
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— Creators of multimedia content are commonly faced

with the task of generating a sequence of lip movements to match

an audio track of human speech, also known as a ‘Lip Sync’. A

challenge in automatic Lip Sync systems lies in accurately

generating mouth shapes that can discern speech type, that’s to say

when the voice in the audio track is whispering, talking or

shouting. We present a novel method that automatically generates

lightweight mouth shapes from an excerpt of spoken audio by

predicting the speech type.

 Phonemes in the speech input are detected using

CMUSphinx, and mapped to visemes according to the Jeffers map.

The audio input signal is represented using Mel-Frequency

Cepstral Coefficient (MFCC) vectors that are used as features in

a Feedforward Neural Network. The neural network then predicts

the probability that the audio belong to three categories (whisper,

talk, and shout). Mouth shapes are generated by averaging control

points in pre-made mouth models according to the Neural

Network’s predicted probability for the speech type. The resulting

mouth shapes are unique, simple to create, and constitute

convincing lip sync frames. Their low storage and transmission

requirements mean they are well suited for implementing low-

bandwidth communication through animation.

Index Terms— automatic lip sync, Bezier, feedforward neural

network, human voice, lip sync, mouth shape, multi-layer neural

network, neural network, phoneme, speech, speech processing,

speech type, viseme.

I. INTRODUCTION

OW much knowledge can you obtain about a person’s

facial expression based only on the sound of their voice?

Many characteristics can be learnt from an audio recording of a

person’s voice, in particular relating to the shape of the mouth,

which the human mind systematically associates with sounds

[1]. These characteristics are of interest to multimedia content

stakeholders, as the information they contain can assist in

generating realistic mouths and facial parts for speech-driven

synthetic talking faces (avatars). For instance, hearing an angry

shout may conjure the image of angled eyebrows and a wide-

This paragraph of the first footnote will contain the date on which you

submitted your paper for review. It will also contain support information,

including sponsor and financial support acknowledgment. For example, “This

work was supported in part by the U.S. Department of Commerce under Grant
BS123456.”

The next few paragraphs should contain the authors’ current affiliations,

including current address and e-mail. For example, F. A. Author is with the

open mouth. Furthermore, cognition studies such as Sweeny et

al [1] show that when humans hear sounds such as “woo” and

“wee”, they associate them with horizontally or vertically

extended mouth shapes. Ultimately, developing bandwidth-

efficient, realistic animated avatars can be used to improve

computer-human interactions, finding uses in technologies such

as video games and video telephony.

 When generating an animation of lip movement to match

an audio track of human speech, otherwise known as ‘Lip

Sync’, animators will typically possess prior knowledge about

the facial expressions of the avatar they are creating. This

allows animators to manually draw an accurate mouth shape for

each phoneme in the recording. In Automatic Lip Sync systems,

the main focus is to accurately generate an audio to visual

mapping from each phoneme (a perceptually distinct unit of

sound in speech) in the input speech signal to a corresponding

viseme (mouth shape), without relying on manual modification.

In the case that no prior knowledge of the facial expression

exists, such as real-time Lip Sync generation, the accuracy of

generated mouth shapes can be enhanced by modifying the

mouth shapes according to cues in the audio recording. We

propose that features extracted from the audio speech signal can

aid in the construction of uniquely generated mouth shapes for

multimedia content.

 As such, the aim of this project is to use a Feedforward

Neural Network to classify human speech into different

categories of speech types (whisper, talk, and shout) and use

this classification in conjunction with the phoneme detection

system from CMUSphinx [2] to generate a mapping with

improved accuracy and detail in the generated mouth shapes.

This is an improvement over the pre-made mouth shapes used

in many current systems. The unique mouth shapes can be

generated with ease, without the need for prior knowledge of

the speaker to do so.

National Institute of Standards and Technology, Boulder, CO 80305 USA (e-
mail: author@ boulder.nist.gov).

S. B. Author, Jr., was with Rice University, Houston, TX 77005 USA. He is

now with the Department of Physics, Colorado State University, Fort Collins,
CO 80523 USA (e-mail: author@lamar.colostate.edu).

T. C. Author is with the Electrical Engineering Department, University of

Colorado, Boulder, CO 80309 USA, on leave from the National Research
Institute for Metals, Tsukuba, Japan (e-mail: author@nrim.go.jp).

An Automatic Lip Sync system using Neural

Network classification to generate unique

mouth shapes based on speech type

Sanz-Robinson, Jacob, and Vybihal, Joseph

H

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

 The final output of the pipeline is a series of timestamps and

mouth shapes defined by the control points specified in the

MPEG-4 facial animation standard parameters [3]. Importantly,

the low data storage and transmission cost of the generated

mouths would allow this technique to be used in practical

scenarios such as the real-time transmission reconstruction of

avatars. It also finds a use in animation studios, and could

reduce the cost of producing lip syncs in multimedia

productions.

