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Sequential decision-making under uncertainty 

http://www.cs.washington.edu/ai/Mobile_Robotics/mcl/animations/global-floor.gif 



Sequential decision-making under uncertainty 
http://mi.eng.cam.ac.uk/~sjy/papers/ygtw13.pdf 

http://www.cs.cmu.edu/nursebot 



Partially Observable MDP 
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•  POMDP defined by n-tuple <S, A, Z, T, O, R>, 
 where <S, A, T, R> are same as in an MDP. 

•  States are hidden  Observations (Z) 
•  Observation function O(s,a,z) := Pr(z | s, a) 



Belief-MDP (Astrom, 1965) 

•  Belief-state, bt : Probability distribution over states, 

is a sufficient statistic of history {a0, z0, … at, zt}. 
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Belief-MDP (Astrom, 1965) 

•  Belief MDP:  

•  Transition function:  

•  Expected reward:  
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Belief-MDP (Astrom, 1965) 

•  Belief update:  Bayes Rule!  

•  Value fn:   Bellman’s equation! 

•  Policy:    π : b    a 
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Early POMDP solution methods 

Edward Sondik 
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•  Observe: Reward function is linear    

•  Vt
*(b) is therefore piecewise linear and convex. 

•  Set of hyper-planes, named α-vectors, represent value 
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Solving small information-gathering problems  

−→

−→

−→

From Mauricio Araya-Lopez, JFPDA 2013. 



Approximate belief discretization methods 

•  Apply Bellman over a discretization of the belief space. 

•  Various methods to select discretization (regular, 

adaptive). 

•  Polynomial-time approximate algorithm. 

•  Bounded error that depends on the grid resolution. 

William Lovejoy 

Milos Hauskrecht 

Ronen Brafman 



Gridworld POMDPs – Solved! 

http://people.cs.pitt.edu/~milos/research/JAIR-2000.pdf 



Point-based value iteration (Pineau et al., 2003) 

•  Select a small set of 
reachable belief points. 

•  Perform Bellman updates 
at those points, keeping 
value & gradient. 

•  Anytime and polynomial 
algorithm. 

•  Bounded error depends 
on density of points. 

B

B
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The basic algorithm: Point-based value iteration

P(s1)

V(b)

b1 b0 b2

Approach:

Select a small set of belief points

Plan for those belief points only ! Learn value and its gradient

a,z a,z

! Which beliefs are most important?

Pick action that maximizes value ! ( )bbV !=
"#
$

$
max)(
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Selecting belief points

• Earlier strategies:

Fully observable states     Points at regular intervals    Random samples

• Can we use theoretical properties to pick important beliefs?

x1

x0

x2



POMDPs with thousands of states – SOLVED! 

http://bigbird.comp.nus.edu.sg/~hannakur/publications.html 

http://www.cs.cmu.edu/~trey/papers/smith04_hsvi.pdf 



Harder problem: Robocup Rescue Simulation 

Highly dynamic environment. 

Approx. 30 agents of 6 types 
 
Partially observable state. 
 
Real-time constraints on 
  agents’ response time. 
 
Agents face unknown instances 
  of the environment. 
 
     From Sébastien Paquet et al., 2005 



Online planning 

 
 
 
Offline: 

Online: 

Policy Construction Policy Execution 



Online search for POMDP solutions 

Build an AND/OR tree of the reachable belief 
states, from the current belief b0 :"
"

Approaches:"
Branch-and-bound     Heuristic search   Monte-Carlo Tree Search  

  
" 
 
 
 
 
(Paquet, Tobin &  (Ross, Pineau,           (McAllester & Singh, 1999)  (Silver & Veness, 2010) 
Chaib-draa, 2005)  Paquet, Chaib-draa, 2008)   



Are we done yet? 

•  Pocman problem: |S|=1056, |A|=4, |Z|=1024. 

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Applications.html 



There is no simulator for this! 

http://web.mit.edu/nickroy/www/research.html 

http://www.tech.plym.ac.uk/SoCCE/CRNS/staff/fbroz/ 



Learning POMDPs from data 
•  Expectation-maximization 

»  Online nested EM (Liu, Liao & Carin, 2013) 

»  Model-free RL as mixture learning (Vlassis & Toussaint, 2009) 

•  History-based methods 
»  U-Tree (McCallum, 1996) 

»  MC-AIXI (Veness, Ng, Hutter, Uther & Silver, 2011) 

•  Predictive state representations 
»  PSRs (Littman, Sutton, Singh, 2002) 

»  TPSRs (Boots & Gordon, 2010) 

»  Compressed PSRs (Hamilton, Fard & Pineau, 2013) 

•  Bayesian learning 
»  Bayes-Adaptive POMDP (Ross, Chaib-draa & Pineau, 2007) 

»  Infinite POMDP  (Doshi-Velez, 2009) 



Compressed Predictive State Representations (CPSRs) 

 
 
Goal:  Efficiently learn a model of a dynamical system using time-series 
data, when you have: 

–  large discrete observation spaces; 

–  partial observability; 

–  sparsity. 



