ NOM 6 4 ? 0
Defaultclass: 1

This classifier consists of two rules and a default classification
label. The first rule classifies a class with number of methods
(NOM) greater than 10 as unstable (classification label equal to
1). The second rule classifies a class with the number of used clas-
ses (CUB) less than or equal to 2 and number of methods (NOM)
less than or equal to 4 as stable (0). The classification is sequential
i.e. the first rule (from the top) whose left hand side is satisfied by a
case classifies the case. If no such rule exists, the default classifica-
tion label is used to classify the case (default classification 1).

In this work, we consider that all mis-classifications incur equal
cost and thus, we evaluate the performance of a model (rule set)
using its accuracy (percentage of cases correctly classified) (Eq.
(1)). This measure is extracted from the confusion matrix shown
in Table 1. In this table, nij is the number of cases in D that are clas-
sified by R as having classification label j while they actually have
classification label i.

CðRÞ ¼
Pk

i¼1nii
Pk

i¼1

Pk
j¼1nij

ð1Þ

4. Overview of ant colony optimization algorithms

Ant colony optimization (ACO) algorithms have been widely
used for optimization problems [19,20]. They are cooperative
search algorithms inspired by the behavior of ants in search for
food. In real life, ants explore routes from the nest to the food
and leave pheromone traces on their path. Foraging ants can ex-
ploit this chemical substance to know which route is more likely
to take them to the food in a shorter time. The larger the amount
of detected pheromone, the most likely the foraging ants will take
the route. During the process, pheromone evaporates. In artificial
ant systems, ants build solutions to the problem by collecting
information about problem characteristics. This information is en-
coded in pheromone. Hence, the ant is somehow guided by the
pheromone and modifies the representation of the problem
through the pheromone as well. The other ants can see this modi-
fication. During the whole process of solution building, pheromone
evaporates. This helps avoid the convergence of all ants to one
solution. In Fig. 1, we show the pseudo-code of a generic ACO
and in the next section, we explain how we instantiate it to our
problem.

5. The proposed ACO algorithm

ACO starts by taking one rule set at a time, applying small
changes to it and evaluating the effect of these changes. This is re-
peated for every rule set separately. The core of the algorithm is in
its build_solution procedure (Fig. 1). A rule set is represented to the
ACO as an n �m matrix M where n is one plus the number of rules
in the rule set and m is one plus the number of conditions in the
longest rule in the rule set (Table 2). Row i of M represents the
ith rule in the rule set (the first rule being the topmost rule) if
i 6 n � 1 or the default classification label if i = n.1 Cell j in row i
represents the jth condition in rule i if j 6m � 1 or the classification
label of rule i if j = m. Since the rules do not all have the same length,
some cells in the matrix are left empty.

The algorithm starts by creating several ants at random loca-
tions on the matrix.2 The ants start moving downwards (Fig. 2).
At each non empty cell, the ant perturbs the content of the cell.
The perturb operation consists of changing the underlying cell
according to its contents (Fig. 1). If the cell encodes a condition,
then the perturb operation changes either the operator or the value
in the cell (this is decided randomly with a 50% chance for the
operator change to happen and 50% chance for the value to be
changed). In the former case, if the operator is 6, it is changed to
> and vice versa. In the latter case, the value of the condition is
changed to a different one picked randomly from the set of cut-
point values for the metric in the training set. A cutpoint value
for a metric is computed as the median of two values in the train-
ing data set at which the classification label changes. For this, the
training data set is sorted by each metric at a time. The borders
at which the classification label changes are noted and the median
of the two border values is computed and inserted in the cutpoint
set for this metric. We chose the cutpoint values of a metric be-
cause these are the values that are most likely to incur a change
in the classification label. In the case where the cell encodes a clas-
sification label, then the perturb operation changes this to a differ-
ent classification label (in our case, this changes 0–1 and vice
versa). If the cell is an empty cell, the ant does not perform any
operation on it and continues its march. When the ant hits the low-
est row in the matrix, it moves to the adjacent cell to the right of
the current one and starts moving upwards.When the ant reaches
the topmost row, it moves to the right cell again and continues
walking downwards. When it reaches the rightmost lowest cell
in the matrix, it walks toward the cell on its left hand side and then
upwards again. This ensures that every time the ant reaches a bor-
der, it goes to the longest unvisited adjacent cell. This results in the
ant walking in an S-shape. We refer to this march as the S-march.

