
An Algorithmic Approach to Analyzing
Combat and Stealth Games

Jonathan Tremblay
McGill University

Montréal, Québec, Canada
Email: jtremblay@cs.mcgill.ca

Pedro Andrade Torres
Salvador, Bahia, Brasil

Email: pedro.torres@mail.mcgill.ca

Clark Verbrugge
McGill University

Montréal, Québec, Canada
Email: clump@cs.mcgill.ca

Abstract—Combat and stealth games give players the option
of engaging or avoiding enemy agents at different points. Level-
design in this context is complex, however, requiring a designer
to understand how different design choices impact difficulty
under multiple play-styles. In this work we describe a unified
algorithmic approach that can perform abstract analysis of both
combat and stealth behaviours. Our proposed solution builds
on an existing stealth-level analysis tool, incorporating combat
activities into the abstraction in order to allow exploration of
level feasibility and difficulty. We demonstrate our approach on
a non-trivial example level, showing how such a tool can be used
to evaluate and control the player experience.

I. INTRODUCTION

Many modern combat games, defined as First Person
Shooter (FPS) in the popular literature, combine movement
and combat mechanisms. Designing meaningful gameplay
experiences for such games involves obstacle placement (level
skeleton), enemy design (positioning, combat values, and be-
haviour), interactive structure, etc. Understanding the differ-
ent possible solutions for such a level is thus not a trivial
task, requiring models of movement, combat, and combat-
avoidance, and is therefore typically addressed through an
expensive prototyping and beta-testing cycle.

We present here an algorithmic approach and its im-
plementation for abstracting and analyzing combat games.
This work builds on previous research in modelling stealth
games [1], enabling us to analyze level design under arbitrary
combinations of stealth and/or combat design objectives. The
approach is primarily a problem exploration which aims at
practical, design-time exploration of single-player game lev-
els, and naturally accommodates a variety of interesting and
common game features, such as combat with multiple enemies
and the presence of limited healing resources.

Since no benchmark exists for design-tools, our framework
is demonstrated through a non-trivial, Unity3D-based imple-
mentation. This allows us to analyze game levels in a realistic,
industrial-scale game development context, as well as show
how such a tool can be used in the actual design process.
Using the analysis data generated by our framework, we are
able to visualize a variety of metrics such as player movements,
deaths, and combats, and show how different arrangement
of resources guarantees feasibility, and can shift the balance
between places where combat-avoidance is required or not, as
well as encourage level exploration. Specific contributions of
our work include:

• We extend the analytical domain and search technique
used in previous work on stealth analysis to also represent
player combat. This non-trivial addition includes a modular
representation of combat resolution and results in a unified
context for stealth and combat analysis.
• Feasibility of the design is demonstrated by integrating
the full framework into Unity3D.
• We demonstrate the value of our approach on a representa-
tive game level, showing how the tool can expose useful stats
on the level and help guide a level designer to an appropriate
design.

II. BACKGROUND & RELATED WORK

We are interested in simulating artificial players for two
game genres: combat and stealth games. We loosely define
combat games by a player getting from a to b alive. The
player has to survive every combat against other Non-Player
Charaters (NPC), with combat initiated when the player walks
into an NPCs’ Field of View (FOV). This definition includes
FPS games such as Half-Life or Role Playing Games (RPG)
such as Baldur’s Gates. Stealth games can then be seen as
a subset of combat games, where combat is disallowed, or
at least not required: the player has to avoid each NPC’s
FOV while getting from a to b [2]. Pure examples of this
genre exist, such as in the Thief series, but many and more
recent games in the stealth genre, such as Dishonored allow
some amount of combat, and a combined consideration of both
combat and stealth behaviours is essential to their design and
understanding.

Although distinct game genres, both combat and stealth
behaviours are fundamentally based on the task of path-finding
from a to b, and we can understand player behaviour as based
on searching a complex space, including enemies for feasible
paths. To simulate player behaviour, different algorithms exist
that would search different space representations to find a path
between two positions. For example, Dijkstra, A?, Rapidly
Randomly exploring Tree search (RRT), etc. [3]. Our work
focuses on RRT, which we define in section III; for a better
understanding of path-finding in general the reader is referred
to Klingensmith [4].

