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Abstract— Creators of multimedia content are commonly faced 

with the task of generating a sequence of lip movements to match 

an audio track of human speech, also known as a ‘Lip Sync’. A 

challenge in automatic Lip Sync systems lies in accurately 

generating mouth shapes that can discern speech type, that’s to say 

when the voice in the audio track is whispering, talking or 

shouting. We present a novel method that automatically generates 

lightweight mouth shapes from an excerpt of spoken audio by 

predicting the speech type. 

 Phonemes in the speech input are detected using 

CMUSphinx, and mapped to visemes according to the Jeffers map. 

The audio input signal is represented using Mel-Frequency 

Cepstral Coefficient (MFCC) vectors that are used as features in 

a Feedforward Neural Network. The neural network then predicts 

the probability that the audio belong to three categories (whisper, 

talk, and shout). Mouth shapes are generated by averaging control 

points in pre-made mouth models according to the Neural 

Network’s predicted probability for the speech type. The resulting 

mouth shapes are unique, simple to create, and constitute 

convincing lip sync frames. Their low storage and transmission 

requirements mean they are well suited for implementing low-

bandwidth communication through animation. 

 
Index Terms— automatic lip sync, Bezier, feedforward neural 

network, human voice, lip sync, mouth shape, multi-layer neural 

network, neural network, phoneme, speech, speech processing, 

speech type, viseme.  

 

I. INTRODUCTION 

OW much knowledge can you obtain about a person’s 

facial expression based only on the sound of their voice? 

Many characteristics can be learnt from an audio recording of a 

person’s voice, in particular relating to the shape of the mouth, 

which the human mind systematically associates with sounds 

[1]. These characteristics are of interest to multimedia content 

stakeholders, as the information they contain can assist in 

generating realistic mouths and facial parts for speech-driven 

synthetic talking faces (avatars). For instance, hearing an angry 

shout may conjure the image of angled eyebrows and a wide-
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open mouth. Furthermore, cognition studies such as Sweeny et 

al [1] show that when humans hear sounds such as “woo” and 

“wee”, they associate them with horizontally or vertically 

extended mouth shapes. Ultimately, developing bandwidth-

efficient, realistic animated avatars can be used to improve 

computer-human interactions, finding uses in technologies such 

as video games and video telephony. 

 

 When generating an animation of lip movement to match 

an audio track of human speech, otherwise known as ‘Lip 

Sync’, animators will typically possess prior knowledge about 

the facial expressions of the avatar they are creating. This 

allows animators to manually draw an accurate mouth shape for 

each phoneme in the recording. In Automatic Lip Sync systems, 

the main focus is to accurately generate an audio to visual 

mapping from each phoneme (a perceptually distinct unit of 

sound in speech) in the input speech signal to a corresponding 

viseme (mouth shape), without relying on manual modification. 

In the case that no prior knowledge of the facial expression 

exists, such as real-time Lip Sync generation, the accuracy of 

generated mouth shapes can be enhanced by modifying the 

mouth shapes according to cues in the audio recording. We 

propose that features extracted from the audio speech signal can 

aid in the construction of uniquely generated mouth shapes for 

multimedia content. 

 

 As such, the aim of this project is to use a Feedforward 

Neural Network to classify human speech into different 

categories of speech types (whisper, talk, and shout) and use 

this classification in conjunction with the phoneme detection 

system from CMUSphinx [2] to generate a mapping with 

improved accuracy and detail in the generated mouth shapes. 

This is an improvement over the pre-made mouth shapes used 

in many current systems. The unique mouth shapes can be 

generated with ease, without the need for prior knowledge of 

the speaker to do so. 
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 The final output of the pipeline is a series of timestamps and 

mouth shapes defined by the control points specified in the 

MPEG-4 facial animation standard parameters [3]. Importantly, 

the low data storage and transmission cost of the generated 

mouths would allow this technique to be used in practical 

scenarios such as the real-time transmission reconstruction of 

avatars. It also finds a use in animation studios, and could 

reduce the cost of producing lip syncs in multimedia 

productions. 

