
Generative Methods for Guard and Camera Placement in Stealth Games

Qihan Xu and Jonathan Tremblay and Clark Verbrugge
School of Computer Science

McGill University
Montréal, Québec, Canada

qihan.xu@mail.mcgill.ca, jtremblay@cs.mcgill.ca, clump@cs.mcgill.ca

Abstract

Enemy observers, such as cameras and guards, are common
elements that provide challenge to many stealth and combat
games. Defining the exact placement and movement of such
entities, however, is a non-trivial process, requiring a designer
balance level-difficulty, coverage, and representation of real-
istic behaviours. In this work we explore systems for procedu-
rally generating both camera and guard placement in a stealth
game context. For the former we use an approach based on
weakening theoretical results for optimal camera placement,
while for the latter we perform automatic roadmap construc-
tion, generating more specific patrol behaviours through a
grammar-based technique. We evaluate both approaches with
a non-trivial implementation in Unity3D, and apply quanti-
tative metrics to demonstrate how different parametrizations
can be used to control level difficulty without sacrificing be-
lievability.

Introduction
A stealth problem in a game requires a player to move
between locations, undetected by entities such as cameras
or AI-controlled guards. Defining the location, routes, and
other parametrization of enemy agents, however, is a non-
trivial task, made especially complex by the need to ensure
a solution exists, provides an appropriate challenge to the
player, and that agent behaviours appear suitably realistic
for the game context.

We investigate two methods for procedural placement of
enemy agents, considering first camera placement and then
the construction of mobile guard routes. For the former, so-
lutions to camera (static guard) placement can be related
to the well known “art gallery” problem in computation
geometry (O’Rourke 1987), which seek to optimally place
cameras to ensure complete coverage of a polygonal space.
Weakening these theoretical results by both limiting individ-
ual camera coverage and by reducing the number of cameras
then provides a parametrized method for ensuring an incom-
plete coverage, and thus a potentially solvable level design.

Mobile guards introduce the additional complexities of
planning reasonable movement routes that tour a space,
along with specific behaviours guards may use to inspect the
space at different points. For this we first build a simplified

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

roadmap based on a reduced medial skeleton (Blum 1967);
this enables us to select appropriate end-points and paths be-
tween them that traverse the space without appearing ran-
dom. Additional behavioural complexity is then introduced
through a grammar-based model that partitions the route into
different kinds of movement and scanning segments.

Both approaches have trivial reductions that can ensure
solutions exist. For more interesting results we use a heuris-
tic, Monte-Carlo approach. An initial, arbitrarily complex
arrangement of enemy agents is first constructed, and then
verified for solution existence and level complexity through
a search-based analysis technique. We demonstrate this pro-
cess on two game level designs, one synthetic and one based
on a commercial game, exploring different configurations
to give some sense of appropriate parametrizations for our
techniques. Specific contributions of this work consist of:

1. A heuristic approach to camera placement based on weak-
ening a solution to the well known “art gallery problem”
for simple polygons.

2. The design of a flexible, grammar-based method for defin-
ing roadmap-based guard patrol routes.

3. Application of quantitative metrics that demonstrate how
different parametrizations affect the existence of level so-
lutions and player perception of difficulty.

Background & Related Work
Stealth problems can be loosely defined as tasks wherein
the player must move from a start to a goal position, while
avoiding enemy Non-Player Character (NPC) Fields of View
(FoV). This problem is presented to players in many combat
games, and is central to games in the stealth genre, such as
Mark of the Ninja or the Metal Gear Solid series.

Designing such a game or level involves careful orchestra-
tion of enemy positions and behaviours, obstacles, and other
positive or negative factors that affect stealth (light, shadow,
sound, etc.) (Smith 2006) so as to present an interesting but
feasible challenge to the player. This requires solving prob-
lems in geometric visibility along with procedural genera-
tion.

