Be a Computer Scientist for a Week

The McGill “Game Programming Guru” Summer Camp

Alexandre Denault
School of Computer Science
McGill University
Montreal, QC, Canada
adenau@cs.mcgill.ca

ABSTRACT

Motivating high school students to consider Computer Sci-
ence as their future field of study at the university level is
a challenging endeavor. This paper describes the McGill
Computer Science Summer Camp targeted at high school
students from grade 10 to 11 (ages 15 to 17). We first
motivate our choice of using computer games as the main
camp theme, and then present the teaching methodology
used throughout the camp. A day-by-day breakdown of the
camp is provided, as to better illustrate the distribution of
the material throughout the week and the evaluation meth-
ods used to track the progress of the students. We also
present the game environment we developed in which the
students exercise their problem solving skills during the lab
sessions. We conclude by illustrating the positive effect of
the camp, using a combination of code analysis and evalua-
tion questionnaire filled out by the students and their par-
ents.

1. INTRODUCTION

In general, high school students do not get exposed to the
broad variety of specialized research areas that Computer
Science offers and that are available to students after they
complete the first two years of undergraduate classes. Of-
ten, Computer Science is mistaken to be focused solely on
programming, which puts our field into a completely wrong
light. As aresult, Computer Science programs at the univer-
sity level are often overlooked, or confused with other more
programming-oriented degrees. It also happens that high
school students who have not on their own developed an in-
terest in computers do not choose the appropriate optional
courses that allow them later on to pursue a major degree
in Computer Science or Software Engineering.

With the idea of changing that situation and attracting
bright students towards science and Computer Science in
particular, the School of Computer Science at McGill Uni-
versity began to organize starting Summer 2005 a Com-
puter Science Summer Camp targeted at high school stu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

30th International Conference on Software Engineering 2008, Leipzig,
Germany

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Jorg Kienzle
School of Computer Science
McGill University
Montreal, QC, Canada
joerg@cs.mcgill.ca

Joseph Vybihal
School of Computer Science
McGill University
_ Montreal, QC, Canada
jvybihal@cs.mcgill.ca

dents from grade 10 to 11 (ages 15 to 17). In the camp, the
students take on the role of the computer scientist and are
presented with several problem solving challenges. Along
the way, they are introduced to various Computer Science
fields, such as algorithms, graphics, physics, simulation and
artificial intelligence.

Currently, the School of Computer Science offers summer
camps with two themes: robotics and game programming.

This paper describes the “Game Programming Guru” sum-
mer camp, and our experiences running the camp in summer
2006 and 2007. Section 2 presents our motivation and back-
ground information on computer games and how they re-
late to Computer Science and teaching. Section 4 presents
our Spaceracer game that the students used for their ex-
periments throughout the camp. Section 5 quickly presents
the student registration process. Section 3 introduces the
teaching methodology used during the camp while Section 6
focuses on the distribution of the material throughout the
week. Section 4.3 describes the development framework used
by the students and the simple API provided by the game.
Finally, Section 7 evaluates the success of our camp based
on a detailed analysis of the code of each team and on a
student feedback form.

2. COMPUTER GAME BACKGROUND

Many young people are fascinated by computer games,
often motivating them to explore game architectures. This
often translates into a desire to develop their own games. It
is only natural to exploit this enthusiasm, to motivate them
and increase their interest in Computer Science.

2.1 Games and Computer Science

An important goal of video games is to entertain. Mod-
ern video games often achieve this through the process of
immersion.

Creating a successful modern video game requires in-depth
knowledge of many areas in Computer Science, especially
if the goal is to create an immersive virtual environment,
where players forget their current environment and become
completely focused on the game. Computer Graphics are
an essential component of any video game, given its role
in communicating the game to the player. However, the
fields of physics, numerical approximation and simulation
play an equally important role, as they are used to describe
the behavior of objects in a virtual world. In addition, the
proper implementation of challenging computer-controlled
opponents can only be done with a proper understanding
of artificial intelligence. Furthermore, it is also necessary to

consider the importance of multiplayer games, where various
fields, such as distributed systems, concurrency, networking
and fault tolerance, are critical.

