European Workshop on Reinforcement Learning 2013

A POMDP Tutorial

Joelle Pineau McGill University

(With many slides & pictures from Mauricio Araya-Lopez and others.)

August 2013

Sequential decision-making under uncertainty

http://www.cs.washington.edu/ai/Mobile_Robotics/mcl/animations/global-floor.gif

Sequential decision-making under uncertainty

Observation	True State	Belief Entropy	Action	Reward	
flo hello	request_begun	0.406	say_hello	100	
flo what is like	start_meds	2.735	ask_repeat	-100	
flo what time is it for will the	want_time	0.490	say_time	100	
flo was on abc	want_tv	1.176	ask_which_station	-1	
flo was on abc	want_abc	0.886	say_abc	100	
flo what is on nbc	want_nbc	1.375	confirm_channel_nbc	-1	
flo yes	want_nbc	0.062	say_nbc	100	
flo go to the that pretty good what	send_robot	0.864	ask_robot_where	-1	
flo that that hello be	send_robot_bedroom	1.839	confirm_robot_place	-1	
flo the bedroom any i	send_robot_bedroom	0.194	go_to_bedroom	100	
flo go it eight a hello	send_robot	1.110	ask_robot_where	-1	
flo the kitchen hello	send_robot_kitchen	1.184	go_to_kitchen	100	

http://www.cs.cmu.edu/nursebot

Partially Observable MDP

- POMDP defined by n-tuple *<S*, *A*, *Z*, *T*, *O*, *R>*, where *<S*, *A*, *T*, *R>* are same as in an MDP.
- States are hidden \rightarrow Observations (*Z*)
- Observation function $O(s,a,z) := Pr(z \mid s, a)$

Belief-MDP (Astrom, 1965)

• Belief-state, b_t : Probability distribution over states,

is a sufficient statistic of history $\{a_0, z_0, \dots, a_t, z_t\}$.

Karl Åström

The belief simplex

Belief-MDP (Astrom, 1965)

- Belief MDP: $\langle S, A, Z, T, O, R \rangle \rightarrow \langle \Delta, A, \tau, \rho, b_0 \rangle$
- Transition function: $\tau(b,a,b')$
- Expected reward: $\rho(b,a) = \sum_{s} b(s)R(s,a)$

Belief-MDP (Astrom, 1965)

- Belief update:
- Value fn:
- Policy:

Bellman's equation!

 $\pi: b \longrightarrow a$

Bayes Rule!

Karl Åström

The belief simplex

Early POMDP solution methods

- Observe: Reward function is linear $\rho(b,a) = \sum_{a} b(s)R(s,a)$
- $V_t^*(b)$ is therefore piecewise linear and convex.
- Set of hyper-planes, named α -vectors, represent value function $V(b) = \max_{\alpha \in \Gamma} \alpha \cdot b$

Edward Sondik

Early POMDP solution methods

- Observe: Reward function is linear $\rho(b,a) = \sum_{a,b} b(s)R(s,a)$
- $V_t^*(b)$ is therefore piecewise linear and convex.
- Set of hyper-planes, named α -vectors, represent value

function $V(b) = \max_{\alpha \in \Gamma} \alpha \cdot b$

Edward Sondik

Exact Solution Methods

Propagate, combine and prune hyperplanes using the Bellman Equation

(Monahan, 1982) Batch Enumeration

(Littman, 1996) Witness Algorithm

(Cassandra, 1998) Incremental Pruning

Problem: Exact solving POMDPs is **PSPACE-Complete**

Solving small information-gathering problems

From Mauricio Araya-Lopez, JFPDA 2013.

Approximate belief discretization methods

- Apply Bellman over a discretization of the belief space.
- Various methods to select discretization (regular, adaptive).
- Polynomial-time approximate algorithm.
- Bounded error that depends on the grid resolution.

William Lovejoy

Ronen Brafman

Milos Hauskrecht

Gridworld POMDPs – Solved!

http://people.cs.pitt.edu/~milos/research/JAIR-2000.pdf

Point-based value iteration (Pineau et al., 2003)

- Select a small set of <u>reachable</u> belief points.
- Perform Bellman updates at those points, keeping value & gradient.
- Anytime and polynomial algorithm.
- Bounded error depends on density of points.

Other Point-based Algorithms

POMDPs with thousands of states – SOLVED!

http://www.cs.cmu.edu/~trey/papers/smith04_hsvi.pdf

http://bigbird.comp.nus.edu.sg/~hannakur/publications.html

Harder problem: Robocup Rescue Simulation

From Sébastien Paquet et al., 2005

Highly dynamic environment.Approx. 30 agents of 6 typesPartially observable state.Real-time constraints on agents' response time.

