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ABSTRACT

Prometheus aims to explore artificial intelligence in a controlled but flexible

environment by mimicking the properties of the real world using a swarm intelli-

gence implementation. Swarm Intelligence has been used for solving problems in

the domain of self organization, complexity and collective intelligence for a group of

agents. The collective behavior of the entity considered here - ants, are modeled as

a decentralized and self-organized system in which the ants communicate indirectly

and thrive by modifying the environment. This novel approach combines the widely

established stigmergy theory with real-time fluid dynamics by using Pheromones and

the Navier-Stokes equations respectively to subject the environment to natural con-

ditions like wind, and spread and decay of smell thus making the environment more

suitable to real time conditions. The chosen real-time fluid dynamics method proves

to be computationally fast, robust and far more realistic than traditional approaches.

Also, for evaporation, instead of choosing a random fixed value for every timestep,

we take into consideration the effect of temperature, vapor pressure, wind and hu-

midity on evaporation and consequences of that. It is hoped that this model will

be a step closer to achieving results substantially closer to the real world and also,

observing the changes that the aforementioned natural properties might impose on

experimental world.
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ABRÉGÉ

Le projet d’intelligence artificielle Prometheus vise à explorer, dans un environ-

nement contrôlé mais flexible, les propriétés du monde réel sur une intelligence en

essaim. L’intelligence distribuée a été utilisée afin de résoudre les problèmes dans le

domaine de l’auto-organisation, la complexité et l’intelligence collective d’un groupe

d’agents. Le comportement collectif de l’entité considérée, ici la fourmi, est modélisé

comme un système décentralisé et auto-organisé dans lequel les fourmis commu-

niquent indirectement et prospèrent en modifiant l’environnement. Celle nouvelle

approche combine la théorie de stigmergie avec la mécanique des fluides, utilisant

respectivement les phéromones et les équations de Navier-Stokes, afin de soumettre

à l’environnement des conditions naturelles comme le vent ou encore la propagation

et la désintégration de l’odeur. Ainsi l’environnement correspond mieux à des condi-

tions réelles. La méthode de mécanique des fluides en temps réel choisie s’avère être

rapidement calculable, robuste et beaucoup plus réaliste que les approches tradition-

nelles. De plus, pour modéliser l’évaporation, au lieu de choisir une valeur aléatoire

fixée pour chaque itération, nous prenons en compte l’effet de la température, de la

pression de la vapeur, du vent , de l’humidité de l’évaporation et leurs conséquences.

Nous pensons que ce modèle contribuera à l’obtention de résultats nettement plus

proches du monde réel et à l’observation des changements que les propriétés naturelles

susmentionnées pourraient imposer à l’environnement expérimental.
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CHAPTER 1
Introduction

1.1 Communication among Ants

Ants communicate with each other for performing various tasks like foraging,

navigation, defending the territory, building of nests and other activities which re-

quire interaction. It has been long established that ants use pheromones to communi-

cate with one another [11]. They use different pheromones for dealing with different

tasks [28]. The capability of ants to communicate in this unique manner has given

rise to solutions to many complex problems. Though certain families of ants exhibit

communication traits that are distinct to their family, it has been proven that self

organization has been at the forefront for use by almost all ant colonies [7]. This

behavior combined with decentralization and autonomy forms the key to viewing the

ant colony as a suitable candidate for swarm intelligence [5, 6] which in simple terms

can be defined as collective intelligence concerning a specific group. The approach of

sharing knowledge locally between its peers and eventually propagating the knowl-

edge to a global level is one of the main reasons researchers were interested in relating

this to intelligent system design. This chapter discusses in detail the aforementioned

concepts thus leading to the objective of this thesis and the goal we wish to achieve

through that.

1



1.2 Self Organization and Swarm Intelligence

Self organization can be defined as a decentralized process by which a solution

to a specific problem is found based on the interaction at the global level as against

local interaction. Therefore, this process does not involve any committed attempt by

the agent to transfer any kind of information to other agents. Rather, this process,

when considered in its entirety can lead to a solution that other agents can use. This

behavior can be commonly observed in social insects like bees, ants, wasps etc. This

autocatalytic process is complex in its own right and this can be attributed to the

stable states the agent can choose from. The agent can then choose from one of these

stable states.

A stable state is chosen by selecting one based on the amplification of available

random possibilities. In ants, these stable states are chosen based on the pheromones

and their densities at a given point. This chosen state is further amplified by other

agents which chose this state as the solution state. Dorigo [6] pointed out that

self organization consists of four main properties: Positive feedback - helps in the

amplification of a state through increased attraction, negative feedback - reduces the

attractiveness of an option through insertion of repulsive elements, amplification of

random points - results in the exploration of possible solutions thus increasing the

possibility of finding a stable state, and multi agent interaction - allows the agents to

utilize the information passed on by other agents in addition to its own. These four

properties form the cornerstone of collective intelligence of this kind and the way

it affects our research will be discussed in detail later. A point worthy of mention

here is that self organization in itself does not directly influence the cooperation and
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adaptation among the agents. Rather, it is the agents that form a certain solution

using self organization that are adaptive or cooperative [7].

A concept that emerged from self organization and that is extensively used in this

research is Swarm Intelligence. It can be defined as the collective behavior of simple

agents which results in the agents performing some intelligent task. The term swarm

intelligence was first used by Gerardo Beni and Jing Wang [5]. With respect to

ants, this gives an idea of how the knowledge transfer happens among different ants

spatiotemporally thereby resulting in a global solution from several local decisions.

One of the advantages of this approach is that the failure of a small number of

agents to take part in the experiment will not have any adverse or drastic impact on

the way the processing takes place. As regards the problem that we have in hand,

this tendency of agents could also lead to further exploration thus encouraging more

spatial exploration indirectly. This unique method of information transfer, though

not having any major drawbacks, has a clear requirement - the manner in which the

information is shared must be clearly outlined. The lack of this could lead to failure

in arriving at a complete solution [6].

1.3 Stigmergy

Ants have been successfully thriving on earth for the past 100 million years [29]

and that is one of the main reasons scientists have taken special interest in exploiting

the communication pattern among them [17]. It has been widely established that

ants use a concept named stigmergy to communicate indirectly to one another. The

term Stigmergy was coined by Grasse [26]. Stigmergy refers to the modification of

environment from its current state to an updated state through the communication

3



among different entities thriving in the environment [34].

There are two types of stigmergies: Sematectonic and sign-based [47, 48]. In sema-

tectonic stigmergy, communication is initiated through the ants physically changing

the shape of the environment by moving things around or building structures (Ex-

ample: An ant discovering a pattern emerging during the nest building process and

consequently, making its contribution to that). In sign-based stigmergy, communi-

cation is triggered through the ants adding some kind of sign to the environment

that is identifiable to others in the community (Example: Ants spraying chemicals

known as pheromones for communication between them). With respect to the for-

aging process in ants, it is the sign-based form of stigmergy that we will be focusing

on.

1.4 Pheromones

Pheromones can be formally defined as an olfactory or oral chemical signal

used for communication among the same species [49]. Different pheromones are

known to have been used by ants for performing different activities. In addition,

pheromones play a vital role with respect to maintaining the social order in the

ant colony. The aspect that we are primarily concerned about here is the foraging

behavior of the ants. The use of pheromones by ants for foraging has been well

studied [13, 2, 36, 14]. Ants use trail laying/decaying behavior through pheromones

to locate the food source and reinforce the path towards that i.e. they mark the trail

using pheromones while foraging so that it can help them later while returning to

nest or will allow other ants to reinforce the trail towards the food path. Failure to

reinforce the path, which usually happens when other ants choose not to traverse the

4



established path, results in evaporation of pheromones i.e. trail decaying. This kind

of trail laying and decaying behavior leads to information being conveyed among the

ants without the existence of a conscious attempt to share resources. Moreover, this

shows that this kind of behavior comprises positive feedback through reinforcement,

and negative feedback though the evaporation of pheromones [17] which makes this

kind of communication one of a kind.

1.5 Relation to Computational Science

As regards computational science, there are many reasons why one would be

interested in studying this particular behavior of ants and building a foraging model

based on that. For one, creating a model will help in proving the different theories

that have been formulated and will also help us in finding the importance of different

variables involved in the experiment. The inclination for creating such a model are

manifold. Given that we know all parameters involved in this process, changing the

values of the parameters and comparing the real-time behavior with a theoretical one

will give us clues that might lead to building an optimal solution for a problem in

hand. As well, this kind of communication is unique in the sense that it encompasses

different fields of study in the computational domain such as distributed system,

simulation, discrete optimization and complexity theory.

The most common phenomenon of interest observed through this behavior is finding

the shortest path between the nest and the food source. Deneubourg et al. [12] and

Goss et al. [25] conducted experiments to show that ants almost always choose the

shortest path between the nest and the food source in the right conditions. When

provided with two paths of equal length, they tend to choose the path randomly

5



but when provided with two paths of different lengths ants choose the shortest path

over a period of time by making use of pheromones. Goss et al. [25] conducted the

famous double-bridge experiment which proved to be a cornerstone study for scien-

tists studying the foraging behavior of ants (figure 1–1). In simple terms, the ants

choosing the shorter path will be the ones to return to the nest faster since they

travel a shorter path both while traveling towards the food source and while return-

ing to the nest. Therefore, over time, the pheromones deposited in this path will

become reinforced and this path will become the most favored due to the maximum

pheromone concentration. This observation, called the differential length effect [20]

led to many ant colony algorithms and optimization algorithms.

Figure 1–1: A Double-bridge Experiment setup
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1.6 Existing Implementations

Studying the ant colony system has led to a lot of interesting implementa-

tions and models, the most successful of them being the Ant Colony Optimization

(ACO) [15]. Ant Colony Optimization, along with its variants, has paved the way for

a series of noteworthy applications and quality solutions to NP-Hard problems [16].

ACO has been developed for a number of well known applications which span Or-

dering problems (Traveling salesman problem, Load balancing in communication

networks), Grouping problems (Graph coloring problem), Subset problems (Multi-

ple knapsack problem), Assignment problems (Quadratic assignment problem) and

more recently, for improving the accuracy of software quality prediction models [1].

ACO tries to mimic the communication observed in real ants by using artificial ants

and finding solutions to the optimization problem that is being considered. Here, the

solution by the artificial ants is built based on a graph where the ants traverse from

one vertex to another with the condition that the next vertex in the path building

process should not be equal to the previously visited vertex.