The described S-march results in an ant perturbing only slightly
a rule by perturbing one condition at a time (for each objective
function evaluation) or the classification label only. This way, we
can assess how much effect each condition has on the rule in which
it lies and hence on the whole rule set. The ant leaves pheromone
on the modified cell if the perturbation results in an improve-
ment(higher objective function value). This indicates that the
change is good thus attracting other ants to this cell. The improve-
ment is calculated according to an objective function f (Eq. (2)).
Since the goal is to improve the accuracy of the underlying rule
set R, f is set equal to C(R) (Eq. (1)). The new (perturbed) rule set
replaces the current one only if it gives a higher objective function
value. Otherwise, ants continue their march to find better
perturbations.

f ¼ CðRÞ ð2Þ

Table 1
Confusion matrix of decision function f. nij is the number of cases with real label ci

classified by f as cj.

Real label Predicted Label

c1 c2 . . . ck

c1 n11 n12 . . . n1k

c2 n21 n22 . . . n2k

..

. ..
. ..

. . .
. ..

.

ck nk1 nk2 . . . nkk

1 In this case, only the rightmost cell in the row is filled with the classification label.
2 The number of ants is a parameter that is entered at the onset of the experiments.

390 D. Azar, J. Vybihal / Information and Software Technology 53 (2011) 388–393



Author's personal copy

While walking, the ant checks for pheromone. If it detects any,
it diverts from its S-march and goes directly to the pheromone
(allowing itself diagonal moves). It is possible for the ant to detect
several pheromone signals from different sources. In such a case, it
moves to the one that has the highest intensity breaking ties ran-
domly. The ant can detect pheromone up to three cells away only
(we found three to be a good number given the relatively small size
of the rule sets. As a matter of fact, very few rule sets have more
than three conditions per rule). If, at any point during the walk,
the ant encounters another one, it steps aside. For this, it checks
the right cell first and moves to it if it lies within the boundaries
of the matrix and is empty. Otherwise, the ant moves to the left
cell.3 The ants repeat this march-perturb-release_pheromone cycle
a certain number of times (specified as a parameter to the algo-

rithm). At the end of each iteration, the pheromone intensity is de-
creased to avoid the premature convergence of all ants to a subset
of the conditions only.

6. Experimentation and results

The data used to validate our technique was collected from
open source. It describes stability of classes in an object-oriented
software system and is fairly balanced. Table 3 shows the software
systems used to build classification models with C4.5 and Tables
4–7 show the metrics that were extracted from these systems. In
summary, they are metrics that measure four software attributes:
size, cohesion, class coupling and inheritance. Detailed description
of these metrics can be found in [9,15,17,25]. Fifteen different sub-
sets of metrics were created by combining one, two, three or four
of these groups of metrics. This setup helps assess the relationships
between the software attribute (or a combination of them) on the
one hand and the stability of the software system on the other. For
example, cohesion and coupling metrics were combined to show
the relationship between these two software quality attributes
on one hand and stability on the other hand. These subsets were
used with the nine chosen software systems to create 135 data
sets. C4.5 was used to construct a decision tree from each data
set. Constant classifiers and classifiers with an error rate higher
than 40% were eliminated and 23 retained. The decision trees were
then converted to rule sets by C4.5. These can be thought of as

Table 3
Software systems used to build classifiers with C4.5.

Software System # of versions # of classes Location

Bean browser 6 388–392 alternativeTo
Free 9 46–93 Oracle
Javamapper 2 18–19 SourceForge
Jchempaint 2 84 SourceForge
Jigsaw 4 846–958 SourceForge
Jlex 4 20–23 Princeton University
Jms 2 106 SourceForge
Voji 4 16–39 SourceForge

Fig. 1. Pseudocode of the generic ACO and its adaptation to the problem. The procedures build_solution() and update_pheromone() are the core of ACO. perturb_cell() is the core
of build_solution().

Table 2
Matrix representation of the rule set: Rule1: NOC 6 5 ^ NOM 6 3 ? 0; Rule2:
NPA > 6 ^ NOM > 10 ^ SIX > 3 ? 1; Default class 1 in the ACO algorithm.

NOC 6 5 NOM 6 3 – 0
NPA > 6 NOM > 10 SIX > 3 1
– – – 1

Fig. 2. The S-march. Solid lines indicate the path of the ant before it hits the lowest
rightmost cell and reverses directions (returning path is shown by dashed lines).

3 If the ant cannot step aside, it waits for one of the other ants to free its cell.

D. Azar, J. Vybihal / Information and Software Technology 53 (2011) 388–393 391



Author's personal copy

simulating classification models built from common domain data.
They are adapted by ACO to the systems shown in Table 8. This set-
up helps assess the performance of the models on new data. The
new data can simulate company-specific data.