Agents face unknown instances of the environment.

Online planning

Offline:	Policy Construction	Policy Execution

Online:						

Online search for POMDP solutions

Build an AND/OR tree of the reachable belief states, from the current belief b_0 :

Approaches: Branch-and-bound

Heuristic search

Monte-Carlo Tree Search

(Paquet, Tobin & **Chaib-draa**, 2005)

(**Ross**, Pineau, Paquet, Chaib-draa, 2008)

(McAllester & Singh, 1999) (Silver & Veness, 2010)

Are we done yet?

• Pocman problem: $|S|=10^{56}$, |A|=4, |Z|=1024.

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Applications.html

There is no simulator for this!

http://www.tech.plym.ac.uk/SoCCE/CRNS/staff/fbroz/

http://web.mit.edu/nickroy/www/research.html

Learning POMDPs from data

- Expectation-maximization
 - » Online nested EM (Liu, Liao & Carin, 2013)
 - » Model-free RL as mixture learning (Vlassis & Toussaint, 2009)
- History-based methods
 - » U-Tree (McCallum, 1996)
 - » MC-AIXI (Veness, Ng, Hutter, Uther & Silver, 2011)
- Predictive state representations
 - » PSRs (Littman, Sutton, Singh, 2002)
 - » TPSRs (Boots & Gordon, 2010)
 - » Compressed PSRs (Hamilton, Fard & Pineau, 2013)
- Bayesian learning
 - » Bayes-Adaptive POMDP (Ross, Chaib-draa & Pineau, 2007)
 - » Infinite POMDP (Doshi-Velez, 2009)

Compressed Predictive State Representations (CPSRs)

Goal: Efficiently learn a model of a dynamical system using time-series data, when you have:

- large discrete observation spaces;
- partial observability;
- sparsity.

The PSR systems dynamics matrix

Sparsity

- Assume that only a subset of tests is possible given any history h_i .
- Sparse structure can be exploited using **random projections**.

 $N \times 1$

CPSR Algorithm

Algorithm

- Obtain compressed estimates for sub-matrices of D, ΦP_{T,H}, ΦP_{T,o^l,H}s, and P_H by sampling time series data.
 - Estimate ΦP_{T,H} in compressed space by adding φ_i to column *j* each time *t_i* observed after *h_i* (Likewise for ΦP_{T,oⁱ,H}s).
- Compute CPSR model:

•
$$\mathbf{c}_0 = \Phi \hat{\mathcal{P}}(au | \emptyset)$$

•
$$\mathbf{C}_o = \Phi \mathcal{P}_{\mathcal{T},o',\mathcal{H}}(\Phi \mathcal{P}_{\mathcal{T},\mathcal{H}})^+$$

•
$$\mathbf{C}_{\infty} = (\Phi \mathcal{P}_{\mathcal{T},\mathcal{H}})^+ \hat{\mathcal{P}}_H$$

State definition and necessary equations

- **c**₀ serves as initial prediction vector (i.e. state vector).
- Update state vector after seeing observation with

•
$$\mathbf{c}_{t+1} = rac{\mathbf{c}_o \mathbf{c}_t}{\mathbf{c}_\infty \mathbf{c}_o \mathbf{c}_t}$$

- Predict k-steps into the future using
 - $P(o_{t+k}^{j}|h_{t}) = \mathbf{b}_{\infty}\mathbf{C}_{o^{j}}(\mathbf{C}_{\star})^{k-1}\mathbf{C}_{t}$ where $\mathbf{C}_{\star} = \sum_{o^{i} \in \mathcal{O}} \mathbf{C}_{o_{i}}$.

Theory overview

Error of the CPSR parameters

With probability no less than $1 - \delta$ we have:

$$\left\|\mathbf{C}_{o}(\Phi \mathcal{P}_{\mathcal{Q},h}) - \Phi \mathcal{P}_{\mathcal{Q},o,h}\right\|_{\rho(\mathbf{x})} \leq \sqrt{d} \epsilon(|\mathcal{H}|, |\mathcal{Q}|, d, L_{o}, \sigma_{o}^{2}, \delta/d)$$

Error propagation

The total propagated error for T steps is bounded by $\epsilon(c^T - 1)/(c - 1)$.

Projection size

A projection size of $d = O(k \log |Q|)$ suffices in a majority of systems.