Our design relies on being able to determine the results
of combat encounters. Simulating combat is a non-trivial task,
however. Normal combat scenarios in FPS games involve many
moving parts, such as physics, different attack and defence
attributes, geometries, etc., and a full consideration makes

accurate simulation complex. In RPGs, there exists simpler
combat system (in terms of simulation) where the player and
enemies take turns choosing actions and targets. Unfortunately,
optimally solving even relatively simple discretized-time com-
bat games, such as Basic Attrition Games, has been previously
shown to have exponential time complexity [5], and even the
decision problem is PSPACE-hard. We thus do not attempt
to determine optimal combat resolution, and instead rely on
a simple “damage per second” (dps) computation based on
health and enemy attack values. Dps is widely used as a
meaningful threat measurement of an entity in games such
as World of Warcraft.

A. Related Work

The work we describe in this paper can be seen in the
context of several research efforts which use AI techniques
during the game creation process in order to understand games
and its design. As Nelson describes, “We need not treat the
game as a black box [...] we can analyse the game itself to
determine how it operates” [6].

Different approaches have been taken as to apply AI to
game design. Jaffe et al., for instance, explore the concept
of fairness/game-balance in games based on win-rate [7].
Using different search algorithms, such as greedy search,
they showed how strategies in a card game could change
with different card values, and so give designers important
balancing information. Shaker et al. presented an approach for
solving continuous-time game constraints. In the game Cut
the Rope, they discretized time, finding the next game state by
using a physics simulator to update the world [8]. From this
update, the available actions are then explore using depth-first
search. This allowed them to present a path in a tree of game
actions that solves the level. This work is comparable to our
presented work in discretizing a complex state space, although
using different search algorithms and aimed at a very different
game context.

More specifically aimed at simulating stealth games, Pizzi
et al. abstracted the level structure and gameplay of the popular
video game Hitman: Blood Money into discretized events that
could be assembled into storyboards [9]. These storyboards
represent major actions such as walking to a point, taking down
an enemy, procuring an item, etc. This abstraction allowed
the designer to build a restricted level (placing enemies and
items), where a planner would find a path to the winning
position. Following the sketching tool concept, Liapis et al.
presented a tool where designers could draft levels using a
high-level terrain editor which included different metrics such
as symmetry, area control, and exploration [10].

Once traces are obtained, whether artificially generated or
not, visualization is essential to the design process. A basic
approach to this problem is to use different heat maps or in-
fluence maps, such as is commonly done to model player death
positions [11]. Understanding the design space is also achiev-
able using feature-based state projections [12] or by measuring
different metrics on the paths such as difficulty [13].

III. TOOL DESIGN

Our work is based on abstracting the game state space
into a high-dimensional geometric space, and then using path-
finding techniques to explore reachability. For this we extend

an existing framework that used a similar technique, but which
used a smaller state space to target only stealth-game levels [1].
Below we first present a formal abstraction of the space,
the search process, and combat simulation, followed by a
discussion of different approaches to visualizing the results.

A. State space

Our representation is based on a 2-dimensional game
terrain, wherein a set of k enemies E and a single player
interact over time. Enemy movements in the absence of player
interaction are assumed to be deterministic, and so we can
compute an enemy’s state (x, y position and orientation) for
any given time from the pre-determined game level specifica-
tion. Both enemies and the player have scalar health values
as well as (fixed, pre-determined) attack values to represent
the damage done by a single attack. For enemies the health
values will be either at maximum or 0, while for the player the
health value may be any number—this is meant to allow us to
model game-state before and after combat, with the assumption
that combat always terminates with either the enemy dead and
player at partial health, or the player dead (simulation over),
and so there is no need to explicitly model the behaviour of
enemies with partial health.

