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ABSTRACT
Level design for stealth games requires the ability to explore
and understand the possible paths players may take through
a given scenario and how they are impacted by different de-
sign choices. Good tool support can help by demonstrating
the existence of such paths, but for rapid, interactive design,
the relative difficulty of possible solutions also needs to be
quantified, in a way that correlates well with human per-
ception of risk. Here we propose and evaluate three differ-
ent metrics for defining and quantifying the risk of stealthy
paths. We validate and compare these measures through
a small human study, showing that a simple path-distance
measure correlates best with human judgement. An evalua-
tion of a non-trivial stealth scenario demonstrates the prac-
ticality of our approach, and shows how such measures can
be useful in understanding a level design.
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1. INTRODUCTION
Stealthy behaviour, sneaking past or up to enemies, is an

interesting and popular mechanism in many First Person
Shooter (FPS) and Role Playing Game (RPG) games, with
the design approach even becoming a sub-genre on its own
[20]. Developing stealth scenarios, however, is non-trivial—
a designer must select locations and parameters for static
and dynamic enemies, the placement of different stealth ob-
stacles or enhancers (sound, light/dark), and also consider
the impact of level geometry [14]. The success of a design
with respect to ahead-of-time gameplay goals then depends
on the behaviour of actual players within the scenario, some-
thing which is traditionally available only as a result of ex-
tensive beta-testing, well after the design process should be
completed.

Better stealth level design can be facilitated through ap-
propriate interactive design tools, which can use artificial in-
telligence to expose the existence of different possible player

paths through a stealth scenario [18]. This gives design-
ers the ability to dynamically evaluate the relative existence
of a stealthy path solution. Qualitative evaluation of level
difficulty or game complexity, though, depends strongly on
how players perceive possible solutions—during immersive
gameplay, players will view different stealthy path choices
as more or less likely to result in exposure and thus more
or less dangerous or difficult. Design of a stealth metric
that quantifies this perception is thus an important aspect
of stealth level design as such definition is non-existent in
the literature. A reliable measure of stealth difficulty would
enable possible stealth paths to be algorithmically analyzed
during and interactive with the level design, improving the
ability of designers to appropriately scale game difficulty,
and avoiding the long round trip otherwise required for hu-
man evaluation.

We propose three different, intuitively appropriate met-
rics for measuring stealth danger. We use a human study
to evaluate these metrics, showing that while our measures
all have a reasonably close correspondence to human per-
ception, the (conceptually) simple measure of path-distance
correlates best with human judgement of relative risk. Our
approach is integrated into a non-trivial, Unity3D-based de-
sign tool, illustrating technical feasibility of our metric eval-
uation, and allowing us to further demonstrate application
of a measurement-based approach to a non-trivial stealth
scenario taken from a realistic computer game.

Specific contributions of our work include:

• We propose and describe 3 different metrics for mea-
suring player perception of risk in a stealth game con-
text. These metrics consider intuitively appropriate
factors such as distance to enemy (Dist), line of sight
(LOS), and the presence of “near misses” in being seen
(NM).

• Using a human study, we evaluate how well our metrics
correlate with a human ranking of the relative risk of
different generated stealth paths. In this we find that
(path) distance to an enemy is likely a dominant factor
in evaluating risk, more important than more complex
line-of-sight oriented features.

• Finally, we demonstrate application of our metrics to
evaluation of the risk distribution of a realistic game
level from Metal Gear Solid.

2. BACKGROUND
The stealth genre is characterized by games that empha-

size stealthy movement (avoiding detection by enemies) as a



fundamental mechanism. A number of examples exist, such
as Mark of the Ninja [8] or Dishonored [2], although the ap-
proach is also popular in many combat-oriented, First Per-
son Shooter (FPS) and Role-Playing Games (RPG), giving
the player an additional interesting, alternative gameplay
style that can also be used to save resources (ammo, health,
magic, etc.). In this section we will explore the definition
of a stealth game. From this definition we then introduce a
high-level algorithm that finds undetected paths from a to
b.