II. RELATED WORK

 Creating automated Lip Sync animations from speech has

been approached in several different manners, in different

fields, and for different applications. Rarely, however, have

these works considered the effect of the type of speech on the

shape of the mouth, often focusing instead on novel phoneme

recognition systems and viseme mappings. Chronologically,

amongst the first of these approaches is that seen in [4], where

least-squares linear prediction is used to detect phonemes in

frames of recorded audio, which are then assigned to pre-made

mouth shapes.

 In [5], the problem of Lip Sync generation is addressed

using a linear model to describe the movement of measured

physical articulators of the mouth-shape, with no need for

phoneme detection. These articulators control 16 points which

define a Bezier patch representation of the face. There are

limitations to the results, as the authors point out, such as non-

linear speech motions not being well represented. It does,

however, indicate success of using control points to manage the

output mouth-shape, which shall be used in this project.

 In [6], video footage of a speaker was used to generate new

footage of the same person speaking synced to a new audio

track. This was achieved by reordering the mouth images from

the original footage and matching them with the new phonemes

labelled through the use of a Hidden Markov Model (HMM).

The use of computer vision techniques to track control points

on the mouth in the original footage allowed unique speaker

mannerisms to be integrated in the final Lip Sync. Another use

of HMMs in the field is that of [7], where phoneme labels are

not used, and rather, full-facial motion is predicted and

represented as facial motion vectors based on the mannerisms

of three subjects. Recently, more complex uses of HMMs have

been made, such as in [8], where visual gesture articulators

(which make use of complex language modelling) are clustered

against a learned set, and used to generate ‘dynamic visemes’.

Gaussian Mixture Models (GMM) have also been used in

conjunction with HMMs, an example of which can be found in

[9], where a GMM was used to predict the width and height of

the outer contour of the mouth from audio, while the HMM

explored a context cue to achieve better mapping performance

for isolated words.

 The task of phoneme recognition in speech, while widely

used in automated Lip Sync generation systems in order to map

phonemes to visemes, is not unique to the field. It is also a

central part of numerous language processing and speech

recognition systems. Recently, the highest success rate in

phoneme recognition has been found in systems that use

Recurrent Neural Networks (RNN), a successful early example

being [10]. In these papers the use of MFCCs as features for

the learning models has become a common practice. MFCCs

will also be used as features in this project. Other interesting

approaches include the use of a variety of Wavelet

Transformations to improve the success rate of phoneme

identification [11]. Packages and libraries exist with the

capacity to perform phoneme identification. One such example

is CMUSphynx, that contains “20 years of the CMU research”

[2] relating to speech recognition, and will be used in this

project.

The creation of avatars, such as the method presented in [12],

is a field that overlaps significantly with the creation of realistic

lip sync systems. [12] mentions that one of the main challenges

faced is to ensure natural-looking articulations. The generation

of facial expressions in the paper depends on a specified

emotional state. Other noteworthy attempts in generating

realistic and detailed mouth shapes include [13], which directly

models the trajectories of articulators using a Dynamic

Bayesian Network, describing the synchronization between the

visual and auditory aspects of speech, and generating optimal

facial parameters using Maximum Likelihood criterion on the

model. As seen in [14], the generation of realistic facial

expressions in avatars has progressed in the past decade since

[12] and [13]. Here, an Expression Map is used to synthesize

combinations of basic emotional expressions (such as 40%

happiness and 60% surprise) to build more complex ones,

which partially inspired the approach of merging viseme

models seen in our paper.

 In more recent years, Neural Networks have been used to

address the problem of lip sync generation. In [15] the input

speech is segmented into frames, and the most likely

corresponding viseme is found using a neural network. This

particular project uses a genetic algorithm to automatically

configure the topology of the Network. This paper also maps

the visemes to mouth shapes defined with the MPEG-4 facial

animation parameters [16], a set of standard points for facial

animation. The Lip Syncs in this paper will also be based on the

18 MPEG-4 FA parameters for the mouth shape.

 A recent paper in the field is [17], where a Lip Sync for

Barrack Obama was generated. Trained on ample footage of the

former President, a time delayed RNN is used directly on the

input audio to generate visemes or “sparse mouth shapes”,

skipping phoneme labeling. The synthesized mouth is overlaid

over existent footage to create a Lip Sync. In this method the

future mouth-shape is determined by past mouth shapes, and

achieves a realistic automatic Lip Sync.

Finally, [18] employs decision trees to generate a sequence

of face configurations from a series of phonetic inputs divided

into frames. Though the system is reliable and robust, one of

the main limitations the author mentions is that of training the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

system to deal with different speech tones, such as anger, as

opposed to a neutral voice. As such, facial responsivity to

different types and tones of speech seems like an interesting and

important direction to advance automatic Lip Systems in order

to increase their realism in modern applications.

