
Clustering Player Paths

Jonathan Campbell
School of Computer Science
McGill University, Montréal

Québec, Canada
jcampb35@cs.mcgill.ca

Jonathan Tremblay
School of Computer Science
McGill University, Montréal

Québec, Canada
jtremblay@cs.mcgill.ca

Clark Verbrugge
School of Computer Science
McGill University, Montréal

Québec, Canada
clump@cs.mcgill.ca

ABSTRACT
Player traces can result in a vast amount of high-dimensional
data. This information is crucial to game designers trying
to understand player behaviour and for tailoring the game
experience. In this work we investigate different approaches
to clustering player traces in order to expose useful game
information. We consider three trace similarity metrics, as
well as two clustering algorithms. We evaluate and com-
pare the different approaches using trivial and non-trivial
game levels from different game genres, giving guidance on
clustering and metric choices, and illustrating the potential
value of cluster information.

Keywords
Artificial Intelligence, Video Games, Stealth games, Clus-
tering

1. INTRODUCTION
The development of digital games commonly requires an

iterative process, looping between designing and play-testing.
Information gathered from the latter is used to influence the
design and produce a well tailored player experience. Play-
testing information often takes the form of multi-dimensional
traces, e.g. a player path from start to finish, where a
state on that path has position, but also information about
health, ammo, enemies alive, etc. Understanding such data
is a complex activity, as the human behaviours of play-
testers will result in a large amount of variance in the trace
structure, even for relatively similar approaches. Techniques
which aggreggate traces into similar groupings thus have sig-
nificant value in helping designers more easily understand
the range of game-play a level affords.

In this paper we present an analysis of the effect of au-
tomatically clustering player traces. Our approach is to use
the full, high-dimensional space of player traces, considering
not just the geometric positions but also other dimensions
of measuring the player state, such as time, health, and so
forth. In this way we provide a comprehensive and flexible

view that can expose interesting differences in player traces
beyond simple pathing choices. Our work is part of a bigger
project, aiming to offer design-oriented tools which leverage
Artificial Intelligence techniques (AI) to better understand
the game experience.

We analyze two major clustering algorithms (K-Means++
and DBSCAN), along with three different metrics for com-
paring traces together (area, Fréchet and Hausdorff). We
first seek to verify whether the selected clustering algorithms
and metrics can produce reliable cluster results on test lev-
els, and then through comparison determine which of each
performs the best in terms of quality and computation time.
We then apply our approach to multiple game-genres (com-
bat, stealth and platformer) using non-trivial levels, to show
some types of information that can be gleaned from cluster-
ing results. Our results help define useful choices in design-
ing an efficient and effective clustering approach, and also
illustrate the utility of considering multi-dimensional traces
in understanding game-play. Specific contributions of our
work include:

• We describe and explore different path similarity metrics
and algorithms, taking a curve-oriented approach towards
clustering player traces.

• The framework we use is explored in the context of Unity3D,
and available as open-source, providing an industry-relevant
and useful tool for further research [5].

2. BACKGROUND & RELATED WORK
Our approach in this work can be seen as part of the ef-

fort to offer design tools that leverage AI techniques to help
design and create interactive content. AI-based design tools
have a broad scope, encompassing problems such as path
finding [17], procedural content generation [15], etc. Here
we are interested in presenting data produced in testing (by
human players or artificially) to game designers/developers
to help them understand their game/level-design better. For
this, simple statistics such as average time taken to complete
a level, or average health loss, are common; we are concen-
trating on managing the complexity of more detailed analy-
sis, grouping similar traces together whatever the dimension
or metric of interest.

In order to produce the traces (paths) to be clustered,
we used a random path generator for stealth [17] and plat-
former [16] games. The paths are produced using a ran-
domized, heuristic tree-search algorithm (rapidly randomly
exploring tree search) applied to a formal state representa-
tion, and respecting game rules. These traces could have



been produced by human players as well, but we are also
interested in building game design tools that do not involve
human players, using artifical traces as part of a solution to
efficiently computing automatic game metrics [12] at design
time. Our traces result in multi-dimensional data, record-
ing position, time, and aspects of player state. Additionally,
we also incorporate a measure of risk as an analytic met-
ric previously presented by Tremblay et al. [18]. This latter
measure is a stealth oriented metric, computing a heuristic
risk factor for each point on a player path as a function of
distance to enemies. This has been shown to correlate with
human perception of risk, and thus represents an additional
interesting and relevant factor in understanding path data.