2.1 Stealth Games
Stealth games imply presentation of a challenge to the

player of moving from one location to another, while avoid-
ing detection by static and mobile enemy entities. In order
to mitigate the challenge different mechanics are provided
to the player. Designs that allow players to hide at different
points, exploiting occlusion or shadow, and abilities such as
invisibility, teleportation, etc., help the player. Challenge is
increased by various environmental factors: snow may leave
visible movement traces, metal floors or loose objects may
produce noise when walked on, alarming enemies in the level,
and so forth. A level is created by combining these differ-
ent structures together with basic enemy positioning, move-
ments and detection abilities. This complex relationship be-
tween components will then generate the player’s experience.
Heuristically, a level can be considered to be stealth friendly
if the in-game tools that reduce detection are greater than
the environmental challenges that increase it [14].

Stealth is also encountered in FPSs and RPGs as part of
normal combat preparation, where players seek to scout out
the environment in order to gain knowledge about enemy
movements and placements. This usage constitutes less of
a stealth game in itself, but does not change the main tech-
niques involved.

2.2 Finding Undetected Paths
Our work presumes the existence of some collection of

stealthy paths through a game level. Such paths may be
determined by observing and recording successful human
players, or through specialized path-finding algorithms that
search the state space for undetected routes. For use in in-
teractive design the second option is of course necessary.

Our approach to calculating stealthy paths is fully de-
scribed in previous work [18], but may be sketched out as
follows. First, we make assumptions reasonable to stealth
games, that enemy movement is deterministic, and that our
path-finding goal is to guarantee the player’s path does not
intersect an enemy’s field of view (FOV). More complex sce-
narios where the player clears parts of an area by enticing
some enemies away by being temporarily seen are thus dis-
allowed.

Given an enemy’s deterministic path and a geometry with
a start and goal position, we can formalize the problem.
We begin with an overall space χ consisting of the 2D level
design extruded over time. Within this space we can then
define χfree to be the space where an agent may move freely,
not colliding with obstacles or enemy FOVs: χfree = χ −
(χobstacles ∪ χFOV). In order to easily search this space we
map χ to a discretized environment using 4p for the steps
in precision. A slice of this space is shown in figure 1. This
view shows the level at one point in time, using red cells
to represent obstacles (as a screenshot of the tool output

Figure 1: Level discretization: green represents walkable
areas, red represents obstacles, orange the field of view of
enemies, and blue and yellow spheres the start and goal
location respectively.

there is some minor perspective), orange the enemies’ FOVs,
green representing χfree, and the spheres the starting and
ending player locations. As this viewpoint is moved through
the time dimension, enemies will move according to their
deterministic motions, changing which cells are contained in
their FOV. The result is a full 3D space that represents the
complete level dynamics.

Within this 3D space, we discover possible stealth paths
through a basic path-finding algorithm, beginning at the
start position and reaching the goal position, while avoiding
obstacles, FOVs, and constrained by forward time-movement
and feasible movement velocities. As our goal is to enable
quick analysis in an interactive context, we use a heuristic
search based on the Rapidly exploring Random Tree (RRT)
algorithm [11]. While not optimal, this approach allows us
to rapidly generate a large number of paths, with the fur-
ther advantage that the randomization properties of RRT
better approximates human search of the problem space.
Other path-finding approaches are possible of course; the
main requirement, however, is that we receive a feasible
path, q ⊆ χfree, consisting of a sequence of points in our
3D (x, y, time) space. To inspect this path, we define a
function g that takes as arguments a path q and a time t to
return a 2D position in the plane: g(q, t) = α, where α is
a 2D vector. We access a specific coordinate value of the α
tuple using an appropriate subscript, e.g. αx or αy.