III. METHOD AND SYSTEM

 Given the audio recording of the voice of a speaker, the

objective of this project is to generate corresponding mouth

shapes, reflecting the type of speech in the generated visemes.

Phoneme Detection is performed by CMUSphinx, and the

classification of the input into the categories of whispering,

talking, and shouting is performed by a Feedforward Neural

Network. To achieve this, the Neural Network is trained with

labeled clips of people speaking in each of the aforementioned

categories.

 The overall pipeline is built in a Jupyter Notebook and

works as follows (see Figure 1): The user provides an initial

audio recording, which is then passed to CMUSphinx, where

the phonemes are detected, and then mapped to a viseme group.

In a parallel process, the same initial source audio is broken into

chunks, and each chunk has all the silences removed from it.

Audio features (MFCCs) are extracted from the resulting dense

signal chunks, and fed to the Neural Network. Based on the

probabilities the Neural Network predicts for each chunk

belonging to a certain speech category, and the corresponding

viseme, a unique sparse mouth shape is constructed, and

returned as an object. A mouth object is created for every

phoneme. These parts are described in greater detail in the

following sections.

A. Audio Preprocessing

1) Input Signal Recording

 The audio for which the lip-sync will be generated is

captured at the beginning of the pipeline using PyAudio 0.2.11.

The user is prompted for speech. This recording is saved as a

temporary 16bit, mono, 16kHz Wave file using Python’s Wave

module. The recorded audio can be played back and visualized.

2) Dataset

 The Neural Network which classifies the type of speech is

trained and tested using a dataset constructed specifically for

this project. The dataset is comprised of speech recordings from

50 different subjects. The recordings of the subjects were then

broken into 2 second chunks. Each chunk was manually labeled

as belonging to one of three categories: whisper, talk, and shout,

or discarded if not suitable. The audio clips were obtained either

from subjects elocuting in a high quality recording setup or

from online sources such as YouTube videos chosen for this

specific purpose. The total time of the dataset is 103 minutes.

The dataset was then split, using 70% of the clips for training

the Neural Network, and 30% of the clips for testing it.

3) Dataset Preprocessing

 The same preprocessing that is applied to audio in the dataset

is applied to the pipeline's input audio. To be able to feed the

recorded audio into the Neural Network the first step is to break

the recorded audio into 2 second chunks using Pydub.

 Next, all of the silent sections, mainly comprised of the time

periods between spoken words, are removed from each chunk

so that the only remaining signal is pure speech (Note that the

clips may now be less than 2s in length). This is done by running

a bash script on each chunk of audio which uses the silence

removal tool in the FFmpeg 4.0 libraries. Any sound level

below a threshold of -50dB is removed from the chunk. Each

chunk is imported into Librosa, whereupon if it is not already

in this format, it is converted to a 16bit, mono, 16kHz Wave

file. The chunks are also normalized.

 MFCC representation of the signals is the next step in the

audio preprocessing. MFCCs are the coefficients of the real

cepstrum of a time-frame of the signal’s estimated spectrum.

MFCC use a non-linear frequency scale to approximate human

hearing. They contain information about the physical aspects of

the speech signal. Since their origin in the 1970s they have been

used extensively as features in speech processing applications

[19].

 For every 30ms window of the preprocessed audio, 14 Mel

Frequency Bands are packed into a 14-dimensional MFCC

vector, using Librosa. A full 2 second chunk of speech contains

63 such vectors. However, after silence removal, typically,

chunks are shorter, so fewer vectors can be generated.

Consequently, for each sound chunk a feature array comprised

of 45 of these 14-dimensional vectors is fed to the Neural

Network. If there are more than 45 MFCC vectors in a chunk,

the remaining vectors are truncated and discarded. If there are

less than 45 vectors in a chunk, the existing vectors are

concatenated to themselves until the feature array is of length

45, so that the chunk can still be fed to the model. This

manipulation of the feature array was performed using NumPy.

 Additionally, for the purpose of training the Neural Network,

the feature arrays are grouped together with their respective

labels, and randomly shuffled. The feature arrays are reshaped

such that a One-Hot-Encoding can be created using Keras [20].

B. Neural Network

 The trained Neural Network, which uses Keras as an

interface for Tensorflow, is then loaded in the Jupyter

Notebook. Details on the Neural Network and its architecture

are included in a later section. Every chunk of audio has a

corresponding set of MFCC feature vectors. The features are

fed into the Neural Network, and a prediction is obtained for the

type of speech in each recorded chunk. The network’s output is

Fig. 1. A flowchart illustrating the pipeline of the Lip Sync system

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

the probability of the chunk of speech belonging to any of the

three speech categories.