Related Work - Clustering of player behaviours has seen
increased interest in academic game work. Andersen et al.
presented a genre-independent method called Playtracer to
visually analyze play traces through a generalized heatmap,
treating traces as sequences of game state [1]. Their ap-
proach required the designer specification of a state distance
metric for each particular type of game, but in later work
by Liu et al. these metrics were made easier to define by us-
ing state features to collapse states together without losing
salient information [10]. Their focus is aimed at determin-
ing state pivots: moments in the trace where the players
found a solution to the problem or where/when they gave
up. Osborn and Mateas similarly created a trace visualiza-
tion system, but compared sequences of input actions in-
stead of state, using a special edit distance metric, in their
Gamalyzer tool [13].

Our work revisits the state-based approach but looks at
the state space geometrically, treating traces as curves –
each point having a certain set of features (position, time,
health, etc.) – and using curve-oriented distance metrics to
compare them together.

In other related work, Bauckhage et al. presented a spatio-
temporal clustering method for game levels [3]. Their method
evaluates one player’s in-game movement behaviours to de-
termine relations between cover and non-cover choices and
likely transitions between them. This work differs from ours
as they are interested in the analysis of one path, whereas
we are interested in grouping similar paths together.

3. CLUSTERING APPROACH
The clustering framework is composed of two major com-

ponents: the clustering algorithm and the metric to compare
traces together, which can be chosen independently. The in-
put to the framework includes the set of traces, the dimen-
sions to cluster on, and various parameters depending on
the clustering algorithm chosen. The set of traces consists
of paths, i.e. a set of points, which can have multiple pieces
of information for each point, such as 〈x, y〉, time, distance
to enemy, health, and other genre-dependent measures. In-
formation about the level (such as walls or obstacles) can
also be provided if cleaning of the traces is needed (see sec-
tion 3.3 below). Mathematically, we are in interested in
finding pi ∼ pj ∀p ∈ ck, where pi and pj are paths and ck is
a cluster. Note that a (theoretically) simple, intuitive inter-
pretation of ∼ as homotopic equivalence is not sufficient, as
while the level topology is a good guideline, not all obstacles
induce meaningful cluster distinctions.

Figure 1: A small Hausdorff distance but a large Fréchet distance
[19].

3.1 Metrics
Clustering algorithms necessitate a distance measure or

metric between two objects in a dataset. In the basic case,
when dealing with purely geometric coordinates of n dimen-
sions, the Euclidean distance is used to compare any two
points. Here, we are clustering on level traces, that is, sets
of points (for our purposes), which can be generalized to geo-
metric curves. Therefore, we consider curve distance metrics
and their application to our context; below we discuss Haus-
dorff, Fréchet, and area (triangulation) similarity metrics.

The Hausdorff distance is a basic measure of similarity
between sets. It is a maxi-min function H, which given two
sets A and B determines, for each point in A, the smallest
distance to any point in B, and returns the largest of those
distances. The maximum of H(A,B) and H(B,A) is then
taken to create a symmetric distance function [9]. Hausdorff
distance considers all pairs of points, but is in practice rel-
atively fast to compute, due to the low constant involved in
performing the computation. Compared with our other met-
rics below, however, (and depending on the level context,) it
also generally produces less desirable results, likely because
it takes a set-based view of similarity, and does not take into
account the ordering or location of points on the curve. This
will be shown in our results discussed in section 4.

Fréchet distance is a metric that calculates the distance
between two curves, directly factoring in the location and
ordering of points on each curve. The common example is
to imagine a man on one curve, walking his dog on the other.
Both the man and dog follow their respective curves from
start to endpoint and can vary their speed, but cannot go
backward. The Fréchet distance is then the minimum length
of the leash necessary to connect the man and dog at any
point during their walk [8].