3. RELATED WORK
Our work is intended to better understand and be able

to model player behaviour in stealth games. A significant
amount of previous work has been directed at analyzing and
modelling player behaviours. Informal, early work was done
by Bartle as a categorization of player types [4], he defined
four basic kinds of players, Achievers, Socializers, Explor-
ers, and Killers, with each type having different motives to
interact with a game. A game’s success can then be partly
explained by how much it appeals to the different types, as
well as the ecology of types a game attracts. Subsequent,
more formal studies have since confirmed this rough catego-
rization [1].



A different approach is taken by Sweetser and Wyeth [15],
who introduced the Gameflow model to evaluate player en-
joyment in games regardless of type. This model borrows
from the flow theory in psychology originally proposed by
Csikszentmihalyi, on which they added a level of abstraction
specifically oriented to games. Like Bartle’s work and other
statistical studies, however, this does not offer a clear formal
model at how a machine could, without the help of a human
being, evaluate a human player’s experience/trace.

A few precise models have been defined to measure player
experience. In the game series Left 4 Dead 1 and 2 from
Valve, an “intensity” metric is used to represent player game
experience. The metric varies positively when a player is
injured by an opponent, is incapacitated by an opponent,
pushed or pulled off a ledge by an opponent, and when
nearby opponents die, and is reduced by less stressful stretch-
es of gameplay. The AI Director uses this knowledge about
the player’s experience to create a tailored game [6]. Measur-
ing player experience in this fashion has since been applied
in a number of different contexts, including an analysis of
difficulty in World of Warcraft [3], and in more recent work
by Tremblay et al., where the authors used an intensity met-
ric to dynamically adapt companion behaviour [19].

Geometric models have also been applied to game analy-
sis. Liapis et al., for example, translated some game design
patterns [5] into simple algorithms that describe symmetry,
area control and exploration [10]. They showed how these
different metrics could be used to optimally evolve different
levels. Metrics algorithms are often closely linked to gen-
erative methods for game content [7]; many generative pro-
cesses follow a core structure of generating some content,
e.g. a game level, followed by using a metric-based utility
function on the content to determine the resulting quality
[17]. For example, in the work of Togelius and et al., they
presented generative methods to evolve race tracks, measur-
ing the result using neural network-based agents [16]. This
allowed them to evaluate the quality of the track, measur-
ing amount of progress, variation in progress, and difference
between maximum and average speeds.

Perhaps the closest prior work to our presented work is by
Shi and Crawfis, who presented a design tool that computes
metrics on the optimal path a player may find to get through
a level, given obstacles and enemy distribution [13]. They
considered properties such as the minimum damage cover,
longest path, and standard deviation of cover points. We
are concentrating on metrics relevant to the stealth games
genre, but incorporation of these kinds of FPS metrics would
be interesting in more complex situations, where stealth and
combat combine. Both their work and ours fall under Nel-
son’s state space characterization strategy [12].

4. METRICS
The amount of danger or risk inherent in a stealthy path

has a close relation to the potential for discovery by the en-
emy. Relative proximity of enemies is thus important, as
is the direction in which enemies face—if an enemy directly
looks at a player the risk of failure is also increased. We
first describe a metric that relies on path distance, followed
by one that focuses on the enemy’s relative angle of sight,
and finally a more complex metric that tries to measure how
close a player came to being discovered. The different met-
rics presented should be looked as propositions for a formal
definition of risk and will be validated in section 5.