Games not only push all these areas of Computer Science
to the extreme, but also bring together artists and techni-
cally skilled people, allowing everyone to express their cre-
ativity.

2.2 Games and Teaching

The concepts of organizing a summer camp to promote
Computer Science is not new [8, 5]. This is not surprising,
given that the positive effects of such camps on kids has been
proven [9]. University of Alberta’s Summer Camp is partic-
ularly interesting, since it shares our strategy of teaching
Computer Science using game development. Their camp fo-
cuses greatly on content generation using visual tools, such
as Neverwinter Nights [1], and allow their participants to
create virtual worlds. This is very different from our camp,
where the focus is placed on problem solving using textual
programming languages.

Vrjie University recently finished developing VU-Life 2 [2],
a game designed to promote Computer Science and their
university based on the Half-life 2 SDK. The game allows
students to visit the faculty of Computer Science at the uni-
versity. After playing the game, students are encouraged to
create their own variation of the game by using the Half-life
game development tools.

Some Universities also use games within their Computer
Science courses. Rudy Rucker, of San José State University,
teaches software engineering using games as context for im-
plementation [6]. Joe Warren, of Rice University, teaches a
class where students are required to work as a team to com-
plete a large-scale game project [7]. These classes, however,
use up an entire semester, and are designed for undergradu-
ate students that have already taken beginner programming
classes.

3. TEACHING METHODOLOGY

The Summer Camp is a one week event. The last day
of the week focuses on the final competition. Each other
day is assigned a topic, and starts with a keynote presenta-
tion introducing that topic. This presentation is given by a
industry invited speaker, who demonstrates a real-life appli-
cation of the day’s topic. Given the game oriented theme of
the camp, most of the speakers were provided by the various
game companies located in Montreal.

The keynote is then followed by a 90 minutes in-class lec-
ture (with a 5 minutes break) presented by a university pro-
fessor or lecturer. These lectures elaborate on the day’s
topic, focussing on the knowledge that the students require
for the afternoon’s lab session and the A.I. competition.

To successfuly create an A.l. to pilot a ship in Spacer-
acer, students need to learn how to program in Java, how to
design a decision tree and devise an optimal solution to nav-
iguate a spaceship through a field full of asteroids. To give
a broader overview of Computer Science, the students are
also introduced to 3D computer graphics, automated con-
tent generation and simulation. Given the large quantity
of material that must be taught, we opted for a traditional
type of lecture. In our experience, interactive lectures given
in the computer labs have a tendency to be slower.

The afternoons are used as lab sessions, in which the
students are split into “research” groups of 2 or 3 people,

and focus on solving a series of progressively difficult game-
programming-related exercises in the context of our Spac-
eracer environment. Once they succesfully complete their
exercises, students are encouraged to work on their compe-
tition A.I.

3.1 Langage Subset

Given that the camp only lasts one week, it is unrealistic
to try and teach the students object-oriented programming
in only a few days. Thus, the game programming framework
is designed so that students are only required to understand
a small subset of features found in a typical programming
language.

e Variables and how to use them,

etc),

Calling functions and using their return values,

e Boolean logic (true, false, and, or),

IF statements,
e Iteration and looping.

It was greatly debated if we should ask students to write
new functions. However, in the end, it was decided that
there was little benefits in teaching them how to write meth-
ods and time would be better spent focussing on the above
points.

4. SPACERACER

In order to run a successful summer camp, we needed
to develop a computer game that the high school students
would want to play during the whole week. We wanted a
game with a competitive aspect, as to keep the high school
students motivated. However, we decided early that the
game should be as non violent as possible, thus eliminating
any game design that would involve players directly or in-
directly attacking each other.