The simplest version of algorithm built is the Simple Ant Colony Algorithm (SACO) [21]

which basically tried to implement the double-bridge experiment model. The vari-

ables considered here were the number of ants, amount of pheromones deposited, and

the probability with which an ant chooses a position to move to, as a function of the

the amount of pheromones found at neighboring vertices. The Ant System designed

by Dorigo et al. [19] was based on SACO and served as the basis for most of the

future algorithms designed. This algorithm was applied to Traveling Salesman Prob-

lem in order to find desirable solutions and prove its feasibility. The major difference

7



between SACO and AS was that AS assumed that the ant agents have some kind of

memory associated with them which was implemented by using a tabu list [24] - a

data structure that’s used to record each point visited by ants. As well, AS used a

state transition rule known as the random-proportional rule which is a rule followed

by ants to move to the next point. Some of the well known algorithms which were

built based on the AS and tried to improve on that are given as follows: Max-Min

Ant System [46] tried to handle the premature stagnation problem - a phenomenon

by which all ants start following the same path too soon without much exploration

having occurred - in AS by making sure that pheromones are added only to the best

solution during the updating process; Antabu [41] uses a local search based on tabu

search and uses a method by which the contribution made by each ant depends on a

fitness solution; AS-Rank [8] uses an elitist strategy by which importance is given to

the best solutions and by taking into account only the best ants - the ants that have

managed to find the best path so far after every timestep - for the model; ANTS [33]

was another algorithm that was tried on the Quadratic Assignment Problem and

improved on the performance with regard to the quality of the best solution found

by using a different approach for stagnation handling and probability distribution.

Another well known algorithm built based on AS was the Ant Colony System (ACS)

which suggests some improvements for AS by using a different state transition rule, a

different pheromone update rule, introducing local pheromones, and using candidate

lists for more complex problems.
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1.7 Motivation for the Research

All the algorithmic approaches that we discussed were based on the graph based

implementation using stigmergic variables and used similar parameters: the total

number of ants, the amount of pheromone deposited for positive feedback, and the

presence and degree of evaporation (not considered in all algorithms) for negative

feedback. An important aspect that has been ignored so far is the role played by

real-world properties in the model to exploring/establishing a path between the food

source and the nest. It has been already mentioned that the pheromones are olfactory

or oral chemical signals that the ants use to exchange information. Therefore, there is

always a possibility that the pheromone deposits are affected by natural phenomena

such as sun, rain, vegetation, wind, and the resulting spread and decay. This in turn

can bring about drastic and unexpected changes with respect to how the environment

evolves as a whole. These effects, when ignored will be tantamount to analyzing the

ant behavior in an enclosed space which leaves a void with respect to achieving real-

world simulation results. For example, the natural conditions can have an impact

on the decaying time of a food source or wind acting along a particular direction

can result in an ant altering the path in which it is traveling due to change in the

strength of the smell. A simulation considered with the aforementioned effects can

alter the observed results with respect to foraging activity in more ways than one

and this is the area that we would like to concentrate on with this research. It is also

hoped that this can give us an insight into how much an effect wind can have on the

spread of pheromones, and to what level it can affect the decision making process of

the ant agent and the consequences on the foraging behavior of the colony.
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Hence, the goal of this experimental approach is to test the assumptions of the model

that has already been established and to suggest that wind as a parameter, if taken

into consideration could alter the results. From a real-world perspective, this can be

seen as a step closer to achieving a mimicking behavior that’s more in line with the

natural conditions. When seen from a modeling perspective, this could be another

parameter added to the given set that we have; subsequently, this can be used to

explore different possibilities which may not be commonly observed in the real world.

This in turn can find its use in discovering an optimal solution to a given foraging

problem or could even lead to a new variant of the class of optimization algorithms.

1.8 Overview

In chapter 2, we introduce the custom-designed ant colony algorithm known

as the Real World Ant Colony Algorithm (RWACA) used for the experiments along

with the different parameters concerned. In chapter 3, we present the model that was

chosen to simulate the effect of wind and incorporated into the RWACA. In chapter

4, we discusse the effect of evaporation on the foraging process of ants. In Chapter 5,

we present the workflow along with the experimental setups and the corresponding

results. The future work and conclusion are given in chapter 6.
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CHAPTER 2
Real World Ant Colony Algorithm

In this chapter, we introduce our own version of the ant colony algorithm called

Real World Ant Colony Algorithm which can be seen as a variant of the ant colony

algorithm approaches. Here, the attributes and environment are chosen in such a

way that the foraging behavior of the recruiters and recruits can be subjected to real

world properties that were already discussed. A brief description of these attributes

is given before explaining the algorithm.

2.1 Properties and Parameters

Owing to the wide ranging applications of collective intelligence combined with

heuristic algorithms, the need to replicate the behavior of social insects and under-

stand their lifestyle became more and more prominent. This resulted in a plethora

of ant-based algorithms (AA) structured accordingly to the needs of the research. In

the same way, the formal model that is going to be designed for this research will be

tailor made for incorporating the modeling of real world processes that we are going

to consider. Before explaining the algorithm, a brief introduction to the properties

and parameters taken into consideration in line with those used for ACO algorithms

and key differences between them are given here.

2.1.1 Convergence time

The convergence time is defined as the elapsed time from the beginning of the

simulation to the moment the solution path has been found, i.e. when a particular
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path has been reinforced to such an extent that the majority of the ants start fol-

lowing the same path in order to reach the food source and return to the nest. The

desired characteristic would be being able to find an optimal path and strengthening

it by making the ants choose it. Obtaining this state is not always possible as some-

times a sub-optimal path is found and the ants stick to this sub-optimal path. This

phenomenon is referred to as premature convergence. Another possibility would be

that the ants simply fail to reinforce any path thus leading to non-convergence.

2.1.2 The number of ants (recruiters and recruits)

There are two types of ants to be considered here - recruiters and recruits. The

recruiters are responsible for establishing the path between the nest and a food source

whereas the recruits help in reinforcing the chosen path. It has been shown empiri-

cally that the number of recruiters and recruits in the given environment influences

convergence to a great extent [12]. A small number of ants could mean that it would

take more time for the algorithm to converge and a larger number of ants could mean

faster convergence. Therefore, choosing the number of ants here is directly related

to achieving the right balance between premature convergence and non-convergence.

Also, the number of recruiters and recruits influence the path establishment and path

reinforcement strategies. The roles of recruiters and recruits are explained later in

this chapter.

2.1.3 Pheromone deposit

Pheromone deposit can be defined as the amount of pheromones deposited by the

agents when a recruiter/recruit moves from the current position to the next position.

Ant Colony algorithms usually use different initial pheromone deposit values as one of
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the parameters to influence the path searching process. Here, it is assumed that both

the recruiters and recruits deposit the same amount of pheromones since any bias

arising out of differential pheromones deposit values are not taken into consideration.

2.1.3.1 Pheromone depositing pattern

As regards the pheromones depositing trait in ants, there are two patterns com-

monly observed: some ants start depositing pheromones only when they find the

source i.e. always a path is established only from the food source to the anthill and

never the other way. Another pattern found is the ants start depositing pheromones

as soon as they leave the nest. Our assumption here is that the ants start depositing

pheromones as soon as they leave the anthill. This is advantageous due to the fact

this could help in preventing the same zone being explored more than once and also

help the returning recruiter to arrive at the nest without having to perform another

exploration. This kind of collective exploration and marking behavior is only found

in certain species of ants such as Linepithema humile (formerly Iridomyrmex humilis)

[25].

2.1.3.2 Evaporation

In a real world case, evaporation might play a role in the food foraging process

as the pheromones may be impacted by natural parameters like temperature, wind

speed, humidity etc. The effect of evaporation on pheromones has been well debated

and more on this is presented in chapter 4. The rationale behind including evap-

oration for consideration in ant colony algorithms was to encourage the agents to

increase the exploration and also to avoid premature convergence [21]. Therefore, in
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the paths that are not traversed frequently, the pheromone deposits will start evap-

orating whereas the intensity of pheromone deposits in the favorable paths will keep

increasing because deposits are renewed by ants traveling them. The rate of evapora-

tion could influence the possibilities of premature convergence and non-convergence,

i.e. if there is no evaporation, then the convergence time may be increased whereas a

large evaporation rate might lead to too fast a convergence or non-convergence. As

a result, the rate of evaporation can also act as a parameter to find the right balance

between premature convergence and non-convergence.

The parameters used for evaporation are applied to the pheromone deposits at every

timestep in order to ensure that each path experiences evaporation to some degree.

The evaporation rate was set to some constant and based on the exploration and

convergence requirements of the algorithms. This feature can be seen as an indi-

rect form of negative feedback since the ants not traversing a particular established

path will result in the pheromones in that path getting evaporated slowly and will

eventually disappear completely.

2.1.4 Agent Memory

Though it has been found that some species of ants utilize memory in the forag-

ing process [3, 4, 27], it hasn’t been proved that all species of ants use the memory

in the same way nor does any concrete proof exists to show that all species have

memory. The ant agents are assumed to have no memory here since all the actions

performed by ants are based on the information gathered using the collective behav-

ior and stimuli. Generally, some kind of limited memory would be required for the

artificial ant to store the position during transition towards the food source (forward
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phase) so that this memory can be used to trace back to the nest during the backward

phase. In the case of the Real World Ant Colony Algorithm, the action behavior of

the agent during the backward phase is the same as the behavior observed during

the forward phase and therefore, this effectively wipes out the need for the agent to

have any kind of memory.

2.2 Movement of Agents

It is imperative to see to it that the ants’ movement is not restricted in as many

ways as possible. As a part of this effort, instead of reducing the considered space to

a set of discrete points and restricting the spatial movement of ants to either of the

two points that lie ahead (as commonly done in Ant Colony Algorithms), the ant

is allowed to move to any vector position in the forward direction. Thus, by doing

so, we are not introducing any spatial constraints to the ants which is a step closer

towards the real-world conditions.

