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Abstract—Non-player characters (NPCs) in video games tend
to be easily recognized by human players, reducing the sense of
immersion and limiting the complexity of character interactions.
In this paper we study various aspects of the NPCs performance
and how it differs from human players. We provide catego-
rization and metrics for quantifying some aspects of the NPCs
performance and provide an in-depth analysis of the behavior
of NPCs. We detail how movements, interactions, use of items,
and relying on static decision-making schemes result in markedly
different behaviors from humans in the popular FPS Quake III.
In addition, we propose a framework relying on a special kind
of influence map, a pheromone map, which can lead to a more
adaptive human-like behavior. These maps can efficiently give a
summary of the events in the game world, be adaptive in nature,
and be effectively used in the decision making process of NPCs.

I. INTRODUCTION

The ability to play with other online players is essential in
the design of many games. To ensure a rich and interactive
game world, games often rely on the use of non-player
characters (NPCs). NPCs can play alongside or against human
players or be used to simply populate the game world. They
should be able to play in teams and handle different goals
and strategies. Ideally, they should also show human-like
movements and interactions, giving players the sense of an
active and well populated virtual world.

Within the first person shooter (FPS) genre, many rely on
variations of the area awareness system (AAS) that provides
navigation information for the NPCs [1]. These systems give
a simplified 3D map of the world where different areas are
calculated as simplified volumes so navigation within an area
is simply point-to-point movement, and reachability can be
easily determined. While navigation information is very useful
for tasks such as path optimizations, the navigation itself
relies on decision-making algorithms often in the shape of a
simple decision tree and fuzzy logic. Combined together they
determine the long-term and short-term goals of the AI in the
game [2]. For example, in Quake III, the NPC selects, using
predetermined preferences, a target item such as a weapon.
It also tries to pickup any useful items along the way to his
chosen target.

Although this produces functional NPCs, a drawback to
this approach is that static decision-making tends to result in
overdetermined and unrealistic behavior. In terms of move-
ment, some areas end up being overused by the NPCs while
some areas are never explored. With respect to use of weapons

and other game items, more important differences become vis-
ible, clearly distinguishing NPCs from humans. For example,
while reaction speed means that human players will usually
avoid use of slower acting distance weapons such as sniper
rifles in close or rapid combat, NPCs do not necessarily suffer
from the same limitations. These constraints are not a result of
limitations of the weapons or the game world in any obvious
and ahead-of-time sense, but are due to limitations of the
human players themselves, and so cannot always be easily
extracted from the game mechanics.

Inspired by these examples and backed by traces collected
from several gaming sessions in Quake III, we discuss a
number of metrics that can be used to measure the performance
of the AI in comparison to a human player (we refer to
the characteristics that the AI exhibits as its performance).
Furthermore, we provide an in-depth analysis of how these
decision-making algorithms can lead to substantial differences
in behavior of NPCs and humans. As a potential solution,
we discuss how special kinds of influence maps, pheromone
maps, can be used to adaptively change the behavior of NPCs,
making them more human-like. In this model each interesting
entity or event is assigned a given attractiveness leading to
the generation of pheromones that spread in the game world
and fade over time. This attraction is then integrated into the
process of decision making of NPCs, giving the AI a useful
summary of the dynamic game state. Our main contributions
are:

1) We discuss several categories of metrics that can be
used to measure NPC performance and how it differs
from human players.

2) We provide in-depth analysis of differences between
human and typical AI players based on a popular
FPS game AI. Detailed Quake III game traces are
used to compare various aspects of gameplay. Our
results give quantitative insight into how NPC and
player behaviors differ.

3) We describe a lightweight, adaptive framework that
takes temporal and spatial aspects of the game into
account in the decision making process. Pheromone
maps are designed to allow for a dynamic and adap-
tive AI gameplay.

II. BACKGROUND AND RELATED WORK

As a proxy for real opponents and team-mates, players
expect NPCs to be reactive to player actions, the game



environment, and be adaptive in their behavior according to
the player’s preferences and performance [3]. In fact, in many
cases, it is desirable that the NPC shows a behavior very
similar to that of a human player.

To better understand why NPCs act the way they do, we
consider the following underlying mechanisms: (1) The basic
underlying mechanisms, such as decision trees, that are shared
by many of the NPCs and are used to implement the AI.
(2) The way the game is able to adapt to the capabilities of
the player.