II. RELATED WORK  

 Creating automated Lip Sync animations from speech has 

been approached in several different manners, in different 

fields, and for different applications. Rarely, however, have 

these works considered the effect of the type of speech on the 

shape of the mouth, often focusing instead on novel phoneme 

recognition systems and viseme mappings. Chronologically, 

amongst the first of these approaches is that seen in [4], where 

least-squares linear prediction is used to detect phonemes in 

frames of recorded audio, which are then assigned to pre-made 

mouth shapes. 

 

 In [5], the problem of Lip Sync generation is addressed 

using a linear model to describe the movement of measured 

physical articulators of the mouth-shape, with no need for 

phoneme detection. These articulators control 16 points which 

define a Bezier patch representation of the face. There are 

limitations to the results, as the authors point out, such as non-

linear speech motions not being well represented. It does, 

however, indicate success of using control points to manage the 

output mouth-shape, which shall be used in this project. 

 

 In [6], video footage of a speaker was used to generate new 

footage of the same person speaking synced to a new audio 

track. This was achieved by reordering the mouth images from 

the original footage and matching them with the new phonemes 

labelled through the use of a Hidden Markov Model (HMM). 

The use of computer vision techniques to track control points 

on the mouth in the original footage allowed unique speaker 

mannerisms to be integrated in the final Lip Sync. Another use 

of HMMs in the field is that of [7], where phoneme labels are 

not used, and rather, full-facial motion is predicted and 

represented as facial motion vectors based on the mannerisms 

of three subjects. Recently, more complex uses of HMMs have 

been made, such as in [8], where visual gesture articulators 

(which make use of complex language modelling) are clustered 

against a learned set, and used to generate ‘dynamic visemes’. 

Gaussian Mixture Models (GMM) have also been used in 

conjunction with HMMs, an example of which can be found in 

[9], where a GMM was used to predict the width and height of 

the outer contour of the mouth from audio, while the HMM 

explored a context cue to achieve better mapping performance 

for isolated words. 

 

 The task of phoneme recognition in speech, while widely 

used in automated Lip Sync generation systems in order to map 

phonemes to visemes, is not unique to the field. It is also a 

central part of numerous language processing and speech 

recognition systems. Recently, the highest success rate in 

phoneme recognition has been found in systems that use 

Recurrent Neural Networks (RNN), a successful early example 

being [10].  In these papers the use of MFCCs as features for 

the learning models has become a common practice. MFCCs 

will also be used as features in this project. Other interesting 

approaches include the use of a variety of Wavelet 

Transformations to improve the success rate of phoneme 

identification [11]. Packages and libraries exist with the 

capacity to perform phoneme identification. One such example 

is CMUSphynx, that contains “20 years of the CMU research” 

[2] relating to speech recognition, and will be used in this 

project. 

 

The creation of avatars, such as the method presented in [12], 

is a field that overlaps significantly with the creation of realistic 

lip sync systems. [12] mentions that one of the main challenges 

faced is to ensure natural-looking articulations. The generation 

of facial expressions in the paper depends on a specified 

emotional state. Other noteworthy attempts in generating 

realistic and detailed mouth shapes include [13], which directly 

models the trajectories of articulators using a Dynamic 

Bayesian Network, describing the synchronization between the 

visual and auditory aspects of speech, and generating optimal 

facial parameters using Maximum Likelihood criterion on the 

model. As seen in [14], the generation of realistic facial 

expressions in avatars has progressed in the past decade since 

[12] and [13]. Here, an Expression Map is used to synthesize 

combinations of basic emotional expressions (such as 40% 

happiness and 60% surprise) to build more complex ones, 

which partially inspired the approach of merging viseme 

models seen in our paper. 

 

 In more recent years, Neural Networks have been used to 

address the problem of lip sync generation. In [15] the input 

speech is segmented into frames, and the most likely 

corresponding viseme is found using a neural network. This 

particular project uses a genetic algorithm to automatically 

configure the topology of the Network. This paper also maps 

the visemes to mouth shapes defined with the MPEG-4 facial 

animation parameters [16], a set of standard points for facial 

animation. The Lip Syncs in this paper will also be based on the 

18 MPEG-4 FA parameters for the mouth shape. 

 

 A recent paper in the field is [17], where a Lip Sync for 

Barrack Obama was generated. Trained on ample footage of the 

former President, a time delayed RNN is used directly on the 

input audio to generate visemes or “sparse mouth shapes”, 

skipping phoneme labeling. The synthesized mouth is overlaid 

over existent footage to create a Lip Sync. In this method the 

future mouth-shape is determined by past mouth shapes, and 

achieves a realistic automatic Lip Sync. 