This metric has several advantages compared with some of
the other metrics we considered. The most significant bene-
fit of the metric is that it takes into account the ordering of
the points on the curve, and thus acts as a better measure
of curve similarity. Figure 1 shows the importance of this
factor, illustrating two curves which are qualitatively quite
different and have a large Fréchet distance, but which would
be considered“close”in Hausdorff distance. For player traces
where the distinction between a player who proceeds directly
to the goal and one who does some amount of backtracking
this may be quite important, and a metric like Fréchet is
potentially a better choice. Fréchet also directly extends to
curves in higher dimensions, and so like Hausdorff is useful
in a multi-dimensional context, giving us flexibility in how
we cluster. A disadvantage of Fréchet, however, is that a
naive implementation is in practice slower to calculate than
Hausdorff, a concern we partially solve by by using the opti-
mized implementation provided by Buchin et al. [4]. Finally,
note that the Fréchet distance comes in both discrete (weak)
and continuous forms, and we are using the latter.



The Area between curves is another possible metric. Here,
we calculate similarity in terms of the total area of the closed
space between the two curves. With a monotonically in-
creasing dimension (such as time), the shape between two
curves is well defined, making area a good measure of sim-
ilarity. In more abstract dimensions, however, or without
a strong monotonic axis such as provided by the time di-
mension, the area between is not necessarily well defined
(figure 1 is an extreme example in 2D), so while this metric
has intuitive appeal, it tends to be limited to simpler 2D
or 3D situations. As well, since our curves are defined by
discrete points, we calculate the area between the curves by
triangulating rather than integrating.

Note that throughout we make the simplifying assump-
tion that paths progress from the same starting point to
either a single end-point or a relatively small region of end-
points. That latter in particular is not always the case, and
in games where players may complete a level by satisfying
more arbitrary constraints (such as jumping higher than a
given threshold) a geometric interpretation of distance may
not accurately represent logical similarity, and would require
a more abstract distance measure.

3.2 Clustering
The second component of our framework is the clustering

algorithm itself. Criteria for selection included speed, scal-
ability, and quality of results. Algorithms also had to use
a metric that compared distance between points, so that
the trace distance metrics outlined above could be easily
inserted. Both K-Means and DBSCAN were considered.

K-Means operates using the concept of cluster centroids:
initially, centroids are picked at random from the datapoint
space, and each datapoint is assigned to the closest cen-
troid. The centroids are then recomputed based on an av-
erage of their assigned points, and the datapoints are re-
assigned again to the closest centroid, repeating until sta-
bilization [11]. K-Means however does not always produce
the optimal result; depending on the initial random choice
of centroids, the algorithm can get stuck in a local mini-
mum, which also decreases the performances of the algo-
rithm. To fix these issues, Arthur & Vassilvitskii introduced
K-Means++, an algorithm to seed K-Means with smarter
cluster centroids by choosing each successive cluster centroid
to be far away from the others with some probability. This
addition was shown to considerably increase both accuracy
and speed [2]. We used K-Means++ in our tests.

DBSCAN was also used as a clustering algorithm, with
more success. Like K-Means, it deals with distances between
datapoints. The algorithm has two inputs: minimum cluster
size and a value ε. The idea is to look at the ε-neighborhood
of each point, and if its size is greater than the specified
minimum cluster size it forms a cluster. The ε-neighborhood
of each point in that cluster is then checked, adding further
points to the cluster if it is greater than the minimum cluster
size, and in this way growing individual clusters. Points that
have smaller ε-neighborhoods and which are not assigned to
any cluster are marked as noise. DBSCAN works well in
finding clusters of differing size, an area where K-Means is
less successful. Furthermore, it finds the optimal number
of clusters naturally as a function of ε, rather than having
to specify a fixed number of desired clusters ahead of time.
It also performs in most cases at least as well as K-Means
in terms of speed, and is more configurable due to its two

Figure 2: Before (top) and after (below) cleaning with RDP. Note
how the general trajectory of each trace is maintained while un-
necessary points are removed (dependent on a provided ε), while
no path is smoothed to the point that it intersects the middle
obstacles.

inputs [7]. In cases where a maximum number of clusters is
desired, we also allow for K-Means++ to combine clusters
returned by DBSCAN based on the proximity of their cluster
centroids.