Essentially, a game is an state of conflict that is typically
resolved by the player achieving certain goals [4]. This conflict
closely affects the design of any Non Player Character (NPC).
NPCs are expected to offer a challenge to make the game
more interesting, and this challenge is supposed to be related
to the skill of the players. In many games such as Quake
III, the player chooses himself the gameplay difficulty at the
beginning of the game, e.g., I Can Win, Bring It On, Hurt Me
Plenty, Hardcore and Nightmare in Quake III. NPCs have to
be reactive to the player’s actions and the environment and
have to adapt to the player’s preferences and performance.

A. Decision Making:

There are several mechanisms that are used to model the
decision process of a NPC such as decision trees, hierarchical
state machines, behavior trees, fuzzy logic, etc., each with their
advantages and disadvantages [2]. For example, decision trees
in which every branch node is a condition and leaf node is an
action, are simple to represent and use but does not scale well
and is hard to modify.

In Quake III, as a typical game AI implementation, the
agents use multiple decision trees embedded inside a state
machine [1]. The state machine represents states an agent can
reach in the game such as Battle Fight or Seek Long Term
Goal. At every think frame, the agent goes through the network
of states and finds the most appropriate one, best suiting the
agent’s current situation. In each state, there exist a structure of
if-then-else, representing the decision making process of that
agent in that particular state. Moreover, inside the structure new
states can be reached. For example, in the state Seek Long Term
Goal, using the agent’s interests coming from fuzzy variables,
the agent will select a goal, such as picking up a weapon.
Human-like, opportunistic behavior is encoded by temporarily
switching to a Seek Short Term Goal state if the agent notices
a useful item along the way. Once the short term goal is
completed it goes back to the Seek Long Term Task state.

Another development is to use influence maps to guide AI
behavior. Influence maps can be used to determine who is in
control of a certain part of a map [5]. Conceptually, influence
maps have some similarity with potential fields used in robotics
to define motion control. It refers to a desired position b in
the world where the robot wants to reach. In this case, the
robot at position a is treated as a particle and gets under the
influence of an attractive field U from position a to b [6]. This
field represents the free-space of the environment. Obstacles
are modeled as negative charges and they repulse the particle.
Thus, the robot is exposed to forces that can be formulated as
U(q) = Ub(q)−

∑
Uobstacle(q).

This concept has been applied to games as well, with some
authors arguing that a potential field approach can be a viable
and cheaper option to replace more conventional, A∗ path find-
ing [7]. In [8], an algorithm is proposed that determines where
is the best place for Pac-Man to move, based on attractiveness
of potential fields, taking into consideration the moving ghosts
and dots to eat. In [5], the authors build influence maps into a
tree form, where every leaf is a representation of the game state
in form of an influence map. From there a genetic algorithm
is used to investigate the best strategy. In [9], the authors use
flocking behavior common in real-time strategy games (RTS),
and employ information from an influence map to increase the
safety of units.

Influence maps have rarely been used in FPS games, mostly
focusing on RTS games [10]. In addition, most uses of these
maps in decision making have been limited, utilizing a simple
distance based approach to determine areas under own or
enemy’s influence, for tasks such as building a new building.
We argue that they can efficiently be applied to FPS games
as well, and be used in different tasks and levels of decision
making by NPCs.

B. Game Adaptivity:

Game adaptivity has received a considerable amount of
research attention from the community [11]. In general, to
provide adaptivity, the game first monitors the actions of
the players, computes an abstract value of their perfor-
mance/preferences, and makes changes to the game environ-
ment according to those values. These parameters can include
player’s rank, accuracy, and time taken for task completions.
The game can adapt to these parameters, for example, by
making it harder for an experienced player by improving the
AI performance.

The simplest form of adaptivity is given by offering a
player various difficulty levels, controlled by the player, to
play the game so that he can adapt the game according to his
skills [12]. Most games, e.g., Quake III, provide such controls
where the capacities of the NPCs depend on the chosen
difficulty level. A more dynamic approach, known to players
as the rubber band, can be described as a negative feedback
loop [4]. This loop tends to keep its environment stable
by dampening the differences; e.g., by allowing computer-
controlled opponents to catch up no matter how far behind
they are. An example is the Mario Kart racing game series
by Nintendo, which handicaps players in proportion to their
relative position. A better form of adaptivity is found in the
Left 4 Dead series of games, which uses a dynamic balancing
system that models the game intensity as experienced by the
player, in form of a metric based on particular actions within
the game. When a threshold is reached, the game’s pace slows
down by removing opponents, increasing the interval of their
appearance, and decreasing their accuracy [13].