 

Finally, [18] employs decision trees to generate a sequence 

of face configurations from a series of phonetic inputs divided 

into frames. Though the system is reliable and robust, one of 

the main limitations the author mentions is that of training the 
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system to deal with different speech tones, such as anger, as 

opposed to a neutral voice. As such, facial responsivity to 

different types and tones of speech seems like an interesting and 

important direction to advance automatic Lip Systems in order 

to increase their realism in modern applications. 

III. METHOD AND SYSTEM 

 Given the audio recording of the voice of a speaker, the 

objective of this project is to generate corresponding mouth 

shapes, reflecting the type of speech in the generated visemes. 

Phoneme Detection is performed by CMUSphinx, and the 

classification of the input into the categories of whispering, 

talking, and shouting is performed by a Feedforward Neural 

Network. To achieve this, the Neural Network is trained with 

labeled clips of people speaking in each of the aforementioned 

categories. 

 

 The overall pipeline is built in a Jupyter Notebook and 

works as follows (see Figure 1): The user provides an initial 

audio recording, which is then passed to CMUSphinx, where 

the phonemes are detected, and then mapped to a viseme group. 

In a parallel process, the same initial source audio is broken into 

chunks, and each chunk has all the silences removed from it. 

Audio features (MFCCs) are extracted from the resulting dense 

signal chunks, and fed to the Neural Network. Based on the 

probabilities the Neural Network predicts for each chunk 

belonging to a certain speech category, and the corresponding 

viseme, a unique sparse mouth shape is constructed, and 

returned as an object. A mouth object is created for every 

phoneme. These parts are described in greater detail in the 

following sections. 

 

A. Audio Preprocessing 

1) Input Signal Recording 

 The audio for which the lip-sync will be generated is 

captured at the beginning of the pipeline using PyAudio 0.2.11. 

The user is prompted for speech. This recording is saved as a 

temporary 16bit, mono, 16kHz Wave file using Python’s Wave 

module. The recorded audio can be played back and visualized. 

 

2) Dataset 

 The Neural Network which classifies the type of speech is 

trained and tested using a dataset constructed specifically for 

this project. The dataset is comprised of speech recordings from 

50 different subjects. The recordings of the subjects were then 

broken into 2 second chunks. Each chunk was manually labeled 

as belonging to one of three categories: whisper, talk, and shout, 

or discarded if not suitable. The audio clips were obtained either 

from subjects elocuting in a high quality recording setup or 

from online sources such as YouTube videos chosen for this 

specific purpose. The total time of the dataset is 103 minutes. 

The dataset was then split, using 70% of the clips for training 

the Neural Network, and 30% of the clips for testing it. 

 

3) Dataset Preprocessing 

 The same preprocessing that is applied to audio in the dataset 

is applied to the pipeline's input audio. To be able to feed the 

recorded audio into the Neural Network the first step is to break 

the recorded audio into 2 second chunks using Pydub. 

 

 Next, all of the silent sections, mainly comprised of the time 

periods between spoken words, are removed from each chunk 

so that the only remaining signal is pure speech (Note that the 

clips may now be less than 2s in length). This is done by running 

a bash script on each chunk of audio which uses the silence 

removal tool in the FFmpeg 4.0 libraries. Any sound level 

below a threshold of -50dB is removed from the chunk. Each 

chunk is imported into Librosa, whereupon if it is not already 

in this format, it is converted to a 16bit, mono, 16kHz Wave 

file. The chunks are also normalized. 

 

 MFCC representation of the signals is the next step in the 

audio preprocessing. MFCCs are the coefficients of the real 

cepstrum of a time-frame of the signal’s estimated spectrum. 

MFCC use a non-linear frequency scale to approximate human 

hearing. They contain information about the physical aspects of 

the speech signal. Since their origin in the 1970s they have been 

used extensively as features in speech processing applications 

[19]. 

 

 For every 30ms window of the preprocessed audio, 14 Mel 

Frequency Bands are packed into a 14-dimensional MFCC 

vector, using Librosa. A full 2 second chunk of speech contains 

63 such vectors. However, after silence removal, typically, 

chunks are shorter, so fewer vectors can be generated. 

