I Can Jump!
Exploring Search Algorithms for Simulating Platformer Players

Jonathan Tremblay and Alexander Borodovski and Clark Verbrugge
School of Computer Science
McGill University
Montréal, Québec, Canada
jtremblay@cs.mcgill.ca alexander.borodovski@mail.mcgill.ca clump@cs.mcgill.ca

Abstract

Platformer games let players solve real-time, physics-based
puzzles by jumping and moving around to reach different
goals. Designing levels for this context is a non-trivial task;
the placement of well-timed jumps, moving platforms, in-
teresting traps, efc., has a complex relationship to in-game
challenge and the existence of possible solutions. In this
work, we describe three different search algorithms (A*,
MCTS and RRT) that could be used to simulate player be-
haviour in the platformer domain. We evaluate and compare
the three approaches applied to three non-trivial levels, show-
ing a possible iterative workflow of use to designers, and re-
search progress in designing search algorithms for platformer
games.

Introduction

The platformer genre is popular amongst indie game devel-
opers, mainly due to the easy access enabled by tools like
Unity-2D or GameMaker. Designing meaningful levels for
platformers which are challenging and interesting for play-
ers is not a trivial task, and it is important to avoid bad de-
signs where players could make use of undesirable short-
cuts to solve levels, or which result in overly obscure or diffi-
cult solutions. Verifying game solutions, however, is difficult
for small-scale developers without the resources to perform
large-scale human testing.

We present a study of different search algorithms for find-
ing valid solutions to platformer game levels. The high level
goal of this work is to offer the game designer a tool that she
can use to see possible solutions to her design. Such a tool
can then be included in an iterative design process, and so
accelerate and improve development.

Our study has the additional benefit of exploring how dif-
ferent search algorithms can be modified to handle the real-
time physics of platformer games, and so be effectively ap-
plied to the platformer domain. We demonstrate this through
a non-trivial, open-source implementation that offers a tool
for designers to apply, explore, and visualize the results of
different algorithms in an industry standard game develop-
ment environment. In terms of academic qualities we iden-
tify the following contributions:

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

e Design and presentation of different search algorithms
aimed at the platformer domain, and oriented at level test-
ing.

e A comparative study evaluating the effectiveness of the
different algorithms on representative platformer levels.

e An open-source implementation in Unity-3D (Borodovski
and Tremblay 2014) that enables further extension and ex-
ploration.

Background & Related Work

Our focus in this work is in developing different algorithms
for simulating player behaviour, as a means of providing
tools to better explore the design space of the platformer do-
main. Platformer games provide a number of unique chal-
lenges for such exploration, due to their heavy reliance
on physics-based puzzles and their fast action, continuous
game-space context. These features are relevant to many 3D-
based games, such as Assassin’s Creed, although here we fo-
cus on simpler 2D-based puzzles-games such as Super Meat
Boy or Cloudberry Kingdom, where the player controls a
single character who moves through a 2D domain, interact-
ing with the game physics by jumping, running, pushing,
etc. in order to reach a goal point and avoid various hazards
(holes, stompers, efc.).

Our work compares the behaviour of different search
techniques applied to the design process. In previous work
we presented a tool that uses search to simulate possible
player paths in stealth-game levels (Tremblay et al. 2013).
In that work a randomized search algorithm was used to dis-
cover possible player paths, with design visualizations pre-
sented based on aggregate heatmaps of the resulting solu-
tion sets. Bauer et al. also used Rapidly-exploring Random
Trees (RRT) for reachable state exploration, although within
the context of jumping games using arithmetic parabolas as
movement (Bauer, Cooper, and Popovi¢ 2013). Sturtevant
presented a breadth-first search application to the mobile
game Fling!/, enabling exploration of all possible solutions
to a given puzzle set-up (R. Sturtevant 2013).

The first edition of the Mario AI Competition (To-
gelius, Karakovskiy, and Baumgarten 2010) provides a use-
ful benchmark for learning and search techniques applied
to the popular series Mario Bros., particularly with respect
to player simulation. Baumgarten’s controller, for example,

won the competition using an implementation of A*. The
solver used a physics simulator to project the resulting posi-
tion of player actions, a technique we also employ in our
work. The output of the solver is then used to figure out
which state is the closest to the goal (reaching furthest on
the right), and thus which to evaluate next. Cloudberry King-
dom by Jordan Fisher uses a similar approach that defines a
player Al which is then used to procedurally generate dif-
ferent platformer levels (Fisher 2012).