2.2.1 Exploration strategy - Monte Carlo Simulation

Here, we will be restricting ourselves to the species of ants that lay pheromones

both towards the food source and while returning to the nest. Some examples of

species which are known to mark the substrate in both directions are I. humilis,

Messor rufitarsus, and Myrmica sp. [3]. This type of ant species can be broadly

categorized based on their foraging behavior: the ones that prefer using individual

memory for exploration (ex: Lasius niger) and ones that use collective exploration

strategies for searching without using any individual memory (ex: Linepithema hu-

mile) [3]. The main difference between the two different categories is based on the
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movement of the recruiter: In case of the ants that use individual memory, the re-

cruiter does not start marking the substrate until the food source is found whereas in

latter case, the recruiters start marking the substrate the moment they begin explor-

ing. The algorithm created here is comparable to the typical behavioral pattern of

the Argentine ant (Linepithema humile) which uses collective exploration strategies

for trail laying and trail following behavior. A lot of research has been done trying to

understand the decision making behavior of the argentine ant [25, 12, 39]. Based on

this effort, the following exploration strategy is defined. Firstly, there are two types

Algorithm 1 Real World Ant Colony Algorithm

1: Initialize ant objects - recruiters and recruits - and other necessary parameters
2: repeat
3: recruiter algorithm
4: until recruiters have completed the journey establishing the paths
5: repeat
6: recruit algorithm
7: until an established path (optimal/sub-optimal) is reinforced

of agents - recruiters and recruits - and two different phases - the initial exploration

phase and the path following phase - considered here. As shown in algorithm 1, the

recruiters are entrusted with finding a path between nest and food source whereas

the recruits help in strengthening the established path. In the initial exploration

phase, as shown in algorithm 2, the recruiter starts from the nest and starts explor-

ing the temporal space without any a priori knowledge. Therefore, to mimic this

behavior in the best possible way, we will be using Monte Carlo simulations of the

model whereby every successive vector position in the forward direction is deter-

mined randomly. While the recruiter is exploring the region, it leaves pheromone
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deposits as it moves from one point to the next. This behavior of recruiter leaving

pheromone trails can help the whole process in many ways: Firstly, it can serve

as a cue for other recruiters conveying that a certain region in the environment is

already being explored by one recruiter and therefore, a recruiter which detects a

pheromone trace may want to deviate from the path already being explored thus

encouraging greater exploration in lesser time. Secondly, it can also serve as a guide

for recruiters wanting to return to nest once they find the food source. A recruiter

can be sure of arriving back to the nest since all the recruiters start from the nest

and start leaving pheromone deposits once they begin the journey. It is to be noted

here that what we are trying to do is not an optimization approach but a proof of

the concept approach. Therefore, the path which will eventually be established by

one of the recruiters, though the right one, may not be the shortest one all the time.

The recruiter, after finding the destination returns home by taking cues from the

path established by itself or other explorers. During this phase, the recruits are in a

dormant state waiting for cues from a recruiter to begin the trail following.

After a specific period by which time some of the recruiters would have successfully

returned home, as shown in algorithm 3, the recruits start going in search of the

food source signaling the start of the path following phase. The recruits gradually

start showing preference for the path with higher pheromone intensity since they

have a higher probability of leading to the food source. The reason for the grad-

ual preference is that initially, when the recruit starts traveling from the nest after

a path has been established by a recruiter, the set of next possible positions would

have similar pheromone deposits and hence, there shouldn’t be any preference shown
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Algorithm 2 Recruiter

1: for all recruiters that have not completed the journey do
2: if the destination is food source then
3: select the next transition vector position based on randomness
4: else if the destination is nest then
5: if feasible neighborhood (vector position with pheromone deposit) is found

then
6: move to selected vector position
7: else
8: select the next transition vector position based on randomness (to-

wards the nest)
9: end if
10: end if
11: Increase the pheromone deposit in the current vector position and move to

the selected vector position
12: end for

initially. After a while, when some points are more pronounced than others, that

is when the recruits will start showing a clear preference. If MaxN represents the

pheromone deposit values of N points that the recruit has to choose from in order

to make its next move, and Max1 and Max2 represent the two highest pheromone

deposit values from N points, then the probability P of choosing Max1 is given by:

P (Max1) =


Maximum if Max1 >> Max2

High if Max1 > Max2

Equally likely if Max1 = Max2

(2.1)

Therefore, the next position Y of the agent from the current position X is determined

by the weight of the pheromone present in each of the possible points. The most

important observation in the exploratory pattern while conducting the simulation is
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that the weight of the pheromone at each point will be equal to the number of ants

that have traversed that area. This metaheuristic phenomenon can be likened to

the traditional reinforcement learning techniques where an agent tries a particular

action and is rewarded based on the consequence of its action leading to the path to-

wards the destination. The destination here is the food source and the weight of the

pheromone at each point is linked to the reward that the agent will be getting moving

into that particular position. It is worth mentioning here that the path established

by the first recruiter may not be the path followed by all the other recruits because

the recruits blindly follow the path that leads them to the food source based on the

weight of the pheromone at each point. In accordance with the mechanisms involved,

there are two constraints involved here [12] - all the recruiters and recruits must lay

pheromone while traversing a temporal space irrespective of whether they are mov-

ing towards the food source or arriving back home, and there must be a minimum

number of ants leaving the nest. These constraints make stronger the possibility

that the paths are formed and reinforced. Also, unlike the method used by Pasteels

et al. [38], here we assume that the degree of attraction to an unexplored branch

for a recruit is minimum. Therefore, the recruit chooses a path with no pheromone

deposit only if it is not able to find a path with any pheromone deposit. As well, the

autocatalytic process is not affected largely because of this.

In certain ways, this approach borrows certain traits from the ACO in that each

ant’s position is updated in an iterative fashion and the focus will be on convergence

but the duration for convergence is generally not deterministic. It differs largely
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Algorithm 3 Recruit

1: for all recruits that have not completed the journey do
2: if the destination is food source then
3: if feasible neighborhood (vector position with pheromone deposit) is found

then
4: move to selected vector position
5: else
6: select the next transition vector position based on randomness (to-

wards the food source)
7: end if
8: end if
9: if the destination is nest then
10: if feasible neighborhood is found then
11: move to selected vector position
12: else
13: select the next transition vector position based on randomness (to-

wards the nest)
14: end if
15: end if
16: Increase the pheromone deposit in the current vector position and move to

the selected vector position
17: end for
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from ACO in that it is not an optimization algorithm but a plain concept explana-

tion approach. Therefore, here our objective does not look to achieve any kind of

optimization. This can be quite evident from the fact that the path that will be

established and reinforced by the explorers is not guaranteed to be the shortest path

and the focus would always be on the agent behavior in the given environment.

There are certain observations to be made here. Firstly, as mentioned before, since

the ants don’t have memory, the only factor that influences their path selection de-

cisions is the pheromone deposit. These pheromones deposits are registered using

a global pheromone table which is updated every time an ant agent moves from its

current position. It could be observed that this is quite similar to a frequency based

memory used in Tabu search [24] with the only difference being that this memory

consists of points which the ant agent should consider as being favorable while search-

ing for a feasible neighborhood. Secondly, it is assumed here that evaporation acts

uniformly on all the pheromone deposits. Thirdly, the pheromones deposited on all

points are constant. The next chapter discusses the real-world properties and how

they are incorporated into our algorithm, which is the cornerstone of this project.

This incorporation of real-world properties is key to witnessing a reinforced path that

might be different from the path established by the explorer initially due to changes

brought to the weight of pheromone at a particular position by natural factors that

we experience in the real world.
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CHAPTER 3
Wind Simulation

3.1 Introduction

An important property that we are forced to consider when we think of wind

is its effect on spreading the smell from a single source point to many other points

in space. With respect to the pheromones, it has already been mentioned that ants

respond to the odour rather than the visual cues. In that case, it naturally follows

that this odour and its intensity, when considered as an entity, will certainly be

impacted by the direction of the wind and the period for which it lasts. Therefore,

this leaves us with the need to come up with an implementation for the simulation of

wind and the impact it will leave on spreading the odour. Here, we hypothesize that

the effect that wind will have on odour will lead to an ant choosing a point which it

would not have if not for the consideration of wind and its natural effect on spreading

odour. This in turn could lead to a different path being reinforced by the recruit

than the one established by the recruiter. This hitherto overlooked factor could lead

to more accurate results when compared to the ones which have totally ignored the

effect of wind on odour, and to a greater extent against the implementations which

have completely ignored evaporation and its effects. Several existing solutions were

considered for including this effect to our algorithm.

The approach selected is based on the real time fluid dynamics (RTFD) approach

by Jos Stam [45]. With regard to the needs of this research, this method has several
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advantages over the other ones which will be discussed later. A detailed explanation

about Stam’s approach and the way it is being incorporated into our approach is

given as follows.

3.2 Motivation

Building a physics model is by far the best approach to simulating a real time

fluid motion. With regard to the model that we require for our simulation, it is

imperative that the model that we consider must fit into the algorithm that we

already have. Traditionally, models created for simulation involving fluids were based

on either grids or particles. Both have their own advantages and disadvantages

and the choice of method depends upon the requirements of the problem. Particle

based approaches are good in the way that visualization in real time is possible but

looks artificial visually. Grid based approaches have proven to be successful creating

models but on the flip side, computation on them is typically very expensive [43].

While Navier-Stokes equations are widely accepted as the right model to use for flow

of fluids [44], it was Foster et al. [22] who first showed that it is possible to use

Navier-Stokes equations for simulation of fluid like motion. This eventually led to

many models being implemented based on that but all the models developed had one

common problem: the simulations developed were unstable meaning that there was

a chance that the simulation would become unstable for larger timesteps. Therefore,

this introduced the limitation that the simulations might have to be run in smaller

timesteps.

Jos Stam came up with a new improved method using the Navier-Stokes equation and

by making it stable meaning that it can run for larger timesteps. This method proved
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to be a much easier alternative in terms of ease of use and understanding. As well,

this model stands out from the other implementations due to the fact that it involves

both grid based and particle based approaches. Another important difference is that

a Lagrangian scheme of reference is used instead of the Eulerian scheme of reference.

A brief explanation of the algorithm and how this is used with respect to spreading

the pheromone in a particular direction is given here. A complete explanation of the

algorithm can be read from [45, 44].

3.3 Navier-Stokes equations

The Navier-Stokes equations [10] give us an idea of how the velocity field with

respect to an object changes over a period of time. When we consider a fluid like

air, it would be computationally expensive to consider every particle separately.