Consequently, for each sound chunk a feature array comprised 

of 45 of these 14-dimensional vectors is fed to the Neural 

Network. If there are more than 45 MFCC vectors in a chunk, 

the remaining vectors are truncated and discarded. If there are 

less than 45 vectors in a chunk, the existing vectors are 

concatenated to themselves until the feature array is of length 

45, so that the chunk can still be fed to the model. This 

manipulation of the feature array was performed using NumPy. 

 

 Additionally, for the purpose of training the Neural Network, 

the feature arrays are grouped together with their respective 

labels, and randomly shuffled. The feature arrays are reshaped 

such that a One-Hot-Encoding can be created using Keras [20]. 

 

B. Neural Network 

 The trained Neural Network, which uses Keras as an 

interface for Tensorflow, is then loaded in the Jupyter 

Notebook. Details on the Neural Network and its architecture 

are included in a later section. Every chunk of audio has a 

corresponding set of MFCC feature vectors. The features are 

fed into the Neural Network, and a prediction is obtained for the 

type of speech in each recorded chunk. The network’s output is 

 
Fig. 1. A flowchart illustrating the pipeline of the Lip Sync system 
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the probability of the chunk of speech belonging to any of the 

three speech categories. 

 

C. Phoneme Detection and Viseme Mapping 

 Phoneme detection is carried out using CMUSphinx, a 

package featuring a variety of speech recognition systems 

developed by Carnegie Mellon University. One of the features 

offered is Phoneme Recognition, which requires a decoder to 

be set up using a language model (this project uses the US 

language model). The versions used are Sphinx4-5 and 

PocketSphinx 0.8. The audio sent to Sphinx must be a 

normalized 16 bit mono signal with a sampling rate of 16kHz, 

which was acquired at the beginning of the pipeline. 

 

 CMUSphinx identifies each phoneme in the input audio as 

one of 39 possibilities, based on the ARPABET phonetic 

transcription codes for American English [21]. It also returns 

the start and stop times of each phoneme. After the phonemes 

in the audio have been labelled, they are mapped to one of 12 

possible visemes specified by the Jeffers phonemes to viseme 

map [22]. This is a popular mapping in lip-reading applications, 

and is a particularly high-performance mapping in regard to its 

accuracy for consonants [23]. Note that the phoneme detection 

happens parallel to the audio preprocessing for classification 

(they occur on different branches in fig. 1 above). In the 

preprocessing branch the silences are removed from the audio 

to classify chunks, but in the phoneme detection branch, 

silences are preserved and are one of the possible visemes we 

map to. After this step, we have access to all the visemes in the 

input audio, along with their start and stop times. 

D. Mouth Shape Generation 

 The pipeline outputs the lip sync as a collection of 2-

Dimensional Mouth objects, each depicting the sparse mouth 

shape corresponding to a phoneme in the input audio. 

The Mouth objects consist of two sets of coordinates. One of 

the sets represents the outer shape of the lips, and the other 

represents the inner border of the lips with the mouth cavity. 

The coordinates correspond to 18 control points defined in the 

MPEG-4 facial animation standard parameters [16]. 

 

 Three models of each viseme specified in the Jeffers mapping 

were created, one for each speech type, according to these 

specifications. Photos of the mouth of a subject elocuting the 

visemes were overlaid on a 2-Dimensional grid (see Fig. 2), 

such that the control points could be accurately placed 

manually. By changing the coordinates of the control points, the 

pipeline can easily be customized to create different mouth-

shapes. 
 

Each Mouth object has a display function, which draws the 

mouth using B-spline interpolation feature from the SciPy 

package. A B-Spline (or basis spline) is a computationally 

efficient type of smooth curve which can readily undergo 

custom shaping, and is commonly used in curve fitting 

applications. The curve’s shape is determined by a set of control 

points and basis functions [24]. The display of each mouth 

shape consists of two such interpolations, corresponding to the 

two sets of coordinates of a Mouth object. The first one uses the 

coordinates of the outer lip shape as control points, whilst the 

second uses the coordinates of the inner lip border. Plotting the 

B-splines through these points results in a 2-Dimensional 

rendering of a sparse mouth shape to visualize the output of the 

pipeline. Any computer capable of interpolating B-splines can 

generate the mouth shapes once it has acquired the coordinate 

information. 