While gameplay can be improved using such techniques,
they highlight the differences between NPCs and humans, for
example, by unusually increasing the accuracy. Our interest in
this work is to use more natural methods of adapting NPC
behavior, e.g., using pheromone maps, to reduce the glaring
differences between human players and NPCS.



III. PERFORMANCE METRICS

Many metrics for measuring the performance of the game
NPCs can be developed. One aspect that is often hard to define
is how natural the NPCs reactions are in response to various
game events. This happens as a result of the player imagining
how he himself or other human players would react to the
same situation and how it is different from what the NPC
has shown. Given that most players differ from each other
in their playing style, as long as these differences fall inside
an acceptable margin of the human players, they are deemed
acceptable. Note that here we are focusing on NPCs that take
human roles in the game and are expected to behave like one
and does not include other kinds of NPCs. In addition, extreme
cases of NPCs, e.g. NPCs that are used as a near perfect player
with perfect aim, mobility, etc., and are specifically designed
for their non-human characteristics are not considered.

To be able to quantify these differences we divide them
into the following categories: (1) Mobility, (2) Item Pickups,
(3) Fighting Strategy, (4) Use of Items, (5) Difficulty Level,
and discuss how they can determine the performance of the
game NPC. This categorization is based on the design of
the different modules in Quake III AI [1] and we believe is
representative of many games in the FPS genre.

Note that here we are ignoring teamwork as a part of
the NPCs task. Many NPCs are used as teammates for the
players and are expected to support the player in the game or
perform various other tasks (e.g., defend a certain location).
This, however, is quite game specific and given fairly basic
support from Quake III, we ignore it here and instead focus
on death match type games where each player is independent
from others and its aim is to simply win the game by getting
points through eliminating other players.

Here, we introduce a number of performance metrics in
order to quantitatively compare the performance of human and
NPC players. Note that the metrics we propose are designed
to be useful for comparing different AI strategies and are not
necessarily indicative of a better approach in general as game
developers may choose to differentiate NPC behavior from
human players by choice depending on the game and playing
scenario. We later, in Section IV, analyze these measurements
in Quake III.

Movements: One basic but defining task of the players is
movements. While providing basic movements e.g., randomly,
is easy, it affects all other behaviors of the NPC as it define
what enemies it will face, what items it can pickup and in what
strategic locations it will end up. One main drawback of use of
AAS files and optimized path finding algorithms such as A∗ is
that it makes NPC movements repetitive and fairly predictable.
While long term strategic goals of the NPCs determines their
final destination, the path they take to get to their destination is
fairly predictable. In addition, even though game events, such
as becoming under fire and escaping, and short term goals
do make the behavior appear more complex it is usually not
enough. Moreover, it prevents the NPCs from exploring certain
parts of the maps which can be particularly useful depending
on different game styles and skills of other players.

Metrics: (1) To quantitatively, measure the differences
between human and NPC movements we divide the game

world into cells and measure how often they are used by NPCs
and humans. Each cell maintains a count for humans and NPCs
which is increased every time a player passes through the cell
depending on its type. In a binary space partitioning (bsp)
based approach the original bsp maps can be used as cells.
This can be used as a tool for developers to highlight the
different movement patterns. In addition, a difference map that
calculates the difference between the two counts on each cell
can be used as a quantifiable metric.

(2) The previous metric provides an overview, of how on
average players move and does not highlight individual cases.
One of the main differences in movements that is jarring to
players is during their close interactions. How human players
and NPCs move when in close combat can act as another
measure for comparison. This can be calculated as a function
of whether the players is under attack or not and as a function
of the time passed since the interaction.

Item pickups: What game items the players pickup affects
their gameplay. These items may include different weapons,
ammo, health packs, armor, etc. For example, it affects the
path the players choose (e.g., deciding to pick up a certain
item). Moreover, a player with good armor and health can
afford to be more aggressive, and the type of weapon (e.g.,
long range, short range, melee) dramatically affects player’s
behavior.