We performed several experiments with the algorithm chang-
ing number of ants and number of iterations for each ant. We show
the results we obtained by setting the number of ants to 4 and the
number of iterations to 30 for all experiments (Table 9). We chose
these values after several trials showed that an increase in these
numbers increased the running time of the algorithm and had very
little effect (if any) on the quality of the obtained results. This
shows that the algorithm is robust to such parameters variations.
We believe that this is also due to the relatively small size of the
rule sets and hence of the matrix that the ants march on. To accu-
rately estimate the accuracy of the rule sets, we used 10-fold cross-

validation [42] (10 is a commonly used number) on the data set in
Table 8. With this technique, the data set is split into 10 folds of
roughly equal size. The algorithm is seeded with one rule set at a
time, trained on the union of nine folds and tested on the remain-
ing fold. This is repeated 10 times using each time a different fold
as a testing set. Also, in order to account for the element of ran-
domness in the ACO algorithm, we repeat each experiment 30
times and we report the average results over the 30 runs. Table
10 shows the average, maximum and minimum accuracies ob-
tained with each of the algorithms on the testing data. We can
see from the tables that ACO scores the highest results of all in
its minimum, maximum and average accuracies. It also shows a
small standard deviation indicating that it is fairly stable. In order
to test ACO in a more global fashion, we also built random rule sets
on the same data set and compared our ACO to it. For this purpose,
we created 30 random rule sets by randomly selecting attributes
and values from the data set and forming conditions and rules of
random size. Table 10 shows that our approach out-performs sig-
nificantly random guessing and that random guessing is very
unstable (large standard deviation).

In order to test for the significance of our results, we use the
Wilcoxon signed rank test to compare ACO to C4.5. Results show
a z � ratio of 2.8 indicating a significance level of 0.005 proving
that it is unlikely that the observed results are due to chance. We
do not include random guessing in our comparisons since it is
unstable showing a very large variance in the obtained results.

7. Conclusion and future work

In this paper, we proposed an ant colony optimization algo-
rithm to optimize existing software quality estimation models by
adapting each, separately, to new unseen software systems. This
can be seen as taking models built from common domain knowl-
edge and adapting them to some context-specific (company) data.
This is important in the case of software engineering because data
is scarce and seldom made public. We have conducted experiments
on a data set describing the stability of classes in an object-ori-
ented system. ACO out-performs both C4.5 and random guessing.
The approach also preserves the white-box nature of the obtained
models. These provide the classification label as well as its source.
We point out that the data set that we used is noisy and hence ex-
pect ACO to improve the results even more on a data set with less
noise. It is certainly interesting to test our approach on data related
to different software quality characteristics (such as reusability).
Our ACO is limited by the size of the initial rule sets it is seeded
with. In future work, we plan to design the algorithm in such a
way that it allows the creation of rule sets of different complexity
than the initial ones. Another idea would be to modify the
algorithm in such a way that it uses several rule sets at the same

Table 4
Cohesion metrics.

Name Description

LCOM Lack of cohesion on
methods

COH Cohesion
COM Cohesion metric
COMI Cohesion metric inverse

Table 5
Coupling metrics.

Name Description

OCMAIC Other class method attribute import coupling
OCMAEC Other class method attribute export coupling
CUB Number of classes used by a class
CUBF Number of classes used by a member function

Table 6
Inheritance metrics.

Name Description

NOC Number of children
NOP Number of parents
NON Number of nested

classes
NOCONT Number of containing

classes
DIT Depth of inheritance
MDS Message domain size
CHM Class hierarchy metric

Table 7
Size metrics.

Name Description

NOM Number of methods
WMC Weighted methods per class
WMC_LOC LOC weighted methods per class
MCC McCabe’s complexity weighted methods per class
DEPCC Operation access metric
NPPM Number of public and protected methods in a class
NPA Number of public attributes

Table 8
Software systems used to train and test the heuristics.

Software system # of versions # of classes Location

Jedit 2 464–468 SourceForge
Jetty 6 229–285 SourceForge

Table 9
ACO parameters.

Number
of ants

Number of
iterations per
ant

4 30

Table 10
Average, minimum, maximum and standard deviation of testing accuracy (percent-
ages) of ACO, C4.5 and random guessing.

Avg. Min. Max. stdv.