GridWorld Results

Poc-Man Results

Learning POMDPs from data

- Expectation-maximization
 - » Online nested EM (Liu, Liao & Carin, 2013)
 - » Model-free RL as mixture learning (Vlassis & Toussaint, 2009)
- History-based methods
 - » U-Tree (McCallum, 1996)
 - » MC-AIXI (Veness, Ng, Hutter, Uther & Silver, 2011)
- Predictive state representations
 - » PSRs (Littman, Sutton, Singh, 2002)
 - » TPSRs (Boots & Gordon, 2010)
 - » Compressed PSRs (Hamilton, Fard & Pineau, 2013)
- Bayesian learning
 - » Bayes-Adaptive POMDP (Ross, Chaib-draa & Pineau, 2007)
 - » Infinite POMDP (Doshi-Velez, 2009)

Bayesian learning: POMDPS

Estimate POMDP model parameters using Bayesian inference:

- **T**: Estimate a posterior $\phi_{ss'}^a$ on the incidence of transitions $s \rightarrow_a s'$.
- **O:** Estimate a posterior ψ^a_{sz} on the incidence of observations $s' \rightarrow_a z$.
- R: Assume for now this is known (straight-forward extension.)

Goal: Maximize expected return under partial observability of (s, ϕ, ψ) .

This is also a POMDP problem:

- S': physical state ($s \in S$) + information state (ϕ, ψ)
- *T'*: describes probability of update (*s*, ϕ , ψ) \rightarrow_a (*s'*, ϕ' , ψ')
- O': describes probability of observing count increment.

Bayes-Adaptive POMDPs

[Ross et al. JMLR'11]

•
$$S' = S \times \mathbb{N}^{|S|^2 |A|} \times \mathbb{N}^{|S||A||Z|}$$

• $A' = A$
• $Z' = Z$
• $Pr(s', \phi', \psi' | s, \phi, \psi, a, z) = \frac{\phi_{ss'}^a}{\sum_{s'' \in S} \phi_{ss''}^a} \frac{\psi_{s'z}^a}{\sum_{z' \in Z} \psi_{s'z}^a} I(\phi', \phi + \delta_{ss'}^a) I(\psi', \psi + \delta_{s'z}^a)$
• $R'(s, \phi, \psi, a) = R(s, a)$

Learning = Tracking the hyper-state

A solution to this problem is an optimal plan to act and learn!

Bayes-Adaptive POMDPs: Belief tracking

Assume S, A, Z are discrete. Model ϕ , ψ using Dirichlet distributions.

Initial hyper-belief: $b_0(s, \phi, \psi) = b_0(s) I(\phi = \phi_0) I(\psi = \psi_0)$

where $b_0(s)$ is the initial belief over original state space I() is the indicator function (ϕ_0, ψ_0) are the initial counts (prior on *T*, *O*)

Updating b_t defines a mixture of Dirichlets, with $O(|S|^{t+1})$ components.

In practice, approximate with a <u>particle filter</u>.

Bayes-Adaptive POMDPs: Belief tracking

Different ways of approximating $b_t(s, \phi, \psi)$ via particle filtering:

- 1. Monte-Carlo sampling (MC)
- 2. K most probable hyper-states (MP)
- 3. Risk-sensitive filtering with weighted distance metric:

$$\begin{split} \sup_{\alpha\in\Gamma_t,s\in S} |V_t^{\alpha}(s,\phi,\psi) - V_t^{\alpha}(s,\phi',\psi')| \leq \\ & \frac{2\gamma||R||_{\infty}}{(1-\gamma)^2} \sup_{s,s'\in S,a\in A} \left[D_S^{sa}(\phi,\phi') + D_Z^{s'a}(\psi,\psi') \right. \\ & \left. + \frac{4}{\ln(\gamma^{-e})} \left(\frac{\sum_{s''\in S} |\phi_{ss''}^a - \phi_{ss''}^{'a}|}{(\mathcal{N}_{\phi}^{sa} + 1)(\mathcal{N}_{\phi'}^{sa} + 1)} + \frac{\sum_{z\in Z} |\psi_{s'z}^a - \psi_{s'z}^{'a}|}{(\mathcal{N}_{\psi'}^{s'a} + 1)(\mathcal{N}_{\psi'}^{s'a} + 1)} \right) \right] \end{split}$$

Bayes-Adaptive POMDPs: Preliminary results

Follow domain: A robot must follow one of two individuals in a 2D open area. Their identity is not observable. They have different (unknown) motion behaviors. Learn $\phi^1 \sim \text{Dir}(\alpha_1^{\ l}, ..., \alpha_K^{\ l})$, $\phi^2 \sim \text{Dir}(\alpha_1^{\ 2}, ..., \alpha_K^{\ 2})$, a motion model of each person.