Thus, we created Spaceracer, a game where players must
navigate a space ship along a horizontal race track as fast as
possible, while avoiding deadly asteroids and comets. Stu-
dents must write a simple piloting artificial intelligence that
will safely naviguate the spaceship through the race, avoid-
ing all obstacle. Note that artificial intelligence should be
taken at its simplest sense. By no means are the students
building a learning algorithm.

Working on such a game exposes the students to various
Computer Science areas, such as graphics, artificial intelli-
gence, physics and simulation. It was therefore possible to
design all of the lab sessions around the Spaceracer central
theme. One advantage of using a racing game is that a race
only lasts a few minutes. That way, the students don’t loose
too much time for testing. In addition, the game rules and
physical laws can be designed as to remain fairly simple.
That way, the students do not have any conceptual prob-
lems understanding the game / physics, and hence are able
to concentrate on the essence of the problem at hand and
on the implementation challenge.

Standard types (integers, floating-point numbers, booleans,

boolean shielded isAsteroidAhead()

moveDown() 1

biggestClearSpot()

Spaceship Radar . g
float xPos, yPos inRange
float speed getNumberOfObstaclesinLongRange() .* Lfloat xPos, yPos

int shieldLevel currentRank()

float width 1 distanceToShipBehindYou()
float height 1 | getFirstApproachingAsteroid()

accelerate() getAsteroids() myRadar

decelerate() asteroidlsBelow()

moveUp() asteroidlsAbove() 1

amivateshields nearestClearSpot() 1 [.SpaceshipControl
1 -
myShip moveShip()

Figure 1: Object-Oriented API for Spaceracer

4.1 The Race

In Spaceracer, the race track is a horizontal area of variable
length. The top and the bottom of the track are guarded by
walls. The spaceship’s initial position is on the start line,
completely on the left of the track. We used a simple carte-
sian coordinate system to encode the position of objects.
The origin is placed in the center of the start line.

After a short countdown, the race begins. The pilot of a
ship can accelerate or deccelerate, move up or down. The
ship cannot, however, move backwards. Moving up and
down slightly slows down the forward movement. In ad-
dition, each ship has a shield that, when activated, pro-
tects the ship from any damage for five seconds. However,
once the shield deactivates, it can not be re-used until it is
fully recharged by the shield generator, which takes approx-
imately 30 seconds.

4.2 The Goal

In order to keep the students motivated throughout the
week, we announced a competition to be held on the last
day of the camp. The ultimate goal for the students is
therefore not only build a piloting A.I. that can success-
fully naviguate the race, but their A.I. must do so faster,
and hopeful smarter, than the A.I. of the other students. At
the end of the camp, these A.L. compete on tracks of varying
difficulty. The team with the A.I. obtaining the best overall
score wins.

4.3 Implementation of the Spaceracer Platform

We decided to implement Spaceracer in Java [3] for multi-
ple reasons. First and most importantly, we wanted a simple
langage were students would not have to deal with com-
plex issues such as memory management and pointers. In
addition, when errors do occur, either at runtime or com-
pile time, Java’s error message is quite explicit, facilitating
debugging activities. Secondly, we wanted to give the stu-
dents an introduction to a state-of-the-art object-oriented
programming language. A third avantage is that Java is
multi-platform, thus making it easier for the students to
bring the game home should we decide to distribute it.

4.4 Object-Oriented API

We wanted to keep the API as simple as possible. To
this aim, we modularized all the state and behavior that the
students needed to access and modify the game state in 6
classes, namely Asteroid, Comet, ShieldRecharge, Space-
ship, Radar and SpaceshipControl (see Figure 1).

The API itself is designed to be easy for the students to
learn. This was achieved throught the use of good software
engineering practices, such as encapsulating each component

of the game in its own object. For example, ships can de-
tect the presence of asteroids using its radar. Thus, the
functionalities of the radar are encapsulated in the simple-
to-use Radar object. In our experience, high-school students
have no problem understanding the concepts of objects and
thus can learn to use the API for Spaceracer during the first
day. Most of the methods provided to the students have no
side-effects and do not modify the state of the game. This
makes the experience much more enjoyable for the students
as they can try out different method calls with little risk of
“breaking” the game.