Therefore, the particles are replaced by a smoke density - a continuous function in

space which gives us the amount of particles present at every point. RTFD method

solves the following set of partial differential equations. The first equation describes

the variation of the density of a medium, under the effect of the velocity vector

field. The second equation is a compact vector form of the simplified Navier-Stokes

equations governing the motion of non-compressible viscous or inviscid fluids:

∂ρ

∂t
= −(u.∇)ρ+ k∇2ρ+ s (Eqn 1:Density through velocity field) (3.1)

∂u

∂t
= − (u.∇)u+ ϑ∇2u+ f (Eqn 2:Incompressible Navier - Stokes) (3.2)

where

u=u(x, y, z, t), v(x, y, z, t), w(x, y, z, t): velocity vector field
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ρ = ρ(x, y, z, t): particle density scalar function

ϑ: coefficient of kinematic viscosity

κ: coefficient of diffusion

s=s(x, y, z, t): external density sources

f=f(x, y, z, t), g(x, y, z, t), h(x, y, z, t): external velocity sources

The structure of both equations is very similar. The rightmost term on the right

hand side (RHS) models the external sources. The middle term on the RHS models

diffusion: gradual smoothing of the density map, or the velocity field, in time. The

left term on the RHS models advection: the transport of density along the existing

velocity field, or of the fluid itself (self-advection). A brief overview of the algorithm

is given in the following section.

3.4 Algorithm

The algorithm starts with setting initial values for the velocity and density, and

recalculating their values iteratively based on the changes brought in by external

factors and the movement, if any, of the density source. The updated values are

calculated for every timestep and the current values of density and vector fields

will depend on their previous values calculated during the past iterations. Here,

computations are performed on a uniformly discretized space, forming an NxN grid.

Each iteration involves computing the new velocity and density grids u[i,j] and ρ[i,j]

at time t = t0 + t, from the current values u0[i,j] and ρ0[i,j], at time t = t0. Given the

similarity of the differential equations, both density and velocity calculations involve

similar computation steps per iteration as shown in the figure 3–1.
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Figure 3–1: RTFD method - Algorithm steps: The diagram shows the different steps
involved in the RTFD method and its influence on the density and velocity grids
after each step as given in the algorithm - Initial density and velocity values (ρ0, u0),
Addition of external sources (ρ1, u1), Diffusion (ρ2, u2), and Advection (ρ3, u3).

3.4.1 External source addition step and Diffusion step

In external source addition, as the name implies, an external source grid (f [i,j]

or s[i,j]) is simply added to the current grid (u0[i,j] or ρ0[i,j]) to form the updated

grid (u1[i,j] or ρ1[i,j]).

The diffusion step can be defined as the process of spreading the density into neigh-

boring cells. The diffusion is performed backwards in time (semi-Lagrangian nu-

merical scheme) using Gauss-Seidel relaxation to solve the resulting system of linear

equations.

3.4.1.1 Backtracing

The diffusion step in RTFD solves the terms κ∇2ρ and ϑ∇2u in the equations for

the density and the velocity. The diffusion process of exchanging particle densities,

in the former case, or exchanging fluid densities, in the latter case, between cells,
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can be explained as follows: for every iteration, each cell will lose some part of its

density to its neighbors while at the same time gaining density from the neighbors.

The density at a given point can be given as

ρ[i, j] = ρ0[i, j]−
(
4tκN2

)
(ρ0[i− 1, j] + ρ0[i+ 1, j] + ρ0[i, j − 1] + ρ0[i, j + 1]− 4ρ0[i, j])

(3.3)

Though this method appears fairly straightforward, there is a serious drawback

associated with it - it can become unstable for larger timesteps. Hence a work-

around for this problem would be to use semi-lagrangian method by tracing back

in time. This results in a system of linear equations that can be solved using an

iterative method. The iterative method used here is Gauss-Seidel relaxation and the

way it is used here is given as follows.

3.4.1.2 Gauss-Seidel Relaxation

Gauss-Seidel relaxation is an iterative method for solving a system of linear

equations which is represented as Ax = b such that A is a sparse matrix.
a b c

d e f

g h i



x1

x2

x3

 =


b1

b2

b3

 (3.4)

where the solution for xi can be given as:

x1 =
1

a
(b1 − bx2 − cx3) (3.5)

x2 =
1

e
(b2 − dx1 − fx3) (3.6)
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x3 =
1

i
(b3 − gx1 − hx2) (3.7)

The value of xi is updated every iteration accordingly based on the following

approach:

xnew1 =
1

a

(
b1 − bxold2 − cxold3

)
(3.8)

xnew2 =
1

e

(
b2 − dxnew1 − fxold3

)
(3.9)

xnew3 =
1

i
(b3 − gxnew1 − hxnew2 ) (3.10)

The advantage of using Gauss-Seidel relaxation here is that the values are up-

dated iteratively and the updated values are used for subsequent computations. Here,

the convergence depends on the form of the matrix A and the total number of iter-

ations is fixed.

Returning to backtracing process, the equation can be rewritten as

ρ0[i, j] = ρ[i, j]−
(
4tκN2

)
(ρ[i− 1, j] + ρ[i+ 1, j] + ρ[i, j − 1] + ρ[i, j + 1]− 4ρ[i, j])

(3.11)

This results in a set of linear equations which can be solved by Gauss-Seidel relax-

ation. In order to solve this using Gauss-Seidel relaxation, the equation is written

as

ρ[i, j] =
1

(1 + 4 (4tκN2) (ρ0[i, j] + (4tκN2) (ρ[i− 1, j] + ρ[i+ 1, j] + ρ[i, j − 1] + ρ[i, j + 1])))

(3.12)
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Figure 3–2: A sample vector field and Advection step: (left) A sample vector field:
The path traveled by the density particles will depend on these established vector
fields. (1), (2) and (3) show the order through which the advection step traces back
to the previous timestep, calculates the interpolated values of the neighboring cells,
and updates the current density value.

As discussed above, based on the Gauss-seidel relaxation, the values of ρ[i,j] are

computed for every iteration and used for subsequent calculations. The method

used for diffusion in the velocity is quite similar to what was explained above with

the only difference being that velocity calculation involves the processing of both

velocity vector components, and kinematic coefficient of viscosity ϑ.

3.4.2 Advection

In fluids, advection can be defined as transfer of particle substances under the

influence of the fluid velocity vector field. The advection step in RTFD solves the

terms − (u �∇) ρ and − (u �∇)u in the equations for the density and the velocity.

Here, advection is also performed backwards in time, with linear interpolation as

shown in figure 3–2. The process is explained as follows. The assumption made here

is that density is to be treated as a set of particles. Therefore, with the velocity field
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that we already have in place, we have to channel these density particles through

the already established vector field. The method used here is to identify all the

particles that are on the the centers of the grid cells and obtaining the density values

of these particles based on the interpolated values of the four neighboring cells during

the previous timestep. Consequently, this can be imagined as having two grid cells

with one grid containing the old values and the other grid containing the new values

based on the values obtained in the old grid. One of the advantages of using this

backtracking approach is that it ensures stability, as the values calculated for the

new grid cells can never be greater than the values calculated for the previous grid

cells.

3.4.3 Projection

There is an important addition to be made after this step with respect to the

velocity field. This method makes the velocity mass conserving. The velocity field

should always be mass conserving or divergenceless but after the advection step, it

loses that property and this forces a correction to be made through this additional

step. It is to be noted that this same step is performed once after the diffusion step

as well in order to add stability to this algorithm. The projection step involves the

use of Helmholtz-Hodge decomposition theorem [44] according to which every vector

field can be denoted as a sum of a mass conserving or divergenceless component and a

gradient-field/irrotational component. From this relation, the mass conserving com-

ponent can be obtained by computing the gradient-field and subtracting it from the

non-mass conserving velocity field thus obtaining a mass conserving field. Helmholtz

theorem states that any sufficiently smooth vector field can be expressed as a sum
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of an irrotational (curl-free) and solenoidal (divergence-free, mass-conserving) com-

ponent vector fields and can be expressed as

F = ∇ϕ+∇× A (3.13)

where

F : a smooth vector field

ϕ: a scalar function

A : a vector potential function

After the advection step of RTFD the velocity field u does not respect the mass-

conservation condition of having a zero divergence: ∇ � u = 0. From the above

theorem, it can be written as

u = ∇ϕ+ uMC (3.14)

where

u: non-mass conserving velocity field

uMC : mass conserving velocity field

∇ϕ: gradient field

The required velocity field, uMC , can be obtained by subtracting a gradient field

∇ϕ from u.

To find the required gradient field, the following equation must be solved:

∇ � u = ∇ � (∇ϕ+ uMC) = ∇2ϕ (3.15)
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This is Poisson’s equation ∇2ϕ = f , where f = ∇ � u

The discretized form of the Poisson’s equation using finite difference numerical

method is:

∇2ϕi,j =
1

dx2
(ϕi+1,j + ϕi−1,j + ϕi,j+1 + ϕi,j−1 − 4ϕi,j) = fi,j (3.16)

Written as a system of linear equations, Aϕ̄ = f̄ , it can be solved using the

iterative techniques, such as Gauss-Seidel relaxation, because the coefficient matrix

A is sparse. Once the potential ϕ is found, computing its gradient and subtracting

it from u yields uMC , the mass-conserving velocity field: u−∇ϕ = uMC

Figure 3–3: Helmholtz decomposition (Taken from [45]). (Top) u = mass-conserving
field + gradient field (Bottom) mass-conserving field = u-gradient field

Thus, in sum, the following steps compose the projection procedure in RTFD:
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• Find the divergence of u, after the advection step.

• Solve the Poissons equation by using Gauss-Seidel relaxation technique to find

the gradient potential ϕ.

• Compute the gradient of ϕ.

• Subtract it from u, to obtain a mass-conserving velocity field.

3.5 Integration into RWACA

Now that the mathematics behind wind simulation and the movement of density

particle components have been explained, we turn our attention towards how these

concepts are incorporated into the real world ant colony algorithm. Firstly, the

velocity field is mapped onto the terrain that we have in place for the ants to navigate.