 

 The Mouth object generator averages the coordinates of the 

three models of a viseme according to the Neural Network’s 

predicted probabilities of speech type for a chunk of audio. If 

the maximum predicted probability for a given type of speech 

in a chunk is greater or equal to 0.8, then the pure model of the 

viseme for this type of speech is outputted. On the other hand, 

if the threshold of 0.8 is not reached by any of the speech 

categories, a new Mouth is constructed by combining the 

viseme models. If the maximum predicted probability belongs 

to the ‘whisper’ category, then for every control point in the 

mouth, the coordinates of this control point in both the 

‘whisper’ and ‘talk’ models undergo a weighted averaging, 

using the predicted probabilities as the weights. The horizontal 

and vertical coordinates are averaged separately to produce new 

sets of coordinates. Likewise, if the maximum probability 

belongs to the ‘shout’ category, the ‘shout’ control points will 

be averaged with ‘talk’. However, if the highest probability is 

the ‘talk’ category, then the control points of the ‘talk’ viseme 

are subjected to a weighted average with the control point 

coordinates of both ‘whisper’ and ‘shout’, which results in 

minor alterations to the initial “talk” viseme. The new set of 

coordinates resulting from this averaging process is returned as 

a Mouth object. 

 

 For every control point in a viseme, the weighted averaging 

is performed as shown below, where n is the number of Mouth 

models being combined (n=2 or n=3 as described above), xi is 

the value of the control point’s coordinate, and wi is the 

predicted probability of the corresponding chunk of audio 

belonging to a category (the weight). We need to normalize by 

dividing the numerator by the sum of predicted probabilities as 

the denominator doesn’t always sum to 1 when n=2 (in the case 

of whispering or shouting). 

 
∑ 𝑥𝑖𝑤𝑖
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

=
3.63(0.0102) + 3.52(0.6787) + 3.83(0.3111)

0.0102 + 0.6787 + 0.3111
= 3.62 

 

 Taking as an example the x-coordinate of a single control 

point, say the rightmost point in the talking ‘G’ phoneme as 

seen in Table 3. The chunk’s predicted class probabilities are 

 
Fig. 2. a) Left, a photo of the subject elocuting a viseme, overlaid on a grid 

with control points. b) Right, the same viseme displayed as sparse mouth shape 
created with B-spline interpolations through the control points. 
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w1 = 0.0102 for whisper, w2 = 0.6787 for talk, and w3 = 0.3111 

for shout. The x-coordinate of the mouth models are x1 = 3.63 

for whisper, x2 = 3.52 for talk, and x3 = 3.83 for shout. So the 

final value of the x-coordinate of this control point is 3.62. 

E. Integration 

 The final integration of the pipeline proceeds by iterating 

through all of the visemes recognized in the recorded input. For 

each viseme, the timestamps from CMUSphinx are used to 

calculate the chunk of audio it belongs to. To do this, using 

integer division, the visemes start and stop times are divided by 

the chunk duration (2 seconds) to obtain the chunk number. If 

the resulting chunk numbers are equal to each other for both the 

start and end timestamps, it is used as the chunk number for the 

current viseme. On the other hand, if the start and end 

timestamp chunk numbers are not equal to each other,  the 

pipeline checks whether the largest portion of time the viseme 

occupies is in the previous, current, or next chunk. 

 

 Having obtained the chunk number, the Neural Network can 

make a prediction for the chunk, and along with the 

corresponding viseme, is used to generate a Mouth object. This 

Mouth object is stored in an array along with the start and end 

timestamps. 

IV. EXPERIMENTS AND DISCUSSION 

 In this section, the details of the implementation of the 

Neural Network for classifying speech types are discussed, and 

the results of the overall pipeline are shown and evaluated, 

along with a discussion about its applications and limitations. 

 

A. Running Times and Hardware 

 The runtimes for the neural network, the pipeline and all of 

its parts are reported based on being run on an Intel Core i7-

2677M CPU, clocked at 1.80GHz. A typical total running time 

of the pipeline on a two second chunk of speech is 3.1s. The 

average breakdown of the run-times is as follows: The 

preprocessing of the recording takes 0.06s. The detection of 20 

phonemes with CMUSphinx, and the mapping to visemes takes 

1.6s. Predicting speech types and generating the mouth shapes 

for the visemes takes 1.4s. If all the mouth shapes were to be 

plotted and printed using the display function, that takes another 

17.2s. 