Metrics: An indicator is how players act when they are in
a particular state, e.g., in low health. Players are expected to
take more defensive instances when they are in low health and
are vulnerable or go to location where health pack, armor, or
similar items exist. Therefore, a difference map as discussed
before but taking into account a particular state (e.g., health <
threshold) can act as a measurement of their performance.
Similarly, the frequency with which players pick up items and
the percentage of picking up different items, can also serve as
a measure of performance.

Battles: Players are expected to be able to take advantage of
strategic locations. These locations typically provide a good
vantage point, access to powerful weapons and items, or a
good cover or a hiding place from attacks. In addition, players
are expected to avoid hazardous locations that makes them
open to attacks and unable to defend. One typical problem
with NPCs is that players find a weak spot in the game and
exploit repetitive behavior of NPCs (e.g., passing through the
same path) to gain easy points by repetitively attacking the
NPC in the same spot. Note that these spots change during
the game and depending on other players behavior, weapons,
and locations. For example, a path that is not necessarily very
dangerous can become one if another player takes cover in
a good vantage point and uses an sniping weapon. A human
player would learn after one or two interactions to avoid such
a place until the threat is eliminated but most NPCs lack such
a long term strategic decision making process.

Metrics: Strategic decision making of bots is fairly hard to
measure without considering the specific situation and since
a single best solution rarely exists. However, we can measure
how on average NPCs performs. We do this by comparing
locations that human and NPC are typically killed or are able
to score a point. These places highlight the vantage points good
for attacking others as well as vulnerable locations.
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Fig. 1. Experimental sensitivity analysis of AntAI using a 12-player trace in a deathmatch game from Quake III in the q3dm01 (first row) and q3dm17 maps
(second row). Difference maps are normalized logarithmic representation of differences between gaming sessions. Intense colors, blue for players and red for
NPCs, shows a considerable difference in behavior, while pale color shows lower differences or no event in that area of the map.

Use of items: How players use certain items, greatly affects
how they play. For example, a sniping weapon, given high
accuracy at a distance and long reload times, requires finding
a good vantage point and hiding from other weapons that are
less accurate but faster at a close range. In addition, most
human players would find use of sniper gun at a close range
very difficult while NPCs would not have that problem and
it can lead to a tangible different in their behavior. Another
important factor is that most players have certain weapons of
choice. This affects their choice of paths (to find this weapon or
ammo) and where they are most likely to go. They also show
great differences in their accuracy when using their favorite
weapon in comparison to others. NPCs however do not have
such behaviors, unless it is explicitly programmed, which often
is not.

Metrics: To measure the use of game items we consider
one of the most important category of items, i.e., weapons.
How often players use different weapons (percentage of each
weapon’s use) as well as how often they are successful at
targeting people can serve as an indicator of their performance.

Difficulty level: To provide different levels of challenge to
players with different skills, the performance of the NPCs
needs to be adaptable. This, however, is mostly accomplished
by improving the accuracy of NPCs in targeting players. While
this is acceptable to a certain level, e.g. expert human players
have very good accuracy, it has its limits and after a certain
point this performance becomes too unrealistic as NPCs can
have near-perfect aim, given that NPCs can use trajectories
based on game physics, even for weapons such as rocket
launchers that are often hard to aim as they take a longer
time to reach a moving target. Another way to improve this
performance can be through improving the strategic thinking

of the NPCs and their resulting movements.

Metrics: Difficulty can be measured as the efficiency of
players in achieving their goals. In a deathmatch game that
goal is to score points by eliminating other players. When
NPC difficulty is increased most games resort to improving
the accuracy of their weapon use which can be measurable.
Furthermore, strategic decision making can be measured as
it affects movement and use of strategic locations by using
various difference maps as discussed before.

IV. Quake III ANALYSIS

In this section we provide a thorough analysis of NPC
behavior based on decision-trees and state machines as used
in many of today’s games. In particular we show that while
it yields somewhat complex behaviors, this behavior is con-
siderably different from the behavior of human players, and
often less versatile. In addition, the NPC’s behavior might
seem predictable, erratic, or irrational to a human player.

