
Snakes, Shapes and Gradient Vector Flow

Junaed Sattar
School of Computer Science

McGill University
Montreal QC Canada H3A 2A7

Abstract

A novel method for finding active contours, or
snakes as developed by Xu and Prince [1] is presented
in this paper. The approach uses a regularization
based technique and calculus of variations to find what
the authors call a Gradient Vector Field or GVF in
binary-values or grayscale images. The GVF is in turn
applied to ’pull’ the snake towards the required feature.
The approach presented here differs from other snake
algorithms in its ability to extend into object concav-
ities and its robust initialization technique. Although
their algorithm works better than existing active con-
tour algorithms, it suffers from computational com-
plexity and associated costs in execution, resulting in
slow execution time.

1 Introduction

Active contours or snakes are of great importance
in computer vision. Applications like object track-
ing, shape modelling, segmentation and edge detec-
tion rely heavily on finding the contour of the object
in question. Although, problems relating to initializa-
tion and convergence in object concavities limit their
applications. Xu and Prince [1] present a new ap-
proach of snake modelling which they claim removes
the abovementioned difficulties in active contour gen-
eration. This report discusses their algorithm in detail
for binary-valued and grayscale images (section 2) and
also discusses some results obtained by implementing
and testing their algorithm (section 3).

2 Description of the algorithm

This section discusses the algorithm by Xu and
Prince [1] for active contour modelling in details. The
outline of the algorithm is as follows. The image
on which the snake is to be computed is taken and

is converted into a gray-level or binary-valued repre-
sentation. If the objects of interest are present like
line-like structures in the image, the input image can
be directly used as the edge map. If the objects are
present as homogeous regions whose boundaries sepa-
rate the regions from the background of different in-
tensity value, an edge map has to be computed. The
edge map can be computed using any type of edge
detector in the vision or image processing literature.
The edge map is normalized to have all edge intensities
fall between 0 and 1, if required This normalized edge
map is input into the GVF solver. This will produce
the GVF field of the edge map. The active contours
can be formed by following the direction of the gra-
dient field vectors over a certain number of iterations
until a statistical equilibrium is reached.

2.1 Active Contours

A traditional snake or active contour is a curve
x(s) = [x(s), y(s)], s ∈ [0, 1]. that moves through the
spatial domain of an image to minimize the energy
functional

E =

∫ 1

0

1

2
(α|x′(s)|2 + β|x′′(s)|2) +Eext(x(s))ds (1)

Here α and β are the weighting parameters that
control the snake’s tension and rigidity, respectively.
x′(s) and x′′(s) are the first and second derivatives of
x(s) with respect to s. The external energy function
Eext is derived in such a way from the image that it
takes on smaller values at the feature of interests; e.g.
at boundary positions. An example of Eext for a gray
level image I(x, y) leading to step edges could be

Eext(x, y) = −|∇(Gσ(x, y) ∗ I(x, y))| (2)

where Gσ(x, y) is a two-dimensional Gaussian func-
tion with standard deviation σ and ∇ is the gradient
operator. Larger values of σ will cause the bound-
aries to become blurry. Even though, large values of

σ are sometime required to increase the capture range
of the active contour, as can been seen from the re-
sults(section 3). A snake that minimizes E must sat-
isfy the Euler equation

αx′′(s)− βx′′′(s)−∇Eext = 0 (3)

This is equivalent to a force balance equation

Fint + F
(p)
ext = 0 (4)

where Fint = αx′′(s)−βx′′′(s) and F
(p)
ext = −∇Eext.

The internal force Fint discourages stretching and

bending whereas the external potential force F
(p)
ext pulls

the snake towards the desired image edges. To solve
for (3), the snake is made dynamic by treating x as
a function of time t as well as s. Then the partial
derivative of x with respect to t is set as follows:

xt(s, t) = αx′′(s, t)− βx′′′(s, t)−∇Eext (5)

When statistical equilibrium for x(s, t) is reached, the
term xt(s, t) vanishes and a solution to equation (3) is
obtained.

2.2 Problems with Snake Formation

Applications of snakes in computer vision and im-
age processing has had their limitations. There are
two main reasons for that. One, the poor conver-
gence property of the active contours. Specifically,
concavities in the object of interest are rarely cov-
ered; i.e. the snake does not extend to the concave
regions of the object. An example of that is shown
in figure 1. The snake was obtained by following the
general algorithm outlined in the previous subsection.
As can be seen, the steady state active contour fails to
reach inside the concave region of the U-shaped object.
The second problem with snakes is the limited cap-
ture range, which is related to the initialization of the
snake around the object of interest. The magnitude of
external forces die out far away from the boundaries.
This phenomenon might fail convergence of the snake.
Increasing the value of σ of the Gaussian might im-
prove the range, but at higher values, the edge will
get blurry and eventually the concavitiy will be oblit-
erated. Cohen and Cohen [2] proposed a distance po-
tential force model to get around this problem. The
general idea behind this model is to have large exter-
nal forces far away from the boundaries of the object,
thus increasing the capture range of the snake. Even
then, snakes based on this model fails to converge to
concavities, due to horizontal forces pulling the snake

Final result, iter = 500 traditional force

Figure 1: Traditional snake and force field after 500
iterations

apart but not downward into the concavities. The
technique presented by Xu and Prince [1] addresses
these issues and presents a new formulation for active
contour modelling.