C. Phoneme Detection and Viseme Mapping

 Phoneme detection is carried out using CMUSphinx, a

package featuring a variety of speech recognition systems

developed by Carnegie Mellon University. One of the features

offered is Phoneme Recognition, which requires a decoder to

be set up using a language model (this project uses the US

language model). The versions used are Sphinx4-5 and

PocketSphinx 0.8. The audio sent to Sphinx must be a

normalized 16 bit mono signal with a sampling rate of 16kHz,

which was acquired at the beginning of the pipeline.

 CMUSphinx identifies each phoneme in the input audio as

one of 39 possibilities, based on the ARPABET phonetic

transcription codes for American English [21]. It also returns

the start and stop times of each phoneme. After the phonemes

in the audio have been labelled, they are mapped to one of 12

possible visemes specified by the Jeffers phonemes to viseme

map [22]. This is a popular mapping in lip-reading applications,

and is a particularly high-performance mapping in regard to its

accuracy for consonants [23]. Note that the phoneme detection

happens parallel to the audio preprocessing for classification

(they occur on different branches in fig. 1 above). In the

preprocessing branch the silences are removed from the audio

to classify chunks, but in the phoneme detection branch,

silences are preserved and are one of the possible visemes we

map to. After this step, we have access to all the visemes in the

input audio, along with their start and stop times.

D. Mouth Shape Generation

 The pipeline outputs the lip sync as a collection of 2-

Dimensional Mouth objects, each depicting the sparse mouth

shape corresponding to a phoneme in the input audio.

The Mouth objects consist of two sets of coordinates. One of

the sets represents the outer shape of the lips, and the other

represents the inner border of the lips with the mouth cavity.

The coordinates correspond to 18 control points defined in the

MPEG-4 facial animation standard parameters [16].

 Three models of each viseme specified in the Jeffers mapping

were created, one for each speech type, according to these

specifications. Photos of the mouth of a subject elocuting the

visemes were overlaid on a 2-Dimensional grid (see Fig. 2),

such that the control points could be accurately placed

manually. By changing the coordinates of the control points, the

pipeline can easily be customized to create different mouth-

shapes.

Each Mouth object has a display function, which draws the

mouth using B-spline interpolation feature from the SciPy

package. A B-Spline (or basis spline) is a computationally

efficient type of smooth curve which can readily undergo

custom shaping, and is commonly used in curve fitting

applications. The curve’s shape is determined by a set of control

points and basis functions [24]. The display of each mouth

shape consists of two such interpolations, corresponding to the

two sets of coordinates of a Mouth object. The first one uses the

coordinates of the outer lip shape as control points, whilst the

second uses the coordinates of the inner lip border. Plotting the

B-splines through these points results in a 2-Dimensional

rendering of a sparse mouth shape to visualize the output of the

pipeline. Any computer capable of interpolating B-splines can

generate the mouth shapes once it has acquired the coordinate

information.

 The Mouth object generator averages the coordinates of the

three models of a viseme according to the Neural Network’s

predicted probabilities of speech type for a chunk of audio. If

the maximum predicted probability for a given type of speech

in a chunk is greater or equal to 0.8, then the pure model of the

viseme for this type of speech is outputted. On the other hand,

if the threshold of 0.8 is not reached by any of the speech

categories, a new Mouth is constructed by combining the

viseme models. If the maximum predicted probability belongs

to the ‘whisper’ category, then for every control point in the

mouth, the coordinates of this control point in both the

‘whisper’ and ‘talk’ models undergo a weighted averaging,

using the predicted probabilities as the weights. The horizontal

and vertical coordinates are averaged separately to produce new

sets of coordinates. Likewise, if the maximum probability

belongs to the ‘shout’ category, the ‘shout’ control points will

be averaged with ‘talk’. However, if the highest probability is

the ‘talk’ category, then the control points of the ‘talk’ viseme

are subjected to a weighted average with the control point

coordinates of both ‘whisper’ and ‘shout’, which results in

minor alterations to the initial “talk” viseme. The new set of

coordinates resulting from this averaging process is returned as

a Mouth object.

 For every control point in a viseme, the weighted averaging

is performed as shown below, where n is the number of Mouth

models being combined (n=2 or n=3 as described above), xi is

the value of the control point’s coordinate, and wi is the

predicted probability of the corresponding chunk of audio

belonging to a category (the weight). We need to normalize by

dividing the numerator by the sum of predicted probabilities as

the denominator doesn’t always sum to 1 when n=2 (in the case

of whispering or shouting).

∑ 𝑥𝑖𝑤𝑖
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

=
3.63(0.0102) + 3.52(0.6787) + 3.83(0.3111)

0.0102 + 0.6787 + 0.3111
= 3.62

 Taking as an example the x-coordinate of a single control

point, say the rightmost point in the talking ‘G’ phoneme as

seen in Table 3. The chunk’s predicted class probabilities are

Fig. 2. a) Left, a photo of the subject elocuting a viseme, overlaid on a grid

with control points. b) Right, the same viseme displayed as sparse mouth shape
created with B-spline interpolations through the control points.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

w1 = 0.0102 for whisper, w2 = 0.6787 for talk, and w3 = 0.3111

for shout. The x-coordinate of the mouth models are x1 = 3.63

for whisper, x2 = 3.52 for talk, and x3 = 3.83 for shout. So the

final value of the x-coordinate of this control point is 3.62.