For the purpose of the analysis, we have selected Quake III,
a popular FPS game, given its popularity and availability of its
source code. While newer games use more complex decision
making processes, many rely on the same techniques used in
Quake III (e.g., Left 4 Dead 2009 [13]), therefore, we believe
the analysis can be representative of the FPS genre of games.
We have used two popular maps in the game, and played the
game in a total of ten gaming sessions using players of various
levels of skill. P represents players in figures and tables, NPC
represents NPC of difficulty level Hurt me plenty, and N-NPC
is NPC with Nightmare level. Around ten gaming sessions are
performed where each session lasts for around 20-30 minutes
and includes 6-12 players of types: players, NPCs, and both.
This is a typical case for most Quake III gaming sessions and



TABLE I. DIFFERENCES IN USAGE, DISTANCE, AND ACCURACY OF IMPORTANT WEAPONS BETWEEN PLAYERS VS. NPCS

Map Weapon P % Shot NPC % Shot P % Kill NPC % Kill P Avg. Dist. NPC Avg. Dist. P % Acc. NPC % Acc. N-NPC % Acc.

q3dm01

MachineGun 60.4% 43.4% 32.2% 20.1% 324.2 149.1 5.0% 3.8% 5.4%

Shotgun 5.28% 34.5% 5.1% 28.0% 253.9 203.8 9.0% 6.6% 8.6%

RocketLauncher 9.4% 11.5% 30.8% 37.6% 273.7 185.4 30.4% 27.0% 32.2%

PlasmaGun 24.7% 10.4% 31.8% 14.1% 256.3 178.4 12.0% 11.1% 12.4%

q3dm17

MachineGun 49.6% 60.7% 15.7% 21.8% 451.9 343.6 4.1% 3.3% 5.0%

Shotgun 20.8% 19.5% 10.7% 12.7% 226.5 374.6 6.7% 6.0% 8.0%

RocketLauncher 26.5% 19.0% 60.3% 61.2% 259.7 270.9 29.5% 30.1% 37.6%

RailGun 2.9% 0.65% 12.6% 4.2% 782.9 488.6 55.9% 60.8% 66.7%

while the study is not exhaustive, it can be fairly representative
of the general gaming behavior in Quake III.

In our results, we emphasize the differences between NPCs
and human players in the categories discussed:

Movements: Figures 1a and 1i depict the movements of
NPCs in several gaming sessions. Darker areas represent more
activity in that part of the map. Note that the figures use
logarithmic presence in the map essentially showing a power
law distribution in the use of some regions. As shown, NPCs
tend to use specific paths and locations in the map as indicated
by the AAS files. This is a result of the decision making
process and not a limitation of the accessible areas as the NPCs
can use other paths and locations but often don’t. Figures 1b
and 1j show the same map for human players. As one can
observe, players use the maps more uniformly. While popular
locations still exist, as Figure 1j particularly shows for the
larger, more complex q3dm17 map, they are significantly
different from the paths chosen by NPCs. Figures 1c and
1k highlight these differences in player and NPC movements
in several gaming sessions. Blue regions are mostly used by
players, while red regions are mostly used by NPCs with the
intensity showing the amount of difference. White shows the
same amount of activity (or lack of it) in the region. The figures
clearly indicate how players and NPCs use different regions
in the game.

Figures 1d and 1l show the differences in AI behavior in
different gaming sessions. Even in different gaming sessions
and playing against human players with various skills, NPCs
show minimal or no difference in their behavior, lacking
adaptability to the players’ skills and preferences.

Item pickups: Figures 1e and 1m further highlight the dif-
ferences in movements between players and NPCs when the
entity has low health (30 from 100). Players are much more
likely to move towards items such as healthpacks and armors.
Particularly, NPCs on average where 10% less likely to pick
up an item during the game in comparison to humans.

Battles: Players are able to exploit strategic locations, giving
them a good vantage point, access to powerful weapons, or
take cover from attacks. This difference, and lack of adaptivity
is further used by players as shown in Figures 1f and 1n
highlighting differences in locations where players and NPCs
score by killing opponents. Players tend to go to locations
providing powerful items, e.g., rocket launchers, and with a
good vantage point, e.g., top level of the map, to perform
attacks targeting those in lower levels. This is also shown
in death locations in Figures 1g and 1o. NPCs are usually

targeted in lower levels and smaller corridors in the game.
In gaming sessions in which both players and NPCs were
playing, players were able to take advantage of predictability
and lack of adaptivity of NPCs, and attack NPCs in bottlenecks
while maintaining strategic locations near powerful weapons
and with a good vantage point.