2.3 Gradient Vector Fields

The poor convergence of the snake can be shown
to happen due to convergence of the solution to a lo-
cal minimum. The authors present a solution to the
problem by replacing the standard external force Fext
in the force balance equation (4) with a static external
force which does not change with time or depend on
the position of the snake itself. This new static ex-

ternal external force field F
(g)
ext = v(x, y) is called the

Gradient Vector Field or GVF. Replacing the exter-
nal potential force −∇Eext in (5) with v yields the
following equation:

xt(s, t) = αx′′(s, t)− βx′′′(s, t) + v (6)

The parametric curve solving the above dynamic
equation is termed as a GVF snake. Standard numer-
ical methods can be used to solve for this equation and
yield the GVF snake.

2.4 GVF Snake Formation

The process starts by calculating the edge map of
the given image, using any edge finding algorithm from
the image processing literature. The edge map has
three imporant features realting to snake formation.
One, the gradient of this edge map has vectors point-
ing towards the edges which is a desirable property
for snakes. Two, these vectors have large magnitude
at the vicinity of the edges. Three, in homogenous re-
gions (regions with little variation in image intensity)

∇f is almost zero. The second and third features can
be problematic when constructing an active contour.
To keep the first feature and nullify the effect of the
latter two, the gradient map is extended farther away
from the edges and into homogenous regions using a
computational diffusion process.

The gradient vector flow field is defined as the vec-
tor field v(x, y) = (u(x, y), v(x, y)) that minimizes the
following enerygy functional

ε =

∫ ∫
µ(u2

x + u2
y + v2

x + v2
y) + |∇f |2|v−∇f |2dxdy

(7)
As can be seen, this is an example of variational

formulation of regularization. The parameter µ is a
regularizing parameter which adjusts the tradeoff be-
tween the first and second terms of the integrand and
is set according to the level of noise present in the
image. Also, where the value of the edge gradient is
small, energy is dominated by the sum of the partial
derivatives of the gradient field. When the gardient is
large, the second term dominates. In this case, setting
v = ∇f minimizes the energy. Overall, this formula-
tion transforms the gradient vector flow field by keep-
ing it equal to the edge gradient at the boundaries; it
also keeps v slowly varying at the homogenous regions
of the image. Using the calculus of variations, it can
be shown that the GVF field can be found by solving
the pair of Euler equations stated below:

µ∇2u− (u− fx)(f2
x + f2

y) = 0 (8)

µ∇2v − (v − fy)(f2
x + f2

y) = 0 (9)

Here, ∇2 is the Laplacian operator. Equations (8)
and (9) can be solved numerically by treating u and v
as a function of time. The resulting equations are:

ut(x, y, t) = µ∇2ut(x, y, t)− (u(x, y, t)− fx(x, y))

·(fx(x, y)2 + fy(x, y)2) (10)

vt(x, y, t) = µ∇2vt(x, y, t)− (v(x, y, t) − fy(x, y))

·(fx(x, y)2 + fy(x, y)2) (11)

The steady-state solution of equation (10) and (11)
yields the solution to the Euler equations (8) and (9).
An iterative solution can be set up for solving the
equations above.

3 Experiments and Results

The algorithm for snake generation and active con-
tour modelling was implemented in Matlab and tested

Edge Map

Edge Map Gradient Normalized GVF field

Figure 2: GVF Snake Formation

on images obtained from the author’s websites and
also on images obtained by myself. The images con-
tained both binary valued and grayscale images. All
edge detection was performed using the Canny edge
detection algorithm.

3.1 Convergence to Boundary Concavity

An implementation of the GVF snake algorithm
was first run on a binary valued 64x64 pixel image
containing a U-shaped object as shown in figure 2.
The gradient maps, the GVF of the flow vector and
the final GVF snake is also shown in the figure. As
can be seen from the outputs, the algorithm correctly
converges to the object boundary, even in the concav-
ity in the given shape. The algoritm was next run
on a binary valued image with dimensions of 64x64
pixels containing a non-convex polygon. The results
can be seen in figure 3. Initialization of the snake,
the gradient maps and the gradient vector fields for
the given curve is also shown. The snake succeeded
in converging to the boundary positions in this ex-
ample too. The next run of the implementation was
performed on a gray level image. The edge map was
first computed using the Canny edge operator as men-
tioned before. No threshholding was performed on the
image to binarize the edge map. The results are shown
in figure 4. The results show that the snake was able
to latch on to the correct object boundaries on this
test image as well.