Mario Al was not used as a benchmark for our work, as
we are interested in building tools for game designers seek-
ing knowledge of their own, new designs, and we did not
want to limit expressiveness to the Mario domain. Within
this ideology, Nelson proposes different, fundamental ques-
tions game designers might ask an Al tool about their de-
signs, such as whether and how something might be pos-
sible in the game (Nelson 2011). Our work shows how a
tool could answer some of these questions, such as through
the use of heat map visualizations that summarize a range
of possible game behaviours. Other criteria for Al tools
has emphasized the need for game-independent frameworks,
that could be reused within different games genres (Smith
2013). In this sense, the general search techniques we ex-
amine are highly relevant. RRT in particular has been pre-
viously shown to be a powerful search algorithm that can
be made game-independent, requiring quite little modifica-
tion to accommodate specific game mechanics, at least for
reasonably simple movement models (Bauer, Cooper, and
Popovi¢ 2013). Shaker et al. presented another, search-based
approach to solving continuous-time game constraints in the
puzzle-game Cut the Rope (Shaker, Shaker, and Togelius
2013). They discretized time, finding the next game state
by using a physics simulator to update the world, and then
exploring the state space through a depth-first search of the
available actions. This allowed them to present a solution to
a game level as a path in a tree of game actions. Our search
implementations have a similar challenge in discretizing a
complex state space, but are applied to larger state spaces,
and aim at finding a range of game solutions representative
of human exploration.

Other work, such as by Scales et al., lets Al program-
mers implement their own controllers, using an API within
the Spelunky GameMaker implementation (Scales 2014).
Spelunky is a richer context than Mario Bros, where the
player has to survive multiple enemies, break walls to move,
gather different resources, efc. Scales designed different
bots for this context, with different objectives such as gold-
digger, or explorer. The controllers developed for this project
were based on decision trees, using A* search for simple
path planning, but not for actions.

Our work offers novelty in providing an exploration of
different search algorithms aimed at solving levels in the
platformer domain. Although multiple controllers exist for
the platformer domain, we are not aware of other RRT im-
plementations for it using physics simulators, or compara-
tive analyses. In the next section we discuss our overall de-
sign, the individual search algorithms, and our (open-source)
implementation and visualization strategy.

Algorithm Design

In order to understand and explore the design space of plat-
former games, we first develop a general state space model
that can encompass a variety of platformer games. Different
search algorithms can then be applied within this state space
in order to discover potential solution paths players may ex-
perience. Below we describe the state space, followed by a
high-level description of the RRT implementation we use,
along with the different motion planners, A* and Monte-
Carlo Tree Search (MCTS), that we integrate into RRT and
which can also be used as stand-alone solvers. This set of
search algorithms is implemented with the purpose of being
used offline by game-designers.

State Space

Our representation is aimed at the classical platformer
game genre, where the game level is fundamentally a 2-
dimensional, Euclidean space. The space is constrained by
screen boundaries and physical obstacles, such as shown by
the green rectangles in figure 1. A designer may also add
to her level various other kinds of obstacles, such as saws,
spikes or other kinds of death obstacles that kill the player
right away, shown as red rectangles in figure 5. Moving
platforms are another common feature, and may repeatedly
move horizontally or vertically; in figure 6 platform move-
ment is indicated by the gray arrows.

Within the level the player has basic commands to move
left-right and jump; we also incorporate double-jumps (al-
lowing a second jump while in mid-air), as a popular, if
less physically realistic behaviour. Our physics model in-
cludes gravitational acceleration downward, but does not in-
clude player momentum on the horizontal axis—a player’s
forward motion depends entirely on the current left/right
key-press, and so may be changed arbitrarily and instanta-
neously, even while in the air—an approach commonly re-
ferred as air control by game designers. This gives players
fine-grain and highly reactive control, as is common in plat-
former games.

From this context we can build a formal model of the
game state. We define our space ¥ as a combination of sub-
spaces:

b g R2 X]R+ X]Rfall X {O; l}jump X {07]-7 2}moving

time

This representation encodes the 2D Euclidean space a player
may occupy, a non-negative time vector (essential for repre-
senting platform movement), a gravity vector to model the
jumping or falling velocity, as well as two discrete domains:
a 2-valued domain to indicate whether a double-jump has
been performed, and a 3-valued domain to represent mo-
tion, as either not moving, moving left or moving right. Note
that we are typically interested in the subset of the game
space that is not trivially unreachable, and we thus define
Yree = 2 — Mops, as the space free of obstacles, where X,
represents the subset of the space taken by obstacles. We de-
note a node or state within this space as o.