3.3 Trace Cleaning
Clustering can be an expensive process, and this can inter-

fere with its practical usage in an interactive design setting.
In our case the main cost is in computing path similarity,
the cost of which is a function of the number of points used
to define the paths. Recording the player’s position in space
and time at every frame, for instance, can result in a large
number of points, many of which are very similar if not equal
to the points adjoining them in the trace. In such cases, a
path simplification algorithm such as the Ramer-Douglas-
Peucker (RDP) algorithm [6, 14] can be used to remove ex-
traneous points in the trace. RDP works by proposing a
new curve composed of a straight segment from given start
and end points, and either verifying that all points between
in the original curve are not too far away, or including the
most distant point as a necessary endpoint, splitting the pro-
posed segment into two, and repeating recursively on the two
smaller segments. Figure 2 shows before and after results,
with the simplified paths following more or less the same tra-
jectory, but consisting of far fewer points, and thus reduced
clustering time.

In a game context, it is necessary for cleaned traces to
continue to represent a feasible player path. For games that
have obstacles – walls, or other known zones or states impos-
sible for a player to access – a constraint was added to RDP
to also not remove points in a path such that the resulting



Figure 3: Overhead view of the Euclidean sanity level with 1500
traces coloured according to their clustering into 4 groups, using
K-Means++ with the Fréchet distance on 2D coordinates. The
blue (upper left) and green (lower right) circles represent the start
and end positions of the traces, respectively.

path would pass through or go around said obstacle. This
change was accomplished by taking the start and end-points
of the line in the current RDP iteration, and then forming a
triangle with each point that may be removed. If any vertex
of any obstacle is contained within the triangle, the inter-
mediate point must be retained. Note that in such case, the
cleaning would require the positions of the obstacles in the
level as an input.

4. EXPERIMENTAL RESULTS
In this section we explore the performance and possible

applications of path clustering. We first present results on
sanity check levels. These tests assure us that we are getting
a satisfying output that matches our intuition of how paths
should be clustered, independent of the numeric properties
that drive the clustering algorithms. We then perform a
comparison of the impact of the various similitary metrics
and clustering algorithms, followed by an exposition of in-
teresting results on non-trivial levels for different game gen-
res. All traces used in this section were generated using the
aforementioned random path generators [16, 17].

4.1 Sanity checks
A basic design goal for our clustering was for it to clearly

identify trace groupings that represent significantly differ-
ent game choices. Geometrically, this means respecting how
paths navigate obstacles (homotopy), but it should also dis-
tinguish based on time, choice of game actions or behaviours.
Below we show results using Euclidean traces, time-dependent
traces, and gravity-influenced traces (platformer genre).1

Euclidean traces - Figure 3 shows a simple level with
four distinct topological options from start to end position

1Videos are provided showing some time-dependent clusters
and others that are hard to visualize using figures.

Figure 4: Overhead view of the time sanity level with 1500 traces
coloured according to their clustering into 4 groups along the time
dimension, using K-Means++ with the Fréchet distance.

(excluding loops). As can be seen from the colouring, traces
were assigned to distinct clusters based on the corridor they
passed through. Note that we use K-Means++ here to show
that it works in a simple context, and is sufficient in this
context.

Time traces - For many genres, the time component is
extremely important. In stealth games, for example, time
dictates whether the player is seen or not by an enemy at
a given position. In figure 4, an enemy is positioned at the
small yellow circle in the central bottleneck and repeatedly
rotates looking north then east, for a total of four times.
This behavior creates four openings for the players to pass
unseen by the enemy from the start on the left to the goal
on the right, which are clearly identified in the clustering as
four separate waves of player movement.

Platformer - In this example we used traces from the
platformer domain, introducing the additional complexity
of player motion being affected by gravity as well as manual
player movement for left, right, and jumping. The plat-
former game used is one developed in Unity3D by Tremblay
et. al [16]. Paths were cleaned using the RDP algorithm
before clustering to reduce clustering time and get better
results. Figure 5 shows our platformer test level with four
clusters, mainly separated in terms of topological structur-
ing, but also with some difference between the intial choice
of jumping up or just falling (blue versus green clusters).