4.1 Dist: Distance to enemy
Heuristically, a player close to an enemy risks discovery

more than one far away. Since discovery is typically predi-
cated on visual contact, however, this distance measure also
needs to take into account game obstacles—an enemy be-
hind a thin wall represents less of a danger than one equally
close but not occluded. Our distance to an enemy measure
(Dist) is thus defined in terms of path-distance using an A∗

search within χfree rather than simple Euclidean or Man-
hattan distance. In order to compute this metric we need
to consider proximity to each enemy at each point in time.
We thus define d∗(α, β) to be the path-distance between two
planar position, α and β. This gives us the equation,

Dist(p) =

T∑
t=1

[∑
e∈E

1

d∗(g(p, t), g(e, t))3

]
(1)

In equation 1 p represents a player’s path, and e is an en-
emy path from the set of all enemy paths E. T is defined as
the maximum t value in our path p. In the above equation
we use the reciprocal of the distance cubed as a non-linear
means of scaling intensity as the player gets closer to an en-
emy. This is based on our need to have the function weight
closer enemies as much more dangerous than distant ones,
and our observations during prototyping that other expo-
nents tend to either over-value or under-value proximity.

Variable movement speeds imply a further scaling factor
must also be applied to produce meaningful values. Suppose
there are two paths, initially identical, and deviating only
during the last unit of distance, where despite being well
away from any enemies one path ends up taking takes twice
as much time as the other. Intuitively, such paths should
have very similar values in terms of relative danger, but the
accumulation of terms over time in equation 1 can give the
slower path arbitrarily higher danger values, depending on
the relative movement speeds.

To reduce the impact of these extra factors, we normalize
the Dist value by the total length, L, of the path in three
dimensions (2D×time).

D̂ist(p) =
Dist(p)

L

A drawback to D̂ist is that it is relatively expensive to
calculate. Even though A∗ is an efficient search algorithm
for path planning, an A∗ search is done for every enemy in E
and repeated for every time step t. Incremental approaches
and cached searches would improve this, as agents typically
only move small distances between time steps. Since our
focus is on evaluating the metric itself rather than optimizing
efficiency this remains future work.

4.2 LOS: Considering enemy view
The risk of discovery is also increased when enemies look

toward a player—the more directly a player is in the line of
sight of an enemy the higher the risk. Our second metric fo-
cuses on this factor, emphasizing the relative angle between
the enemy’s direct line-of-sight (LOS) and the player.

The first step in this computation is to know if there
exists a direct LOS from the player to any enemies. If
so, the angle, Angle(v1, v2), between the vector formed by
r = g(p, t) − g(e, t) and the direction the enemy is facing,
f(e, t) is calculated. For these we define helper functions,
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Figure 2: Threshold-based angular cost calculation. This
figure illustrates how the Cost function maps angles to
[0.5, 1.0].

Vis(p, e, t) =

{
1 if r ⊆ χfree

0 otherwise

θ(g(p, t), g(e, t)) = Angle(r, f(e, t))

This angle is then weighted according to the Cost function,
considering how far outside the field of view of the enemy
the player is, as illustrated in figure 2.

Considering just the angular proximity of the player to
the enemy is of course not enough in itself. An enemy that
is very far away, outside the range of vision, is not much
of a threat, even if they look directly at the player. We
also have the same concern as with Dist, that the variations
in duration of the path have a significant impact on the
metric value. Thus we scale the accumulated angular values
by dividing by both the Euclidean distance (cubed), and
the total path length, L. Note that in this case Euclidean
distance (d) rather than path-distance (d∗) is usable, as we
have already determined a straight line-of-sight exists.

LOS(p) =

T∑
t=1

[∑
e∈E

Cost(θ(g(p,t),g(e,t)))

d(g(p,t),g(e,t))3
Vis(p, e, t)

]
L

(2)

4.3 NM: Measuring nearly misses
The last two metrics miss some important information

about the player’s behaviour, in that they do not account
for the player’s past or future behaviour. A situation that
involves a near-miss in terms of discovery, barely avoiding
being seen, is more risky than one where the player has
ample lattitude to easily avoid detection.

Our last metric, LOS, attempts to capture the presence
of such risky manoeuvres. At a given point in time, we look
at the states of the last n positions of our player, as well as
the next m positions in the future using a fixed time-step
M t. If these prior or future positions are exposed to enemy
view, as shown in figure 3, the player experienced (or will
experience) a near-miss in terms of detection, suggesting a
risky, stressful movement.