B. Neural Network Architecture and Evaluation 

 The Feedforward Network consists of 45 nodes, and was 

trained with a batch size of 32. The input layer has 14 nodes, a 

sigmoid activation function, and 5% dropout. Two hidden 

layers have 14 nodes each, and both have RELU activation 

functions. The output layer has 3 nodes and a softmax function 

to finalize predictions.  It is trained using the ADAMS 

optimizer [25], implemented in Keras for TensorFlow. Training 

took 24.7 seconds over the course of 10 epochs. With this 

configuration the Network achieves 84.2% accuracy. 

 

 The variation of loss in training, and the variation of accuracy 

in the training and testing sets when the number of epochs used 

was varied is investigated (See Table 1). For the validation, the 

average accuracy over 10 trials peaks at 83.8% with 10 epochs 

(See Fig. 3). 

 The training set size was also varied to determine the effect 

on validation accuracy. Using 50%, 60%, 65%, and 70% of the 

dataset for training showed that the accuracy of the network 

improved with more data. 

 
Fig. 3. Displaying the performance measures of the Neural Network 

C. Mouth Generation Evaluation and Discussion 

 All of the figures used in the results were generated using 

clips from new audio recordings which were not included in the 

training or validation datasets. The figures below show the 

output of the pipeline for the phonemes L – G – AH used in the 

words ‘hello’ and ‘goodbye’ for the three speech types. Also 

shown are the probabilities assigned to the relevant chunk of 

audio by the Neural Network. To see the full sequence of Mouth 

shapes for the words ‘Hello’ and ‘Goodbye’ spoken using 

different speech types, and the timestamps, see Appendix A. 

 

 The images in Table 2 show the output of the pipeline for the 

phoneme ‘L’ from the word ‘hello’ for the 3 different speech 

types. The probabilities predicted by the Neural Network of the 

audio chunk belonging to each speech type are also shown. For 

the whisper, the Neural Network predicts with over 99.99% 

certainty that the audio clip is a whisper, meaning that the pure, 

non-averaged, whispering viseme model is used in the output. 

It depicts the smaller range of motion of the lips which is 

associated with whispering. For the talking audio, the neural 

TABLE I 

PERFORMANCE MEASURES OF THE NEURAL NETWORK 

Number of 

Epochs 

Average 

training 

accuracy 

Average 

training loss 

Average 

testing 

accuracy 

1 0.730 0.627 0.730 

2 0.827 0.432 0.763 

3 0.850 0.360 0.795 

5 0.877 0.317 0.803 

8 0.902 0.254 0.832 

10 0.919 0.234 0.838 

13 0.962 0.150 0.814 

15 0.982 0.112 0.820 

20 0.996 0.044 0.803 
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network once again predicts the class with over 99.99% 

accuracy, meaning the stock model of a talking mouth is used. 

For ‘Shouting’, the Neural Network predicts the category with 

52.45% certainty. As a result, the control points of the shouting 

model are subject to the weighted averaging process with the 

points of the talking model (which received a 46.91% 

probability). The resulting mouth shapes are convincing, 

resulting in a wider open mouth with appropriately angled 

edges for the phonemes. 

 

 The images in Tables 3 and 4 show the output for the 

phonemes ‘G’ and ‘AH’ respectively, from the word 

“goodbye”.  The whisper is classified with 92.12% certainty, 

and the stock whisper mouth models are used for the phonemes. 

For the talking category the 67.87% prediction is below the 0.8 

threshold, and so the points with the model are averaged with 

both those of the whisper (weighted at 1.02%), and the shout 

(weighted at 31.11%). The shouting class is predicted with 

99.62% accuracy, and so is a good example of the pure model 

shouting mouths. 

 

 One possible application for this method is in animations. 

The user just needs to input an audio clip to obtain accurate 

mouth shapes with timestamps for use in the animation. It is 

easy to apply transformations such as rotations or scaling to the 

control points to integrate the mouth shapes in the footage, 

saving time and cutting costs for creators. The control points 

are easily customized to create different mouths for different 

characters. Furthermore, the low memory requirements for 

storing and transmitting a Mouth object means that this system 

is a good candidate for use in the remote reproductions of 

avatars. It is a simple and memory effective to reconstruct 

unique avatar mouth shapes on a remote machine based only on 

the transmission of the control points. 