S. THE STUDENTS

At the beginning of the Fall session (September), the School
of Computer Science of McGill University sends out invita-
tion letters to all high schools in the Montreal area. We ask
them to identify several students that are strong in Math,
Science, and other computer-related skills. Given the large
amount of material covered and the short length of the camp,
we believe that a student with a weak Math and Science
background will encounter difficulties during the camp. In
addition, students should be creative and able to work well
with others.

On average, we received 30 application each year, all of
which were accepted to participate in the camp. The stu-
dents that participated have little or no programming ex-
perience. They do, however, have some experience will the
concepts of variables and boolean logic. Thus most student
can easily learn the basics of programming in one day. In
addition, the students quickly understand that finding an
approach to solving a problem and coming up with an algo-
rithm is a lot harder than programming itself.

6. COURSE MATERIAL
6.1 Day 1: Game Programming

Most of the camp’s students have little or no programming
experience. The first day is dedicated to teaching them the
programming langage subset they will need during the week.

The day starts with a keynote that introduces the chal-
lenges in game development. Students learn about the dif-
ferent kind of people needed to create a game and the dif-
ferent challenges they face. The keynote is followed by a
lecture that introduces the students to computers, program-
ming languages and compilers. The lecture focuses mostly
on the subset presented in section 3.1. The examples used
during the lecture are all inspired by the Spaceracer theme.
This is of great help to the students because they are ex-
posed to the context they will be using.

6.1.1 Exercises

The exercises for the first day mainly center on teaching
the students to move the ship. The first exercise requires
them to write a simple key handler that captures key presses
on the keyboard, and, depending on the key pressed, calls
the appropriate method to move the spaceship. The code for
capturing key input is already provided. Successfully com-
pleting this exercise indicates an understanding of method
calls and if statements.

The second exercise requires students to write their first
A1 pilot for their ship. There are no obstacle in this race,
so the code is very trivial. However, sucessfull completion of

Figure 2: Asteroids in V configuration

this race demonstrates an understanding of the game’s main
loop.

The third exercise requires them to avoid their first aster-
oid. This asteroid is placed directly in front of the ship and
can only be avoided by moving the ship either up or down
to avoid it. Students must thus learn to use the radar to
detect the presences of asteroids and move on the Y axis.

The remaining exercises of the day all feature races with
asteroids placed in different configuration. These configura-
tion are all designed to test students in particular situations.
For example, the race shown in Figure 2 is impossible to
complete if asteroids are always avoided by moving up.

6.2 Day 2: Computer Graphics

The theme of the second day is computer graphics. The
keynote introduces the use of computer graphics in various
domains, including the movie industry, medical imagery and
video games. The lecture presented after the keynote focuses
more on the basics concepts of 3D modeling, i.e., polygons,
surfaces, textures, lighting, cameras. To better explain this,
the students are introduced to a simple open-source 3D mod-
eling software called Wings3D [4]. In order to improve the
students’ understanding of the modeling process, we handed
out play-doh to each student, asking them to form a sphere
or cube, and then try to model a spaceship by deforming the
initial body.

In the afternoon lab sessions, the students get some hands-
on experience with Wings3D. The first exercises focus mostly
on deforming primitive shapes to create complexe ones. Once
students feel comfortable with the application, they can
start the special project of the day, which is to model their
own spaceship. The ship they model can then be used in the
final Spaceracer competition to represent their team. This
increases group cohesion and motivates students to build a
better A.L, given that it is “their” ship that will participate
in the race.

6.3 Day 3: Artificial Intelligence

The theme of day 3 is artificial intelligence. The keynote
note speaker introduces the importance of artificial intelli-
gence in games, especially in games where opponents and
allies of the player are controlled by the computer. The
presentation usually uses a specific game as a case study.

The day’s lecture gives a brief overview of various A.l
techniques, outlining the difference between a scripted A.I.