Therefore, here the density particle components will be the pheromones deposited

by the ant agents which will be dissipated over a certain range of space based on the

vector fields and whose values will depend on the interpolated values of its neighbors

during the previous timestep. Thus, we have the artificial agents foraging for food in

an atmosphere affected by wind. The point where the pheromone is dropped will be

the strongest point of attraction for ants. The areas in vicinity may also be points of

attraction (with lesser intensity) and that depends on whether the wind is blowing

over those points. Therefore, in effect, it can be said that the pheromone deposits

follow all the basic laws of fluid motion with respect to transporting the particles or

through a fluid.
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Algorithm 4 Integration into RWACA
1: repeat
2: velocity-step
3: until the velocity values settle
4: for all recruits/recruiters that have not completed the journey do
5: find the next position to travel (feasible neighborhood)
6: if feasible neighborhood found then
7: if the position is within the velocity field then
8: repeat
9: determine the pheromone densities at the given point and the

neighboring points based on the velocity field established using velocity-step
10: until the density values settle
11: else
12: spread the pheromone deposit to neighboring points using gaussian

distribution
13: end if
14: end if
15: end for
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CHAPTER 4
The Effect of Evaporation

4.1 Evaporation

The effect of evaporation on pheromones though not actively a part of real time

experiments, has played a major role in ant colony optimization algorithms. The

reason for this is that, as mentioned before, it acts as a parameter for indirectly en-

forcing negative feedback during the experiment. As regards real-time experiments,

evaporation’s role has been rather subdued due to the lack of clear evidence. Perna

et al. [39] conducted experiments on pheromones and implied that evaporation may

not be a factor to consider when conducting real-time experiments. But a look at

the given experimental setup can give way to some interesting observations. It has

already been mentioned that ants react to the odor from the pheromones in order to

explore and establish a path between the food source and nest. Since the aforemen-

tioned experiments were conducted in an enclosed environment, it would be safe to

assume that they apparently ignored the fact that the rate of evaporation is affected

by various real world properties like pressure, temperature, wind speed, surface area

etc. Also, the fact that ambiance certainly plays a role here can be shown by the

following observation: in an enclosed space, as the water molecules evaporate into

vapor, some escaping molecules collect at the top as vapor and return to the liquid

state through the process of condensation. The rate of this reverse process depends

on how close the enclosed space is and resulting pressure and density created at the
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top. When this forward and reverse process reach a state of balance, which is called

equilibrium, there will not be any more changes to the temperature and density of

the liquid. Therefore, when we consider the same simulation being performed in

an environment with real world properties and also the effect of the ambiance, they

might have an impact on the rate of evaporation and consequently in the establish-

ment of a path between the nest and the food source.

The primary factors affecting the rate of evaporation are the temperature, the wind,

the surface area that is exposed to other real word properties, and humidity. Of

the four, temperature and the direction of the wind are the ones that could largely

influence the rate of evaporation and these are the ones that we will be retaining for

discussion. The reason for not considering all the factors is that the focus is not on

accuracy here but rather to see if evaporation as an entity could play a certain role

in our experiment.

4.2 Temperature and Vapor Pressure

When the temperature of the substance being considered is increased, the inter-

action between the molecules increases as more heat is absorbed. As a result, more

molecules start to evaporate from the liquid surface and this leads to higher rates of

evaporation. Therefore, as the temperature increases, the rate of evaporation also in-

creases. In a real world scenario, the liquid temperature reaches constant value once

the equilibrium state has been reached. This equilibrium state is directly related to

the vapor pressure of the system, which is equal to the pressure experienced by the

closed system due to the vapor. From the definition, it can be seen that the vapor

pressure is directly proportional to the temperature. The relationship between the
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equilibrium state and the vapor pressure is given by Clausius-Clapeyron relation as:

ln

(
P2

P1

)
= −4Hvap

R

(
1

T2
− 1

T1

)
(4.1)

where,

P 1,P 2- vapor pressure at the temperature T 1, T2

4Hvap- Enthalpy of Vaporization

R - Universal gas constant (8.3144621 JK−1mol−1)

We can make use of this relation to find the vapor pressure at the required temper-

ature once we know the vapor pressure at a given temperature.

S. E. Van Vorhis Key et al. [31] proves that (Z)-9-hexadecenal (Z9-16:ALD) is a trial

pheromone component of Iridomyremex humilis, the ant whose traits are closest to

the ones that we have decided to take into consideration for this project. From the

Table 4–1: Properties of (Z)-9-hexadecenal (Z9-16:ALD)

Properties Values

IUPAC Name (Z)-Hexadec-9-enal
Molecular Formula C16H30O
Molecular Weight 238.4088

Index of Refraction 1.451
Surface Tension 30.2 dyne/cm

Density 0.84 g/cm3
Flash Point 161.5 ◦C

Enthalpy of Vaporization 57.36 kJ/mol
Boiling Point 330.9 ◦C at 760 mmHg

Vapour Pressure 0.000161 mmHg at 25◦C
Storage temp -20◦C

table 4–1, it can be seen that its enthalpy of vaporization is 57.36 kJ/mol and the

vapor pressure at 25◦C is 0.000161 mmHg. Therefore, based on the data that we
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have, we can find the vapor pressure at any given temperature which will be an

indicator of the rate of evaporation at the given time.

A simple example of the calculation involved in finding the vapor pressure at a par-

ticular temperature(32◦C) based on the given data is given below:

ln

[
P2

0.000161

]
=
−57.32

8.31

[
1

32
− 1

25

]
⇒ P2 = 0.000173mmHg

4.3 Wind speed and its effect on evaporation

The water molecules that are bound tightly together need some kind of force

in order for them to break up and speed up the conversion from droplets to vapor.

The wind, when acting on the surface of water with the required force, breaks the

water molecules and thus eases the conversion process from the liquid state to the

gaseous/vapor state. Therefore, it can be seen that the rate of evaporation increases

with the increase in wind speed. One important factor that we are ignoring here is

surface area of the pheromone concentration (since the wind acts only on the surface

of the liquid). The total exposed area will be related to the total amount of molecules

affected by the wind acting at a particular direction in a given point of time.

4.4 Updating the Pheromone Weight

Based on the formula presented in [18], we can update the weight of the pheromone

at a given point as

ζ(e) =


(1− ρ).ζ(e) if no new pheromones deposited

(1− ρ).ζ(e) + newPheromone otherwise

(4.2)
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where 0 ≤ ρ ≤ 1 is the rate of evaporation for the given time step, ζ (e) is the

amount of current pheromone deposit, and newPheromone is the value of the new

pheromones deposited. The greater the value of ρ, the greater the rate of evaporation.

For the effect of wind speed, we can use the observed pheromone concentration at a

particular point and the wind direction to set different pheromone values for different

points with the effect being maximum near the wind source and minimum near the

waning point of the pheromone. Therefore, the pheromone evaporation rate can be

updated as:

F (ρ1) =


ρ wc = 0

ρ+ wc wc > 0

(4.3)

where wc is a value directly proportional to the wind current value.

Similarly, for the effect of temperature, since we already know that the vapor pressure

increases with the increase in temperature of the substance which in turn increases

the rate of evaporation, the pheromone evaporation rate can be updated based on

the vapor pressure value as follows:

F (ρ2) =


ρ1 vp = 0

ρ1 + vp vp > 0

(4.4)

where vp is a value associated with the vapor pressure at the given temperature.

Thus, the weight of the pheromone at a given point is updated based on the calculated

evaporation rate ρ2 whose value is affected by the temperature of the substance and

the wind speed.
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CHAPTER 5
Experimental Evaluation

For the experimental evaluation, a simulator was built and all the parameters

were set according to the needs of the respective experimental setups. First, the

simulator along with the different parameters is described. This is followed by the

four different experimental setups. The first experimental setup is a ’proof of concept’

approach done by constructing a double-bridge based on that proposed by Goss et

al. [25] and comparing the results obtained. In the second experimental setup, the

efficiency and the effectiveness of the algorithm is tested by introducing the agents

in an environment with obstacles placed between the food source and nest. The

third experiment can be seen as an extension of the second experiment with wind

introduced to the same landscape. Then, the same setup is tried with evaporation

considered as a pheromone decay parameter and comparisons are made to derive

conclusions. The final setup serves as an epilogue discussing the behavior of agents

in a more hostile environment.

5.1 Simulator

This section explains the workflow of the experiment using the simulator and the

different parameters that are set before the start of the experiment. The simulator

and the solvers were built using jMonkeyEngine 3 (SDK RC2) and Java. Firstly, the

scene needs to be set before starting the simulation based on the values of the param-

eters that are entered. This is done using the simpleInitApp() in jMonkeyEngine

40



which initializes the scene and the variables. This is where the ant objects, the values

entered for the parameters and the listeners (if any) are initialized. First, the ants

are created using a Spatial - an abstract data structure that serves as a base class

- and attaching a RigidBodyControl - a class that can be used to create dynamic

objects and add physical properties to them - to it. We then set the textures and

the initial location of the agent. After creating the ant agent and adding physical

properties to it, we add light to the scene by attaching a directional light. The sky

is created using the SkyFactory - a spatial which can be used to add sky to the

scene. The landscapes were constructed using height-field based TerrainQuad. The

nest and food source are defined by a fixed vector position ranges at opposite ends.

The water filled obstacle is constructed using the SeaMonkey Water Filter. An

AnalogListener is added to introduce recruits while the simulation is running i.e,

while the program is in the update loop. Also, the camera angle can be changed

along all three axes using the sliders at any time during the simulation while the

program is running. A snapshot of the simulator is shown in figure 5–1 and the

parameters used in the simulation are explained below:
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Figure 5–1: Simulator Snapshot: A snapshot of the simulator

• XRange, ZRange - Defines the range that the ant can scan searching for

pheromone deposits along the x-axis and z-axis

• PherIn - Pheromone weight

• WalkDis - The vector distance covered by the ant agent every iteration

• Recruiter - Number of recruiters

• Recruit - Number of recruits

• Diffusion - Diffusion of the density

• Viscosity - Viscosity of the fluid

• Wind source - Density that will be deposited

• Attenuation - Attenuation of the fluid

• Temperature - The temperature of the surface in which the agents thrive (as-

sumed to be constant for the entire duration of the experiment)
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The configuration for the given set of parameters are given as follows: XRange and

ZRange are kept as constant for the entirety of the analyses (Xrange - four vector po-

sitions on either sides, Zrange - one vector position ahead) so that it can be assumed

that all the recruits/recruiters have similar range of areas to scan for pheromones

when they are trying to find pheromone deposits in the vicinity and hence the prob-

ability that an agent manages to find a pheromone deposit will remain undisturbed

because of this. The reason for including pheromone weight as a parameter is that

though it is kept constant here, it might prove helpful in prospective experimental

conditions where we might be looking at ulterior motives. For example, we might

want the recruits to follow a path established by a specific recruiter in which case

the pheromone weight of that particular recruiter alone will be several folds more

than that of the other recruiters. As mentioned before, the number of recruiters and

recruits considered will certainly play a role in the foraging process and here, the

numbers are kept constant throughout all experimental setups to facilitate compari-

son of results. This is explained in detail in section 5.2. Attenuation, viscosity, and

diffusion are the parameters that can be used to change the degree of dissipation

of pheromones and we will be using viscosity and attenuation for our experiments.