We designate the set of player actions defined by
the game as A. In our case we have 6 actions, A =
{jump, jump-left, jump-right, left, right, wait}. Actions are

executed in a discrete fashion for the duration ¢ of a single
game frame, and applying an action a € A to a state o gen-
erates a new state, o’ < a(o,t), where the physics is simu-
lated for the period t—in the case of instantaneous actions,
such as jump, we assume that after the action is invoked the
entity waits (does not do further actions) for ¢ time. A game
also requires starting and goal states, designated as o;,;; and
Ye0a1 T€Spectively. The starting state is a particular point in
our space, Oiny € e, While the goal state is more typi-
cally a region, and must also accommodate arbitrary values
for the non-location components of the player state. Thus we
define the goal as a subset of the space, Ygou C Yifee; in OUr
case we use a circular patch of the 2D space of player po-
sitions, extruded to a cylinder over the time dimension, and
ignoring other components of player state. We represent a
player’s actual path as an ordered set of actions, separated
by a fixed time-step ' > t. Within this state space, we are
interested in finding any path from o t0 Mgoar.

Rapidly-exploring Random Tree RRT is a well known
pathing algorithm in the robotics domain, popular for its
suitability to high dimensional spaces. In our case, the
heuristic and stochastic nature of RRT also allows for a
broad exploration of possible solutions, more appropriate for
modeling potential player behaviours. Algorithm 1 gives an
overview of our implementation which is highly inspired by
Lavalle’s description (Lavalle, Kuffner, and Jr. 2000).

The algorithm starts by initializing a tree structure in order
to keep track of the search process. While a resource (time,
tree-size) budget allows, we randomly sample the reach-
able space and extend the search tree by connecting new
points to existing ones. This basic process is complicated,
however, by the sparsity of our state space and the need to
respect game mechanics. Our approach involves sampling
only the basic R? space and then constructing the rest of the
sampled state based on the previous state of the connecting
point. Connections are made by finding the closest node in
our tree structure to our sampled state, measured in terms
of Euclidean distance (z,y) in the plane (line 7). Straight
line movements in a platformer are not always possible, and
so based on a motion planner (A* or MCTS; see below) we
find an actual subpath from the nearest node to the randomly
sample node, or as close as we can get—in this way we en-
sure that the tree grows and that all newly added points are
actually reachable. If and once the goal region is reached, a
path back to the origin is traced in the tree, giving us a final
solution.

Figure 1 shows a visualization of the RRT tree. The edges
are indicated by red lines, sampled points by small green
dots, and the actual tree nodes added by grey dots. Note that
RRT does not generally result in optimal solutions. We con-
sider this beneficial, as such this process allows the game de-
signer to explore the variety of different possible paths play-
ers may take to solve the level. With a few changes to the
algorithm, however, and enough computation time, it would
be possible to show all reachable states, as shown by Morgan
et al. (Morgan and Branicky 2004). Combined with cluster-
ing, this technique creates probabilistic road-maps, such as
shown by Bauer and Popovi¢ (Bauer and Popovié¢ 2012).

Figure 1: The debug view for the RRT with 20 allowed actions
for local search. The large blue and green spheres are the initial
and goal positions respectively. Green nodes represent the sampled
states, while grey nodes are part of the tree structure, linked by the
red segments. The thick brown line shows the path found.

Algorithm 1 RRT applied to platformer domain

procedure RRT(Uinit’Egoal,Zfree’ budget)
10
Init(Y, Cinir)
while i < budget do
5: i—1+1
Crand < Sample(Xpee)
Onear < Nearest (rang, T)
O motion $— Motion(angay, Orand, z:f"-”e)
T — (Unear7 Umution)
10: if 0rund € Egoar then
return Path(Y, Gotion)
end if
end while
end procedure

A* We use A* as both a search process in itself, and as a
motion controller in our RRT implementation. Our design
is similar to the controller Baumgarten designed for Mario
Al, and follows a normal application of A* as describe by
Millington (Millington and Funge 2009). Since A*is mainly
used to search graph structures, using it in a continuous do-
main poses some challenges. As described in our RRT de-
sign, we use a minimum time step that determines the gran-
ularity of the search, assuming each action is applied for a
period t. Because of this discretization, A*will not ensure an
optimal solution.