E. Integration

 The final integration of the pipeline proceeds by iterating

through all of the visemes recognized in the recorded input. For

each viseme, the timestamps from CMUSphinx are used to

calculate the chunk of audio it belongs to. To do this, using

integer division, the visemes start and stop times are divided by

the chunk duration (2 seconds) to obtain the chunk number. If

the resulting chunk numbers are equal to each other for both the

start and end timestamps, it is used as the chunk number for the

current viseme. On the other hand, if the start and end

timestamp chunk numbers are not equal to each other, the

pipeline checks whether the largest portion of time the viseme

occupies is in the previous, current, or next chunk.

 Having obtained the chunk number, the Neural Network can

make a prediction for the chunk, and along with the

corresponding viseme, is used to generate a Mouth object. This

Mouth object is stored in an array along with the start and end

timestamps.

IV. EXPERIMENTS AND DISCUSSION

 In this section, the details of the implementation of the

Neural Network for classifying speech types are discussed, and

the results of the overall pipeline are shown and evaluated,

along with a discussion about its applications and limitations.

A. Running Times and Hardware

 The runtimes for the neural network, the pipeline and all of

its parts are reported based on being run on an Intel Core i7-

2677M CPU, clocked at 1.80GHz. A typical total running time

of the pipeline on a two second chunk of speech is 3.1s. The

average breakdown of the run-times is as follows: The

preprocessing of the recording takes 0.06s. The detection of 20

phonemes with CMUSphinx, and the mapping to visemes takes

1.6s. Predicting speech types and generating the mouth shapes

for the visemes takes 1.4s. If all the mouth shapes were to be

plotted and printed using the display function, that takes another

17.2s.

B. Neural Network Architecture and Evaluation

 The Feedforward Network consists of 45 nodes, and was

trained with a batch size of 32. The input layer has 14 nodes, a

sigmoid activation function, and 5% dropout. Two hidden

layers have 14 nodes each, and both have RELU activation

functions. The output layer has 3 nodes and a softmax function

to finalize predictions. It is trained using the ADAMS

optimizer [25], implemented in Keras for TensorFlow. Training

took 24.7 seconds over the course of 10 epochs. With this

configuration the Network achieves 84.2% accuracy.

 The variation of loss in training, and the variation of accuracy

in the training and testing sets when the number of epochs used

was varied is investigated (See Table 1). For the validation, the

average accuracy over 10 trials peaks at 83.8% with 10 epochs

(See Fig. 3).

 The training set size was also varied to determine the effect

on validation accuracy. Using 50%, 60%, 65%, and 70% of the

dataset for training showed that the accuracy of the network

improved with more data.

Fig. 3. Displaying the performance measures of the Neural Network

C. Mouth Generation Evaluation and Discussion

 All of the figures used in the results were generated using

clips from new audio recordings which were not included in the

training or validation datasets. The figures below show the

output of the pipeline for the phonemes L – G – AH used in the

words ‘hello’ and ‘goodbye’ for the three speech types. Also

shown are the probabilities assigned to the relevant chunk of

audio by the Neural Network. To see the full sequence of Mouth

shapes for the words ‘Hello’ and ‘Goodbye’ spoken using

different speech types, and the timestamps, see Appendix A.

 The images in Table 2 show the output of the pipeline for the

phoneme ‘L’ from the word ‘hello’ for the 3 different speech

types. The probabilities predicted by the Neural Network of the

audio chunk belonging to each speech type are also shown. For

the whisper, the Neural Network predicts with over 99.99%

certainty that the audio clip is a whisper, meaning that the pure,

non-averaged, whispering viseme model is used in the output.

It depicts the smaller range of motion of the lips which is

associated with whispering. For the talking audio, the neural

TABLE I

PERFORMANCE MEASURES OF THE NEURAL NETWORK

Number of

Epochs

Average

training

accuracy

Average

training loss

Average

testing

accuracy

1 0.730 0.627 0.730

2 0.827 0.432 0.763

3 0.850 0.360 0.795

5 0.877 0.317 0.803

8 0.902 0.254 0.832

10 0.919 0.234 0.838

13 0.962 0.150 0.814

15 0.982 0.112 0.820

20 0.996 0.044 0.803

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

network once again predicts the class with over 99.99%

accuracy, meaning the stock model of a talking mouth is used.

For ‘Shouting’, the Neural Network predicts the category with

52.45% certainty. As a result, the control points of the shouting

model are subject to the weighted averaging process with the

points of the talking model (which received a 46.91%

probability). The resulting mouth shapes are convincing,

resulting in a wider open mouth with appropriately angled

edges for the phonemes.