This difference is further shown in the aggressiveness of the
players. Human players are more likely to follow their target
even if the target is shooting back. This behavior increases as
a function of the time elapsed since last attack by target. In
addition, while players die on average in a game at the same
rate, 4.34 vs. 4.50 deaths for a NPC per minute in q3dm1

map, they achieve 1.15 vs. 0.82 kills per death.
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Fig. 2. When engaged in a fight, players tend to get away from each other.
However, when attackers are not being shot back, they move towards their
target more often.

Use of items: Another significant difference between human
players and NPCs is in their use of items. Some items, due
to their nature, are hard to use by human players in specific
situations. For example, a sniper rifle or its equivalent in Quake
III, the Rail Gun, is hard to use in close quarters combats
(CQB). Players, as shown in Table I, use this weapon at
substantially higher distances than NPCs do. These values also
depend on the map. While the use of RocketLauncher in map
q3dm17, which features large open areas, is very similar to
the players, it is different in map q3dm1, where the world
consists of rooms and corridors and there is higher risk of
damaging oneself when using the weapon.

Difficulty level: Lack of adaptability is further shown, when
different NPC difficulty levels are used. While, as shown in
Table I, the accuracy of attacks are increased along with the
difficulty, our difference maps showed no significant difference
between movements of NPCs of different levels, similar to the
case in Figures 1d and 1l. Similarly, most of the other game



statistics remained the same. This shows that NPCs are not
using a better decision making process when the difficulty is
increased.

A. Bot Detection

While the main focus of this paper is on improving
the performance of the game AI, this analysis can also be
employed in detecting when a bot is playing the game instead
of a human player. One of common forms of cheating in the
games is by having an NPC play the game while the player is
away, in order to easily gain experience points or improve
one’s ranking [14]. A range of techniques have been used
to detect these cheat types [15], [16], [17]. Our analysis can
be used to extract the necessary features (e.g., movements,
interactions, etc) to be used in statistical analysis and machine
learning techniques that can classify the players into human or
(cheating) NPC players.

V. ANTAI ALGORITHM

Here we propose AntAI, our vision of how a more human-
like NPCs can be designed using pheromone maps. Pheromone
maps, inspired by ant colony systems and a form of influence
maps, are used to model online events in the game world
in a lightweight and efficient manner. We argue that this
model can be then used to improve the behavior of the NPC,
allowing it to make more strategic and human-like decisions.
We have previously used these pheromone maps successfully
in improving predictions of human player movements [18],
[19]. In such a case the maps are used to model points of
interest in the game that attract or repel the player and help
in determining which direction the player will move to in the
future. For further implementation details please see [19].

In AntAI, points of interest (e.g., weapons, items, other
players, events, and specific locations) are treated as ants
that generate pheromones, modeling their relative influence.
Pheromones are chemicals, whose concentration is coded by a
signed floating point number, that exert influences on players.
They spread in the game world and fade over time, therefore
capturing the geometrical and temporal aspects of interest. We
first discuss how these maps are generated, and then, how they
can be used to improve the decision making process by the
NPCs.

Pheromone Maps As common to most games, AntAI assumes
a game world divided into non-overlapping cells, e.g., regular
grids (as shown in Figure 3), AAS, or open area graphs, typ-
ically used for tasks such as path finding, collision detection,
or graphical rendering. We denote by C the size of a cell in
game world unit. The management of pheromones and the
computation of attraction forces exerted by them is performed
at the granularity of a cell:

The NPC computes the concentration of pheromone (repre-
sented in grayscale in Figure 3) in each cell and computes and
sums the corresponding influences. For the sake of scalability,
only the cells in a limited region around NPC are considered,
e.g., a fixed-size square represented with dashed lines in
Figure 3. In a distributed implementation this would be the
Area of Interest (AOI) of the NPC.