Figure 2 shows a simplified debug view of the search, with
each possible action illustrated by a segment of a different
colour: red for jumping, blue for wait, green is left, magenta
is right, yellow for jump-left, and white for jump-right (al-
though here jump-right does not appear since both actions
jump-right and jump result in the same position). The col-
lision between two states is done using 2 or 3 dimensions
(x,y) or (x,y,t) using simple Euclidean distance, which is
also used as our heuristic to reach the goal state. The 2 di-
mensional approach allows the search to focus on trying to
cover as much as possible of the Euclidean space, while the
3D version will explore time as well. This results in a larger
state space, but is extremely useful when there is a signifi-
cant time component to the level, such as the need to interact
with a moving platform.

As we will show in our experimentation, the algorithm
is fast and travelled distance effective. In the context of a

Figure 2: A* debug view. The different colours represent differ-
ent possible actions at each node, and green square and sphere are
respectively the initial and goal positions. The final path is defined
by the thick green line.

level-testing tool, however, it is less interesting, as the deter-
ministic nature of the algorithm does not give a designer a
good perspective of the breadth of possible solutions that a
level design affords.

Monte-Carlo Tree Search (MCTS) Much like A*,
MCTS allows us to search a graph. It has a greater focus on
graphs with large branching factors, however, with success
demonstrated on quite complex games, such as Go (Browne
et al. 2012). The strength of MCTS lies in its ability to avoid
over-exploring nodes, giving it greater diversity in search-
ing. Algorithm 2 sketches our implementation of MCTS.

In general the algorithm processes states in a way that
allows it to focus on a promising branch, deviating to an-
other branch when that may lead to a better result. This pro-
cess is controlled by the TREEPOLICY method that traverses
through the tree, initially invoked on line 6. The first step is
to make sure that each available action was applied to the
state, and if not, to apply an available action and evaluate
the result based on a suitable reward function. The evalu-
ation is back-propagated up the tree, which also increases
knowledge about the tree search with data such as the num-
ber of times a node was visited.

The MCTS tree search does not take into consideration
the proximity to other states as A* does, and naively im-
plemented can sometimes over-search a given location. To
avoid this, we added a simple data structure (grid) that keeps
track of how many times a grid position was visited. As
shown in our REWARD function, we normally rank nodes
by the inverse square of their Euclidean distance to the goal,
but then also penalize nodes when the player dies or which
end up being in over-searched positions (lines 18-20).

Once all available actions have been applied to a state, a
child is picked based on its value and the number of times it
was visited. For this we simply used the well known upper
confidence bounds for tree search (UCT) where the choice of
child is treated as the multi-armed bandit problem (Browne
et al. 2012). Finally, this process is repeated until the re-
source budget is exhausted or the goal node is found.

The MCTS search has some stochastic elements, and thus
can be invoked multiple times to find different solutions.
This leads to a better understanding of the space of possi-
ble solutions for game designers, with the benefit that that
the search is still very directed, and so the paths found do
not wander around the goal.

Algorithm 2 MCTS applied to platformer domain

procedure MCTS-UCT(Ginir, X goat, Lfrees A, t, budget)
Kroor <— CreateNode (o nit)
10
while ¢ < budget do
5: 14—1+1
K <— TREEPOLICY (Kroor, A)
if State(k) € Xgou, t then
return Path(k)
end if
10: € < REWARD((State(k)))
PROPAGATE(k, €)
end while
return null
end procedure
15:
procedure REWARD(0, ¥g0a1)
v L

if 0 € Zgeaq Or GridCount(c) > x then
vV 4= —00
20: end if
return v
end procedure

Experiments & Results

The algorithms described in the previous section were im-
plemented as part of an open-source design tool within
Unity-3D (Borodovski and Tremblay 2014). An important
design concern in implementing such a tool in the editor of
Unity is the loss of the physics simulator—although it is pos-
sible to move GameObjects around and check for collisions,
the full, built-in physics is not available in editing mode, and
thus we were required to implement our own physics simula-
tor for gravity, drag, etc. For this we used a discretized sim-
ulation with limited collision resolution; for example, while
the player is falling, the simulator applies gravity forces to
the vertical velocity until the player collides with a platform,
at which point movement stops. This limited physics ade-
quately describes many platformer games, and so we leave
more advanced collision handling to future work.