More on this is explained in section 5.4. The temperature parameter is solely used

for the calculation of evaporation rate and for our experiments, the temperature is

fixed at 32◦C.

After initialization of the objects and parameters in accordance with the required

setup of the experiment, we enter the update loop named SimpleUpdate() which is

where the RWACA is implemented. The position of the ants and the corresponding
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pheromone weight are entered as key-value pairs in a global hashtable. Therefore, we

use this update loop to move the ant agents every timestep. With reference to our

experiment, the initial number of recruits is always zero since recruits start traveling

only after at least one of the recruiters have returned home. This is where we use the

AnalogListener to release certain number of recruits for every fixed interval of time.

It is to be noted that the pheromone trails of the recruiters are marked by blue dots

and the pheromone trails of the recruits are marked by red dots. The simulation is

stopped by the user manually the moment all the ants (excluding the recruiters that

have already arrived back home and the recruiters/recruits that have gotten lost)

are seen following the reinforced path.

Algorithm 5 Simulator Workflow

1: function SimpleInitApp() . Initialize the scene
2: Set initial location for camera
3: Initialize key binding
4: Create light . Add directional light to the scene
5: Create sky . Add a static horizon as backdrop
6: Create terrain . Add a height-field based terrain system
7: Create food source . create a fixed vector space for food
8: Create nest . create a fixed vector space for nest
9: Create obstacles . Introduce obstacles by reducing the height of terrain and

adding a water processor
10: Create ants . Create ant objects and attach control and physical properties

to them
11: Initialize parameters to the values based on the user input
12: end function
13: function SimpleUpdate() . The update loop
14: Update camera axes
15: Apply evaporation and update the pheromone deposit table
16: RWACA() . Update the pheromone table after every ant moves to the new

vector position
17: end function
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5.2 Experimental setup - I

This experimental setup as shown in figure 5–2 is a replica of the double-bridge

experiment used by Goss et al. [25] to prove that the ant agents manage to find the

best path between the nest and the food source. Here, the ants are allowed to go in

search of food placed at the opposite end of the world compared to the nest through

a landscape that requires the ants to choose one path from two at two different

points. The landscape is made more pronounced by increasing the height-field and

is surrounded by water on all sides. In order to avoid any bias towards a particular

direction, the shorter branches are placed on either sides at the two points. Initially,

the 24 recruiters are allowed to go in search of food. The recruits are not allowed to

move until the first recruiter arrives back home having found a food source. Here,

the probability that an ant will find a food source is one since the position of the

food source is such that it is accessible irrespective of the length of the paths chosen.

Figure 5–2: Experimental Setup - I : Feasibility Test: A replica of the double bridge
experiment created to test the feasibility of our model
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After the first recruiter returns, 5 recruits are allowed to move from the nest every five

seconds until 100 recruits have left the nest. The probability that a recruit chooses

a path increases only gradually with increasing differences between the pheromone

deposit values scanned and therefore the recruits don’t show strong bias towards a

particular path initially. This can be observed from the graph shown in figure 5–3

where the number of ants in the to-be established path gradually increases. After

some time, it was observed that the recruits slowly started showing bias towards a

particular path. According to the observed behavior of Argentine ants in the double-

bridge experiment, this process would lead to the shortest path being established

between nest and food source with the ants gradually preferring the shorter branches

at both points in the landscape. Here, it was observed that of the 15 times the

experiment was conducted, the ant agents chose the shortest path 11 times with a

sub-optimal path being chosen the remaining 4 times. A sub-optimal path here refers

to the established path containing at least one longer branch.
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Figure 5–3: Number of Ants Vs. Timesteps: The total number of ants that are
traveling along the established path at different timesteps (out of 24 recruiters and
100 recruits). It could be seen as proof that ants don’t show an immediate preference
to a particular established path as the pheromone weights of all the established paths
will be similar initially. The reinforcement process happens gradually and it is only
after certain timesteps that we can observe that most of the recruits start following
the same path. This explains the differential length effect [17].

5.3 Experimental setup - II

Now that the feasibility of our approach has been shown, the next step was to

test the approach in a more demanding environment - a landscape filled with more

complex obstacles and evaluating the effects of wind eventually. The goals of this

experiment are two fold: to demonstrate that the behavior of the agents was designed

in such that a way that it was also suitable for maneuvering obstacles of different

forms and not confined to the previous design. Secondly, these obstacles, when seen

as an attribute that obstructs the flow of air currents in the direction of mapped

velocity field, will lead to the air currents moving around the obstacle instead of

passing through them. More on this is explained in the next experimental setup. In

that aspect, this experimental setup could be seen a precursor of the next experiment

setup. Therefore, the landscape should be chosen is such a way that the full potential

of the wind simulation can be realized. It was decided to place obstacles between

the food and nest.
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Figure 5–4: Experimental setup - II: An aerial view of the terrain with obstacles
introduced between the nest (left) and the food source (right).

Here, the obstacles used are introduced by installing trenches at four different places

as shown in figure 5–4 and are placed in such a way as to discourage the agents

from finding a straightforward path from the nest to the food source. When faced

with an obstacle, the ants move around the obstacle in either directions with equal

probability which results in a similar behavior as implemented in [19].
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Figure 5–5: Initial Reinforcement Phase: The pheromone deposits of the recruits
are shown by red dots and the pheromone deposits of the recruiters are shown by
blue dots. This snapshot shows recruits following the pheromone trails established by
the recruiters. During this phase, the recruits will have just started and that’s been
reflected by the fewer number of red dots. The blue dots present all over represent the
different routes taken by the recruiters. Here, it can be seen that initially the recruits
don’t show any preference any of the recruiters’ paths as it only happens gradually.

As regards the foraging process, the procedure is same as the one considered for the

previous experiment - the recruiters and recruits are released in the same fashion

as it was done for the previous experiment. In line with the explanation provided

before, the recruits are introduced once a recruiter returns to the nest. As shown in

the figure 5–5, when a recruit starts to move trying to reinforce a path, it will be

presented with several paths initially. Towards the end of the simulation, it could

be observed that a particular path has been reinforced based on the movement of

recruits and inclination shown towards a particular set of pheromone deposits by

them (figure 5–6). It was seen that the agents were able to find the best path 10 out

of the 15 times the experiment was conducted.
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Figure 5–6: Formation of Best Path: (Red markings - recruit, Blue markings - re-
cruiter) This snapshot shows the best path being gradually chosen between the nest
and food source (shown by a purple arrow). It can be seen that a sub-optimal path
was also established (to the right of optimal path - shown by blue dots along an or-
ange arrow) but was not reinforced though a few recruits chose that path initially.
This can be observed by the presence of a few red markings (pheromone deposit of
recruits) along the sub-optimal path . The fact that all recruiters don’t reach the food
source can be shown here by blue markings to the left of optimal path (shown by a
blue arrow) meaning those certain recruiters did not find the food source.

5.4 Experimental setup - III

The third experimental setup was dedicated to testing the effect of wind in the

same environment that we have defined in the second experimental setup. In terms

of evaluation of the experimental results, this experiment is the most important one

for our research. Before discussing this experimental setup, it is imperative to see

to it that the effects of including wind are clearly explained so as to get the right

perspective. In order to do this, a small custom experiment named the ’stationary ant

experiment’ was conducted to explain the ramifications of considering wind blowing

along different directions and the role played by obstacles.
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Figure 5–7: Effect of Wind - I: The arrows represent the wind acting in a direction
perpendicular to the the established path. The blue arrows represent the air current
before encountering the path and the green arrows represent the wind carrying dis-
sipated pheromone traces with them. The inner ellipse represents a distance that’s
closer to the path between the nest and food source and the outer ellipse represents
a farther distance from the nest-food source path.The ants marked in green,being in
closer distance from the path, have been influenced by the presence of pheromones
whose smell has been carried over to them by the wind blowing through them. This
might not be the case if there was no wind present in which case those ants would
have remained stationary. The ants marked in blue, being in farther distance from
the path, may or may not be influenced and that depends on the degree of dissipation
of pheromones.

5.4.1 Stationary ant experiment

This experiment was mainly designed to analyze the effect that the wind with a

directional bias will have on the path reinforcement process. To begin with, a set of

stationary recruits are placed randomly within a specific range on a landscape where

the velocity field of the wind is already mapped (figure 5–7). Then, a recruiter is

allowed to move within this specified range of landscape leaving pheromone trails

behind with stationary recruits placed on both sides. The recruits that smell the
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pheromone deposits will start moving towards the deposits with greater attraction

shown for stronger pheromone deposits. Therefore, the direction of movement of the

every recruit here will solely depend on the weight of pheromone deposits around

them. Also, for the sake of this experiment, the probability that an ant will get

attracted to a pheromone trace will be one and in case of more than one pheromone

deposit found in the neighborhood, the strongest deposit is chosen. The recruits

that don’t smell pheromone deposits in the nearby area would remain stationary.

The most important observation here would be that the recruits may start advanc-

ing to other neighboring positions even though there might not be direct contact

with pheromone deposits due to the dissipation of pheromones from one point to the

neighboring points based on the direction in which the wind is blowing. In order to

substantiate this claim, the same experimental setup was created using the simulator

as shown in figure 5–8, and 400 stationary recruits were placed in the landscape with

arrangement as explained before.
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Figure 5–8: Effect of Wind - II: This diagram shows the random distribution of
stationary recruits within a specific range. A recruiter will be made to pass through
this range.