Within our exploration of stealth games, the design
space is limited to placing geometries (occlusions) and two
flavours of NPC: guards and cameras, both of which have

limited FoV. Guards refers to entities moving along a re-
peating, pre-determined path (patrol route). Cameras do not
move, although they can rotate, sweeping a given subset of
the level. The quality of a stealth level is typically measured
through playtesting, although recent work has suggested that
objective, quantitative measures can also approximate per-
ceived risk (Tremblay, Torres, and Verbrugge 2014).

Abstract solutions to related problems have been explored
in more theoretical contexts. Placing cameras (with infinite
FoV) in a given n-vertex polygonal geometry is well known
as Klee’s 1973 “art gallery” problem, and there have been
many different algorithms and lower bounds demonstrated
for variations of this problem (O’Rourke 1987). More com-
plex formulations also exist; Erdem et al., for example,
presented a realistic expression of the art gallery problem
where guards do not have 2π rotational and infinitely long
view (Erdem and Sclaroff 2006). Using a discrete (grid-
based) world they optimally place cameras that can ensure
every point is observed with period less than t. For this they
reduced the problem to a Set Coverage Problem, solving it
using a special case of integer programming. Cohen-Or et al.
give a general survey of other, real-life application of camera
network placement (Cohen-Or et al. 2003). In the context of
games, a combined approach to guard/camera placement has
been previously explored by Xu et al. (Xu, Tremblay, and
Verbrugge 2014). They presented a space-decomposition ap-
proach that enabled them to locate cameras with (heuristi-
cally) maximized coverage, and to define simple, straight-
line guard patrol paths. Our work here generates signifi-
cantly more complex guard routes and behaviours, and pro-
vides an approach to camera placement that can both guar-
antee good coverage properties, and has less stochastic vari-
ance in scaling down the difficulty.

Our camera/guard placement approach is intended to help
in procedurally generating stealth levels. Procedural Con-
tent Generation (PCG) has been used for a wide variety of
tasks in games, level generation (Spelunky), weapon gen-
eration (Borderlands), vegetation filling (Skyrim), etc., and
continues to be a popular research topic. Shi and Craw-
fis, for instance, presented a design tool that tries to op-
timize distribution of objects within a level, based on dif-
ferent properties of player paths, such as the minimum-
damage cover, longest path, and standard deviation of cover
points (Shi and Crawfis 2013). In our work we enable flexi-
ble, high-level structuring of the content generation through
use of a grammar-based rewrite system, generating increas-
ing complexity by applying rewrite rules. Grammar-based
approaches have been used for a number of other PCG ap-
plications, including vegetation (Togelius, Shaker, and Dor-
mans 2014), abstract structure for platformer levels (Smith
et al. 2009), narratives (Kybartas and Verbrugge 2014), and
even as a general tool that creates whole story, missions and
levels (Dormans 2010).

Strategies for Camera and Guard Placement
Although 3D elements are sometimes used in stealth games,
the stealth pathing problem is most typically a 2D one, and
thus can be addressed in terms of its underlying floor-plan.
Below we describe our two main approaches to enemy agent

placement, beginning with camera placement, and followed
by mobile guard placement.

Camera Placement
Our approach to camera placement builds on known algo-
rithms for achieving a minimal camera arrangement shown
to be theoretically optimal, and which we subsequently
weaken. In this way we can avoid excessive, unrealistic over-
lap in coverage, as well as be sure that both hard and easy
solution end-points exist.

We start the placement by following Fisk’s 1978 algo-
rithm for a minimal covering of a simple polygon, using
⌊n
3
⌋ cameras for a polygon with n vertices (O’Rourke 1987).

This algorithm begins with a triangulation of the polygon in-
terior, the vertices of which are then 3-coloured, ensuring no
adjacent vertices share a colour. Each triangle must then use
all 3 colours, and since triangles are convex, associating one
of the 3 colours with camera placement results in a complete
coverage of the polygon interior.