The PSR systems dynamics matrix 

Efficiently
Modelling
Sparse

Dynamical
Systems

William
Hamilton,

Mahdi Fard,
Joelle Pineau

Motivation

Our
Contribution

Results

Summary

The System Dynamics Matrix, D

We want P(τi |hi) ∀i ∀j
Rank finite and bounded [Littman et al., 2002].
Tests corresponding to row basis called core tests.
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Sparsity 

•  Assume that only a subset of tests is possible given any history hi. 
 

•  Sparse structure can be exploited using random projections. 



CPSR Algorithm Efficiently
Modelling
Sparse

Dynamical
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Summary

The Algorithm

Algorithm
Obtain compressed estimates for sub-matrices of D,
ΦPT ,H, ΦPT ,ol ,Hs, and PH by sampling time series
data.

Estimate ΦPT ,H in compressed space by adding φi to
column j each time ti observed after hi (Likewise for
ΦPT ,ol ,Hs).

Compute CPSR model:
c0 = ΦP̂(τ |∅)
Co = ΦPT ,ol ,H(ΦPT ,H)+

c∞ = (ΦPT ,H)+P̂H

10 / 21
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Summary

Using the compact representation.

State definition and necessary equations
c0 serves as initial prediction vector (i.e. state vector).
Update state vector after seeing observation with

ct+1 = CoCt
C∞Coct

Predict k-steps into the future using
P(oj

t+k |ht) = b∞Coj (C�)k−1Ct where C� =
�

oi∈O Coi .
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Theory overview 
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Theory: Main Results

Error of the CPSR parameters
With probability no less than 1 − δ we have:
��Co(ΦPQ,h)− ΦPQ,o,h

��
ρ(x) ≤

√
d�(|H|, |Q|, d , Lo,σ

2
o, δ/d)

Error propagation
The total propagated error for T steps is bounded by
�(cT − 1)/(c − 1).

Projection size
A projection size of d = O(k log |Q|) suffices in a majority of
systems.
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GridWorld Results 
Efficiently
Modelling
Sparse

Dynamical
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Results

Summary

GridWorld: Increased time-efficiency in small
simple systems
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Poc-Man Results Efficiently
Modelling
Sparse

Dynamical
Systems
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Mahdi Fard,
Joelle Pineau

Motivation

Our
Contribution

Results

Summary

Poc-Man: Better model quality in large difficult
systems

Partially observable variant of Pac-Man video-game with
|S| = 1056 and |O| = 210 [Silver and Veness, 2010].
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CPSR − All Tests

TPSR − Single Length Tests  
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Learning POMDPs from data 
•  Expectation-maximization 

»  Online nested EM (Liu, Liao & Carin, 2013) 

»  Model-free RL as mixture learning (Vlassis & Toussaint, 2009) 

•  History-based methods 
»  U-Tree (McCallum, 1996) 

»  MC-AIXI (Veness, Ng, Hutter, Uther & Silver, 2011) 

•  Predictive state representations 
»  PSRs (Littman, Sutton, Singh, 2002) 

»  TPSRs (Boots & Gordon, 2010) 

»  Compressed PSRs (Hamilton, Fard & Pineau, 2013) 

•  Bayesian learning 
»  Bayes-Adaptive POMDP (Ross, Chaib-draa & Pineau, 2007) 

»  Infinite POMDP  (Doshi-Velez, 2009) 



Bayesian learning: POMDPS 

Estimate POMDP model parameters using Bayesian inference: 
–  T:  Estimate a posterior ϕa

ss′  on the incidence of transitions s →a s′. 
–  O:  Estimate a posterior ψa

sz on the incidence of observations s’ →a z. 

–  R:  Assume for now this is known (straight-forward extension.) 
 
Goal:  Maximize expected return under partial observability of (s, ϕ, ψ). 

This is also a POMDP problem: 

–  S′ : physical state (s ∈ S) + information state (ϕ, ψ) 
–  T′ : describes probability of update (s, ϕ, ψ) →a (s′ , ϕ′, ψ’) 

–  O′ : describes probability of observing count increment. 
  
  

 



Bayes-Adaptive POMDPs 

   
 

 

  

  

  Learning = Tracking the hyper-state 

 

  A solution to this problem is an optimal plan to act and learn! 

[Ross et al. JMLR’11] 



Bayes-Adaptive POMDPs:  Belief tracking 
 Assume S, A, Z are discrete.  Model ϕ, ψ using Dirichlet distributions. 

 Initial hyper-belief: b0 (s, ϕ, ψ ) = b0(s) I(ϕ=ϕ0) I(ψ=ψ0) 

where  b0(s) is the initial belief over original state space 

  I( ) is the indicator function 

  (ϕ0, ψ0) are the initial counts (prior on T, O) 

Updating bt defines a mixture of Dirichlets, with O(|S|t+1) components. 

 

In practice, approximate with a particle filter. 



Bayes-Adaptive POMDPs:  Belief tracking 
 Different ways of approximating bt(s, φ, ψ) via particle filtering: 

1.  Monte-Carlo sampling (MC) 

2.  K most probable hyper-states (MP) 

3.  Risk-sensitive filtering with weighted distance metric: 



Bayes-Adaptive POMDPs:  Preliminary results 

Follow domain:  A robot must follow one of two individuals in a 2D open area.  Their 
identity is not observable.  They have different (unknown) motion behaviors. 