Our design allows individual control of the many param-
eters available to each search algorithm. It is also possible in
our design to choose which motion planner the RRT is go-
ing to use. Figure 3 shows some of the different parameters
available, their impact, and to which search they apply; indi-
vidual control of these values allowed us to experiment with
search behaviour within a wide range of parametrizations.

Performance Tests

To evaluate the results, we implemented different levels that
are meant to stress the algorithms in different ways. We first
experimented on a few test levels to determine appropriate
and practical parameter settings for each algorithm, and then
explored algorithm success in terms of searching time, and
success ratio, and number of states explored, as well as so-
lution quality in terms of the resulting solution path length,
and number of key presses required (as a measure of player
effort). For each presented level we ran 1000 searches, us-
ing a 16GB Intel-i7 machine, and Unity3D version 4.3.4f1.

Parameters Effects Algorithms
L Minimum distance *
Min distance allowed between nodes RRT, A
Max distance Maximum distance RRT
allowed between nodes
nodes Max explored nodes RRT, A*, MCTS
Time action Duration of each action A*, MCTS
2o0r3 # of dimensions used in A*
dimensions the state collision
Density Grid size used !)y the MCTS
reward function

Figure 3: Parameters

Figure 4: Level 1 where the player has to walk all the way to
the right, climb and then move left to the goal.

Numeric results for all tests are given in Table 1.

Level 1 (figure 4) This level is designed to require the
player follow a non-trivial path of jumping between plat-
forms, including some amount of vertical ascension.

A* with 2 dimensions performs extremely well, directly
heading to the goal, and with search time dramatically less
than the others. The A* with 3 dimensions was not able to
solve this level as it reached maximum states before reach-
ing the goal; through debug views we were able to see that
inclusion of the time dimension resulted in the search fail-
ing to make geometric progress as it over-searched the time
dimension. The MCTS search took longer than 2D A* by a
large factor, reflecting the greater cost inherent in MCTS of
having to travel through the tree every time it expands the
search.

Using RRT as a higher-level search adds a lot more
“noise” to the paths: the average number of keys pressed
is significantly higher than A*. This is expected, since RRT
does not use any heuristic to bias it search, and so explores
more states than the biased searches. RRTycts has the great-
est diversity in this sense, although it is slow and suffers
from a lower success rate; RRT s+ seems to represent a bet-
ter trade-off between breadth and performance while still in-
cluding many random paths.

Level 2 (figure 5) This level provides two options to the
player: going straight along the bottom of the level and
avoiding the stomper, or climbing up the platforms and us-
ing the horizontal moving platform to reach the goal. The
biggest challenge with this level is the time component; a

Figure 5: Level 2. Black arrows indicate platform move-
ments, and red regions indicate instant death locations. The
top red area can be avoided by riding the platform moving
horizontally, and the bottom stomper can be avoided by ap-
propriately timing a dash below it.

player has to either wait for the horizontal platform to tra-
verse the level or time her movement to avoid death by the
vertical stomper.

In this case both implementations of A* did extremely
well. The A* using three dimensions found a marginally
faster path, but it was also simpler in terms of keypresses,
while the 2D version had to jump around in order to get
the timing right. This level is well constructed for A* as the
heuristic (Euclidean distance to the goal) leads the search al-
most directly to the goal. The MCTS search did surprisingly
well, given that there is no explicit consideration of time in
the search heuristic. The usage of RRT in this level, how-
ever, shows a limitation in our sampling heuristic: the tree
structure tends to reach a certain time configuration where
the node closest to the moving platforms very likely leads
to a dying position. Any nodes sampled nearby end up con-
necting to it and so lead to death, and this is evident in the
low success rates for either form of RRT. We expect that a
further tuning of the RRT, including a 3D sampling where
we consider points in time as well as space, would produce
better results, and is part of our future work.

Level 3 (figure 6) This level also gives two options to the
player. Going upwards and then right until reaching the end
involves few time-based actions (and is the preferred path for
both A*s). Alternatively, the player may move to the right
and then ride the vertical platform to reach the goal.