The presence of obstacles in our floor-plan, however,
means that we are actually working on a polygon with holes,
and so Fisk’s approach for simple polygons does not ap-
ply. More complex algorithms exist that address this con-
cern (Hoffmann, Kaufmann, and Kriegel 1991), but since a
theoretically minimal solution is not actually required, we
can take a simpler approach. For this we continue to make
use of a triangulation, using the well known technique of re-
ducing a polygon with holes to a simple polygon through a
network of (conceptually) infinitely thin channels that con-
nect all obstacles to the exterior, effectively converting the
holes (obstacles) into part of the polygon exterior. Figure 1
shows an example, where thick (blue) edges indicate the
channels. In this approach a 3-colouring is still possible,
with the drawback that since each channel now represents
two exterior edges we have 2 overlapping vertices at the ver-
tices of each channel, and so end up with a slightly less op-
timal camera placement using up to ⌊n+2h

3
⌋ cameras for an

n-vertex polygon with h holes.
Finally, as these approaches assume full, 360○ camera

view, and infinite range, we can change camera parameters
in order to permit more and easier solutions. We experiment
with reductions in the camera FoV angle and distance, while
imposing fixed limitations on rotation speed/patterns. Other
factors may also be considered, such as focus, light sensitiv-
ity, or more complex, 3D FoV and movements.

Guard Placement
Guard placement introduces a number of additional com-
plexities to defining enemy agents. First, guards are expected
to be mobile, and thus we need not only an initial position,
but a patrol route to follow as well. Second, guards are usu-
ally expected to make occasional observations as they patrol,
sometimes looking around rather than just staring forward as
they move.

Theoretical bases for good coverage with such guards
can be developed, either by extending camera visibility re-
sults to consider mobile guards following interior paths,
within the context of a weak visibility model (Ghosh 2007),

Figure 1: Triangulating and colouring a polygon with holes. The
blue edges represent channels, consisting of two parallel edges, and
chosen so as to form a spanning tree that connects all obstacles to
the exterior.

or through exploration algorithms more commonly used in
robotics (Obermeyer, Ganguli, and Bullo 2011). The result-
ing algorithms, however, tend to have high computational
complexity, or generate movement patterns that do not seem
suitable for modelling guards in games—weak visibility so-
lutions tend to favour (unrealistic) wall-hugging, while opti-
mal exploration strategies result in minimized, hard to pre-
dict movement that does not match player expectation for
guards on routine patrol.

Our approach is thus based on two techniques that can
easily and efficiently ensure an appropriate result for guard
simulation, while still providing ample, flexible control for
difficulty adjustment. We perform this in two stages, first
constructing a basic patrol route, and then introducing intra-
route activities to add further complexity and interest.
Patrol routes. Guards should move in a repetitive fashion
through some subset of the level geometry, concentrating
on large areas, and avoiding obstacle features. For this we
generate a roadmap as a reduced and straightened subset
of the medial skeleton. We expand all edges, flooding out-
ward from obstacles and inward from the boundary. When
different obstacle or boundary/obstacle wavefronts meet we
generate roadmap edges. We use a discrete representation
for this, and so we perform a final smoothing step to re-
move zig-zags and other discrete artifacts, and also reduce
the number of nodes in the roadmap. The end result is some-
thing close to a simplified straight skeleton (Aichholzer et al.
1995), but absent edges that would connect to polygon ver-
tices, or which would otherwise normally be generated by
interaction of wavefronts from different edges of the same
polygon (obstacle or boundary). This approach avoids the
potential for guard paths that would walk to or from corners
and concentrates guard behaviour on touring around obsta-
cles. Figure 2 shows an example of a basic roadmap, and

figure 3 shows the result after smoothing and node reduc-
tion.

Figure 2: Test level with initial skeleton roadmap. The blue sphere
(lower-left) indicates the player start position, and the green sphere
(upper-right) the goal.