To represent this we build on a model of the game space as
a patch of R2. This space is extruded over time to represent the
evolution of the game during gameplay, giving us a 3D domain
Σ ⊆ R2 ×R+ (assuming only non-negative time values). The
reachable states in this space exclude obstacles, and so we will
generally be more interested in Σfree = Σ−Σobs, where Σobs is
the space occupied by the level obstacles. Incorporation of the
player and enemy states in this space adds other dimensions,
giving us a full state space of Σ×R×P(E), where we include
a real value for player health, and a subset of living enemies.
Note that more complex representations, such as a 3D game
terrain, or including variability in damage dealt (depending
on player health) are straightforward to accommodate through
additional dimensions.

Within the state space we are interested in specific game-
plays, or paths that the player may take through the state
space. Paths are in general continuous functions on the time
dimension, mapping monotonically increasing time values to
elements of the rest of the state space: ρ : R+ → R2 ×
R × P(E). Feasible paths must of course respect movement
constraints for the player, enemies, and any other relevant game
mechanics (no movement through obstacles, dead characters
stay dead, etc.), and will be constructed in a discrete fashion,
as a set of connected points in the state space. Given a point
in a path σ ∈ ρ, we will access specific data through the use
of simple projection functions: pos(σ) =< x, y, t > retrieves
the position of the player at time t, alive(σ) ⊆ E returns the
set of live enemies, and h(σ) = h returns the player’s health.
Although not part of the state space itself, we use a for the
player attack value, h(e) to access an enemy’s health, and a(e)
to access an enemy’s attack value.

Enemies also follow paths through time, interacting with
the player only when they see her. Enemy motions are deter-
ministic, and so in order to understand whether there will be
any player interaction we mainly need to be able to retrieve
each enemy’s FOV at any given point in time. In our simplified

environment, enemies’ FOV at each instant are modelled as 2D
cones, with the enemy located at at the apex. Enemy visibility
over a span of time can then be represented by a layering of
instantaneous FOVs forming a collection of triangular prisms,
slanted in relation to the enemy’s movement speed, joined
by slightly more complex polyhedra during rotations, and
constrained by obstacle occlusion. We use g(e) to access the
geometric shape that describes an enemy’s complete FOV for
the duration of the entire simulation.

B. Basic path-finding

Construction of player paths in our multi-dimensional
space can be performed through different path-finding algo-
rithms. We prefer the use of a Rapidly Exploring Random
Tree (RRT) to other algorithms for its practical efficiency and
its inherent variability, as we are less interested in finding
the optimal paths and more in approximating the variety of
possible paths human players may take.

In order to find a path RRT builds a tree starting from a
given initial state, σinit, trying to reach a given goal state, σgoal.
We treat the latter as a set, since in general achieving close
proximity to the goal is sufficient. In the absence of enemies
and combat this process is straightforward, and is illustrated
in figure 1 (this figure also contains additional complexities,
which we will describe in the following subsections). We
assume an existing tree-structure, Υ, of states σ is maintained,
initially consisting of just σinit. Expansion of the tree then
proceeds by randomly chosing a new point in the feasible
state space, σrand ∈ Σfree. This is shown as the green node
in figure 1. We next find the nearest point σnear ∈ Υ to
σrand using an appropriate distance metric, such as Euclidean
distance. This is shown as the blue node in figure 1. We then
verify if it is possible to reach σrand from σnear within Σfree.
If the segment (σnear, σrand) is collision-free then the segment
and node are added to Υ, growing the tree by one branch;
otherwise we discard σrand. This process is then repeated until
we encounter a σrand contained in σgoal, in which case the
search has succeeded, or we reach a limit in time or tree-size,
in which case the search fails. In the former case we form a
path ρ ∈ Υ by tracing a path through the tree. For a deeper
look at RRT the reader is referred to Morgan et al. [14].