The full, window-based risk calculation is shown in equa-
tion 3. The function Seen(α, τ) take as argument a planar
tuple and a specific time τ . The whole equation 3 is intended
to capture the idea that the closer a player passes (or will
pass) to an enemy’s FOV, the greater the risk. Note that

Player
Pt-1

Pt-2

Pt-n

…

Pt+1

…
Pt+2

Pt+m

Figure 3: A representation of the NM metric time-window.
Here enemies can see both near-past and near-future player
positions, and so even if the path is successful due to chang-
ing enemy FOVs, the player is undertaking a risky move-
ment.

unlike the previous two metrics NM is an unscaled value,
not normalized to the total length of the path. The risky,
near-miss behaviours we are trying to capture in this cal-
culation imply singularly stressful events that make a path
dangerous, even if the rest of it is relatively safe.

Seen(α, τ) =

{
1 if (αx, αy, τ) ∈ χFOV

0 otherwise

W−(p, t, n) =

n∑
i=1

(n− i)2 · Seen (g(p, t− i), t)

W+(p, t,m) =

m∑
i=1

(m− i)2 · Seen (g(p, t+ i), t)

NM(p) =

T∑
t=1

(
W−(p, t, n) +W+(p, t,m)

)
(3)

An obvious final direction for these metrics would be con-
sider a hybrid form, combining the individual metrics in
some fashion. Our interests in this work, however, is to first
understand the efficacy of the our metrics in isolation before
addressing the significant complexity of tuning the weights
of each metric’s contribution in a hybrid. Efficiency is also
expected to be a concern, and a hybrid form would need to
demonstrate a sufficient trade-off between cost and improve-
ment. The experimental work we now present shows that
the individual metrics already have good predictive power.

5. EXPERIMENTAL RESULTS
Our experimental work is aimed at demonstrating and

comparing the value of our metrics with respect to measur-
ing stealth difficulty or danger, which will allow us to gain
deeper knowledge of the definition of risk. In this section
we first discuss how the metrics behaves differently in a par-
ticular scenario, and then use a human study to argue for
and compare validity. Finally, we will see a simple example
application of the metrics to understand an in-game stealth
level.

5.1 Metric Behaviours
Our metrics have interesting qualitative differences in how

they measure danger, and thus tend to identify risky be-
haviour at different points. Consider an example taken from
level 14 of our human study from section 5.2, and shown in
figure 5. This figure shows three key-frame moments in
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Figure 4: Evolution of the presented metrics over time (s)
on level 14. The numbers refer to key-frames in Figure 5.

the level. The player is represented by a small blue sphere,
and proceeds along the gray trace from the the large blue
sphere (bottom right of the center) to the large green sphere
(bottom left of the center) positions, while the black bars
indicate walls, and the orange areas the (discretized) FOVs
of 3 mobile enemy guards.

Figure 4 shows the evolution over time of each of our met-
ric values. Note that here these values are not normalized
by the total length of the path. This way we can clearly
see at which key moment the metrics are activated. Each
metric indicates points of maximal danger at different times
in the player’s progress. Although the Dist metric shows
some activity in key-frames 5a and 5c, the peak of the Dist
metric occurs in key-frame 5b, where proximity to an enemy
is greatest, and the overall accumulated path-distances from
the player to all the enemies ends up maximized. The LOS
metric, however, considers the point of maximal danger to
be at key-frame 5a, when the player moves directly through
the line-of-sight of an enemy, if just outside the visual range.
The NM metric finds risky behaviour only at key-frame 5c,
when the enemy has just turned to look at the earlier path
of the player.

Arguments can be made for each of these that they ac-
curately represent the element of risk in this stealthy path.
Maximal points, however, clearly differ. In the following
section subsection we thus look at how these metrics com-
pare to human rankings, in order to determine which best
corresponds to human judgement.