Learn ϕ1 ~ Dir( α1
1, …, αK

1 ) , ϕ2~ Dir( α1
2, …, αK

2 ) , a motion model of each person. 
 

Bayesian POMDP results: 

 

 

 

 

 

 
 

Learning is achieved, if you track the important hyper-beliefs. 
 

 

 



Bayes-Adaptive POMDPs:  Planning 

•  Receding horizon control to estimate the value of each action at 
current belief, bt. 

–  Usually consider a short horizon of reachable beliefs. 

–  Use pruning and heuristics to reach longer planning horizons. 



Bayes-Adaptive POMDPs:  Preliminary results 

RockSample domain [Smith&Simmons, 2004]:  A robot must move around its environment 
in order to gather samples of “good” rocks, while avoiding “bad” rocks. 

 Learn ψ ~ Dir( α1
1, …, αd

1 ), the accuracy of the rock quality sensor. 
 

Results: 

 

 

 

 

 

 
 Again, learning is achieved, converging to the optimal solution. 
 In this case, most probable particle selection is better. 

 

 

 



Case study #1:  Dialogue management 

 Estimate O(s,a,z) using Bayes-adaptive POMDP. 
–  Reduce number of parameters to learn via hand-coded symmetry. 
–  Consider both a good prior (ψ=0.8) and a weak prior (ψ=0.6) 

 
 

 

 
 Empirical returns show good learning.  Using domain-knowledge to 
constrain the structure is more useful than having accurate priors. 

Can we infer this structure from data? 
 
 

[Png & Pineau ICASSP’11] 



Case study #2: Learning a factored model 

•  Consider a factored model, where both the graph  
 structure and transition parameters are unknown. 

•  Bayesian POMDP framework: 
S’ = S x (G, θG)|A| 

A’ = A 

Z’ = S 

T’(s, G, θG, a, s’, G’, θ’G’ ) = Pr(s’ | s, G, θG, a) Pr(G’, θ’G’ | G, θG, s, a, s’) 

–  Approximate posterior Pr( Ga | h ) using a particle filter. 

–  Maintain exact posterior Pr( θG | Ga ) using Dirichlet distributions. 

–  Solve the planning problem using online forward search. 

 
 

[Ross & Pineau. UAI’08] 

Guestrin et al. JAIR’03 



Case study #2: Learning a factored model 
Network administration domain [Guestrin et al. JAIR’03] 

»  Two-part densely connected network. 

»  Each node is a machine (on/off state). 

»  Actions: reboot any machine, do nothing. 

Bayesian RL results: 

 

 
 
Learning the structure and parameters simultaneously improves performance. 



Case study #3:  Multitasking SLAM  
•  SLAM = Simultaneous Localization and Mapping 

»  One of the key problems in robotics. 

»  Usually solved with techniques such as EM. 

•  Active SLAM = Simultaneous Planning, Localization, and Mapping 
»  Can be cast as a POMDP problem. 

»  Often, greedy exploration techniques perform best. 

•  Multitasking SLAM = Active SLAM + other simultaneous task 
  e.g. target following / avoidance 

[Guez & Pineau. ICRA’10] 



Case study #3:  Multitasking SLAM  

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.



Case study #3:  Multitasking SLAM  
 Decision-theoretic framework: 

State space:  S = X x M x P  X = set of possible trajectories taken 
     M = set of possible maps 
     P = set of additional planning states 

Actions:  A = D x θ  D = forward displacement 
     θ = angular displacement 

Observations: Z = L x U  L = laser range-finder measurements 
     U = odometry reading 

 

Learning (state estimation): 

Approximated using a Rao-Blackwellized particle filter. 
 

 

Planning: Online forward search + Deterministic motion planning 
algorithm (e.g. RRTs) to allow deep search.  

   



Case study #3:  Multitasking SLAM  
Target following experiment:   

 

   



Beyond the standard POMDP framework 

•  Policy search for POMDPs (Hansen, 1998; Meuleau et al. 1999; Ng&Jordan, 2000; 
Aberdeen&Baxter, 2002; Braziunas&Boutilier, 2004) 

•  Continuous POMDPs (Porta et al. 2006; Erez&Smart 2010; Deisenroth&Peters 2012) 

•  Factored POMDPs (Boutilier&Poole, 1996; McAllester&Singh, 1999; Guestrin et al., 
2001)  

•  Hierarchical POMDPs (Pineau et al. 2001; Hansen&Zhou, 2003; Theocharous et al., 
2004; Foka et al. 2005; Toussaint et al. 2008; Sridharan et al. 2008)  

•  Dec-POMDPs (Emery-Montemerlo et al. 2004; Szer et al. 2005; Oliehoek et al. 2008; 
Seuken&Zilberstein, 2007; Amato et al., 2009; Kumar&Zilberstein 2010; Spaan et al. 2011) 

•  Mixed Observability POMDPs (Ong et al., RSS 2005) 

•  ρPOMDPs (Araya et al., NIPS 2010)  

•  … 