C. Incorporating combat

Basic path-finding using just the 3D (x, y, time) subset of
our domain is already useful for modeling stealthy behaviours,
with previous work finding stealthy paths that avoid combat
altogether by simply treating the deterministic enemy FOVs as
obstacles in a 3D state space [1]. The complete algorithm is
shown as algorithm 1, with bold line numbers used to identify
our new extensions. Consideration of the combat dimensions
to the model, however, not only expands the state space, it
greatly complicates the search, as we now need to consider
the existence of enemies, combat state, and player health in
selecting and attaching new nodes to the search-tree—the fea-
sibility of a path from an existing node to a randomly selected
node requires non-trivial modelling of combat behaviours, and
is not simply determined by the movement model. Rather than
just naively apply RRT to this extended space, we thus use
a variant on the basic RRT, where the node attached to the
tree at each iteration is determined computationally from the

initial, random choice. We show the resulting pseudo-code
in algorithm 1, and describe it below. Note that to reduce
complexity in this exposition, we assume that only one enemy
can fight the player at a given time and that the player cannot
lose a fight; these constraints are relaxed in the next subsection.

Our approach retains the core strategy of randomly select-
ing reachable points in the state space in order to grow a
search-tree. To make this selection we ignore player health
and enemy liveness, so this process starts off the same as
for the basic RRT search. In determining whether σrand can
be connected, however, we may discover that the connecting
segment intersects an enemy FOV. If this enemy is still alive
in σnear then combat will occur if the player follows that path
segment. The COLLISIONENEMY function called on line 8
of algorithm 1 shows this determination. In this function
(lines 27–39), we use the helper method LINEPRISMCOL
to compute the point closest to σnear in the intersection of
(σnear, σrand) and each living enemy’s FOV structure. The
function returns the full state at which combat will initiate,
σcombat, shown as the red node in figure 1, as well as the enemy
involved.

Having found a point at which combat occurs, the algo-
rithm simulates the result of the combat based on a damage-
per-second (dps) calculation. This is performed by the SOLVE-
COMBAT function shown on lines 41–48. Here we simply
divide the enemy health by player attack to give a duration
for the combat, and use that duration to also determine how
much health the player loses. Combat is assumed to occur
in a single location, giving us a result state, σ′

rand, as a state
projected upward in time from σcombat with updated player
health and enemy sets, shown as the purple node in figure 1.
The search-tree is then updated by adding σcombat and σ′

rand
to Υ through segments (σnear, σcombat) and (σcombat, σ

′
rand),

representing the player reaching the point of combat, and
engaged in combat respectively. Note that this adds two nodes
to the tree, although combat-initiation nodes such as σcombat
cannot be nearest neighbours for future σrand choices. In cases
where no enemies can be encountered we follow the basic RRT
algorithm, adding valid and reachable states to the tree.

Finally, when a goal state is reached, the PATH(Υ, σrand)
method call on line 18 retraces a shortest path, ρ from the last
node added to the initial state, and we add ρ to our collection of
paths P . The entire process is iterated and controlled through
two user-defined parameters to specify how many paths the
user wants to see (M), and how large she wants the tree to
grow (N).

D. Player death and overlapping combats

In using the above algorithm in the context of design
exploration, it is extremely useful to know not just where and
how a player may succeed, but also where players may be
unsuccessful and have died. To enable this information to be
retained, we drop the requirement that the player always wins
combat, and allow states with h(σ) ≤ 0 to be added to the
tree. This adds a minor complication, in that when finding the
nearest state to σrand we also have to make sure that the player
is still alive.

Integration of combat with multiple enemies is equally
easy. Multiple enemy combat occurs when another enemy is

Algorithm 1 Pathing in our high-dimensional space. Bold
line numbers indicate code associated with our extensions to
previous work [1].

1: procedure COMPPATHS(σinit,σgoal,Σfree,N ,M)
2: for i = 0 to M do
3: Initialize(Υ, σinit)
4: for j = 0 to N do
5: σrand ← Sample(Σfree)
6: σnear ← Nearest(σrand,Υ)
7: if CollisionFree(σnear, σrand,Σfree) then
8: σcombat, e← CollisionEnemy(σnear, σrand))
9: if σcombat 6=null then

10: σ′
rand ← SolveCombat(σcombat, e)

11: Υ← (σnear, σcombat)
12: Υ← (σcombat, σ

′
rand)