5.2 Human Study
Our human study asked participants to evaluate different

player paths (produced by the algorithm presented in sec-
tion 2) and determine which was safer. The degree of corre-
lation between participant choices and which paths our met-
rics determined safer would thus show whether our metrics
matched human perception, and thus tell us which factors
most contributed to what players felt was risky.

Participants were presented with an animated gif image
on endless loop showing the movements of two players, in-
cluding enemy movements and FOVs. Levels were based
on different, but game-realistic geometries and enemy ar-
rangements, attempting to provide a cross-section of level
complexity and path safety. Figure 6 shows 3 examples of

the 15 levels1 presented—the small red and blue spheres rep-
resented the two players, both beginning and ending at the
same points (choice of red or blue for the different paths
was randomized). After viewing a level, the participant had
to click on a button to select which path was the overall
safest, allowing us to compare the resulting ranking with
our individual metric ranks. The study was designed to
take about 15–20 minutes to complete (avoiding participant
burn-out). The study was conducted under unsupervised
conditions (i.e., on the participant’s web browsers, at their
leisure) and consisted of 27 anonymous participants, mainly
drawn from the graduate and undergraduate population of
our department.

Table 1 summarizes the raw data from our study. For
each of the 15 levels, and for humans and each metric, we
indicate a 1 if the participants or metric selected player 1’s
path as safest, 2 if they selected player 2’s path as safest,
and 0 if there was no consistent choice. The latter value
only occurred for human players, where we imposed a 75%
threshold on agreement between participants to establish a
ranking. This count can be recuperated from the first line
of table 1.

Table 1: Human rankings vs. metrics. 1 refers to blue player
and 2 to the red player. 0 represents that no agreement was
reached by the humans.

Level 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

# voted 1 22 1 18 27 23 12 7 7 0 0 4 22 4 22 8

Human 1 2 0 1 1 0 0 0 2 2 2 1 2 1 0
Dist 1 2 1 1 1 2 2 2 2 2 2 1 2 1 1
LOS 1 2 1 1 2 1 2 2 2 2 2 2 2 2 2
NM 0 2 2 1 1 1 1 2 2 2 2 1 2 2 1

As an initial and basic observation, we observe that all
metrics have quite good agreement with the humans. Out
of the 10 levels for which human agreement reached our 75%
threshold LOS agrees 7 times, and NM agrees 7. Surpris-
ingly, given that it is conceptually the simplest, the Dist
metric stands out as achieving perfect agreement with the
humans. Even with just 10 of our 15 human judgements
considered definitive this is very unlikely if due to random
chance, suggesting that path-distance might be a more im-
portant factor than others.

Our expectation after examining the paths found in the
levels we had designed was that levels 2–4 and 9–13 repre-
sented situations in which one path was clearly safer than
the other, while levels 1, 5–8, 14, and 15 were more am-
biguous. We thus now explore levels 1, 3, 5, 12, and 14 as
example situations where the outcome either did not match
our expectation, or where our metrics disagreed.

Level 1 - As shown in figure 6a, this level consisted of
a central occlusion, with a single guard blocking one route
around the obstacle and two paths going the other way. Both
paths easily avoid the enemy guard, with the only significant
difference being that the red path arrived at the goal at the
same time as the enemy was rotating on the right.

The metrics for level 1 shown in table 2 indicate that Dist
and LOS ranked the blue path safer than the red path, al-
though with a very small difference in value. We will revisit
this concept for larger values, but in this case, since we are

1The levels and study are available at http://goo.gl/
fGg3pR.



(a) Key 1, t ' 200s. (b) Key 2, t ' 500s. (c) Key 3, t ' 560s.

Figure 5: Different key-frames of level 14.

(a) Level 1 (b) Level 3 (c) Level 5 (d) Level 12

Figure 6: Examples of levels used in the study.