4.2 Variations
In this subsection we investigate the effect of our differ-

ent path similarity metrics, followed by the choice of K-
Means++ or DBSCAN.

Metrics - In the previous section, we presented three dif-
ferent approaches for measuring the distance between two
curves: Hausdorff, Fréchet, and area. As these measures
have different properties and costs, we are interested in know-
ing whether the metric choice has an impact on the clus-



Figure 5: Side view of the platformer test level with 500 traces
clustered on Euclidean coordinates into 4 groups, using DBSCAN
with the Fréchet distance, after using the RDP algorithm.

tering quality. For this we hold the clustering algorithm
constant, and compare behaviour of K-Means++ under dif-
ferent path similarity metrics.

For example, figure 6 shows a collision heat map of a K-
Means++ clustering using Hausdorff distance on the Eu-
clidean sanity level. Intensity of the blue coloring at each
pixel is a function of the number of different clusters which
paths passed through: darker means greater overlap, and
thus less well-distinguished grouping.

In order to compare the different metrics, we ran 31 in-
dependent clusterings with K-Means++ with 4 clusters for
each metric on the Euclidean and time sanity levels. For
comparison purposes, we used fine-grain bitmap collision de-
tection, and excluded the (necessarily) densely overlapping
start and end sites by focusing only on the subset of the
bitmap represented by the black rectangle overlaying the
figure. Figure 7 shows the distribution of pixel collisions for
all three metrics (area, Fréchet and Hausdorff), with their
averages and medians. The presented order is from most to
least stable metric. The figure shows that the area calcu-
lation is most stable, while Fréchet has about one to three
wrong paths on average and Hausdorff is the least stable.
Conversely, their computation time is inversely proportional
to their quality.

We ran the same experiment on the time sanity level. For
comparisons we used voxel collisions and a subspace of the
3D level (a cube) that again avoids starting and ending ef-
fects. The results are given in figure 8, showing the distribu-
tion of voxel collisions. The figure presents less convincing
results than in the Euclidean case, as here while area is still
best, Hausdorff has about the same average as Fréchet, and
a much better median. All distributions, however, are much
more spread out, with wide variance, and so a less clear dis-
tinction between clustering choices is not unexpected. Un-
like geometric clustering, where topological structures help
clustering make clear distinctions, a continuous time dimen-
sion does not impose homotopic properties, and even with
our periodic guard rotations the cluster intervals have some
degree of overlap.

Clustering algorithm - Our previous experiments used
K-Means++ as one of the most popular and well known
clustering algorithms. Other choices such as DBSCAN are

Figure 6: Cluster pixel collisions taken from the same level as
shown in figure 3: the darker it is, the more paths from different
clusters collide. The black-bordered rectangle is used to calculate
the quality of the metric.

0
2
4
6
8

10
12

0
2
4
6
8

10
12

0 100 200 300 400 500 600 700
0
2
4
6
8

10
12

Figure 7: Pixel collision distribution of the 31 independent K-
Means++ clusterings in the Euclidean sanity level for the three
metrics: area (blue), Fréchet (magenta), and Hausdorff (green)
with their average (dashed line) and median (dash-dot line). The
continuous lines show an equivalent normal distribution for the
calculated mean and standard deviation.



0
2
4
6
8

10
12

0
2
4
6
8

10
12

800 1000 1200 1400 1600 1800 2000
0
2
4
6
8

10
12

Figure 8: Voxel collision distribution of the 31 independent K-
Means++ clusterings in the time sanity level for the three metrics:
area (blue), Fréchet (magenta), and Hausdorff (green) with their
average (dashed line), median (dash-dot line), and corresponding
normal distributions.

of course possible. Algorithmically, and especially for our
context, DBSCAN offers a number of advantages over K-
Means++. The latter, for instance, requires the number of
clusters to be specified as input to the clustering algorithm.
This is not always convenient in player analysis, since it
either requires ahead of time knowledge of the intended re-
sults, or an iterative reapplication of clustering to search
for the best number of clusters. K-Means++ also assumes
clusters should be of similar size, and while this is appro-
priate for evenly splitting up a dataset, it means traces in-
dicative of interesting outliers or under-represented player
strategies will be either diluted or spread into other clusters
when enforcing the total number of clusters: understanding
how most players will traverse a level design is important,
but so is identifying unusual and less common groups of be-
haviours that may side-step designer goals.