Is there an asteroid
in front of the ship?

Yes No

Is there a shield
recharge station near?

Is there an open
spot ahead?

Yes No Yes No
Aim for Slow down, and Aim for that Continue
that spot wait for shield to recharge moving
be fully charge station foward

Figure 3: A Simple Decision Tree

and a learning A.I. The lecture then concentrates on simple
decision making and pathfinding. A key point of this lecture
is the importance of decision trees, especially when building
an A.L. for Spaceracer, as shown in Figure 3. Students are
also introduced to the advanced functionnalities of the radar,
which scans the area ahead of the ship and finds safe ranges
devoid of asteroids.

6.3.1 Exercises

The first exercise of the afternoon is designed to get stu-
dents comfortable with the new radar functions. The race is
composed of walls of asteroids with a small hole in each wall.
It is impossible to complete this race using the greedy ap-
proach (always avoid the nearest asteroid) learned the first
day. Instead, students must learn to find a safe spot and fly
the ship towards it. This represents an important shift in
logic for their A.L; instead of avoiding targets, they must
aim for a specific one. Successful completion of this race
indicates that they understand the new radar functions and
can aim for specific targets.

The remaining exercises of the day focus on improving
their A.I. by choosing better spots to aim for. For example,
ships should avoid spots if they are too small for them. Fur-
thermore, if a ship is moving up to reach a specific spot, it
should check for asteroids directly above it.

6.4 Day 4: Game Physics and Content Gener-
ation

The activities of the fourth day are centered around phys-
ical simulations and automated content generation. In 2006,
half of the lecture was dedicated to teaching the physics be-
hind racing games. The talk described the various laws of
physics that can be found in games and how they are often
approximated. The following year, the talk was changed to
content generation. Different methods of automated con-
tent generation were discussed, such as maze generation
and terrain generation. The second half of the lectture
was pretty similar in both years. It covered some more
advanced aspects of Spaceracer, including Comets (2006),
Shield Recharges (2007) and dealing with impossible situa-
tions.

6.4.1 Exercises

The radar provided to the students has a limited range.

As such, it is possible to make a decision that seems opti-
mal at the moment, only to discoved that the path is latter
blocked. In addition, some of the races are randomly gen-
erated. Thus, a race could be generated where no safe path
exist to reach the finish line. We call these the impossible
situation.

To deal with these situations, all the ships are equiped
with shields. These shields only last a limited amount of
time and take 30 seconds to recharge. When faced with
an impossible situation, the only solution is to traverse the
obstacle using the shield.

The exercises of the day deals with this situation. The
maps have multiple wall barriers, impossible to cross with-
out shields. However, given the promixity of these barriers,
students must slow down their ship and allow the shields to
recharge before crossing each barrier.

6.5 Day 5: Competition

No keynotes or lectures are planned on the fifth day. Stu-
dents are given the entire morning to tweak their artificial
intelligence in preparation for the afternoon’s competition.

After working a week on their A.L. pilot, students are cu-
rious to know how well their A.I. compares to other. The
final competition provides an opportunity to simultenously
evaluate all the projects. Although the afternoon’s compe-
tition varies from one year to another, the format remains
the same: all A.L. participate in a series of different races
and are ranked according to their performance.

7. EVALUATION

7.1 Student Programming SKkills

To evaluate the progression of the students throughout the
week, statistics on the A.I. code they wrote at the end of each
day that involved programming, i.e. day 1, day 3, day 4 and
day 5, were gathered. For each team, the number of lines
of code, the number of references to MyShip, the number of
references to MyRadar, and the number of if statements was
counted, both in 2006 and 2007 (see Table 1).

The statistics revealed some interesting facts. There is
steady growth in the code complexity in the first four days,
but that progression decreases in the last day, when the
final version is due. A detailed analysis of Day 4 code and
Day 5 code revealved that students used the final day to
restructure their code for the final competition. In general,
the code produced at the end of the fifth day is a lot simpler
and contains much more commented code than at the end
of the fourth day. For example, in 2006, at the end of the
fifth day, the A.I. developed by the students averaged 107.7
lines of code. However, the average decreases to 82.6 if we
removed all the commented code.