Table 2: Level 1 Metrics

Dist LOS NM
blue path (1) 0.00002 0 0
red path (2) 0.00003 0.00003 0

interested in ranking the paths, this is a valid ranking. LOS
measures some danger for the red path whereas no line of
sight exists between the blue player and the enemy. In the
case of NM, since the players’ paths do not cross the enemy’s
path, they both were measured as zero. Since the humans
clearly identify the blue player being the safest, this sug-
gests our NM metric may be too coarse, and that a focus on
unusually dangerous events is not sufficient.

Level 3 - This is a tricky level, in that there are two possi-
ble ways to get to the goal, and the players proceed through
one or the other; see figure 6b. The north corridor has a
fast moving enemy walking north/south, and the south cor-
ridor has a slow moving enemy walking from east to west.
Here the blue player quickly raced through the north corri-
dor, while the red player slowly sneaked behind the enemy
on the south corridor and then dashed to the goal once near
the end. Metric data for this level is shown in table 3.

Table 3: Level 3 Metrics

Dist LOS NM
blue path (1) 0.00115 0.00362 428203
red path (2) 0.00242 0.01243 204

This represents a corner case for NM. The red player re-
ceived a small value, mostly because despite closely follow-
ing the enemy, the player is far enough away that little cost
was attributed as she dashed out and was walking outside
the cost window. The distance-based weighting the other
two metrics, however, tends to give a higher value to the
red player. Since humans did not achieve good agreement

themselves, however, we can see this as a trade-off in risk—a
brief, close call in the blue player’s path is roughly equiva-
lent to the long, slow, moderately dangerous progress by the
red player.

Level 5 - This level only has a rotating camera with a
long, narrow FOV; see figure 6c. The blue player walks fully
outside of this field of view, whereas the red player waits
for an opening in the rotation to dash directly to the goal.
Metrics for this level are shown in table 4.

Table 4: Level 5 Metrics

Dist LOS NM
blue path (1) 0.00002 0.01798 0
red path (2) 0.00003 0.00223 6155

The humans here again prioritized the distance to enemy,
even though the blue player actually spent more time within
the enemy’s viewpoint. Our different metrics of course pri-
oritize this differently: LOS gives greater weight to the an-
gular proximity, while the path-intersection of the red player
results in higher NM.

Level 12 - In this level, shown in figure 6d, the blue player
goes around the long way, but at one point, walks in front of
the FOV of the east enemy. The red enemy takes more risks
by taking the short cut through the middle of the level.

Table 5: Level 12 Metrics

Dist LOS NM
blue path (1) 0.00127 28.565 276620
red path (2) 0.00191 0.005677 682589

The results in table 5 show that the LOS metric ranks the
red player safer than the blue player. This is mainly because
the blue player walks in front of FOV of the east enemy,
causing the metric to add a high cost to that path. Dist and



NM assess the situation better and more like the humans,
attributing greater danger to the red player who both comes
closer the enemy, and much closer to being seen.

Level 14 - Similar to level 12, the blue player in this level
follows a roundabout route, trying to avoid contact with
enemies, as shown in the key-frames of figure 5. The red
player (not shown) walks through the enemies’ FOV space
quite quickly.

Table 6: Level 14 Metrics

Dist LOS NM
blue path (1) 0.00025 2.36677 1196323
red path (2) 0.00242 0.127234 645539

As opposed to level 12, however, the results in table 6
show that both LOS and NM rank the red player as being
the safest, since despite the proximity to enemies the path
manages to almost never cross in front of the enemy, even
within a window of past and future positions. Dist agrees
more with the humans, ranking blue safer since its route
takes it well away from the enemies.

Each of our metrics tries to measure different properties
of what might be considered risky behaviour in a stealth
context. Comparison with human perception verifies that
these factors are indeed important concerns for players as
well, and while confirmation of our results in a larger human
study is necessary, suggests there may be a useful ranking
of these factors. Human results best correspond to a pure
(geometric) distance measure, and our measures based on
near-misses and angular proximity match less well. This
may also depend on context, however, and a similar explo-
ration using a first-person perspective visualization (rather
than overhead view) would be interesting—near-misses and
being apparently within an enemy’s FOV may be more im-
portant concerns if the player is more immersed in the game
context, and is also less able to easily determine the extent
of enemy FOV.

