Device Control Using Gestures Sensed From EMG

Kevin R. Wheeler

NASA Ames Research Center

IEEE International Conference on
Soft Computing in Industrial Applications

Presented by
Junaed Sattar
OUTLINE

😊 Terminology
 What is an EMG?
 How do we acquire EMG signals?
 What Gestures are sensed?

😊 Applications
 What can we do with this?

😊 Methodology
 Steps of the algorithm including training and recognition

😊 Experiments
 Virtual Joystick & Virtual Keyboard
 Different validation methods

😊 Results
 Presented as confusion matrices
ELECTROMYOGRAM (EMG)

- Test that is used to record the electrical activity of muscles
- Current is usually proportional to the level of the muscle activity
- Also referred to as a myogram
- Sensed by placing electrodes on (Surface EMG) or into (Intramuscular EMG) the muscles
- Any Muscle movement can be sensed; usually ease of electrode placement taken into consideration
- This experiment uses SEMG to sense current levels

APPLICATIONS

- Bioelectric interfaces
- Control of robotic arm or robotic exoskeleton
- Control of remote vehicles (UAV or Flight Simulators)
METHODOLOGY

- **Gesture Selection**
 What gestures are we trying to classify?

- **Electrode Application**
 How many required and where to place them?

- **Signal Acquisition, Filtering and Digitization**
 Improving quality and noise filtering

- **Feature formation**
 Separate signals enough for gestures to be distinguished by the moving average method

- **Pattern Recognition model training and testing**
 Used a pattern recognition module based on Hidden Markov Models (HMM)

- **Pattern Recognition application in interactive simulations**
 Simulation of operating a Joystick
 Simulation of typing in a numeric key pad
HIDDEN MARKOV MODELS

- Used mostly in speech recognition in response to the pattern recognition time-series problem
- Expressed as a triple \((A, B, \pi)\) where,
 \(A=\)probability that the next state is \(q_j\) given that the current state is \(q_i\);
 \(B=\)probability that the output is \(O_k\) given that the current state is \(q_i\);
 \(\pi=\)a priori probabilities of individual states
- Trained using the standard Baum-Welch method
 - Finds HMM parameters which have maximum likelihood of generating the given sequence in the observation
- Uses \textit{k-means clustering} for model initialization
- Recall performed using the Viterbi algorithm
 - An algorithm to compute the optimal (most likely) state sequence in an HMM given a sequence of observed outputs

EXPERIMENTS
• As mentioned before, focus' on two tasks
 Substitution of a joystick & a keyboard with bioelectric signals
• One HMM trained for each gesture in both tasks
 4 HMMs for joystick task & 11 HMMS for typing task
• Four different tests to validate the pattern recognition model
 1. Same Trial Acquisition and Testing
 -Test & Training data are different but of the same day
 2. Cross-Trial Acquisition and Testing
 -Test & Training data different and of different days
 3. Multi-Trial Acquisition and Testing
 -Trained on data subsamples across several days
 -Tested on another different sample from same data
 4. Best Trial Training and Real-Time Testing
 -Best performance training data taken
RESULTS

• Expressed in terms of confusion matrices
• Each gesture performed 50 times for Joystick data
• Keyboard task required entering the sequence 0-9-ENTER 51 times
• Live tests performed under high stress, imperfect electrode placements and participants are bombarded by questions and distractions

Confusion Matrix for Cross-Trial Joystick Data

<table>
<thead>
<tr>
<th>Gesture</th>
<th>Left</th>
<th>Right</th>
<th>Up</th>
<th>Down</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>15</td>
<td>0</td>
<td>26</td>
<td>9</td>
<td>30%</td>
</tr>
<tr>
<td>Right</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Up</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>100%</td>
</tr>
<tr>
<td>Down</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>49</td>
<td>98%</td>
</tr>
</tbody>
</table>
Confusion Matrix for Multi-Trial Joystick Data

Confusion Matrix for Multi-Trial Typing Data
DISCUSSIONS

1. Introduces an exciting area of pattern recognition applications; a quite recent advancement
2. Unique application areas; tested in several NASA projects (Extension of Human Senses)
3. Does not talk about details of the algorithm, skims over the techniques
4. No comparable framework discussed
5. No performance data provided as such
6. Somewhat unrealistic (too good!) lab results

REFERENCES

1. Michael Cohen's on line tutorial on HMMs
 http://screwdriver.bu.edu/cn760-lectures/l9n/l9.htm
3. Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation Charles Jorgensen, Kevin Wheeler, Slawomir Stepniewski