13: σrand ← σ′
rand

14: else
15: Υ← (σnear, σrand)
16: end if
17: if σrand ∈ σgoal then
18: ρ← Path(Υ, σrand)
19: P ← ρ
20: break
21: end if
22: end if
23: end for
24: end for
25: end procedure
26:
27: procedure COLLISIONENEMY(σnear, σrand)
28: σcombat ←null, e←null, d←∞
29: for each ei ∈ alive(σnear) do
30: v ← LinePrismCol(σnear, σrand, g(ei))
31: if v 6= null ∧ |(pos(σnear), v)| < d then
32: σcombat ← σnear

33: pos(σcombat)← v
34: d← |(pos(σnear), v)|
35: e← ei
36: end if
37: end for
38: return σcombat, e
39: end procedure
40:
41: procedure SOLVECOMBAT(σcombat, e)
42: σ′

rand ← σcombat

43: ∆t← h(e)/a
44: t(σ′

rand)← t(σcombat) + ∆t
45: alive(σ′

rand)← alive(σ′
rand)− e

46: h(σ′
rand)← h(σcombat)− a(e) ·∆t

47: return σ′
rand

48: end procedure

able to observe the combat between the player and an enemy,
and so joins in the attack on the player. In our model this is
true if the segment (σcombat, σ

′
rand), representing combat with

enemy e intersects the FOV of a different, living enemy, e′. If
so, we assume the player continues to fight e to completion,
queueing the combat with e′ until the fight with e completes.
This has the effect of revising σ′

rand, extending combat to last
the full duration of (h(e) + h(e′))/a. As well as projecting
σ′

rand further in time, we also update σ′
rand to reflect the death

of the additional enemy, and to include the additional health
loss to the player of being attacked by both enemies during the
overlap of combat with e and e′, and which was suffered during

y

x

t

σrand

σ′
rand

σnear

σcombat e

Υ

Fig. 1: Combat algorithm representation

the queued combat with e′. This process has a straightforward
extension to accommodate an arbitrary number of enemies
within the same combat sequence. It is also an approach that
is quite modular in the detail of combat representation, and
although we have used a very simplistic calculation for combat
outcome, integration of more elaborate models that optimize
combat choices [15] is part of our future work.

E. Visualization and analysis

Appropriate representation and analysis of the paths found
is important for practical use of this approach in level analysis
and design. Examining any single, given path is straightfor-
ward: every state has a time component, so we can visualize
the path by replaying the player and enemy motions in real-
time. Figure 2 shows a snapshot of this approach from our
implementation, using a blue sphere for the player, yellow
spheres for living enemies, line segments to indicate the
player’s historical path (blue) and current combat engagement
(red), and terrain colourization to show enemy FOVs (based
on a discretized space model). In this way we can see the exact
progress and behaviour of a possible player path.

Unfortunately, this approach does not scale well to repre-
senting multiple paths. Not only do many paths clutter the
view, paths in general have different sets of live enemies,
making it difficult to determine which set of enemies is relevant
to each path. For understanding multiple paths, we thus make
use of simple heat maps, flattening all paths in the time
dimension, and shading terrain cells according to the density
of path points with the same x, y coordinate. Applying this
technique to show player movements can be quite illustrative,
revealing locations or enemy positions which successful player
paths avoid or commonly target.

Of course, and by intention, the paths generated by
our search process constitute only successful gameplays—the

Fig. 2: A player path (blue line) displayed in Unity 3D, with
a player (blue sphere) fighting (red segment) with an enemy
(yellow sphere).

player reaches the goal state. Designers, however, are also
interested in where combat occurs, and in particular where
players are likely to fail (die). To display the latter information
we need to extract data from the nodes attached to all search-
trees, and not just the successful paths. When a state is added
to the tree, we thus check if h(σ′

rand) ≤ 0, and if so we save
pos(σ′

rand) in a data structure. We then display this information
as a separate heat map, showing the relative density of player
deaths at each location. Since we have time data in these
points as well, this heat map can also be examined as a real-
time replay, displaying deaths as animations over an interval
t± α for some α. A similar process can be applied to create
visualizations of combat or enemy deaths.