ACO 64 56 72 0.04
C4.5 58 34 68 0.1
Random guessing 28 14 60 30

392 D. Azar, J. Vybihal / Information and Software Technology 53 (2011) 388–393



Author's personal copy

time. It would then be interesting to see how the performance of
ACO varies with the number of rule sets to combine. Also, the prob-
lem that we are dealing with in this work is a binary classification
of classes. In other words, a class is considered as stable or unstable
depending on modifications in its public interface. Adding more
information to the classification that would relate it to the degree
of change in a class would be an interesting approach for future
work.

Acknowledgement

This work was supported in part by a grant from the Lebanese
National Council for Scientific Research (CNRS), and from the Re-
search Council at the Lebanese American University.

References

[1] A. Agresti, Categorical Data Analysis, John Wiley and Sons, 1990.
[2] J. Aguilar-Ruiz, I. Ramos, J.C. Riquelme, M. Toro, An evolutionary approach to

estimating software development projects, Information and Software
Technology 43 (14) (2001) 875–882.

[3] E. Alba, F.B. e. AbreuChicano, Software project management with GAs,
Information Sciences 177 (11) (2007) 2380–2401.

[4] M.A. De Almeida, H. Lounis, W. Melo, An investigation on the use of machine
learned models for estimating software correctability, International Journal of
Software Engineering and Knowledge Engineering, Spcial Issue on Knowledge
Discovery from Empirical Software Engineering Data, October 1999.

[5] G. Antoniol, M. Di Penta, M. Harman, Search-based techniques for optimizing
software project resource allocation, in: Proceedings of the 2004 Conference on
Genetic and Evolutionary Computation (GECCO ’04), vol. 3103, 2004, pp. 1425–
1426.

[6] E. Arisholm, L. Briand, M. Fulglerud, Data mining techniques for building fault-
proneness models in telecom java software: an experiment, in: Proceedings of
the IEEE International Symposium on Software Reliability Engineering (ISSRE
2007), IEEE, 2007, pp. 215–224.

[7] E. Arisholm, L. Briand, E.B. Johannessen, A systematic and comprehensive
investigation of methods to build and evaluate fault prediction models, The
Journal of Systems and Software 83 (1) (2010) 2–17.

[8] D. Azar, H. Harmanani, R. Korkmaz, A hybrid hueristic to optimize rule-based
software quality estimation models, Information and Software Technology
(2009).

[9] G.M. Barnes, B.R. Swim, Inheriting software metrics, JOOP 6 (7) (1993) 27–34.
[10] V. Basili, K. Condon, K. El Emam, R.B. Hendrick, W.L. Melo, Characterizing and

modeling the cost of rework in a library of reusable software components, in:
Proceedings of the 19th International Conference on Software Engeineering,
Boston, MA, May 1997, pp. 282–291.

[11] L. Briand, P. Devanbu, W. Melo, An investigation into coupling measures for
C++, 1997, in: Proceedings of the 19th International Conference on Software
Engineering, 1997.

[12] L.C. Briand, W.M. Thomas, C.J. Hetmanski, Modeling and managing risk early in
software development, in: Proceedings of the 15th International Conference
on Software Engineering, 1993, pp. 55–65.

[13] C.J. Burgess, M. Lefley, Can genetic programming improve software effort
estimation? a comparative evaluation, Information and Software Technology
43 (14) (2001) 863–873.

[14] C.K. Chang, C. Chao, T.T. Nguyen, M. Christensen, Software project
management net: a new methodology on software management, in:
Proceedings of the 22nd Annual International Computer Software and
Applications Conference (COMPSAC ’98), 1998, pp. 534–539.

[15] S. Chidamber, C. Kemerer, A metrics suite for object-oriented design, IEEE
Transactions on Software Engineering 20 (1994) 476–493.

[16] J. Clark, J.J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin, B. Mitchell, S.
Mancoridis, K. Rees, M. Roper, M. Shepperd, Reformulating software
engineering as a search problem, IEE Proceedings – Software 150 (3) (2003)
161–175.

[17] J.C. Coppick, T.J. Cheatham, Software metrics for object-oriented systems, in: In
—’em CSC ’92 Proceedings, 1992, pp. 317–322.

[18] J.J. Dolado, On the problem of the software cost function, Information and
Software Technology 43 (1) (2001) 61–72.

[19] M. Dorigo, G.D. Caro, Ant colony optimization: a new meta-heuristic, in:
Congress of Evolutionary Computation, vol. 2, 1999, pp. 1470–1477.