Figure 9 shows the results of DBSCAN applied to the same
traceset from our sanity level (figure 3), which was evaluated
in terms of quality under K-Means++ in figure 6. In this
case we use Fréchet distance as our similarity metric, as a
reasonable compromise between quality and computational
cost, and since we noted that the choice of similarity metric
is much less critical under DBSCAN, with all metrics giving
similar results. Here we see no cluster collisions are found in
the middle of the level, although 156 out of the 1500 paths
were labelled as noisy paths. Outliers thus do not distort
the clustering, but must still be manually inspected if of
interest.

A useful property of DBSCAN is that these results are
generally deterministic—DBSCAN does not rely on random
sampling, and so once a valid value of ε is chosen, the clus-
tering always produces the expected results. This also in-
dicates one of the main disadvantages of DBSCAN, in that
the need to select a meaningful ε makes its usability by non-
technicians non-trivial. It is also slightly slower than K-
Means++. At the same time, we conclude that DBSCAN is
the better choice over K-Means++ due to its more desirable
results on our sanity level.

Figure 9: Pixel collisions of DBSCAN on the Euclidean sanity
level.

4.3 Non-trivial examples
In this subsection we will show non-trivial level cluster

results in the stealth, combat, and platformer genres. Eu-
clidean, time, and trace metrics will be used as cluster di-
mensions. These results demonstrate the various possible
applications for our clustering framework, revealing possible
information that may be useful to level designers.

Euclidean traces - Figure 10 shows a recreation of the
first level of Metal Gear Solid, a popular stealth game and
one that we used in several tests for our framework because
its topology allows for distinct paths from starting position
(top-left corner, blue sphere) to end position (bottom-right
corner, green sphere), and which has important time and
other metric properties as well. The figure presents the re-
sults of our default clustering approach (DBSCAN with the
Fréchet distance), with each cluster taking a distinct set of
corridors from start to end position with paths being homo-
topically equivalent, even though the clustering process had
no knowledge of the level configuration.

Time traces - Figure 11 shows the results of clustering on
the Metal Gear Solid level using geometric coordinates and
time. Guards patrol throughout the interior of the level and
so in the timestep at which the figure was taken there are
no path nodes going through the central corridors. Once
again, all clusters are clearly differentiated by space and
time creating time-space dependent groups as seen by the
characters (node) color. A level designer may be interested
in these clusterings as indicating both path choice and the
need to wait in order to bypass patrolling enemies.

Metric traces - It is also possible to cluster on abstract
metric values associated with traces. Figure 12 shows the
results of clustering on geometric coordinates and a danger
metric (described in section 2) defined on each node in each
trace. To better show the results we use an isometric view,
projecting path nodes into the vertical-axis to indicate the
amount of danger associated with a particular trace node.
Notice that in this case clusters are located in semi-distinct



Figure 10: Metal Gear Solid’s first level with 1500 traces clus-
tered into 6 groups on Euclidean coordinates, using DBSCAN
with the Fréchet distance. All clusters are visible in this static
image except the blue cluster, which follows the top corridor,
goes down through the central vertical corridor until reaching the
middle, then follows the central horizontal corridor to the end
position.

Figure 11: Metal Gear Solid’s first level with 1500 traces clus-
tered into 6 groups based on Euclidean and temporal coordinates.
At the displayed timestep, we can see the purple cluster travel-
ling through the top corridor, the yellow and black clusters going
through the bottom corridor, and the green cluster still waiting
to move out from the start position.

Figure 12: Metal Gear Solid’s first level with 1500 traces clus-
tered into 6 groups based on Euclidean coordinates and danger
metrics of the nodes in each trace. We can see that the yellow
cluster has high danger metrics towards the end position (right
side), followed from right to left by the purple, blue, and green
clusters. The red and black clusters, each taking a different set of
corridors to the goal, are flatter and therefore have lower danger
values.