Deformation in progress, iter = 125 edge map

edge map gradient normalized GVF field

Figure 3: GVF Snake Formation

3.2 Insensitivity to Initialization

The GVF implementation was tested alongside an
implementation of a traditional snake algorithm. The
traditional snake algorithm, as can be seen from fig-
ure 5, has a limited capture range and is also very
sensitive to the way the snake contour is initialized.
Particularly, in cases where the snake is initialized ac-
cross the object, part of the snake falls inside and part
outside the object of interest. In such cases, the algo-
rithm gets confused about the direction along which it
should progress the snake, and converges to a highly
undesirable configuration.

The GVF snake, on the other hand, follows the
gradient vector flow field to reach a point of steady
state configuration. The flow vectors both inside and
outside of the object point to the object boundaries.
The GVF snake thus eventually converges correctly
along the object boundary. The tests show that GVF
has insensitivity to initialization as well as ability to
progress into bounary concavities.

3.3 Noise Sensitivity

The binary valued images on which the snake algo-
rithm was tested came out to be quite robust upto a
certain level of noise. After being corrupted by Gaus-
sian white noise of zero mean and a small variance,
the GVF snake algorithm was run on the images. The
result can be shown in figure 6. The grayscale images
took a larger value of sigma to reduce the effect of

Edge Map

Edge Map Gradient Normalized GVF field

Figure 4: Graylevel GVF Snake with across-the-object
initialization

Figure 5: Traditional Snake with across-the-object ini-
tialization

Edge Map

Edge Map Gradient Normalized GVF field

Figure 6: GVF Snake on Noisy Image

noise on the snake algorithm.

3.4 Performance

The single biggest drawback of the GVF snake algo-
rithm was the speed of exeucution. The algorithm was
implemented in Matlab for Linux (kernel 2.4.22) run-
ning on an AMP Athlon XP 1.4 GHz processor with
512 megabytes of RAM. For the binary-valued images
(i.e. the image containing the U-shaped object) the al-
gorithm took somewhere around the 50 second mark
to complete the execution. The standard snake algo-
rithm, on the other hand took around 11 seconds, al-
though it failed to correctly converge to the boundary
concavities. For grayscale images, the time taken was
a lot more (almost around 90 seconds). The slowness
could be due to the lack of optimization in the Mat-
lab execution engine.Even then, this drawback makes
the algorithm unsuitable for real time applications like
tracking, inspite of its robustness and felxibility. The
authors nevertheless claim that the speed of the exe-
cution could be improved by using native optimized C
code and by using an algorithm optimization method
as the multigrid method.

3.5 Higher-Dimensional GVF

The GVF snake algorithm can be extended to
higher dimension and applied to 3-D objects. The
paper presents an example of computing the contour

of a 3-D object by using the GVF snake, although this
particular case was not tested in the implementation.

4 Discussion

The gradient vector flow based active contour gen-
eration algorithm by Xu and Prince [1] was presented.
The algorithm, along with a traditional snake genera-
tion algorithm was implemented in Matlab and tested
on various images, both grayscale and binary valued.
It was found that the algorithm succeeds in conver-
gin the active contour to boundary concavitie in both
types of images, even with the presence of noise. The
drawback of the methods is its execution speed. In-
spite of its robustness to initialization and increased
capture range, the algorithm takes a long time to con-
verge to object contours. Also, the value of the reg-
ulrization parameter µ and the snake parameters α
and β are set manually. The paper does not adress
the issue of setting these parameters according to a
particular image. The technique presented by Xu and
Prince is attractive in terms of accuracy and robust-
ness. It has found applications in medical imaging and
offline tracking. With these issues in mind, the ap-
proach may not be suitable for real time tracking or
contour modelling in unconstrained (e.g. excessively
noisy) environments.

References

[1] Chengyang Xu and Jerry L. Prince. “Snakes,
Shapes and Gradient Vector Flow.” IEEE Trans-
actions on Image Prccessing, Vol. 7, No. 3, March
1998.

[2] L. D. Cohen and I. Cohen. “Finite-element meth-
ods for active contour models and balloons for 2-D
and 3-D images.” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(11):1131-
1147, November 1993.

[3] Chengyang Xu and Jerry L. Prince. “Gradient Vec-
tor Flow: A New External Force for Snakes.” Pro-
ceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 66-71, March 1997.

[4] B. K. P. Horn and B. G. Schunck. “Determining
Optical Flow.” Artificial Intelligence, 17:185-203,
1981.