[20] M. Dorigo, T. Stutzle, Ant Colony Optimization, MIT press, 2004.
[21] F.B.E. Abreu, W.L. Melo, Evaluating the impact of object-oriented design on

software quality, in: Proceedings of the 3rd International Symposium on
Software Metrics, IEEE, 1996, p. 90.

[22] L.C. Briand, E. Arisholm, Predicting fault-prone components in a JAVA legacy
system, in: IESE’06, 2006.

[23] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel, M. Roper,
Testability transformation, IEEE Transactions on Software Engineering 30 (1)
(2004) 3–16.

[24] M. Harman, B. Jones, Search based software engineering, Journal of
Information and Software Technology 43 (14) (2001) 833–839.

[25] B. Henderson-Sellers, Some metrics for object-oriented software engineering,
in: The First IEEE International Conference on New Technology and Mobile
Security, 2007.

[26] ISO9126, Software product evaluation-quality characteristics and guidelines
for their use, ISO/IEC Standard-ISO9126, 1991.

[27] Y. Jiang, B. Cukic, T. Menzies, Fault prediction using early lifecycle data, in: The
18th IEEE International Symposium on Software Reliability, IEEE, 2007.

[28] T.M. Khoshgoftaar, Allen EB, J. Deng, Using regression trees to classify fault-
prone software modules, IEEE Transactions on Reliability 51 (2002) 455–462.

[29] C. Kirsopp, M. Shepperd, J. Hart, Search heuristics, case-based reasoning and
software project effort prediction, in: Proceedings of the 2002 Conference on
Genetic and Evolutionary Computation (GECCO ’02), 2002, pp. 1367–1374.

[30] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking classification
models for software defect prediction: a proposed framework and novel
findings, IEEE Transactions on Software Engineering 34 (2008) 485–496.

[31] W. Li, S. Henry, Maintenance metrics for the object-oriented paradigm, in:
Proceedings of the First International Software Metrics Symposium, 1993.

[32] Z. Li, M. Harman, R.M. Hierons, Meta-heuristic search algorithms for regression
test case prioritization, IEEE Transactions on Software Engineering 33 (4)
(2007) 225–237.

[33] Y. Mao, H.A. Sahraoui, H. Lounis, Reusability hypothesis verification using
machine learning techniques: a case study, in: IEEE Automated Software
Engineering Conference, 1998.

[34] P. McMinn, Search-based software test data generation: a survey, Software
Testing, Verification, and Reliability 14 (2) (2004) 105–156.

[35] W. Pedrycza, G. Succic, Genetic granular classifiers in modeling software
quality genetic granular classifiers in modeling software quality, Journal of
Systems and Software 76 (3) (2005) 277–285.

[36] A. Porter, R. Selby, Learning from examples: generation and evaluation of
decision trees for software resource analysis, Software Engineering 14 (12)
(1988) 1743–1757.

[37] R.S. Pressman, Making Software Engineering Happen, A Guide for Instituting
the Technology, Prentice-Hall, 1988.

[38] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufman, 1993.
[39] G.D.E. Rumelhart, Hinton, R. Williams, Learning representations by back-

propagation errors, Nature 323 (1986).
[40] R. Vivanco, Improving predictive models of software quality using an

evolutionary computational approach improving predictive models of
software quality using an evolutionary computational approach, in:
Proceedings of the IEEE International Conference on Software Maintenance
(ICSM 2007), 2007, pp. 503–504.

[41] J. Wegener, A. Baresel, H. Sthamer, Evolutionary test environment for
automatic structural testing, Information and Software Technology 43 (14)
(2001) 841–854.

[42] R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation
and model selection, in: Proceedings of the Fourteenth International
Conference Artificial Intelligence (IJCAI 1995), Morgan Kaufmann, 1995, pp.
1137–1143.

[43] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, Predicting the probability of
change in object-oriented systems, in: IEEE Transactions on Software
Engineering, IEEE Computer Society, 2005, pp. 601–614.

[44] D. Grosser, H.A. Sahraoui, P. Valtchev, Predicting software stability using case-
based reasoning, in: 17th International Conference on Automated Software
Engineering, 2005, pp. 295–298.

[45] D. Azar, H. Harmanani, R. Korkmaz, Predicting stability of classes in an object-
oriented system, Journal of Computational Methods in Science and
Engineering (2010).

[46] T. Fawcett, Using rule sets to maximize ROC performance, in: IEEE
international Conference on Data Mining, IEEE Computer Society, 2001, pp.
131–138.

D. Azar, J. Vybihal / Information and Software Technology 53 (2011) 388–393 393


