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Sequential decision-making under uncertainty

http://www.cs.washington.edu/ai/Mobile _Robotics/mcl/animations/global-floor.gif



Sequential decision-making under uncertainty

http://mi.eng.cam.ac.uk/~sjy/papers/ygtw13.pdf
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Observation True State Belief Entropy Action Reward
flo hello request_begun 0.406 say_hello 100
flo what 1s like start_meds 2.735 ask_repeat -100
flo what time is 1t for will the want_time 0.490 say_time 100
flo was on abc want_tv 1.176 ask_which_station -1
flo was on abc want_abc 0.886 say_abc 100
flo what is on nbc want_nbc 1.375 confirm channel nbe -1
flo yes want_nbc 0.062 say_nbc 100
flo go to the that pretty good what send_robot 0.864 ask_robot_where -1
flo that that hello be send_robot_bedroom  1.839 confirm robot_place -1
flo the bedroom any 1 send_robot_bedroom  0.194 go_to_bedroom 100
flo go it eight a hello send_robot 1.110 ask_robot_where -1
flo the kitchen hello send robot kitchen  1.184 go_to_kitchen 100

http.//www.cs.cmu.edu/nursebot



Partially Observable MDP

« POMDP defined by n-tuple <S§, 4, Z, T, O, R>,
where <S8, 4, T R> are same as in an MDP.

 States are hidden =» Observations (2)

« Observation function O(s,a,z) := Pr(z

S, a)




Belief-MDP (Astrom, 1965)

« Belief-state, b, : Probability distribution over states,

1s a sufficient statistic of history {a,, z,, ... a,, z,}.

Karl Astrom

The belief simplex

RN V4
Visible 2 states
Belief 3 states
’ Tt 4 states



Belief-MDP (Astrom, 1965)

+ Belief MDP: (S,A,Z,T,0,R)—(A,A,7,p,b,)
« Transition function: ¢(b,a,b")

« Expected reward: p(b,a) = Eb(s)R(S,a)

Karl Astrom

The belief simplex
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Belief-MDP (Astrom, 1965)

» Belief update: Bayes Rule!
e Value fn: Bellman’s equation!

» Policy: n:b—> a

Karl Astrom

The belief simplex
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Early POMDP solution methods

e (bserve: Reward function is linear p(b,a)= Eb(S)R(S,a)

SES

e V.(b) is therefore piecewise linear and convex.

» Set of hyper-planes, named a-vectors, represent value

function V(b)= max o b
ac
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Early POMDP solution methods

e (bserve: Reward function is linear p(b,a)= Eb(S)R(S,a)

SES

e V.(b) is therefore piecewise linear and convex.

» Set of hyper-planes, named a-vectors, represent value

function = maxa- \
V(b)=maxa-b Edward Sondik

Exact Solution Methods

Propagate, combine and prune hyperplanes using the Bellman Equation

B

(Monahan, 1982) (Littman, 1996) (Cassandra, 199_8)
Batch Enumeration Witness Algorithm Incremental Pruning

Problem: Exact solving POMDPs is PSPACE-Complete



Solving small information-gathering problems

Symptoms and Results
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Treatment and Tests

From Mauricio Araya-Lopez, JFPDA 2013.



Approximate belief discretization methods

Apply Bellman over a discretization of the belief space.

Various methods to select discretization (regular,

adaptive).
Polynomial-time approximate algorithm.

Bounded error that depends on the grid resolution.

100% B

100% A 100% C T
Milos Hauskrecht



Gridworld POMDPs — Solved!

Moves Sensors

AT

R I ,

http.//people.cs.pitt.edu/~milos/research/JAIR-2000.pdf



Point-based value iteration (Pineau et al., 2003)

Select a small set of
reachable belief points.

Perform Bellman updates
at those points, keeping
value & gradient.

Anytime and polynomial
algorithm.

Bounded error depends
on density of points.

Other Point-based Algorithms

i - )/
b ﬁ(ﬁ
(Spaan and Vlassis, (Smith and Simmons, "‘Q | 'hl" (Kurniawati et al.,

2005) 2005) (Shani et al., 2007) 2008) (Poupart et al., 2011)

GapMin




POMDPs with thousands of states — SOLVED!

L)

Exit

I

http://www.cs.cmu.edu/~trey/papers/smith04_hsvi.pdf

http://bigbird.comp.nus.edu.sg/~hannakur/publications.htm/

bathroom



Harder problem: Robocup Rescue Simulation

From Sébastien Paquet et al., 2005

Highly dynamic environment.
Approx. 30 agents of 6 types
Partially observable state.

Real-time constraints on
agents’ response time.

Agents face unknown instances
of the environment.



Online planning

Offline:

Online;:

Policy Construction

Policy Execution




Online search for POMDP solutions

Build an AND/OR tree of the reachable belief
states, from the current belief b, :

Approaches:
Branch-and-bound Heuristic search Monte-Carlo Tree Search

' | . \‘ J >/ '. i
(Paquet, Tobin & (Ross, Pineau, (McAllester & Singh, 1999) (Silver & Veness, 2010)

Chaib-draa, 2005) Paquet, Chaib-draa, 2008)



Are we done yet?