Finally, we use our analysis framework to also gain some
basic knowledge about the difficulty of the level. The ratio
of successful paths found versus searches performed (|P |/M)
gives a measure of how easy it was for the RRT to find a
solution, and thus a heuristic indication of how difficult players
may find the overall experience. We can also easily retrieve
other, more detailed path information, such as the time taken to
complete the level, how many enemies where killed, how many
player-death states were added in the search, how much health
was lost, and so forth. In the next section we demonstrate use
of these different visualizations and data assessments.

IV. EXPERIMENTS & RESULTS

In this section we will explore different applications of the
presented framework. We first present a simple case scenario
that demonstrates basic usage and results, and then apply
the technique to a more complicated context with multiple
enemies, and where we introduce health packs. For every test,
1500 searches were performed, with each search capped at
sampling 25000 states; i.e., N = 1500 and M = 25000
in algorithm 1. Note that our implementation is based on a
discretized version of the state space described in the previous
section.

A. Simple level

Our first test illustrates how the search process can traverse
combat situations and help identify situations in which combat
is possible or must be avoided. For this we use three different
parametrizations of the same level, heat map results for which
are shown in figure 3. In this level the player starts at the
blue sphere and has to reach the green sphere, pathing around
an obstacle and possible encountering a single, statically
positioned enemy on the north side.

In figure 3a the enemy has a health of 10, while the
player has infinite health. This makes combat trivial, and we
see that paths both pass through the enemy FOV, and thus
engage in combat, and bypass the enemy: both combat and
stealth solutions are viable. An interesting variation is shown in
figure 3b, where we give the enemy 200 health. This results in
a longer combat sequence (average path length increases from
˜1000 time steps to ˜1200), but since our search process does
not favour or optimize for faster paths no significant difference
in the resulting movement heat maps is evident.

If player health is limited we expect the stealthy option
to be strongly preferred. This is shown in a limiting sense in
figure 3c, where we give the player just one health unit, and
the enemy 10. This makes successful combat impossible for
the player, and indeed the heat map of movement shows only
paths that avoid the enemy. Interestingly, these are the fastest
paths at just ˜500 time steps on average.

B. Non-Trivial Level

In this subsection we explore a non-trivial level with four
enemies, including a boss. Figure 4 maps out the setup; the
player must traverse a fairly large space containing 3 patrolling
enemies with 33 health and 3 attack each; enemies e1 and e3
have the most complicated paths, covering a significant part
of the level. Enemy e4 blocks the exit of the level and acts as
a boss fight, with 99 health and 10 attack. The player has 100
health and 10 attack. Note that paths do sometimes overlap,
and so it is possible that the player may need to fight two
enemies simultaneously. This level is designed in such a way
that the player can only reach the exit if she has full health,
and fighting any of e1, e2, e3 will not leave enough health to
complete the boss fight (and vice versa, fighting the boss will
not leave enough health to fight any minion).

The search process found 386 successful paths out of our
1500 searches, and figure 5a shows the resulting movement
heat map. Numeric data in table I verifies that these paths
all involved a single enemy combat (with e4). The location
of player deaths and combats also supports this interpretation.
Figure 5b shows where players died, which was as expected
primarily against e4, while figure 5c shows that in general
combat happened along the most straightforward route used to
reach the goal.

C. Adding resources

From a game designer perspective, the non-trivial level
might seem overly biased to stealth, as the player has to avoid
all moving enemies in order to reach the goal. In many FPS
games the player is given more flexibility in choice through
the inclusion of supportive resources, such as health packs or

(a) Enemy with health 10 (b) Enemy with health 200 (c) Player with health 1

Fig. 3: Movement heat maps for different enemy and player health parametrizations. The player starts at the blue sphere and
has to reach the green sphere. A single enemy is represented by the yellow dot and yellow FOV.