Bayesian POMDP results:

Learning is achieved, if you track the important hyper-beliefs.

Bayes-Adaptive POMDPs: Planning

- Receding horizon control to estimate the value of each action at current belief, b_t .
 - Usually consider a short horizon of reachable beliefs.
 - Use pruning and heuristics to reach longer planning horizons.

Bayes-Adaptive POMDPs: Preliminary results

RockSample domain [Smith&Simmons, 2004]: A robot must move around its environment in order to gather samples of "good" rocks, while avoiding "bad" rocks. Learn $\psi \sim \text{Dir}(\alpha_1^{\ 1}, ..., \alpha_d^{\ 1})$, the accuracy of the rock quality sensor.

Results:

Again, learning is achieved, converging to the optimal solution. In this case, *most probable* particle selection is better.

Case study #1: Dialogue management

[Png & Pineau ICASSP'11]

Estimate O(s, a, z) using Bayes-adaptive POMDP.

- Reduce number of parameters to learn via hand-coded symmetry.
- Consider both a good prior (ψ =0.8) and a weak prior (ψ =0.6)

Empirical returns show good learning. Using domain-knowledge to constrain the structure is more useful than having accurate priors. Can we infer this structure from data?

Case study #2: Learning a factored model

- Consider a factored model, where both the graph structure and transition parameters are unknown.
- Bayesian POMDP framework:
 - $S' = S x (G, \theta_G)^{|A|}$ A' = A
 - Z' = S

 $T'(s, G, \theta_G, a, s', G', \theta'_{G'}) = Pr(s' | s, G, \theta_G, a) Pr(G', \theta'_{G'} | G, \theta_G, s, a, s')$

- Approximate posterior $Pr(G_a | h)$ using a particle filter.
- Maintain exact posterior $Pr(\theta_G | G_a)$ using Dirichlet distributions.
- Solve the planning problem using online forward search.

[Ross & Pineau. UAI'08]

Guestrin et al. JAIR'03

Case study #2: Learning a factored model

Network administration domain [Guestrin et al. JAIR'03]

- » Two-part densely connected network.
- » Each node is a machine (on/off state).
- » Actions: reboot any machine, do nothing.

Learning the structure and parameters simultaneously improves performance.

- SLAM = Simultaneous Localization and Mapping
 - » One of the key problems in robotics.
 - » Usually solved with techniques such as EM.

[Guez & Pineau. ICRA'10]

- Active SLAM = Simultaneous Planning, Localization, and Mapping
 - » Can be cast as a POMDP problem.
 - » Often, greedy exploration techniques perform best.
- Multitasking SLAM = Active SLAM + other simultaneous task

e.g. target following / avoidance

Decision-theoretic framework:

State space: $S = X \times M \times P$	X = set of possible trajectories taken
	M = set of possible maps
	P = set of additional planning states
Actions: $A = D x \theta$	D = forward displacement
	θ = angular displacement
Observations: $Z = L \times U$	L = laser range-finder measurements
	U = odometry reading

Learning (state estimation):

Approximated using a Rao-Blackwellized particle filter. $p(x_{1:t}, m \mid l_{1:t}, u_{0:t}) = p(m \mid x_{1:t}, l_{1:t})p(x_{1:t} \mid l_{1:t}, u_{0:t})$

Planning: Online forward search + Deterministic motion planning algorithm (e.g. RRTs) to allow deep search.

Beyond the standard POMDP framework

- Policy search for POMDPs (Hansen, 1998; Meuleau et al. 1999; Ng&Jordan, 2000; Aberdeen&Baxter, 2002; Braziunas&Boutilier, 2004)
- Continuous POMDPs (Porta et al. 2006; Erez&Smart 2010; Deisenroth&Peters 2012)
- Factored POMDPs (Boutilier&Poole, 1996; McAllester&Singh, 1999; Guestrin et al., 2001)
- Hierarchical POMDPs (Pineau et al. 2001; Hansen&Zhou, 2003; Theocharous et al., 2004; Foka et al. 2005; Toussaint et al. 2008; Sridharan et al. 2008)
- Dec-POMDPs (Emery-Montemerlo et al. 2004; Szer et al. 2005; Oliehoek et al. 2008; Seuken&Zilberstein, 2007; Amato et al., 2009; Kumar&Zilberstein 2010; Spaan et al. 2011)
- Mixed Observability POMDPs (Ong et al., RSS 2005)
- ρ POMDPs (Araya et al., NIPS 2010)
- ...