• Generation: In each frame, each point of interest
within a cell, be it an avatar or an object, generates
a given amount of pheromone related to its attractive-
ness to the NPC. Events such as kills and deaths can
also generate pheromone. Attractiveness is a function
of the characteristics of the object and possibly the
current state of the considered avatar (a health pack
would be more appealing to a wounded player). This
amount is added to the concentration of the cell.
The maximum concentration of a cell can be capped
(ph

max
) to limit the attractiveness of any single cell

at a given frame.

• Evaporation: In order to limit in time the attraction
of previous positions of points of interest, pheromones
fade in time, meaning that their concentration is
decreased at the beginning of each frame. This is
necessary to capture the dynamic nature of the game
as popular locations and items change over time.
Exponential decays, i.e., removing a fixed percentage
of the old pheromones at the beginning of each frame,
have been successfully used in previous works on ant
colonies (e.g., Max-Min ant colonies [20]). Beyond its
simplicity and its effectiveness, such an evaporation
model ensures that the total amount of pheromones in
the game world does not grow to infinity over time.
The evaporation speed should reflect the pace of the
game.

• Dissemination: As pheromones spread, the concentra-
tion of pheromone in neighboring cells are mutually
dependent. At the beginning of each frame (after the
evaporation step), a given amount of pheromone is
simultaneously removed from each cell and evenly
dispatched to its neighboring cells. The size and
shape of this neighborhood depend respectively on
the predetermined speed of pheromones dissemination
and the game world topology (e.g., wall, hills, etc.).
For example, obstacles may block the dissemination of
pheromones to avoid attraction to unreachable areas.

These phenomena are captured by the following recursive
expression of the concentration of pheromone in a cell, for
a given player P , at frame t:

pht(cell) =

evaporation
︷ ︸︸ ︷

ε pht−δt(cell)+

generation
︷ ︸︸ ︷
∑

entity∈cell

Attr.(entity, NPC)+

∑

c∈N (cell)

ε · γ

|N (c)|
pht−δt(c)

︸ ︷︷ ︸

incoming dissemination

− ε · γ pht−δt(cell)

︸ ︷︷ ︸

outgoing dissemination

, (1)

where ε is the evaporation factor (percentage of pheromones
that remain after evaporation), γ is the dissemination factor
(percentage of pheromones that spread in the neighboring
cells), and N (·) is the set of a cell’s neighboring cells. The
attractiveness of a player to itself is set to zero. This is shown
in Figure 3 in the area around the trajectory of a moving avatar:
some pheromones remain and some spread around its previous
positions; all pheromones fade.

Attraction: The amount of pheromone generated for items
of interest, denoted by the attraction function in equation, is
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Fig. 3. Overview of AntAI: the game world is divided into cells by using
a regular square grid. Each cell contains a certain amount of pheromone,
represented grayscale (crosshatched for negative values). Attraction forces are
directed towards the attracting cells and their intensity is proportional to the
pheromone they contain.

dependent on the NPC’s state and goals. For example, when
the health of the player is low, the value generated for a health
pack is higher than other items attracting the player to it’s
location. However, this is substantially reduced after the health
pack is picked up. The effect of this increase is quickly faded
through evaporation, allowing new interests, such as picking
up a powerful weapon for attack, to be taken into account.

Number of maps & Overhead: While a single pheromone
map can provide a summary of the game world, multiple
maps can also be used taking only specific items or events
into account. In the former, a single map exists for each
NPC, where the current state of the NPC at each frame
is taken into account in deciding how much pheromone is
generated for each item or event inside that map. However,
in the latter, the state of the player is not taken into account
when the pheromones are generated for each map. In this
case, to take individual state of NPCs into account, each map
receives a coefficient according to each NPCs current status,
e.g., the healthpack map receiving a higher coefficient for
an injured NPC. Many different maps may be generated for
different interests such as death locations, kill locations (using
different weapons), successful item pickups (e.g., healthpack),
strategic item pickups (e.g., flag in capture the flag), and player
movements.

The number of these maps is a design decision: higher
number of maps gives more detailed information about the
game state at higher overhead costs. One big advantage of
using different maps, without taking individual state into
account, is that information can be shared between all NPCs
and is suitable for server systems. On the other hand, single
maps generated per NPC can allow the map to be much
smaller, e.g., size of AOI, and be distributed among players.
A combination of the two approaches may also be used: some
maps are shared and each NPCs has one or more exclusive
maps. In general pheromone maps are easily implemented and
have relatively low overhead. Furthermore, vectorization of the
matrix can be used to allow hardware accelerated technologies
to be used.