« Pocman problem: |S|=10°%, |A|=4, |Z|=1024.

http.//wwwO.cs.ucl.ac.uk/staff/D. Silver/web/Applications. html/



There 1s no simulator for this!

http://www.tech. plym.ac.uk/SoCCE/CRNS/staff/fbroz/

http://web.mit.edu/nickroy/www/research.html



Learning POMDPs from data

Expectation-maximization
» Online nested EM (Liu, Liao & Carin, 2013)

» Model-free RL as mixture learning (Vlassis & Toussaint, 2009)

History-based methods

» U-Tree (McCallum, 1996)
» MC-AIXI (Veness, Ng, Hutter, Uther & Silver, 2011)

Predictive state representations
» PSRs (Littman, Sutton, Singh, 2002)
» TPSRs (Boots & Gordon, 2010)
» Compressed PSRs (Hamilton, Fard & Pineau, 2013)

Bayesian learning

» Bayes-Adaptive POMDP (Ross, Chaib-draa & Pineau, 2007)
» Infinite POMDP (Doshi-Velez, 2009)



Compressed Predictive State Representations (CPSRs)

Goal: Efficiently learn a model of a dynamical system using time-series
data, when you have:

— large discrete observation spaces;
— partial observability;
— sparsity.



The PSR systems dynamics matrix
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Sparsity

* Assume that only a subset of tests is possible given any history 4.

* Sparse structure can be exploited using random projections.

M x 1

N x 1



CPSR Algorithm

@ Obtain compressed estimates for sub-matrices of D,
SPr 3, PPr o 4S, and Py by sampling time series
data.

e Estimate ®Pr 4 in compressed space by adding ¢; to
column j each time t; observed after h; (Likewise for
CDPT’O/’HS).

@ Compute CPSR model:

o co = OP(7]0)

0 Co=OPr g 3 (PPr2)*

® Coo = (PP7 )" P

State definition and necessary equations

@ C( serves as initial prediction vector (i.e. state vector).
@ Update state vector after seeing observation with

Coct

® Ct+1 = T_Coc
@ Predict k-steps into the future using
o P(0, ,|h) = bCy(C.)<'C;where C, =, Co-




Theory overview

Error of the CPSR parameters

With probability no less than 1 — § we have:

HCO((DPQ,h) - (bPQ,O,th(x) é \/(_16(’%’7 ‘va da L07 O-gv 5/d)

Error propagation

The total propagated error for T steps is bounded by
e(c” —1)/(c—1).

Projection size

A projection size of d = O(k log|Q)|) suffices in a majority of
systems.




GridWorld Results
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Poc-Man Results

0.3

CPSR - All Tests I
025+ | - = = TPSR - Single Length Tests I\

A }11' 7Y

0.15 7

0.1

Prediction Error

0.05




Learning POMDPs from data

Expectation-maximization
» Online nested EM (Liu, Liao & Carin, 2013)

» Model-free RL as mixture learning (Vlassis & Toussaint, 2009)

History-based methods

» U-Tree (McCallum, 1996)
» MC-AIXI (Veness, Ng, Hutter, Uther & Silver, 2011)

Predictive state representations
» PSRs (Littman, Sutton, Singh, 2002)
» TPSRs (Boots & Gordon, 2010)
» Compressed PSRs (Hamilton, Fard & Pineau, 2013)

Bayesian learning

» Bayes-Adaptive POMDP (Ross, Chaib-draa & Pineau, 2007)
» Infinite POMDP (Doshi-Velez, 2009)



Bayesian learning: POMDPS

Estimate POMDP model parameters using Bayesian inference:

— T: Estimate a posterior ¢“ . on the incidence of transitions s —, .

ss’

— O: Estimate a posterior y“ _ on the incidence of observations s” — _ z.

— R: Assume for now this is known (straight-forward extension.)

Goal: Maximize expected return under partial observability of (s, ¢, w).

This 1s also a POMDP problem:
— S’ physical state (s € S) + information state (@, )
— T': describes probability of update (s, @, ) —, (s', @', w’)

— O': describes probability of observing count increment.



Bayes-Adaptive POMDPs

[Ross et al. IMLR’11]

0 S =
o A
o Z

S x NISFIAl x NISIAIZ]

=A
=2

® Pr(s',¢',v'|s, 9,9, a, 2)-

SS’

zs’/es ¢ss”

@ R'(s,¢,v,a) = A(s,a)

sl (¢, &+ 02 (W', 6 +62,)

Learning = Tracking the hyper-state

A solution to this problem is an optimal plan to act and learn!



Bayes-Adaptive POMDPs: Belief tracking

Assume S, A, Z are discrete. Model ¢, y using Dirichlet distributions.

Initial hyper-belief: b, (s, ¢, w) = by(s) [(b=d ) I(y=y,)

where  b,(s) 1s the 1nitial belief over original state space

1( ) 1s the indicator function

(P, v are the initial counts (prior on 7, O)

Updating b, defines a mixture of Dirichlets, with O(|S|**/) components.

