From Skyrim to Metal Gear Solid - A buddy Al journey

Jonathan Tremblay

Player

Companion

Combat: targeting an enemy

Stealth movement

Understanding player

Targeting problem

Companions' influence

- Strategies are poor
- Player needs to interact with their behaviour
- Player do not trust them

Attack: a

Health: h

Rules

- Entities select target to attack
- Blue team attacks first
- Attack value is subtracted from targets' health

Strategies

- Target randomly
- Target lowest health
- Target highest attack

PSPACE-Hard [Furtak et al.]

Threat Ordering

- What is the threat of an enemy?
- Attack within respect of health
- The benefit of killing that enemy and not an other one

Menemies vs. Nplayers

Strategies

- Threat ordering
- Closest
- Highest attack
- Lowest health

Tank level

Independent *vs.*Mimicking

Tank level - mimic

Heuristic vs. Optimal

Threat Ordering

- Approximation of a hard problem
- Insights on the cost of bad strategies
- 50% time finds optimal and usually within 1% of the optimal

Stealth movement

Can we compute an undetected path from A to B?

Assumptions

- Level geometry
- Enemies' deterministic movement
- Cannot be detected
- Initial and goal position

Overview

- Defining the state space
- Rapidly exploring Random Tree (RRT)
- Presenting results

Discretized Space

Obstacles Seen Walkable

Search Space

- Run multiple times
- Randomly exploring the space
- None optimal paths

Clustering

[Smith 06]

Quick Demo

Understanding the player

Which path is the safest?

Defining risk

- Distance to the enemy
- Distance to the enemy's field of view
- Nearly seen
- Shortest path
- etc.

Which path is the safest?

Metrics

Distance to the enemy (DIST)

Line of sight cost (LOS)

Nearly missed (NM)

Distance (Dist) Scaled distance from player to enemy Summed over enemies Divided by length path P_{t+2} Player

Nearly Missed

- Check the past and future positions
- Cost if seen based on time

Human study

Results

Level	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	#
Human																-
Dist																10
LOS																8
NM																9

Evaluating level difficulty

Evaluating level difficulty

Evaluating level difficulty

Metrics	Red		Blue		Green		Magenta	
				Med				
Dist $(\times 10^{-3})$	0.6	0.2	3.7	0.9	1.8	1.0	0.2	0.9
$LOS (\times 10^{-2})$	0.7	0.02	13.8	0.4	1.6	0.01	4.7	0.3
$NM (\times 10^5)$	2.0	1.6	2.8	2.4	2.5	1.9	1.9	0.7

Metrics

- Quantitative metrics to measure player's experience
- Metrics correlate with human perception of risk
- Help understand level design

So Far

- Companion makes better target choices
- Offline stealth path finding
- Understanding notions of stealth risk

Still to come

- Guard interactions planning
- Online stealth path finding for companion

Not presented

- Combat/stealth simulator
- Player simulator in the platformer domain
- Clustering similar paths
- Advance visualization of stealth space
- Automatically placing guards in a level

Special thanks

- Clark Verbrugge
- Pedro Andrade Torres
- Qihan Xu
- Christopher Dragert
- Nir Ricovitch

- Eugène Jancorda-Vadnais
- Alexander Borodovski
- Jonathan Campbell

References

- T. Furtak and M. Buro. On the complexity of twoplayer attrition games played on graphs. In AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, 2010.
- Randy Smith. Level Building for Stealth Gameplay.
 Online resource, 2009.
 www.roningamedeveloper.com/Materials.html

Thank you

Jonathan Tremblay jtremblay@cs.mcgill.ca

Adding combat

Threat ordering

$$\max_{e \in E} \left[e.a \cdot (E_h - e_h) \right]$$

Distance

$$Dist(p) = \sum_{t=1}^{T} \left[\sum_{e \in E} \frac{1}{d^*(g(p,t), g(e,t))^3} \right]$$

Los

$$LOS(p) = \frac{\sum_{t=1}^{T} \left[\sum_{e \in E} \frac{Cost(\theta(g(p,t),g(e,t)))}{d^*(g(p,t),g(e,t))^3} Vis(p,e,t) \right]}{L}$$

Nearly Missed

Seen
$$(\alpha, \tau) = \begin{cases} 1 & \text{if } (\alpha_x, \alpha_y, \tau) \in \chi_{FOV} \\ 0 & \text{otherwise} \end{cases}$$

$$W^-(t, n) = \sum_{i=1}^n (n - i)^2 \cdot \text{Seen} (g(p, t - i), t)$$

$$W^+(t, m) = \sum_{i=1}^m (m - i)^2 \cdot \text{Seen} (g(p, t + i), t)$$

$$\text{NM(Path)} = \sum_{t=1}^T (W^-(t, n) + W^+(t, m))$$