5.3 Metrics for level analysis
An interesting application of stealth metrics is with re-

spect to level analysis. Measurement of the different paths
through a level gives us an overall measure of level difficulty,
as well as distribution of solution difficulty, both of which
can then be used in tuning level design.

As an initial demonstration of the technique, we thus ap-
plied our metrics to the first level of Metal Gear Solid [9],
a highly regarded stealth game. In this level the player has
to sneak around two moving enemies within a cargo dock
in an attempt to get to the surface exit on the other side.
Figure 7 shows the initial (blue) and goal (green) player po-
sitions, along with the probability distribution of the player
being seen by 2 patrolling enemy guards. This is a complex
scenario with multiple path choices. In figure 8 we show
a sample of 1500 paths found by the stealth tool, cluster-
ing them into 4 main groupings (colours), based on which
corridor a path traverses (indicated by the circles in Figure
8). Note that this clustering is heuristic and based on our
observations; it is also possible to have one path associated
with more than one cluster.

Table 7 shows the average and median metric values of
the different clusters. From this simple data we can see
that the red cluster seems to have safer paths than the rest,

Figure 7: Metal Gear Solid’s first level with a static proba-
bility distribution of getting seen by the enemy. The darker
the orange, the higher the chance of getting seen.

especially if we look at the Dist metric. This was not obvious
just from the simple, time-flattened probabilities shown in
figure 7, but does mirror our informal observations, as paths
in this cluster seemed to do quite well at avoiding enemies.

Figure 8: Clustering of feasible paths within the level.

We present both average and median since outlier paths
can easily skew these simple statistics. It is, however, impor-
tant to investigate these since they may represent extremal
or unusual strategies. Figure 9 shows a detailed view of the
distribution of the Dist metrics for the red and green clus-
ters as the average and mean are widely different. From the
distribution, one can observe that even though it is not the
trend, it is possible to achieve the same level of safety in
both the green and red clusters. Smaller peaks in the green
cluster suggest sub-clusters of higher risk, likely due to dif-
ferences in timing that result in more closely encountering
enemies.

Table 7: Clustering result, showing the average and median
for each metric.

Metrics Red Blue Green Magenta
Avg Med Avg Med Avg Med Avg Med

Dist (×10−3) 0.6 0.2 3.7 0.9 1.8 1.0 0.2 0.9
LOS (×10−2) 0.7 0.02 13.8 0.4 1.6 0.01 4.7 0.3

NM (×105) 2.0 1.6 2.8 2.4 2.5 1.9 1.9 0.7

Informed by this kind of data, a designer has a better
understanding of her level design, and can use the relative
risk value, as well as the distribution of risk values over
different path clusters as a guide for manipulating the level
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Figure 9: Histogram of red and green clusters for the Dist
metric.

design to better balance overall risk, or introduce interesting
variation in strategy choices for players.

6. CONCLUSIONS AND FUTURE WORK
Quantitative metrics for measuring player behaviours are

an important element in improving and even automating
aspects of game design. In this work we described 3 non-
trivial metrics for measuring risk in a stealth game context.
We showed that our metrics correlate with human percep-
tion (to varying degrees), and how the resulting data may
be used to understand a level design.

For future work we are interested in further validating and
extending our metrics. An investigation of different game
contexts and presentations would help determine whether
the importance of the distance metric that we find in our
study is indeed general. Optimizing the efficiency of metric
calculation is also a concern. Our main interest, however, is
in applying metrics to improve game design, providing inter-
active input to the designer, using metrics to quantify design
patterns or principles, and in using dynamically computed
risk values to identify player styles for improved adaptivity
in gameplay and NPC behaviours.
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