(a) Movement of 386 paths found (b) Death locations of 9262 dead states (c) Combat locations

Fig. 5: Non-trivial level

e1

e2 e3

e4

Fig. 4: Enemy paths for the non-trivial level.

ammo. Our framework easily extends to include such basic
resources. For example, in order to incorporate health packs,
we simply add another dimension to our state σ to specify still
available health packs’ position. We also modify movement
to represent player decisions to seek out health packs—when
adding a state σ to the tree, we check if h(σ) < 100 and
a health pack is reachable without requiring combat. If so,
we create a new node σhealth with the player’s health updated
by the health pack’s value and the used health pack removed
from the set of all health packs. Then the new node σhealth and
segment (σ, σhealth) are added to Υ. A similar process could
be applied to other resources such as ammo.

Inclusion of health packs modifies the search results,
although the resulting behaviour also depends on where the
packs are located. In figures 6 through 8 we show results for
different placements and numbers of health packs, indicated
visually by green squares. Table I gives the corresponding
numeric data.

Far health pack - In order to improve the level design,
we first included a health pack near e1. This is relatively far
from the player’s typical path, but allows a player to fight even
all 3 minions (e1, e2, e3) and then pick up the health pack
before fighting the boss. Although this scenario is unlikely,
introducing the health pack facilitates the completion of the
level as only 1276 dead states were found compared to 9262
in the base non-trivial level. In figure 6a we can see 474
successful paths found out of 1500, where about 60% of

TABLE I: Numeric data for different level designs

No health
pack

Far health
pack

Near health
pack

4 health
packs

Total paths 386 474 969 982

E
ne

m
ie

s
K

ill
ed

0 - - - -
1 100% 42 % 7 % 5 %
2 - 5 % 56 % 23 %
3 - 25 % 30 % 32 %
4 - 28 % 7 % 40 %

Player deaths 9262 1276 1616 713

them used the health pack. Comparing the death locations of
figure 5b to figure 6b, we can observe that the player still
tended to die near e4, although there is a significant reduction
in quantity (by a factor of ˜7). Including a health pack also
shifts the combat behaviour. In figure 6c we now see more
combat around e1’s position, and from the data in table I we
can also see that most of the paths now involve fighting 3–4
enemies, although almost half of the solutions still fight only
one enemy, and so are not making good use of the health pack.

Close health pack - A designer is most likely going to
put a health pack where players tend to fail. In figure 7 we
thus place it near e4. This positioning results in 969 paths out
of 1500 being successful, a significant improvement over the
no and far health pack approaches. Interestingly, the number
of player death states is greater than with the far health pack;
this is explained by the limit on searchable states, N , which
in the case of the far health pack was reached sooner since it
encouraged greater area exploration. Here the distribution of
enemies killed changes again, with most of the paths fighting 2
enemies, e2 and e4 as indicated by figure 7c. Again, however,
most player deaths were found in front of the boss enemy.

Four health packs - Having only one health pack was
perhaps restrictive, as the player had to plan when to use the
health pack, which was best done just before fighting e4. To
simplify this, we added four health packs in the middle of the
level. This reduces the need for a singular strategy, and also
makes the level easier to win. As table I shows, the number
of player death states is again reduced, while maintaining the
large number of successful paths found with the near health
pack. Visual results are shown in figure 8. Fights are now more
likely to happen around the locations of the health packs, and
in figure 8b, we can observe that e4 is no longer the primary
source of player failure, switching instead to a location where
combined combat with e1 and e3 is likely. Adding the four
health packs also lets the player move more freely; table I
shows that over 70% of paths kill three or four enemies.

V. DISCUSSION & CONCLUSION

In this work we described an algorithmic approach for
finding feasible paths that takes into account combat potential
and results, in addition to the possibility of combat avoidance.
This gives us a broad model of possible player behaviours,
as an essential part of understanding and exploring level
properties in combat/stealth games. Our framework is useful
for gaining deeper understanding of level design, and easily
extends to handle simple resources management, e.g. health
packs.

For future work we are interested in improving the veracity
of the combat simulation, as well as exploring and validating

different approaches to ensuring our paths reflect real player
behaviours. This includes modelling adventure or massively
multi-player game combat systems. Different RRT controllers
(such as avoiding combat if health is lower than a given
threshold) may better correlate with actual player traces, while
still giving us a fast, analytical, design-time approach to
understanding game levels.