The level figure is overlaid with a heat map of the RRT 5+
paths results. As the heat map indicates, most of the RRT so-
Iutions follow the same path as the A* (purple path), climb-
ing up and then going across the level. Some, however, either
by falling from the top or by moving there from the start do
end up using the vertical platform. In the numeric data we
can see that A* did well, as the heuristic pushed the search
to reach the top right as fast as possible. Both paths given by
the two implementations of A* were similar, although the
number of states explored is greater by a factor of almost
six for the 3D A*. MCTS explores even more states, with
slightly lower success rate.

Discussion From these experiments we can see that A*
is fast, converging to a solution quickly, and is clearly the

Algorithms | Time all searches | Success rate

Table 1: Level search results. All times are in ms.
| Time successful search | Path length in frames | Key presses | States Explored

Level 1
A*o 392.1 +7.3 1.00 392.1+7.3 572.0£0.0 17.0 £ 0.0 785+ 0
A*3 2251.7 £10.8 0.00 0.0£0.0 0.0£0.0 0.0£0.0 0+0
MCTS 1077.6 &= 246.7 0.97 1062.3 4= 230.1 656.9 +44.5 69.5 +10.1 4976 + 1081
RRT p « 2514.7 £ 1441.5 0.96 2354.6 = 1178.0 759.1 £75.8 54.84+9.5 5009 £ 2369
RRTpcTs | 134109 £ 5921.6 0.84 11703.0 £ 4034.1 1692.9 £ 243.0 109.7 & 16.7 | 21179 + 6488
Level 2
A*s 228.2+5.1 1.00 228.2+5.1 342.0 £ 0.0 12.0 £ 0.0 542+ 0
A*3 487.1 £6.5 1.00 487.1 £6.5 340.0 £ 0.0 8.0+ 0.0 1246 0
MCTS 897.8 +326.9 0.82 791.6 £257.8 346.6 + 33.7 243 4+6.0 4530 4 1468
RRT p « 1464.6 = 1621.1 0.67 531.3 £ 800.2 3334 +46.8 777+64 1230 £+ 1763
RRTpcTs | 11391.3 £5097.1 0.35 8167.1 £ 3873.7 904.7 £ 178.1 47.0+ 154 | 15889 + 6935
Level 3
A*o 1128.0 = 158.4 1.00 1128.0 &= 158.4 427.0£0.0 23.04+0.0 806 =0
A*3 5710.1 +-447.2 1.00 5710.1 +447.2 416.0 £0.0 25.04+0.0 4771 +0
MCTS 3672.1 952.9 0.95 3593.8 £ 887.1 438.4 £ 34.0 369+ 6.5 5203 £ 1109
RRT p « 3122.4 £2563.5 0.69 1792.9 4+ 1430.1 516.1 £56.9 33.54+6.5 4116 4+ 3080
RRTyjcTs | 16690.3 £ 7365.7 0.49 11261.3 £ 5449.1 1001.9 £ 253.0 64.8 £ 15.6 | 21502 +9723

better approach if a high quality solution is required, which
is not surprising. Incorporating the time dimension into the
search can be helpful if the level has a strong timing com-
ponent, but also greatly magnifies the state space and so re-
quires more resources.

From a game-design perspective A* is useful, but not
sufficient—it finds exactly one solution, and so is not help-
ful in exploring the potential space of solutions in a level.
MCTS is then an attractive option as a search process known
to be effective in complex domains, and which is also able
to find different solutions with multiple searches. From our
short study it does not shine as much as A*, being gener-
ally slower, but does have the useful ability to show more
human-like, suboptimal solutions. We note that MCTS also
has a drawback in being a less “out of the box™ solution, and
required some amount of experimentation with parametriza-
tion, as well as a customized reward function in order to per-
form reasonably well.

The random process of RRT shows very interesting results
in terms of exploring the space; it tends to find highly vari-
ant solutions, and is the most effective algorithm for finding
both routes to the goal in our final test. It is, however, by far
the slowest, and success can depend strongly on the partic-
ular motion planner it uses to connect states. An A* planner
seems perhaps generally better, as it tends to ameliorate the
randomness.

Discussion & Conclusion

The presence of non-trivial physics in the platformer domain
is a challenge for algorithmic approaches to level analysis.
Our experiments show, however, that A*, MCTS, and differ-
ent RRT designs can still result in effective search processes,
whether the goal is to find a single solution (A*) or broad set
of solutions (MCTS, RRT) for deeper level exploration.

We are currently investigating different approaches to
state sampling in RRT. Improvement should be possible by
explicitly sampling the time dimension, although as our 3D

Figure 6: Level 3 with a heap map of RRT s+ results and the
A*4 solution shown in purple.