Given a roadmap network, we then select patrol routes
by randomly choosing starting and ending nodes within the
network (different for each guard), and constructing a path
between them through a simple depth-first search, biasing
and randomizing the search to generate relatively long paths.
Patrol routes are assumed to be cyclic, with the final position
matching the starting position: given two distinct end-points,
a and b, the route consists patrols from a to b and then back
to a. Note that it is possible that a = b, in which case the
route will consist of a random tour through the network that
returns to a.
Intra-route activities. The basic route generation results in
guard patrols that have reasonably good level coverage, but
are overall somewhat robotic in behaviour. More human-like
behaviours are created by breaking up the patrol movement,
introducing points at which a guard stops and turns to scan
the space in different fashions. For this we use the grammar-
based construction, shown in figure 4.

Figure 3: Test level with simplified roadmap.

1)
t

—— ::=
t1

——
t2
●

t3
——

2)
t

—— ::=
t1

——
t4
2
º

t2
——

t4
2
º

t3
——

3)
t

—— ::=
t1

——
t4
2
↶

t2
——

t4
2
↶

t3
——

4)
t
● ::=

t

5)
t
● ::=

t
Á⤸ |

t
⤸Á

6)
t
● ::=

t
↶↷ | t

ºÀ

7)
t
● ::=

t

⤿ |
t

⟳

Figure 4: Guard patrol grammar.

However many roadmap edges are traversed, a patrol
route is initially a single segment of continuous movement.
The first few rules of this grammar break up continuous seg-
ments of movement into multiple segments; rule 1 rewrites
a segment into two, not necessarily equal length segments
separated by an activity (●), while rule 2 rewrites a segment
into 3 sections with 180○ turns between (rule 3 is symmet-
ric, turning in the other direction), and so causes the guard
to go back and forth over the same segment. Rule 4 rewrites
the abstract activity designator into a pause (), while the re-
maining rules rewrite an activity into different kinds of scan-
ning: a 90○ turn and return, left or right (rule 5), a 180○ turn
and return (rule 6), or a full 360○ rotation (rule 7).

All rules have a time value associated with each segment
or activity. This allows us to control the pace of individual
actions; for example, in rule 1 the time taken to traverse the
LHS segment t is broken up into time values t1, t2, and t3 for
the three parts of the rewritten segment. Control over patrol
timing may thus be enforced ahead of time by forcing the
sum of times in the RHS of each rule to match the time in
the LHS, although we do not do this in our prototype.

Applying these rules to the initial guard path, follow-
ing different rule selection strategies and limits on rewrit-
ing depth gives control over the complexity of the patrol be-
haviours. In the next section we explore the relative impact
of both route selection and activity choice/density.

Experiments & Results
In order to validate our approach we examined the effects
of camera and guard placement on multiple game-levels,
including a non-trivial test level as well as a mock-up of
the first level from Metal Gear Solid (MGS), the Dock. We
measured the impact on game challenge through quantitative
metrics to determine how we can relate varying parametriza-
tion to different measures of player difficulty. Below we de-
scribe our metrics, followed by results from camera place-
ment and then guard patrol paths.

Metrics
To measure the difficulty of our stealth levels, we make use
of two different metrics, one that measures relative feasibil-
ity, and another that measures the perception of risk.

We determine the degree of feasibility by computing
the success rate of a heuristic path exploration technique.
Path-finding techniques are able to solve stealth levels, at
least with deterministic enemy behaviours, by modeling the
game state as a geometric space extruded over time. A path
that reaches the goal position, while continually advanc-
ing in time and avoiding all enemy FoV at each point in
time is then a solution to the stealth level. We compute
such paths using a Rapidly Exploring Random Tree (RRT)
search (Morgan and Branicky 2004) rather than a more tradi-
tional A* or other deterministic approaches, since the RRT
paths may fail, tend to have a significant, sub-optimal ran-
domness to the result, and so better approximate a variety of
human gameplay behaviours. We thus use the success ratio
of RRT searches as a proxy for overall level difficulty.

Other metrics have also been proposed and evaluated for
measuring properties of stealth levels. Tremblay et al. de-
scribe 3 different path quality metrics that attempt to mea-
sure the player sense of risk or danger (Tremblay, Torres, and
Verbrugge 2014). Through comparison with results from a
human study they argue that a conceptually simple path-
distance measure, considering the relative distance from a
player to enemies at each point best approximates human
perception. We thus apply this metric in order to determine
the degree of risk our levels present to players. Note that this
metric is inverted, and higher values in the distance metric
indicate riskier paths that tend to be closer to enemy agents.