This evolution in the code size can easily be explained.
During the first four days, when courses are given in the
morning, the students spend the afternoon adding new ideas
to their code. Thus each new day results in new features
and improved behavior for their A.L. pilot. Only on the
final day they take a step back and try to integrate all the
different ideas into a single cohesive block. It is important
to note that as the student experiment, they comment out
expiremental code rather than deleting it. This explain the
large presence of comments in the students code, especially
on the final day.

Furthermove, the high increase in the number of if state-
ments on the fifth day (especially in 2007) can be explained
by the improvements students made on their decision trees.
Although this material was covered both on the third and
fourth day, students didn’t really master this material un-
til the fifth day. This demonstrates the need to improve
the teaching methodology on this subject for the following
years, as the sharp increase should have occured much ear-
lier during the week.

7.2 A.L Strategies

In 2006, two features were found in all the auto pilots:
they activated the shield when a collision was imminent,
and they reduced their speed when a certain number of in-
coming asteroids was detected by the radar. However, the
only omnipresent feature found in all the A.L. in 2007 was
the use of shields when a collision was imminent. This can
be easily explained by the fact that the lecturer that first
presented the idea of slowing down when numerous aster-
oids are detected, was not available to teach in 2007. This
illustrates well the influence the lecturers have on the stu-
dent’s solutions and the importance of properly preparing
in class examples and sample races.

Furthermore, an important strategy in Spaceracer is the
proper use of the shields. When shielded, a ship cannot col-
lide with obstacles for a limited amount of time. Thus, it
is advantegeous to travel as far as possible when benefiting
from this protection. This strategy is not discussed in class,
to let the students discover this on their own. The anal-
ysis shows that about one third of the teams discover this
strategy and use it properly.

7.2.1 Winning Strategies

The ship that won the competition in 2006, AI33, fea-
tured a relatively simple auto-pilot. When faced with an
obstacle, it searched the map for the nearest clear spot and
directed the ship towards that spot at full speed. This ag-
gressive racing behavior helped it win during the easy races.
However, the greedy strategy did not always perform well in
more difficult races.

Firebird, the second place winner in 2006, featured a smarter
algorithm that performed very well during the harder races.
When faced with an obstacle, this auto-pilot would search
for the nearest open spot. Unlike all the other Als, it would
also check the size of the spot. If the spot was too small, it
would instead aim for the biggest open spot. It should be
noted that this feature was much more common in 2007, as
many of the races featured small spots.

The most impressive student A.I. seen up to date was
Asian Invasion, the winner of the 2007 competition. This
A I featured a very complicated, but detailed decision tree
that allowed it to have the proper reactions to many different
situations. The decision tree not only controlled movement
on the Y-axis, but was used to calculate the maximum safe
speed at which the ship could travel. Asian Invasion is
also the only team we have seen so far that sucessfully used
the distance equation (y/x2 + y?) to determine if an asteroid
was too close. Most teams tested the X and Y axis seperatly.

7.3 Student Feedback

At the end of the camp, a questionnaire was distributed
to the students. In 2006, we made the mistake of not dis-
tributing a questionnaire at the beginning of the camp, thus

Table 1: Student Code Complexity 2006 and 2007

Average number of ...per team || Day 1 | Day 3 | Day 4 | Day 5 || Day 1 | Day 3 | Day 4 | Day 5
If conditions 6.14 9.43 15 18.29 3.91 5.18 | 14.73 | 22.82
Reference to myShip object 10 | 17.14 24.29 25.29 9.82 22 34.82 36.18
Reference to myRadar object 5.43 9.14 | 12.86 12.71 6.64 8.64 | 11.64 | 12.18
Number of brackets { } 6.86 | 11.29 | 20.14 | 22.43 6.09 | 15.73 25 | 26.45
Number of lines of code 41.29 | 59.71 | 105.57 | 107.71 55.73 | 103.18 | 144.55 | 150.64

making it impossible for us to properly evaluate the effects
of the camp. In 2007, a questionnaire was distributed at
both the beginning and the end of the camp.