Figure 13: An experimental stealth level designed in Unity3D
with two health packs (green squares) and four enemies (yellow
circles), with 1500 traces clustered into 4 groups based on geo-
metric coordinates and player health values, using DBSCAN with
the Fréchet distance.

areas of the level, but also with differing degrees and dis-
tributions of danger values. The red and black clusters, for
example, have almost no danger but follow different paths
to the goal; taking either set of corridors is the least dan-
gerous way to complete the level. Other clusters experience
some amount of danger, but at different points—the green
cluster has a high danger value early in the traversal, yellow
primarily at the end, etc.

Another metric tested was the player health at any node in
a trace. Figure 13 shows a level with two health packs (green
boxes), and four enemies (yellow circles). The player starts
at the blue circle (bottom right) and their goal is to reach
the green circle (top center) alive. Using geometric coordi-
nates and player health values we find 4 clusters which show
traces that differ in path choice, enemies fought, and health
packs used. The magenta group, for instance, went up the
rightmost passage, usually fighting 2 enemies and picking up
one health pack. The red cluster rather fought one or two of
the bottom-most enemies and picked the health pack on the
left before exiting. Green and blue clusters do not pick up
any health packs, but fight 0–3 enemies, following different
paths through either the central channel (green), or primar-
ily along the bottom and left (blue, sometimes deviating to
fight the lowest center-corridor enemy).

Player health is an important property. We thus also ex-
perimented with clustering purely on the health dimension.
This resulted in 9 different groups, including different com-
binations of enemies fought and health packs taken. The
choice of clustering dimensions is thus a flexible means for
a designer to focus their understanding on pathing choices,
time, player state, or any combination thereof.

Platformer - We also used our default approach on a non-
trivial platformer level developed by Tremblay et al. [16]. In
the level, seen in figure 14, there are two obvious paths from
the start to ending position: either follow the bottom ledges
and jump up at the end, or jump up at the start and follow
the top ledges. However, it is also possible to follow the



Figure 14: A platformer level with several paths from the start-
ing to end position, showing 850 traces clustered into 17 groups
based on Euclidean coordinates, using DBSCAN with the Fréchet
distance. In-editor cluster selection/removal allow for interactive
exploration of this static view.

top ledges for a certain amount, then drop down, follow the
bottom ledges, and jump back up. Different choices of ε
allow a designer to explore the coarse, overall behaviours, or
the more subtle variations that depend on reaching different
platforms or not. Figure 14 shows a detailed view consisting
of 17 clusters.

5. CONCLUSIONS AND FUTURE WORK
A good understanding of player activity in a game level

needs to be based on many traces, while also taking into
account the multiple dimensions of game state that play-
ers tend to analyze. This kind of data easily results in an
overwhelming volume to consider, even if much of it has lit-
tle interesting variance. Appropriate clustering of traces in
this high-dimensional context gives a useful means of find-
ing and investigating the important, relative choices and
trade-offs players make without drowning the designer in
detail. Our approach – using DBSCAN in conjunction with
the Fréchet distance – gives useful insight into this process,
with the added advantage that our framework of investiga-
tion is open-source and built within Unity3D, and so of real
and practical relevance.

An interesting direction for our analysis framework is in
using it to find major trends in terms of player metrics, and
applying that knowledge to train different controllers that
mimic the major play-styles a level inspires. This would en-
able better automated analysis of future level designs. We
are also interested in using the clusterings found in higher
dimensional contexts to better understand the structure of
more abstract measures of player activity—dimensions such
as health, danger and so forth may not have hard-coded
obstacles, but how clusters form with respect to these di-
mensions may still imply a heuristic, generated homotopy
that reveals useful constraints on how a given level design
can affect players.

Further work on developing more complex levels, as well
as doing testing with developers in real-world game environ-
ments, would allow us to better establish the benefit of using
trace clustering in level design. It would also be useful to
compare the curve-oriented approach seen here with other,

previously-seen trace representations, such as sequences of
game states or actions, in order to determine the advantages
and disadvantages of each approach.