Both metrics are applied to game levels modeled in a non-
trivial Unity3D game development framework, and so con-
sider realistic player movements, including physical and vi-
sual constraints typical of modern first or third-person 3D
environments.

Camera Analysis
Our algorithmic basis for camera placement requires we
place cameras at particular points in the space. It is of
course possible to introduce variation into that placement
as a means of perturbing difficulty, but randomizing cam-
era placement easily loses the intended quality guarantees
on visibility coverage of the algorithm. We thus used a more
overtly scalable approach, modifying the angle of camera
FoV as well as the distance (range) cameras can see: with
full 360○ FoV and and infinite range we have 100% cover-
age, whereas we can be certain the level is solvable if the
range is sufficiently reduced.

For this experiment we used the Dock level of MGS,
as shown in figure 8. The level was filled by 22 cameras,
each with identical FoV and range, sweeping back and forth
through its entire potential viewing area. Figure 5 shows the
result of a parameter sweep considering different combina-
tions of FoV angles and ranges over the level: FoV angle
changes from 1 degree to 14 degrees in unit increments,
while FoV distance ranges from 1 to 5 with a step of 0.5—
the level is approximately 40×60, and a range of about 3 is
sufficient to block a corridor. For each combination we per-
formed 20 RRT searches, as reasonable balance between be-
ing able to assess success rate and the total duration of these
experiments. Note that we do not show the path-distance
metric here, as the camera positions do not change.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
FoV distance

0

2

4

6

8

10

12

14

16

Fo
V

 a
n
g
le

Unsolvable

Solvable

Figure 5: RRT success ratio from 0% to 100% for different camera
FoV angles and ranges.

From this data we can see that the design space allows for
reasonable levels of difficulty by modifying either or both of
angle and range, albeit within a fairly narrow band of vari-
ability. Camera view distance has a stronger impact than an-
gle, which makes sense, as it is easy for a camera with a
relatively long range to block an entire passage and make
the level unsolvable, even with a very narrow angle of view.

Guard Analysis

Camera placement offers clear and easy flexibility in dif-
ficulty adjustment, but mobile, human-like guards provide
more player interest and increase the potential design space.
As such, however, the space is too large to consider exhaus-
tively, and so we analyze different features separately.

We begin by exploring the impact of number of guards on
level quality. For this we use the test level shown in figure 3.
After computing the simplified roadmap we assign guards
different, random patrol routes, but without any intra-route
activities. Figure 6 shows the results for both the RRT suc-
cess rate and the path-distance metrics. For each number of
guards, we applied 20 RRT searches to each of 30 unique
choices of guard paths, giving us an RRT rate /20 and dis-
tance metric values on up to 600 situations (we do not in-
clude failed solutions in the distance metric).

The randomized path selection results in a large variance,
but as expected, increasing the number of guards in an other-
wise fixed level increases the relative coverage of space, and
so makes it harder to find a path that traverses the level un-
seen from start to finish. Unlike cameras, however, the cut-
off for infeasibility is not nearly as sharp: a moving guard
may retard player progress, but by virtue of moving rarely
tends to permanently block off an entire corridor, and even
with 8 guards (which is quite dense) the RRT is still easily
able to find solutions. In this sense the greater slope of the
distance metric is perhaps a better representation of game
difficulty for players—with more guards, player paths nec-
essarily come closer to guards, and thus closer to being seen.

0 1 2 3 4 5 6 7 8 9
Number of guards

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

D
is

ta
n

ce
 m

e
tr

ic

0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
e
ss

 r
a
ti

o

Figure 6: Success ratio (×’s, blue) and distance metric (○’s, red)
vs. number of guards in the test level.