 The images in Tables 3 and 4 show the output for the

phonemes ‘G’ and ‘AH’ respectively, from the word

“goodbye”. The whisper is classified with 92.12% certainty,

and the stock whisper mouth models are used for the phonemes.

For the talking category the 67.87% prediction is below the 0.8

threshold, and so the points with the model are averaged with

both those of the whisper (weighted at 1.02%), and the shout

(weighted at 31.11%). The shouting class is predicted with

99.62% accuracy, and so is a good example of the pure model

shouting mouths.

 One possible application for this method is in animations.

The user just needs to input an audio clip to obtain accurate

mouth shapes with timestamps for use in the animation. It is

easy to apply transformations such as rotations or scaling to the

control points to integrate the mouth shapes in the footage,

saving time and cutting costs for creators. The control points

are easily customized to create different mouths for different

characters. Furthermore, the low memory requirements for

storing and transmitting a Mouth object means that this system

is a good candidate for use in the remote reproductions of

avatars. It is a simple and memory effective to reconstruct

unique avatar mouth shapes on a remote machine based only on

the transmission of the control points.

V. LIMITATIONS AND FUTURE WORK

In general, the limitations affecting the pipeline establish the

future work that remains to be done on the system. One of the

main limitations of the system is the use of CMUSphinx. As the

creators of the package warn [26], their phoneme recognition

error rate is “considerably” high. The phonemes it outputs are

for the most part visually convincing for spoken or shouted

words (as long as no distortion is present in the signal), but not

for whispered inputs. Furthermore, the phoneme recognition

takes a significant amount of time to run, making real-time

mouth generation impossible. The most critical future work

consists of finding a more robust and quicker system for

phoneme detection. Other such systems worth trying are

available on packages such as Kaldi [27]. Alternatively, it is

also worth considering creating our own specialized phoneme

detection neural network tailored to the performance needs of

the pipeline.

A failure case is seen when two phonemes mapped to identical

visemes are consecutively detected. It is likely these will be

located in the same audio chunk, thus possessing the same

predicted probabilities, meaning that the resulting viseme will

occupy a long span of time without changing, which looks

unnatural when animated. A possible solution to this problem

could be sampling the audio fed to the classifying neural

network at more frequent intervals. Instead of feeding discrete

two second chunks of audio to the network, a two second sliding

window of audio could be moved forward every 30ms for

classification purposes, and might produce more varied and

realistic mouths. Another option would be to randomize the

second viseme’s control points by a small amount, to cause it to

change shape.

Another limitation is that the pipeline requires high quality

audio files to function properly. Audio recorded with a laptop’s

microphone rarely produced good results when fed into the

neural network for classification. All the audio used was

recorded on a high quality recording set up, which might not be

available to all users. Also, both CMUSphinx and the generated

visemes are limited by virtue of being based on the English

language. New language packs and viseme mappings and

models would have to be acquired for the system to work with

other languages. Beyond the future work stemming from

finding solutions to these limitations, a natural continuation to

this project consists of having the pipeline output 3D mouth

shapes instead of 2D ones. The existing code could easily be

modified to produce the 3D mouth shapes by simply adding an

extra dimension (for depth) to the existing control points in the

MPEG-4 convention, as seen in [3]. The method of generating

mouth shapes through averaging class models would not

require modifications or new control points, and 3D objects are

useful in more diverse applications, while retaining the

advantages of our system’s uniquely generated mouth objects.

In the future, adding control points for the entire face to add

realistic facial gestures to the lip sync using this pipeline is an

idea worthy of further consideration.

Finally, an interesting question is how accurate a Neural

Network would be at predicting speech types in a model with

more than three classes. If it were successful, a similar, more

nuanced system for generating mouth shapes could be

implemented.

VI. SUMMARY

 In this article a system has been described for automatic lip

synchronization, generating unique mouth shapes according to

speech type, using only a speech input. Phonemes in the speech

are detected using CMUSphinx. The crucial innovation of the

system is the success (84% accuracy) of a Feedforward Neural

Network which classifies speech types into three categories,

using MFCC vectors as features. Mouth shapes for each viseme

of the Jeffers map are generated by merging the control points

of premade mouth models according to the Neural Network’s

predictions of the speech type.

The lip sync system can be used in various applications since

the resulting mouth shapes are convincing and uniquely

generated. The low storage and transmission requirements and

the simplicity of reconstruction of the mouth objects make them

a good choice for implementing low-bandwidth communication

through animation.

It can be concluded that the pipeline satisfactorily generates

detailed, lightweight, automatic lip sync frames, but there is

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

plenty of room for further work and improvements on the

system.