V. LIMITATIONS AND FUTURE WORK 

In general, the limitations affecting the pipeline establish the 

future work that remains to be done on the system. One of the 

main limitations of the system is the use of CMUSphinx. As the 

creators of the package warn [26], their phoneme recognition 

error rate is “considerably” high. The phonemes it outputs are 

for the most part visually convincing for spoken or shouted 

words (as long as no distortion is present in the signal), but not 

for whispered inputs. Furthermore, the phoneme recognition 

takes a significant amount of time to run, making real-time 

mouth generation impossible. The most critical future work 

consists of finding a more robust and quicker system for 

phoneme detection. Other such systems worth trying are 

available on packages such as Kaldi [27]. Alternatively, it is 

also worth considering creating our own specialized phoneme 

detection neural network tailored to the performance needs of 

the pipeline.  

 

A failure case is seen when two phonemes mapped to identical 

visemes are consecutively detected. It is likely these will be 

located in the same audio chunk, thus possessing the same 

predicted probabilities, meaning that the resulting viseme will 

occupy a long span of time without changing, which looks 

unnatural when animated. A possible solution to this problem 

could be sampling the audio fed to the classifying neural 

network at more frequent intervals. Instead of feeding discrete 

two second chunks of audio to the network, a two second sliding 

window of audio could be moved forward every 30ms for 

classification purposes, and might produce more varied and 

realistic mouths. Another option would be to randomize the 

second viseme’s control points by a small amount, to cause it to 

change shape. 

 

Another limitation is that the pipeline requires high quality 

audio files to function properly. Audio recorded with a laptop’s 

microphone rarely produced good results when fed into the 

neural network for classification. All the audio used was 

recorded on a high quality recording set up, which might not be 

available to all users. Also, both CMUSphinx and the generated 

visemes are limited by virtue of being based on the English 

language. New language packs and viseme mappings and 

models would have to be acquired for the system to work with 

other languages. Beyond the future work stemming from 

finding solutions to these limitations, a natural continuation to 

this project consists of having the pipeline output 3D mouth 

shapes instead of 2D ones. The existing code could easily be 

modified to produce the 3D mouth shapes by simply adding an 

extra dimension (for depth) to the existing control points in the 

MPEG-4 convention, as seen in [3]. The method of generating 

mouth shapes through averaging class models would not 

require modifications or new control points, and 3D objects are 

useful in more diverse applications, while retaining the 

advantages of our system’s uniquely generated mouth objects. 

In the future, adding control points for the entire face to add 

realistic facial gestures to the lip sync using this pipeline is an 

idea worthy of further consideration.  

 

Finally, an interesting question is how accurate a Neural 

Network would be at predicting speech types in a model with 

more than three classes. If it were successful, a similar, more 

nuanced system for generating mouth shapes could be 

implemented. 

VI. SUMMARY 

 In this article a system has been described for automatic lip 

synchronization, generating unique mouth shapes according to 

speech type, using only a speech input. Phonemes in the speech 

are detected using CMUSphinx.  The crucial innovation of the 

system is the success (84% accuracy) of a Feedforward Neural 

Network which classifies speech types into three categories, 

using MFCC vectors as features. Mouth shapes for each viseme 

of the Jeffers map are generated by merging the control points 

of premade mouth models according to the Neural Network’s 

predictions of the speech type. 

 

The lip sync system can be used in various applications since 

the resulting mouth shapes are convincing and uniquely 

generated. The low storage and transmission requirements and 

the simplicity of reconstruction of the mouth objects make them 

a good choice for implementing low-bandwidth communication 

through animation.  

It can be concluded that the pipeline satisfactorily generates 

detailed, lightweight, automatic lip sync frames, but there is 
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plenty of room for further work and improvements on the 

system.  