Grammar influence
The choice of and amount of application of grammar rules
potentially affects the level as well. Experimentally, how-
ever, we found that even fairly dense application of the
grammar rules does not have a significant impact on RRT
success—whether solutions exist is driven primarily by the
degree of coverage induced by the number of guards and
their paths, and while interrupting a guard path to scan
around and so forth is visually interesting, it has limited im-
pact on whether a level is actually solvable or not.

This does not mean, however, that the grammar has no
useful effect on solution paths. As guards spend more time
scanning around, they temporarily block possible player
paths, and/or require players skirt around them. We thus ex-
pect that by increasing and changing guard activities we can
influence a player’s experience in terms of perceived risk in
terms of the amount of time a player spends in close prox-
imity to guards, and this is reflected in the distance metric.

Figure 7 shows the distance metric calculations for differ-
ent kinds and amounts of rewriting, for 4 guards on our test
level. We apply our grammar rules to introduce each of the 3
kinds of rotations, the zigzag repetition of a segment (rules
2 and 3 in figure 4), and a random choice of rewrite rule. For
each of these kinds of rewriting, we considered rewriting to
different recursive depths, where higher depth means more
intra-route activities.

The result of this experiment shows a high degree of vari-
ance, but nevertheless separates behaviours into 3 main cat-
egories of statistical significance (p < 0.05). The distance
metric value mainly increases due to use of 180○ rotations
and the zigzag movement, while others have a lesser impact,
and all are different from a baseline of no rewriting. We at-
tribute the stronger influence of 180○ rotations and zigzag
movements to the way these rules alter the ability of a player
to follow a guard: if a guard rotates 90○ or does a full 360○,
it is relatively easy to follow a guard from a distance or get
past them as their point of view rotates. With 180○ rotations
and zigzagging, however, guards end up looking backwards

0 1 2 3 4
Rewriting number levels

0.0000

0.0005

0.0010

0.0015

0.0020

D
is

ta
n
ce

 m
e
tr

ic

180 Rotation
360 Rotation
90 Rotation
Base
Random
Zigzag

Figure 7: Average distance metric values on the test level with
different kinds of rule choice and depth of rewriting.

Figure 8: The “dock” level from Metal Gear Solid, with two
guards route overlay produced by the grammar.

for some time, and a solution path nearby will need to fol-
low the guard movements closely for longer in order to avoid
detection.

MGS comparison
In this experiment we show that our grammar-based ap-
proach can achieve a similar distribution of guard behaviours
to a manual design in a commercial game. For this we exam-
ine the first level of the Metal Gear Solid, as shown in fig-
ure 8. This level has just 2 guards, and a fairly stable 100%
success rate under RRT search. Of course this would be easy
to make more difficult by adding more guards, but this rel-
atively easy level design is also mitigated by varied guard
behaviour that provides interest and perceptual challenge to
the player as their first experience in the game.

In figure 9 we analyze the original guard movements and
show metric data for the distance metric based on 500 suc-
cessful paths found by RRT searches. Overlaid with this
we show the distributions of the same metric data produced

Figure 9: Histogram of distance metric values for MGS level.

by applying our grammar-based approach to the same basic
guard routes. We used a rewrite depth of 2, and biased our
rule selection to favour zigzag rewrites over segment splits,
and pauses over rotations. This produced the 2 paths pre-
sented in figure 8, The red guard patrols the outside most
of the level, whereas the blue guard follows a more com-
plex route within the level. double sided arrows represent
zigzag behaviour, the rest follows the presented notation in
figure 4. Given the randomization inherent in our grammar
application and RRT choices the distributions do not match
perfectly, although a t-test on both distributions yields their
similarity with 1.0. This allows to say in terms of our metric
that we can algorithmically produce a desired style of guard
behaviours.

Conclusion & Future Work
Stealth games or levels are popular with players for posing
interesting, puzzle-like challenges different from the typical
combat-intensive scenarios found in many modern games.
A creative puzzle challenge, however, requires a creative
puzzle design, ensuring solutions exist, but having appeal-
ing and appropriate complexity. The techniques we propose
here for procedural generation help with this design chal-
lenge by providing distinct mechanisms for scaling difficulty
in camera placement, generating guard routes and improving
player experience through variety in guard behaviours.