First, the experiment was conducted without considering the effect of wind. It was

observed that, as the recruiter started moving, only those recruits that were directly

influenced by the pheromone deposits started moving and blindly following the re-

cruiter as it went ahead forming a path (13 recruits in total). Now, the experiment

was conducted with the effect of the wind included (figure 5–9). For experimental

purposes, wind blowing in two different directions were considered: one that is par-

allel to the direction in which the path is being formed (west here) and the other

in a direction that is perpendicular to the path (south here). It was found that

when the wind was blowing in the westward direction with the recruiter moving in

the south-north direction, the stationary recruits which were placed to the left of

the path being formed were also attracted to the pheromone deposits in addition to

the ones attracted by the direct influence of the pheromone deposits (87 recruits).

In case of the wind blowing in the southward direction with the recruiter moving
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the south-north direction, the number of ants attracted was larger than when there

was no wind considered but less than when the wind was blowing in the westward

direction (36 recruits).

Figure 5–9: Effect of Wind - III: This diagram explains the effect of diffusion of
pheromones. The wind is blowing in the westward direction and is indicated by
red arrows in the figure. It can be seen that the area to the immediate left of the
pheromone trail shown by blue dots does not have any recruits. This can be explained
by the presence of pheromone deposits which in addition to directly influencing the
stationary recruits along the path also attract the neighboring recruits present on the
left of the pheromone trail (since the wind is blowing in the westward direction here).
It is to be noted here that if not for the presence of wind, only those recruits which
are directly influenced by pheromones will have started moving and the neighboring
recruits would have remained stationary.
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This could be explained by the diffusion of pheromones which appears to be greater

when the wind is blowing in the direction perpendicular to the establishment of path.

This could be seen as the most important reason we are interested in analyzing the

effect of wind with directional bias in the path convergence process.

Now that we have shown that it is worth our while to place emphasis on wind in

the path formation and reinforcement process, there’s another aspect that, in some

ways, could influence the path convergence indirectly - Obstacles. While it can be

gathered easily that obstacles directly affect the path establishment process, the role

played by obstacles in the path reinforcement process is not quite as obvious in the

sense that in addition to hindering the movement of ants, it alters the velocity field

when it is being mapped on to the landscape. As shown in the figure 5–10, it can be

seen that in the presence of a physical obstacle, wind currents will be forced to move

around it. Therefore, it would be interesting to observe the role played by obstacles

in deflecting the diffused pheromone deposits. The given setup was replicated using

the simulator with the same number of stationary recruits placed and an obstacle

added in the same fashion as previously done (shown in figure 5–11). For the purpose

of simplicity, the same obstacle model used in the previous experiment are used here

and it is assumed that the wind doesn’t pass through them. Therefore, this trench

can be imagined as an obstacle that blocks the flow of air within its perimeter. A

recruiter was allowed to move through the given range in the south-north direction

with the wind acting in the westward direction. It was found that the observation

was in agreement with our hypothesis. It can be seen from the figure 5–12 (and

comparing it with the figure 5–11) that the stationary recruits placed on the flank
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Figure 5–10: Effect of Presence of Obstacle - I: This explains the effect that an
obstacle might have in a recruit getting attracted towards the path established by the
recruiter. The recruits marked in green are influenced by pheromones whereas the
recruits marked in blue may or may not be influenced by pheromones. It can be
seen here that the recruits behind the obstacles will not sense any pheromone trace
whereas the pheromone traces reach the recruits on the flanks. If not for the presence
of obstacles, the recruits marked in blue in the inner circle would have got attracted
and started moving towards the path.

of the obstacle have reacted to the pheromones deposited while the recruits placed

behind the obstacle have not reacted since the air currents containing the dissipated

pheromones have been blocked from reaching the recruits by the obstacles. This can

be seen as clear evidence for obstacles playing a role in our experiments through the

landscape and the motion of deflected air currents. Now that we have shown the

effect of wind and obstacles, we move ahead to the planned experiment of analyzing

the effect of wind with the second experimental setup. Here, the same landscape

and obstacles as described in the previous setup were used. The nest and the food

source are placed in the south-north direction. Before the start of the experiment,

the velocity field is mapped onto the entire landscape. The velocity field could be
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Figure 5–11: Effect of Presence of Obstacle - II: A setup similar to the previous one
with an obstacle placed in the middle.

mapped as flowing in any one of the four directions. Now, when the agent moves

through the velocity field mapped landscape and deposits pheromones after moving

to a new position in space, the pheromone is spread in the direction of the velocity

mapping. The rate of spreading depends on attenuation, density source, viscosity

of the fluid and diffusion of density. Therefore, when an agent is in the vicinity

of another agent’s pheromone deposit, it might start moving towards that vector

position depending on the attractiveness of that position, i.e. the pheromone weight

of that particular position. This means that when a recruit starts the foraging process

and finds a heavily formed pheromone path, it blindly starts following the path. In

effect, the number of positions marked by pheromones will be larger in case of wind

acting on the surface and what kind of direction based relation will that hold to

the path establishment and reinforcement process is what this experiment will throw

light on.
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Figure 5–12: Effect of Presence of Obstacle - III: When compared with the snapshot
showing the setup, it can be seen here that the recruits which were placed along the
flanks of the obstacle have reacted to the pheromone trail (denoted by blue dots) and
started following the path while the recruits placed behind the obstacle have remained
stationary.

5.5 Results

5.5.1 Effect of Pheromone Dissipation

The results obtained here were compared with the results obtained from the

previous experiment to see if the addition of wind simulation has any impact on the

foraging process. In total, five experimental results are compared - windless, north-

ward, southward, eastern and western wind. The previous experiment conducted

without wind was set as base. In the first case, the experiments were conducted with

little dissipation of pheromones (attenuation=0.15, viscosity=0.006) and in the sec-

ond case, the pheromones were allowed to dissipate by altering kinematic coefficient

of viscosity and attenuation of the fluid (attenuation=0.02, viscosity=0.015). It was

seen from the graph (figure 5–13) that the number of timesteps taken for conver-

gence with little dissipation was comparatively higher than the timesteps taken for
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Figure 5–13: Response to Pheromone Dissipation - I: The graph shows results ob-
tained from two different cases (averaged values obtained from each experiment con-
ducted 5 times, with errors bars containing positive and negative error values): In
the first case (Brown column), the experiments were conducted with little dissipation
of pheromones (attenuation=0.15, viscosity=0.006) and in the second case (Blue col-
umn), the pheromones were dissipated to a certain range (attenuation=0.02, viscos-
ity=0.015). The simulation conducted without wind is kept as base here (extreme left
values of brown and blue columns). It could be seen here that when the pheromones
are dissipated, the timesteps obtained for eastward and westward directions are the
smallest.

simulations held with dissipation. Another observation that could be made here was

that, when the pheromone values were dissipated, the number of timesteps taken

for northward and southward wind was larger than that for eastward and westward

wind directions. This phenomenon can be explained by the direction of the nest and

food source being the same as the direction in which the wind is blowing. Because

of this, the dissipation of pheromones will either be in forward or backward direction

without much diffusing towards the sides. Therefore, the knowledge transfer range

is effectively reduced due to this. In case of the wind blowing in the perpendicular

direction, eastward or westward in this case, it can be seen that the total number
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Figure 5–14: Response to Pheromone Dissipation - II: This graph (averaged values
obtained from each experiment conducted 5 times, with errors bars containing positive
and negative error values) compares the results obtained with further dissipation of
pheromones (attenuation=0.01, viscosity=0.025) represented by green bars as against
the previous results shown in 5–13. When the pheromones are dissipated further, it
loses its ability to act as a catalyst in the foraging process. This can be inferred from
the observation that the timesteps relating to the green bars are more aligned with
the timesteps recorded for little dissipation (brown columns).

of timesteps taken is lower than all others. This goes on to say that ants on either

side of the path being established have had greater attraction towards that path and

hence are involved in the reinforcement process to a greater extent than all other

cases. This can be seen as a clear proof that wind has had an impact on the envi-

ronment that we have defined.

In order to see if the same observation can be made when the pheromone deposits are

allowed to spread further, the same experiments were repeated with the pheromone

deposits spread to wider areas. As shown in figure 5–14, it was observed that some-

what surprisingly, the number of timesteps recorded was much closer to the values
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obtained when there was no dissipation at all. The reasoning behind this observa-

tion is, here the agents detected more pheromone deposits diffused over too wide a

range and hence the gradual reinforcement process took more time than it should

have taken. To see if this observation holds, the same set of experiments were

conducted with the pheromone deposits dissipated further more (attenuation=0.01,

viscosity=0.035) and as shown in figure 5–15, it was found to corroborate the previ-

ous observation’s results meaning the further dissipation of pheromone did not have

an impact on the path formation process.

Figure 5–15: Response to Pheromone Dissipation - III: In comparison to the other
timestep values (averaged values obtained from each experiment conducted 5 times,
with errors bars containing positive and negative error values), it can be seen here that
the results obtained with the pheromones dissipated even further (attenuation=0.01,
viscosity=0.035) cling on to the similar range of timesteps (shown by violet columns)
that were obtained for the previous two pheromone dissipation setups.
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5.5.2 Evaporation for pheromone decay

Experimental setup - III with dissipation (attenuation=0.02, viscosity=0.015)

was conducted with and without evaporation and it was observed that evaporation

did not have any considerable impact on the path that was being established.

Figure 5–16: Effect of Evaporation - I : Experimental setup - III (with dissipation)
tried with (violet line with markers) and without (green line with markers) evapora-
tion. It could be seen here that applying evaporation has not had any effect here.

To see if evaporation could play any part when wind was taken into consideration

with lesser dissipation values, experimental setup - III with lesser dissipation (at-

tenuation=0.15, viscosity=0.006) was tried with and without evaporation. It was

found that the calculated value of evaporation seemed too small to cause any kind

of impact with its only use being erasing off the paths that were established by the

recruiters but not traversed and strengthened by the recruits.

62



Figure 5–17: Effect of Evaporation - II : Experimental setup - III (with lesser dissi-
pation) tried with (violet line with markers) and without (green line with markers)
evaporation. From the data obtained, it could be seen that evaporation did not have
any impact here as well.

5.6 Multiple Obstacles

One obvious thought for furthering the previous experiment would be to use

multiple obstacles and see if the previously observed behavior holds when the number

of obstacles are increased. Therefore, the landscape containing multiple obstacles

(figure 5–18) was chosen for the agents to thrive. In the same way as it was done for

the previous experiments, initially, the recruiters were allowed to establish a path

followed by the recruits trying to strengthen a path.
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Figure 5–18: Multiple Obstacles: A snapshot of landscape with randomly placed ob-
stacles.