APPENDIX

Tables 5 and 6 show the mouth shapes generated using

recordings of the words ‘hello’ and ‘goodbye’ for each of the

three speech classes. Each column of these tables corresponds

to a speech class, as specified in the first row. The second row

contains the phoneme and timestamp information generated

with CMU Sphinx. The third row shows the probabilities of the

recordings belonging to the speech classes in the form [whisper,

talk, shout]. The remaining columns show the mouth shapes

generated by the pipeline for each of the detected phonemes in

the same order of appearance as the second row.

REFERENCES

[1] Sweeny, T.D., Guzman-Martinez, E., Ortega, L., Grabowecky, M. and
Suzuki, S., 2012. Sounds exaggerate visual shape. Cognition, 124(2), pp. 194-

200

[2] Shmyrev, N., About CMUSphinx. CMUSphinx Open Source Speech

Recognition. Available at: https://cmusphinx.github.io/wiki/about/, 2018.

[3] MPEG-4 Face and Body Animation (MPEG-4 FBA) An overview.

(2018). Linköping: Visage Technologies, pp.7-8.

[4] Lewis, J.P. and Parke, F.I., 1987, May. Automated lip-synch and speech

synthesis for character animation. In ACM SIGCHI Bulletin (Vol. 17, No. SI,

pp. 143-147). ACM.

[5] Koster, B.E., Rodman, R.D. and Bitzer, D., 1994. Automated lip-sync:

Direct translation of speech-sound to mouth-shape. In Signals, Systems and
Computers, 1994. 1994 Conference Record of the Twenty-Eighth Asilomar

Conference on (Vol. 1, pp. 583-586). IEEE.

[6] Bregler, C., Covell, M. and Slaney, M., 1997, August. Video rewrite:

Driving visual speech with audio. In Proceedings of the 24th annual

conference on Computer graphics and interactive techniques (pp. 353-360).
ACM Press/Addison-Wesley Publishing Co.

[7] Brand, M., 1999, July. Voice puppetry. In Proceedings of the 26th
annual conference on Computer graphics and interactive techniques (pp. 21-

28). ACM Press/Addison-Wesley Publishing Co.

[8] Taylor, S.L., Mahler, M., Theobald, B.J. and Matthews, I., 2012, July.

Dynamic units of visual speech. In Proceedings of the ACM

SIGGRAPH/Eurographics Symposium on Computer Animation (pp. 275-
284). Eurographics Association.

[9] Huang, F.J. and Chen, T., 1998, December. Real-time lip-synch face
animation driven by human voice. In Multimedia Signal Processing, 1998

IEEE Second Workshop on (pp. 352-357). IEEE.

[10] Graves, A., Mohamed, A.R. and Hinton, G., 2013, May. Speech

recognition with deep recurrent neural networks. In Acoustics, speech and

signal processing (icassp), 2013 ieee international conference on (pp. 6645-
6649). IEEE.

[11] Hibare, R. and Vibhute, A., 2014. Feature extraction techniques in
speech processing: a survey. International Journal of Computer Applications,

107(5).

[12] Tang, Hao, Yun Fu, Jilin Tu, M. Hasegawa-Johnson, and T.s. Huang,

2008. Humanoid Audio–Visual Avatar With Emotive Text-to-Speech
Synthesis. IEEE Transactions on Multimedia 10, no. 6 (pp. 969–81). IEEE.

[13] Xie, Lei, and Zhi-Qiang Liu, 2007. Realistic Mouth-Synching for

Speech-Driven Talking Face Using Articulatory Modelling. IEEE
Transactions on Multimedia 9, no. 3 (pp. 500–510). IEEE

[14] Agarwal, Swapna, and Dipti Prasad Mukherjee, 2019. Synthesis of
Realistic Facial Expressions Using Expression Map. IEEE Transactions on

Multimedia 21, no. 4 (pp. 902–14). IEEE.

[15] Zoric, G. and Pandzic, I.S., 2005, July. A real-time lip sync system

using a genetic algorithm for automatic neural network configuration. In

Multimedia and Expo, 2005. ICME 2005. IEEE International Conference on
(pp. 1366-1369). IEEE.

[16] MPEG-4 Face and Body Animation (MPEG-4 FBA) An overview.
(2018). Linköping: Visage Technologies, pp.7-8.

[17] Suwajanakorn, S., Seitz, S.M. and Kemelmacher-Shlizerman, I., 2017.
Synthesizing Obama: learning lip sync from audio. ACM Transactions on

Graphics (TOG), 36(4), p.95.

[18] Kim, T., Yue, Y., Taylor, S. and Matthews, I., 2015, August. A decision

tree framework for spatiotemporal sequence prediction. In Proceedings of the

21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (pp. 577-586). ACM.

[19] Huang, Xuedong, et al. Spoken Language Processing: a Guide to
Theory, Algorithm, and System Development. Prentice Hall PTR, 2001 (pp.

313-316).