There are many facets of stealth game behaviours we
have not covered, and which we intend to explore in future
work, such as further, more dynamic properties of enemy be-
haviours (speed, non-continuous observation), as well as the
full gamut of stealth-related game features, such as sound
and footprints. We are also interested in extending the anal-
ysis further to account for combat scenarios, and to consider
gameplay in other game genres.

Acknowledgements
This research was supported by the Fonds de recherche du
Québec - Nature et technologies, and the Natural Sciences
and Engineering Research Council of Canada.

References
Aichholzer, O.; Aurenhammer, F.; Alberts, D.; and Gärtner,
B. 1995. A novel type of skeleton for polygons. Journal of
Universal Computer Science 1(12):752–761.
Blum, H. 1967. A transformation for extracting new de-
scriptors of shape. In Models for the perception of speech
and visual form. MIT Press. 362–380.
Cohen-Or, D.; Chrysanthou, Y. L.; Silva, C. T.; and Durand,
F. 2003. A survey of visibility for walkthrough applications.
IEEE Transactions on Visualization and Computer Graphics
9(3):412–431.
Dormans, J. 2010. Adventures in level design: Generating
missions and spaces for action adventure games. In Pro-
ceedings of the 2010 Workshop on Procedural Content Gen-
eration in Games, 1:1–1:8.
Erdem, U. M., and Sclaroff, S. 2006. Automated camera lay-
out to satisfy task-specific and floor plan-specific coverage
requirements. Computer Vision and Image Understanding
103(3):156 – 169.
Ghosh, S. K. 2007. Visibility Algorithms in the Plane. Cam-
bridge University Press.
Hoffmann, F.; Kaufmann, M.; and Kriegel, K. 1991. The
art gallery theorem for polygons with holes. In Proceedings
of the 32nd Annual Symposium on Foundations of Computer
Science, 39–48.
Kybartas, B., and Verbrugge, C. 2014. Analysis of Re-
GEN as a graph-rewriting system for quest generation.
IEEE Transactions on Computational Intelligence and AI in
Games 6(2):228–242.
Morgan, S., and Branicky, M. 2004. Sampling-based plan-
ning for discrete spaces. In Intelligent Robots and Systems,
2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ Interna-
tional Conference on, volume 2, 1938–1945.
Obermeyer, K. J.; Ganguli, A.; and Bullo, F. 2011. Multi-
agent deployment for visibility coverage in polygonal envi-
ronments with holes. International Journal of Robust and
Nonlinear Control 21(12):1467–1492.
O’Rourke, J. 1987. Art Gallery Theorems and Algorithms.
Oxford University Press.
Shi, Y., and Crawfis, R. 2013. Optimal cover placement
against static enemy positions. In Proceedings of the 8th
International Conference on Foundations of Digital Games,
109–116.
Smith, G.; Treanor, M.; Whitehead, J.; and Mateas, M. 2009.
Rhythm-based level generation for 2D platformers. In Pro-
ceedings of the 4th International Conference on Foundations
of Digital Games, 175–182.
Smith, R. 2006. Level-building for stealth game-
play. Presentation at the Game Developers Conference.
http://www.roningamedeveloper.com/Materials/
RandySmith_GDC_2006.ppt.
Togelius, J.; Shaker, N.; and Dormans, J. 2014. Grammars
and L-systems with applications to vegetation and levels. In
Shaker, N.; Togelius, J.; and Nelson, M. J., eds., Procedural
Content Generation in Games: A Textbook and an Overview
of Current Research. Springer.

Tremblay, J.; Torres, P. A.; and Verbrugge, C. 2014. Measur-
ing risk in stealth games. In FDG’14: Proceedings of the 9th
International Conference on Foundations of Digital Games.
Xu, Q.; Tremblay, J.; and Verbrugge, C. 2014. Procedural
guard placement for stealth games. In Fifth Workshop on
Procedural Content Generation in Games (PCG 2014).