Contrary to expectation, it was found that, the path reinforcement process in itself

was not guaranteed to occur all the time. In one case, the agents were either still

found to be navigating along more than one established path and in another, almost

all of the agents had got lost - this suggests that though the reinforcement process

started, it did not end as the ants lost the path they were trying to reinforce. In total,

of the 6 times the experiment was conducted, there were two times where a clear path

selection was not made even after 15000 timesteps, all the recruits got lost twice and

a path was reinforced two times. But even during the two times path reinforcement

was observed, the reinforced path was not the same and the strengthened paths were

on either sides of a few obstacles though the time taken for path reinforcement were

similar (9953 and 10037 timesteps).
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Figure 5–19: Absence of Path Reinforcement: It can be seen from this snapshot that
there is no clear formation of path formed towards the food source. Though it can be
seen that multiple recruiters and recruits have managed to find the food source here,
no single path was strengthened thus proving the absence of path reinforcement.

It was observed that due to the presence of multiple obstacles, the probability for

formation of a clear-cut best path was greatly reduced. As well, due to the same

reason, the possibility of finding the food source and reinforcing the path became

less obvious. Therefore, the reason behind the failure to observe results similar to

the ones achieved using a simple obstacle model could be that this experiment, in

more ways than one, could be viewed as an ’N-bridge experiment’. As a result, not

only many more paths between the nest and food source were established but also

some paths formed were very similar in distance. In order to check further for the

existence of any patterns, as was done before, the same setup was tried with wind

blowing in different directions and increasing the degree of dissipation by lowering

the attenuation (Att) and increasing the viscosity (Vis) values. The results obtained

are given in table 5–1. Though the results looked randomized initially, a closer look
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Table 5–1: Results with Multiple Obstacles

Direction Att=0.15, Vis=0.006 Att=0.05, Vis=0.010 Att=0.02, Vis=0.015

North Left Right Two paths
East Right Two paths Two paths
West Right Two paths Two paths
South Left Right Two paths

Here, ’Left’ and ’Right’ represent the paths formed along the respective sides of a few
obstacles, and ’Two paths’ represent both right and left paths (with similar distances)
being traversed even after 15000 timesteps.

gives us some insight into how things have taken shape. The first generic observation

to be made here is that without wind the agents had got lost 2/6 times whereas in

case of wind, they had not got lost even once out of twelve attempts. With this, it can

be said here there’s some role played by the wind through dissipation which partly

helps in convergence. The next observation to be made is in the outcome where a

single path reinforcement was not observed even after 15000 timesteps. The results

obtained clearly demonstrate that the attenuation and viscosity values altered have

played some role in keeping more than one path being favored. This has happened

in spite of the number of obstacles acting as a limiting agent obstructing the flow of

air currents. The extent to which the obstacles play a limiting role depends on the

different factors like the number of obstacles, size of obstacles, and angle in which the

obstacles have been placed. Therefore, we can conclude that while it is certain that

wind plays a positive role in spite of the presence of multiple obstacles, the extent

to which these obstacles play a role is something that requires further research. In

comparison to the results obtained from the previous experiment, another interesting

observation here is that higher dissipation rates which created a somewhat negative
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impact by increasing the time taken for path reinforcement have played a positive

role here in helping the ant agents to find the established paths and stay within the

foraging range.
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CHAPTER 6
Conclusion and Future Work

6.1 Conclusion

The conclusions that can be derived from the simple obstacle setup are as follows:

Firstly, wind as a parameter does have an impact on the foraging process with

the time taken for path formation considerably lower when compared to a windless

simulation. This observation becomes pronounced when the direction considered was

perpendicular to one in which ant agents were moving. Secondly, the parameter loses

its trait when pheromone deposits are dissipated to wider areas. Thirdly, another

important conclusion that can be derived is that, as against initial observations, the

number of pheromone deposited is not always proportional to the time taken for the

path establishment process.

In sum, we can say that wind can be included as a parameter in ant colony algorithm

to speed up the path establishment and reinforcement process without disturbing the

convergence rate i.e., not being at the cost of optimal solution. It could also be said

that dissipation has a gradient effect as it spreads away from the source causing the

ant to walk ’up hill’ towards the source further helping convergence. Subsequently,

if multiple paths lead towards the source, wind and dissipation (if in the correct

direction) averages the multiple paths into a single path.

With respect to the a more complex setup with multiple obstacles introduced, even

though the obstacles have had a largely negative impact by obstructing the flow of
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air currents and subsequently, muting the role of wind to an extent, the effect of

wind could still be seen whereby it has prevented the ant agents from losing track

of the foraging range and for greater dissipation values, it has started favoring the

convergence of paths with similar distances.

The last conclusion is regarding the role played by the dissipation: When seen in the

context of simple obstacle setup, it has played a negative role in increasing the time

taken for path reinforcement process whereas in case of a complex obstacle setup,

where the path reinforcement formation in itself was not found to happen all the

time, it has played a positive role in helping the ant agents find pheromone deposits.

As regards evaporation, though we have not obtained the results that we expected,

this can be seen as starting point and further research can certainly be focused on

this area since we limited ourselves to select parameters for calculation of evaporation

here.

6.2 Shortcomings

The main limitation here is that the solver that we have considered for wind

simulation by Jos Stam is not efficient in the sense that it was not designed keeping

accuracy in mind. As well, it was meant to be a prototype model only. Therefore,

future efforts could focus on improving the solver efficiency or even try a new solver

that is more efficient. The second limitation is that the platform created here is

a sequential model and therefore there’s a lot of scope here for improvement with

respect to achieving faster running time and concurrency.
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6.3 Future Work

There are different possibilities for work to be done based on the platform laid.

It depends on the direction that one proposes to take and what is being aimed. The

ones discussed here are aimed towards creating an entirely functional ant colony

mechanism thriving in a dynamic environment.

From a conceptual point of view, what we have presented is a basic simulation with

default conditions. An effort could be made to make the simulation more usable in

the sense that traits that are unique to a certain species of ants could be incorporated

as separate modules. Therefore, by having set a base, the simulator can serve as a

tool for scientists to analyze the behavior of different ant species. From a model point

of view, there are many options available to consider and is reliant on the computa-

tional needs of building a colony model. Since the goal of the Prometheus project is

to realize a fully functional ant colony with multiple agents using the global infor-

mation available to them, it would be worthwhile to consider some of the options.

Based on the work done here, the future work could be focused on the following

areas:

U-turns: Beckers et al. [4] proved that in Lasius niger colonies the U-turn behav-

ior of the ant species leads to almost always choosing the shorter path and play a

larger role than plain bi-directional trail laying behavior. This U-turn behavior can

be described as the tendency of the ants to turn back midway on the chosen path

and then proceeding to take an alternative path. If such U-turns are made on longer

paths and shorter paths are chosen as an alternative path subsequently, then this

could be seen as factor hastening the selection of the best path. Therefore, this can
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be added as a separate module to the algorithm that we have and further tests can

be done to verify the claims. If proven, this can be seen as a parameter which can

be used to force faster convergence with optimal solution.

Multiple colonies: The experimental setup that we have considered and modeled

corresponds to a single colony of ants going in search of food and returning to the

colony once a food source is found. An extension of this approach would be to con-

sider multiple colonies living in the same neighborhood and each one working on its

own task. This would give rise to complex situations where inter colony communica-

tion might have to be handled using colony specific olfactory cues. Similar strategies

have been tried in optimization based applications where colonies could be working

on the same objective [42] or different objectives [30].

Other pheromone based behaviors: Ants use pheromones not only for food for-

aging but also for other activities relating to sustenance in a colony that includes

construction of nests, alarming fellow workers of intruders, conveying vital informa-

tion like the quality of food source found, and cemetery construction. The approach

required here is very similar to the mechanism that we have established here and

could be seen as a direct extension of this research.

Ant movement: As mentioned before, here the ants are assumed to be always

forward looking and therefore in a way, is restricted with respect to its olfactory

boundaries. It would be interesting to observe what kind of impact will adding ad-

ditional non-forward looking directional capabilities [37] will have on the foraging

experiment.
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Obstacle navigation: The technique included here for navigation through obsta-

cles is based on a simple implementation of bug’s algorithm where when an ant

encounters an obstacle, it moves around the obstacle until it has a clear space to

move ahead. The drawback here is that this approach may be highly inefficient for

complex shaped or bounded obstacles. An extensive survey of different bug based

algorithms is provided in [35] and it remains a priority to improve the obstacle nav-

igation technique as it could play a lead role in achieving efficient solutions in a

dynamic environment. Also, as mentioned before, the position, size and angle in

which the obstacles are placed with respect to the foraging path need to be ana-

lyzed.

Evaporation / Rate of pheromone decay: As discussed, the experimental re-

sults show that the evaporation rate is too low to have an effect on the path formation

process. Here, attention must be paid to the fact that we considered only the select

parameters for evaporation and further research needs to done in this field to have a

more convincing say on this effect.

Optimal Solution and parameter dependencies: It could be noted that the

algorithm’s convergence rate, though a healthy one, could be increased in order to

make it comparable to other well known Ant colony algorithms that we had dis-

cussed. The main culprit here was premature convergence with the agents finding

and settling with suboptimal paths when a better solution could have been estab-

lished and reinforced. It has been proven that the parameters play a major role in

achieving an optimal path and avoiding stagnation problem [23].
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Parallel Computation: One of the major obstacles faced while conducting sim-

ulations was the inability to perform the simulation on a larger scale due to the

restriction imposed by the sequential implementation. This can be seen as the

most important task for this research with respect to further enhancing its capa-

bilities. Moreover, parallel and distributed ant colony algorithms is a burgeoning

field [40, 32, 9] with exciting prospects and this is one of the immediate areas that

we would like to focus on.
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ant colony optimization for the traveling salesman problem. In Ant Colony
Optimization and Swarm Intelligence, pages 224–234. Springer, 2006.



77

[33] Vittorio Maniezzo and Alberto Colorni. The ant system applied to the quadratic
assignment problem. Knowledge and Data Engineering, IEEE Transactions on,
11(5):769–778, 1999.

[34] Leslie Marsh and Christian Onof. Stigmergic epistemology, stigmergic cognition.
Cognitive Systems Research, 9(1):136–149, 2008.
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