[20] Chollet, Francois, et al. Keras. https://keras.io, 2015.

[21] CMU, The CMU Pronouncing Dictionary. The CMU Pronouncing

Dictionary. Available at: http://www.speech.cs.cmu.edu/cgi-bin/cmudict,

2018.

[22] Cappelletta, L. and Harte, N., 2011, August. Viseme definitions

comparison for visual-only speech recognition. In Signal Processing
Conference, 2011 19th European (pp. 2109-2113). IEEE.

[23] Bear, H.L. and Harvey, R., 2017. Phoneme-to-viseme mappings: the

good, the bad, and the ugly. Speech Communication, 95, pp.40-67.

[24] De Boor, C., 2001. A practical guide to splines, revised Edition, Vol. 27
of Applied Mathematical Sciences. Mechanical Sciences, year

[25] Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

[26] Shmyrev, N., Phoneme Recognition (caveat emptor) . CMUSphinx
Open Source Speech Recognition. Available at:

https://cmusphinx.github.io/wiki/phonemerecognition, 2018

[27] Povey, Daniel. Kaldi ASR. https://kaldi-asr.org, 2020.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

TABLE 2

THE PREDICTED PROBABILITIES AND RESULTING MOUTH SHAPES FOR THE ‘L’ PHONEME.

Whisper Talk Shout

[0.9999 Whisper, 1.299E-5 Talk, 9.211E-8 Shout] [1.616E-5 Whisper, 0.9999 Talk, 3.989E-5 Shout] [0.0064 Whisper, 0.4691 Talk, 0.5245 Shout]

TABLE 3

THE PREDICTED PROBABILITIES AND RESULTING MOUTH SHAPES FOR THE ‘G’ PHONEME.

Whisper Talk Shout

[0.9211 Whisper, 0.0702 Talk, 0.0085 Shout] [0.0102 Whisper, 0.6787 Talk, 0.3111 Shout] [0.0012 Whisper, 0.0025 Talk, 0.9961 Shout]

TABLE 4

THE PREDICTED PROBABILITIES AND RESULTING MOUTH SHAPES FOR THE ‘AH’ PHONEME.

Whisper Talk Shout

[0.9211 Whisper, 0.0702 Talk, 0.0085 Shout] [0.0102 Whisper, 0.6787 Talk, 0.3111 Shout] [0.0012 Whisper, 0.0025 Talk, 0.9961 Shout]

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

TABLE 5

‘HELLO’ IN DIFFERENT SPEECH TYPES

Whisper Talk Shout

Phonemes and timestamps:

[('SIL', 0.0, 0.03), ('AE', 0.04, 0.11), ('L', 0.12,
0.18), ('AA', 0.19, 0.38), ('HH', 0.39, 0.43), ('AO',

0.44, 0.48)]

Phonemes and timestamps:

[('SIL', 0.0, 0.02), ('AH', 0.03, 0.07), ('L', 0.08,
0.17), ('OW', 0.18, 0.34)]

Phonemes and timestamps:

[('SIL', 0.0, 0.02), ('G', 0.03, 0.1), ('OW', 0.11,
0.23), ('AA', 0.24, 0.36), ('AE', 0.37, 0.39), ('L',

0.4, 0.47), ('OW', 0.48, 0.93)]

Speech class probabilities:
[9.9998689e-01, 1.2992635e-05, 9.2109254e-08]

Speech class probabilities:
[1.6160682e-05, 9.9994385e-01, 3.9889543e-05]

Speech class probabilities:
[0.00641645, 0.46911407, 0.5244695]

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

TABLE 6

‘GOODBYE’ IN DIFFERENT SPEECH TYPES

Whisper Talk Shout

Phonemes and timestamps:

[('SIL', 0.67, 0.75), ('K', 0.76, 0.82), ('UW', 0.83,
0.86), ('DH', 0.87, 0.92), ('SIL', 0.93, 1.06), ('AH',

1.07, 1.1), ('AA', 1.11, 1.28)]

Phonemes and timestamps:

[('SIL', 0.0, 0.02), ('G', 0.03, 0.1), ('UH', 0.11,
0.15), ('B', 0.16, 0.21), ('P', 0.22, 0.25), ('B', 0.26,

0.3), ('AA', 0.31, 0.44), ('AY', 0.45, 0.56)]

Phonemes and timestamps:

[('SIL', 0.0, 0.03), ('G', 0.04, 0.09), ('OW', 0.1,
0.18), ('D', 0.19, 0.24), ('OW', 0.25, 0.28), ('AA',

0.29, 0.56), ('AY', 0.57, 0.82), ('AH', 0.83, 0.89)]

Speech class probabilities:
[0.9211595 , 0.0702494 , 0.00859113]

Speech class probabilities:
[0.01024215, 0.67867833, 0.3110795]

Speech class probabilities:
[0.00127534, 0.00252765, 0.996197]