Here, we explain our vision on how to use one or more such
maps in the decision making process and how it can improve
the performance of the NPCs.

A. Decision Making

Pheromone maps can be used to improve different aspects
of decision making by the NPCs. We list most common tasks
performed during the decision making process of a FPS NPC
and how the pheromone maps can be applied. They are easily
integrated in the current decision making process of the NPCs
and are not meant to replace them.

Long term goals: Long term goals of NPCs in a FPS game,
can be goals such as attacking an area in the game, defending
the base, providing support for teammates, or maintaining
strategic locations. The pheromone map can provide a sum-
mary of locations under attack as well as vulnerable positions
(with regards to visibility and game mechanics) to help the
NPC choose the target destinations. For example, when the
player is in attack state it can help choose goals that are
more strategically vulnerable. Note that while many options
may exist on the map, their attractiveness is dependent on
the amount of pheromone for that location as well as their
Euclidean distance from the player as shown in equation 2,
where k is a configuration parameter depending on the game
mechanics. These forces are then summed up as shown in
Figure 3 (when multiple maps exist, the values are first
multiplied by map coefficient) and used to decide on a target.

‖Attraction(cell,NPCpos,t)‖ =
pht(cell)

d(cell,NPCpos,t)k
, (2)

Short term goals: An example of short term goals would be
picking up an item while pursuing a long term goal. These
decisions in particular are related to the current state of the
player. For example, a player with low health tries to pick
up a health pack on it’s way to attack the enemy base. The
pheromone map provides necessary information for choosing
between items and selecting a suitable path to pick up the
healthpack while minimizing the threats.

Battles: Pheromone maps can be used to improve the battle
performance of the NPCs. A pheromone map highlighting
death and kill locations can help choose better locations for
fighting and defense: locations with higher death score are
more dangerous while kill locations provide a good vantage
point. Furthermore, this is calculated according to whether the
NPC is in attack or defense mode. Similarly, this can take the
weapon being used into account, highlighting where kills and
death occur when players are using a particular weapon. This
also helps with making the NPC’s usage of weapons follow
the normal game pattern among players. Pheromone trails left
by the players help with chasing the enemies or supporting
teammates. When the player is wounded and in retreat the
map highlighting health pickups would direct the player, while
avoiding death locations.

Path finding: As shown in the previous section, current NPC
players choose predictable paths not taking the current state
of the game into account. The pheromone maps highlight the
paths being taken by other players, allowing the NPC to choose
more human-like paths. In addition, it allows the NPCs to avoid
bottlenecks and strategically vulnerable locations, reducing
their predictability.



Difficulty level: Pheromone maps enable the NPC to make
more strategic decisions in the game. Therefore, it allows the
NPC to act smarter when the difficulty level is increased by the
player instead of only increasing the accuracy of the NPCs’
attacks. It allows easier control of the difficulty level: the
amount of information and details, e.g., number and size of
maps, used in the process of decision making can determine
the difficulty level of the NPCs.

State transitions: So far we have discussed how to better per-
form goals and tasks decided by the already existing decision
making process. In most games offensive and defensive roles
of NPCs do not adapt to the current state of the game but are
assigned at the beginning of the session. Pheromone maps can
help determine whether the NPC should act in an offensive or
defensive state, act as a supporting companion of the leader of
the team, chase, or retreat given the current state of the game.
For example, a large amount of negative pheromone left by
attack of the enemies would trigger a state transition of the
NPC to a defensive role if he’s the closest to that location and
the values are above a certain threshold.

VI. CONCLUSION & FUTURE WORK

In this paper we analyze how FPS NPCs’ reliance on
traditional decision-making approaches can result in showing
significant differences from human players. We categorize
different types of NPC behavior and how it can differ from
human players. Furthermore, we propose measurable metrics
for NPC performance and perform such analysis on popular
FPS game Quake III. In addition, we proposed a framework
using pheromone maps, a special kind of influence map, to
improve various aspects of NPCs’ behavior. Our preliminary
tests with this system have been promising and we plan to fur-
ther complete the implementation and show the improvements
according to measurements in our analysis.
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