One key question requires students to describe what they
think Computer Science is. In the questionnaire distributed
before the camp, common themes were: "‘Doing “stuff” with
computers”, ”Programming” and "*Studying what comput-
ers can do”. The same question was asked to the students
at the end of the camp. This time, the common themes
were: 7‘Understanding what you can do with computers™,
”Science that deals with computers ”’, ”*Using computers to
solve problems” and ”‘Programming’.

The three first themes indicate that students understood
the lesson we were trying to teach. However, the presence of
the fourth theme might indicate that we still need to reduce
the emphasis of programming in the course content.

Another important result of the 2007 questionnaire is the
number of students interested in studies in Computer Sci-
ence. Before the camp, 50% of the students indicated a de-
sired to pursue a career in Computer Science. Suprisingly,
that number did not change in the questionnaire after the
camp. However, an important result is that 20 out of 22
students expressed that the camp had positively improved
their view of Computer Science. The impact of this number
can be better understood throught the feedback of one of
our 2006 student which said: “It has definitively impacted
me, but I’'m still going to pursue Mathematics. But it made
me think about how I could work with engineers using my
math.”

8. CONCLUSION

In this paper we described the idea and organization of
the McGill Computer Science “Game Programming Guru”
Summer Camp, organized in Summer 2006 and 2007 with
the goal of attracting bright students towards science and
Computer Science in particular. The camp was targeted at
high school students from grade 10 to 11 in order to awaken
their interest as early as possible. This allows them to choose
the appropriate optional courses in their final high school
years that allow them later on to pursue a major degree in
Computer Science or Software Engineering.

We showed in the paper the teaching methodoloy used to
introduce Computer Science to high school students, and at
the same time how to use a computer game theme to keep
the students motivated throughout the week.

Based on the code evaluation of each team’s game code
and the answers obtained through a student feedback ques-
tionnaire we conclude that the camp was a big success. The
responses showed an increase in the understanding, the in-
terest and the appreciation of the field of Computer Science.

In the end, to know if we actually achieved our concrete
goal, i.e., attracting more students towards Computer Sci-
ence or Software Engineering studies at the School of Com-

puter Science at McGill University, we will have to wait until
September 2008, when the first graduates from the Summer
Camp will start their university education.

9. REFERENCES

[1] Bioware. Neverwinter Nights.
http://nwn.bioware.com/, 2007.

[2] A. Eliens and S. V. Bhikharie. Game @ VU -

Developing a Masterclass for High-school Students

using the Half-Lide 2 SDK. In Game-On-NA 2006 -

2nd International North American Conference on

Intelligent Games and Simulation, pages 49 — 53.

Eurosis, September 2006.

J. Gosling, B. Joy, and G. L. Steele. The Java Language

Specification. The Java Series. Addison Wesley,

Reading, MA, USA, 1996.

[4] Open Source Community. Wings3D.
http://www.wings3d.org/, September 2007.

[5] Purdue University. 2006 Summer Camps.
http://www.cs.purdue.edu/, September 2007.

[6] R. Rucker. Software Engineering and Computer Games.
Addison Wesley, 2003.

[7] S. Schaefer and J. Warren. Teaching Computer Game

Design and Construction. Computer-Aided Design,

36(14), December 2004.

University of Saskatchewan. 2006 Summercamp.

http://www.csss.usask.ca/2005/index.php?c=summercamp,

September 2006.

[9] J. P. Walsh, G. Crombie, J. Flanagan, and V. Hall.
Positive Effects of Science and Technology Summer
Camps on the Attitudes of Young Canadians: Initial
Quantitative Evidence. Poster presented at the 62nd
Annual Convention of the Canadian Psychological
Association, June 21-23, 2001.

3

8