A* experience shows this represents a trade-off in increas-
ing the search space. Other future work is focused on fur-
ther analysis of the path quality and variety generated by the
different algorithms—total key presses measures player ef-
fort to some degree, but speed, length of bursty sequences,
and periodicity (Smith et al. 2009) may be better measures
of difficulty or appeal. For use in practical level design, we
are also interested in how similar the solutions we com-
pute are to human paths. In a greater scheme, we are in-
terested in providing genre-agnostic Al tools for game de-
signers in Unity-3D, useful for both abstract analysis and
practical game design.

Acknowledgements

This research was supported by the Fonds de recherche du
Québec - Nature et technologies, and the Natural Sciences
and Engineering Research Council of Canada.

References

Bauer, A., and Popovi¢, Z. 2012. RRT-Based Game Level
Analysis, Visualization, and Visual Refinement. In AIIDE-
2012: Proceedings of the Eight AAAI Artificial Intelligence
for Interactive Digital Entertainment Conference.

Bauer, A.; Cooper, S.; and Popovi¢, Z. 2013. Automated
redesign of local playspace properties. In Proceedings of
the 8th International Conference on Foundations of Digital
Games, 190-197.

Borodovski, A., and Tremblay, J. 2014. Imple-
mentation for platformer A.JI. tool in Unity-3D.
https://github.com/GameResearchAtMcGill/
unitytool/archive/653c7c.zip.

Browne, C.; Powley, E.; Whitehouse, D.; Lucas, S.; Cowl-
ing, P.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis,
S.; and Colton, S. 2012. A survey of Monte Carlo tree search
methods. IEEE Transactions on Computational Intelligence
and Al in Games 4(1):1-43.

Fisher, J. 2012. How to make insane, procedural platformer
levels. http://www.gamasutra.com/view/feature/
170049/how_to_make_insane_procedural_.php.

Lavalle, S. M.; Kuffner, J. J.; and Jr. 2000. Rapidly-
exploring random trees: Progress and prospects. In Algo-
rithmic and Computational Robotics: New Directions, 293—
308.

Millington, 1., and Funge, J. 2009. Artificial Intelligence for
Games. Morgan Kaufmann, second edition.

Morgan, S., and Branicky, M. 2004. Sampling-based
planning for discrete spaces. In Proceedings of the 2004
IEEE/RSJ International Conference on Intelligent Robots
and Systems, volume 2, 1938—-1945.

Nelson, M. J. 2011. Game metrics without players: Strate-
gies for understanding game artifacts. In Proceedings of the
2011 AIIDE Workshop on Artificial Intelligence in the Game
Design Process, 14—18.

R. Sturtevant, N. 2013. An argument for large-scale breadth-
first search for game design and content generation via a
case study of Fling! In IDP 2013: Proceedings of the 2013
AIIDE Workshop on Artificial Intelligence in the Game De-
sign Process.

Scales, R. D. 2014. Create a set of Al tools
for Spelunky that will allow users to program their
own player bots. Discovery, Invention & Application
1(1). http://commerce3.derby.ac.uk/ojs/index.
php/da/article/view/32/27.

Shaker, M.; Shaker, N.; and Togelius, J. 2013. Evolving
playable content for Cut the Rope through a simulation-
based approach. In AIIDE-2013: Proceedings of the Ninth
AAAI Artificial Intelligence for Interactive Digital Enter-
tainment Conference, 72—78.

Smith, G.; Treanor, M.; Whitehead, J.; and Mateas, M. 2009.
Rhythm-based level generation for 2D platformers. In Pro-
ceedings of the 4th International Conference on Foundations
of Digital Games, 175-182. New York, NY, USA: ACM.

Smith, A. 2013. Open problem: Reusable gameplay trace
samplers. In IDP 2013: Proceedings of the 2013 AIIDE

Workshop on Artificial Intelligence in the Game Design Pro-
cess.

Togelius, J.; Karakovskiy, S.; and Baumgarten, R. 2010. The
2009 Mario Al competition. In /IEEE Congress on Evolu-
tionary Computation (CEC), 1-8.

Tremblay, J.; Torres, P. A.; Rikovitch, N.; and Verbrugge, C.
2013. An exploration tool for predicting stealthy behaviour.
In IDP 2013: Proceedings of the 2013 AIIDE Workshop on
Artificial Intelligence in the Game Design Process.