6. ACKNOWLEDGEMENTS
This research was supported by the Fonds de recherche du

Québec - Nature et technologies, and the Natural Sciences
and Engineering Research Council of Canada.

7. REFERENCES
[1] E. Andersen, Y.-E. Liu, E. Apter, F. Boucher-Genesse,

and Z. Popović. Gameplay analysis through state
projection. In Proceedings of the Fifth International
Conference on the Foundations of Digital Games,
FDG ’10, pages 1–8, New York, NY, USA, 2010. ACM.

[2] D. Arthur and S. Vassilvitskii. K-means++: The
advantages of careful seeding. In SODA’07:
Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1027–1035,
Philadelphia, PA, USA, 2007. Society for Industrial
and Applied Mathematics.

[3] C. Bauckhage, R. Sifa, A. Drachen, C. Thurau, and
F. Hadiji. Beyond heatmaps: Spatio-temporal
clustering using behavior-based partitioning of game
levels. In CIG’14: IEEE Conference on Computational
Intelligence and Games, pages 1–8, Aug 2014.

[4] K. Buchin, M. Buchin, R. van Leusden,
W. Meulemans, and W. Mulzer. Computing the
Fréchet distance with a retractable leash. In ESA’13:
Proceedings of the 21st European Symposium on
Algorithms, pages 241–252, 2013.

[5] J. Campbell and J. Tremblay. Unity-3d — clustering
open-source implementation.
https://github.com/GameResearchAtMcGill/

unitytool/releases/tag/FDG2015, 2015.

[6] D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to represent
a digitized line or its caricature. Cartographica: The
International Journal for Geographic Information and
Geovisualization, 10:112–122, 1973.

[7] M. Ester, H. peter Kriegel, J. S, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of
Second International Conference on Knowledge
Discovery and Data Mining, pages 226–231. AAAI
Press, 1996.

[8] M. Frechét. Sur la distance de deux surfaces. Annales
de la Société Polonaise de Mathématique, 1925.

[9] F. Hausdorff. Grundzüge der Mengenlehre. Leipzig
Viet, 1914.

[10] Y.-E. Liu, E. Andersen, R. Snider, S. Cooper, and
Z. Popović. Feature-based projections for effective
playtrace analysis. In Proceedings of the 6th
International Conference on Foundations of Digital
Games, FDG ’11, pages 69–76, New York, NY, USA,
2011. ACM.

[11] J. MacQueen. Some methods for classification and
analysis of multivariate observations. In Proceedings of
the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics, pages
281–297, Berkeley, Calif., 1967. University of
California Press.



[12] M. Nelson. Game metrics without players: Strategies
for understanding game artifacts. In AIIDE’11: AAAI
Conference on Artificial Intelligence and Interactive
Digital Entertainment, 2011.

[13] J. C. Osborn and M. Mateas. A game-independent
play trace dissimilarity metric. In FDG’14:
Proceedings of the 9th International Conference on
Foundations of Digital Games, 2014.

[14] U. Ramer. An iterative procedure for the polygonal
approximation of plane curves. Computer Graphics
and Image Processing, 1(3):244 – 256, 1972.

[15] J. Togelius, G. Yannakakis, K. Stanley, and
C. Browne. Search-based procedural content
generation: A taxonomy and survey. IEEE
Transactions on Computational Intelligence and AI in
Games, 3(3):172–186, 2011.

[16] J. Tremblay, A. Borodovski, and C. Verbrugge. I can
jump! Exploring search algorithms for simulating
platformer players. In EXAG’14: First Workshop on
Experimental AI In Games, 2014.

[17] J. Tremblay, P. A. Torres, N. Rikovitch, and
C. Verbrugge. An exploration tool for predicting
stealthy behaviour. In IDP’13: Proceedings of the
2013 AIIDE Workshop on Artificial Intelligence in the
Game Design Process, 2013.

[18] J. Tremblay, P. A. Torres, and C. Verbrugge.
Measuring risk in stealth games. In FDG’14:
Proceedings of the 9th International Conference on
Foundations of Digital Games, 2014.

[19] R. van Leusden. A novel algorithm for computing the
Fréchet distance. Master’s thesis, Eindhoven
University of Technology, 2013.