ACKNOWLEDGEMENTS

This research was supported by the Fonds de recherche du
Québec - Nature et technologies, and the Natural Sciences and
Engineering Research Council of Canada.

REFERENCES

[1] J. Tremblay, P. A. Torres, N. Rikovitch, and C. Verbrugge, “An explo-
ration tool for predicting stealthy behaviour,” in IDP 2013: Proceedings
of the 2013 AIIDE Workshop on Artificial Intelligence in the Game
Design Process, 2013.

[2] R. Smith, “Level-building for stealth gameplay - Game Developer Con-
ference,” http://www.roningamedeveloper.com/Materials/RandySmith
GDC 2006.ppt, 2006.

[3] I. Millington and J. Funge, Artificial Intelligence for Games, 2nd ed.
Morgan Kaufmann, 2009.

[4] M. Klingensmith, “Overview of motion planning,” 2013, http://www.
gamasutra.com/blogs/MattKlingensmith/20130907/199787/.

[5] T. Furtak and M. Buro, “On the complexity of two-player attrition
games played on graphs,” in AIIDE-2010: Proceedings of the Sixth
AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2010.

[6] M. J. Nelson, “Game metrics without players: Strategies for under-
standing game artifacts,” in IDP 2011: Proceedings of the 2011 AIIDE
Workshop on Artificial Intelligence in the Game Design Process, 2011,
pp. 14–18.

[7] A. Jaffe, A. Miller, E. Andersen, Y.-E. Liu, A. Karlin, and Z. Popovic,
“Evaluating competitive game balance with restricted play,” in AIIDE-
2012: Proceedings of the Eighth AAAI Conference on Artificial Intelli-
gence and Interactive Digital Entertainment, 2012, pp. 26–31.

[8] M. Shaker, N. Shaker, and J. Togelius, “Evolving playable content for
cut the rope through a simulation-based approach,” in AIIDE-2013:
Proceedings of the Ninth AAAI Artificial Intelligence for Interactive
Digital Entertainment Conference, 2013, pp. 72–78.

[9] D. Pizzi, J.-L. Lugrin, A. Whittaker, and M. Cavazza, “Automatic
generation of game level solutions as storyboards,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 2, no. 3, pp. 149–
161, Sept 2010.

[10] A. Liapis, G. N. Yannakakis, and J. Togelius, “Towards a generic
method of evaluating game levels,” in AIIDE-2013: Proceedings of the
Ninth AAAI Artificial Intelligence for Interactive Digital Entertainment
Conference, 2013, pp. 30–36.

[11] J. Hagelbäck and S. J. Johansson, “A multiagent potential field-based
bot for real-time strategy games,” International Journal Computer
Games Technology, pp. 1–10, 2009.

[12] Y.-E. Liu, E. Andersen, R. Snider, S. Cooper, and Z. Popović, “Feature-
based projections for effective playtrace analysis,” in FDG 2011:
Proceedings of the 6th International Conference on Foundations of
Digital Games, 2011, pp. 69–76.

[13] J. Tremblay, P. A. Torres, and C. Verbrugge, “Measuring risk in stealth
games,” in FDG 2014: Proceedings of the 9th International Conference
on Foundations of Digital Games, 2014.

[14] S. Morgan and M. Branicky, “Sampling-based planning for discrete
spaces,” in Proceedings of the International Conference on Intelligent
Robots and Systems (IROS 2004), vol. 2, 2004, pp. 1938–1945.

[15] J. Tremblay, D. Christopher, and C. Verbrugge, “Target selection for
AI companions in FPS games,” in FDG 2014: Proceedings of the 9th
International Conference on Foundations of Digital Games, 2014.

(a) Movement of 474 paths found (b) Death locations of 1276 states (c) Combat locations

Fig. 6: Non-trivial level with health pack (green square) near e1

(a) Movement of 969 paths found (b) Death locations of 1616 states (c) Combat locations

Fig. 7: Non-trivial level with health pack (green square) near e4

(a) Movement of 982 paths found (b) Death locations of 713 states (c) Combat locations

Fig. 8: Non-trivial level with 4 health packs (green squares)