APPENDIX 

Tables 5 and 6 show the mouth shapes generated using 

recordings of the words ‘hello’ and ‘goodbye’ for each of the 

three speech classes. Each column of these tables corresponds 

to a speech class, as specified in the first row. The second row 

contains the phoneme and timestamp information generated 

with CMU Sphinx. The third row shows the probabilities of the 

recordings belonging to the speech classes in the form [whisper, 

talk, shout]. The remaining columns show the mouth shapes 

generated by the pipeline for each of the detected phonemes in 

the same order of appearance as the second row. 
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TABLE 2 

THE PREDICTED PROBABILITIES AND RESULTING MOUTH SHAPES FOR THE ‘L’ PHONEME. 

Whisper Talk Shout 

[0.9999 Whisper, 1.299E-5 Talk, 9.211E-8 Shout] [1.616E-5 Whisper, 0.9999 Talk, 3.989E-5 Shout] [0.0064 Whisper, 0.4691 Talk, 0.5245 Shout] 

   

 

TABLE 3 

THE PREDICTED PROBABILITIES AND RESULTING MOUTH SHAPES FOR THE ‘G’ PHONEME. 

Whisper Talk Shout 

[0.9211 Whisper, 0.0702 Talk, 0.0085 Shout] [0.0102 Whisper, 0.6787 Talk, 0.3111 Shout] [0.0012 Whisper, 0.0025 Talk, 0.9961 Shout] 

 

 

 

 

TABLE 4 

THE PREDICTED PROBABILITIES AND RESULTING MOUTH SHAPES FOR THE ‘AH’ PHONEME. 

Whisper Talk Shout 

[0.9211 Whisper, 0.0702 Talk, 0.0085 Shout] [0.0102 Whisper, 0.6787 Talk, 0.3111 Shout] [0.0012 Whisper, 0.0025 Talk, 0.9961 Shout] 
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TABLE 5 

‘HELLO’ IN DIFFERENT SPEECH TYPES 

Whisper Talk Shout 

Phonemes and timestamps: 

[('SIL', 0.0, 0.03), ('AE', 0.04, 0.11), ('L', 0.12, 
0.18), ('AA', 0.19, 0.38), ('HH', 0.39, 0.43), ('AO', 

0.44, 0.48)] 

Phonemes and timestamps: 

[('SIL', 0.0, 0.02), ('AH', 0.03, 0.07), ('L', 0.08, 
0.17), ('OW', 0.18, 0.34)] 

Phonemes and timestamps: 

[('SIL', 0.0, 0.02), ('G', 0.03, 0.1), ('OW', 0.11, 
0.23), ('AA', 0.24, 0.36), ('AE', 0.37, 0.39), ('L', 

0.4, 0.47), ('OW', 0.48, 0.93)] 

Speech class probabilities: 
[9.9998689e-01, 1.2992635e-05, 9.2109254e-08] 

Speech class probabilities: 
[1.6160682e-05, 9.9994385e-01, 3.9889543e-05] 

Speech class probabilities: 
[0.00641645, 0.46911407, 0.5244695 ] 

     

  

 

 

  
 

   

  

 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

  

TABLE 6 

‘GOODBYE’ IN DIFFERENT SPEECH TYPES 

Whisper Talk Shout 

Phonemes and timestamps: 

[('SIL', 0.67, 0.75), ('K', 0.76, 0.82), ('UW', 0.83, 
0.86), ('DH', 0.87, 0.92), ('SIL', 0.93, 1.06), ('AH', 

1.07, 1.1), ('AA', 1.11, 1.28)] 

Phonemes and timestamps: 

[('SIL', 0.0, 0.02), ('G', 0.03, 0.1), ('UH', 0.11, 
0.15), ('B', 0.16, 0.21), ('P', 0.22, 0.25), ('B', 0.26, 

0.3), ('AA', 0.31, 0.44), ('AY', 0.45, 0.56)] 

Phonemes and timestamps: 

[('SIL', 0.0, 0.03), ('G', 0.04, 0.09), ('OW', 0.1, 
0.18), ('D', 0.19, 0.24), ('OW', 0.25, 0.28), ('AA', 

0.29, 0.56), ('AY', 0.57, 0.82), ('AH', 0.83, 0.89)] 

Speech class probabilities: 
[0.9211595 , 0.0702494 , 0.00859113] 

Speech class probabilities: 
[0.01024215, 0.67867833, 0.3110795 ] 

Speech class probabilities: 
[0.00127534, 0.00252765, 0.996197  ] 

 

 

 

   

 

 

 

   

 

 

 

 