In practice, approximate with a particle filter.




Bayes-Adaptive POMDPs: Belief tracking

Different ways of approximating b,(s, ¢, y) via particle filtering:

1. Monte-Carlo sampling (MC)
2. K most probable hyper-states (MP)

3. Risk-sensitive filtering with weighted distance metric:

es:_ugesl Vi(s, ¢, 9) — Ve(s, ¢/, ¢')| <
28 sup [DF(0.4)+D§(v,¥)

1—~)2
(1=7) s,8'€8S,acA

+ 4 Zs"csld’gs”_d)lsg”] + chzlw‘sa'z_w?zl
In(y=¢) \ NG+ 1)NZ7+1) (N;'a+1)(J\f5’,a+1)



Bayes-Adaptive POMDPs: Preliminary results

Follow domain: A robot must follow one of two individuals in a 2D open area. Their
identity 1s not observable. They have different (unknown) motion behaviors.

Learn ¢! ~ Dir( a,/, ..., ay' ), ¢?~Dir( a/j, ...,

Bayesian POMDP results:
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Learning is achieved, if you track the important hyper-beliefs.



Bayes-Adaptive POMDPs: Planning

* Receding horizon control to estimate the value of each action at
current belief, b,.

— Usually consider a short horizon of reachable beliefs.

— Use pruning and heuristics to reach longer planning horizons.




Bayes-Adaptive POMDPs: Preliminary results

RockSample domain /Smith&Simmons, 2004]: A robot must move around its environment

in order to gather samples of “good” rocks, while avoiding “bad” rocks.

Learn y ~ Dir( a,/, ..., a,/ ), the accuracy of the rock quality sensor.

Results:
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Again, learning 1s achieved, converging to the optimal solution.
In this case, most probable particle selection is better.



Case study #1: Dialogue management

Estimate O(s,a,z) using Bayes-adaptive POMDP.

[Png & Pineau ICASSP’11]

— Reduce number of parameters to learn via hand-coded symmetry.

— Consider both a good prior (=0.8) and a weak prior (y=0.6)

-3
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34

-36
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-4
-42
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L

e —
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Episode

=—#—0.8 with
symmetry

0.6 with
symmetry

~dr=0_8 without
symmetry

=i (.6 without
symmetry

Empirical returns show good learning. Using domain-knowledge to
constrain the structure is more useful than having accurate priors.

Can we infer this structure from data?



Case study #2: Learning a factored model

[Ross & Pineau. UAI'08]

« Consider a factored model, where both the graph
structure and transition parameters are unknown.

* Bayesian POMDP framework:

S'=S8x (G, O )
A =4
Z'=5

T'(s, G, 0ga s’,G,0:)=Pris’|s, G, 0,aPriG,0: |G, 0s, a,s’)

Guestrin et al. JAIR’03

— Approximate posterior Pr( G, | h ) using a particle filter.
— Maintain exact posterior Pr( 6| G,) using Dirichlet distributions.

— Solve the planning problem using online forward search.



Case study #2: Learning a factored model

Network administration domain /Guestrin et al. JAIR 03]

» Two-part densely connected network. 2 1 8
| | o0 ®
» Each node is a machine (on/off state). 6 ‘ 1.0
» Actions: reboot any machine, do nothing. ®
< S 12 1
Bayesian RL results:
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Learning the structure and parameters simultaneously improves performance.



Case study #3: Multitasking SLAM

[Guez & Pineau. ICRA’10]

 SLAM = Simultaneous Localization and Mapping

» One of the key problems in robotics.

» Usually solved with techniques such as EM.

L=

PN —
° L
[%b |
/"_A_r- Baa-">
e

e Active SLAM = Simultaneous Planning, Localization, and Mapping
» Can be cast as a POMDP problem.

» Often, greedy exploration techniques perform best.

e Multitasking SLAM = Active SLAM + other simultaneous task

¢.g. target following / avoidance



Case study #3: Multitasking SLAM

“ The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again



Case study #3: Multitasking SLAM

Decision-theoretic framework:

State space: S=XxMx P  X=setof possible trajectories taken
M = set of possible maps
P = set of additional planning states
Actions: A=Dx0 D = forward displacement
6 = angular displacement
Observations: Z =L x U L = laser range-finder measurements
U = odometry reading

Learning (state estimation):

Approximated using a Rao-Blackwellized narticle filter.
p(xlitam | ll:t,uO:t) — P(m |x1:t>llzt)P(x1:t | ll:t,“O:t)

Planning: Online forward search + Deterministic motion planning
algorithm (e.g. RRTs) to allow deep search.



Case study #3: Multitasking SLAM

Target following experiment:

ks ‘u:x__ b L F\
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Beyond the standard POMDP framework

Policy search for POMDPs (Hansen, 1998; Meuleau et al. 1999; Ng&Jordan, 2000;
Aberdeen&Baxter, 2002; Braziunas&Boutilier, 2004)

Continuous POMDPs (Porta et al. 2006; Erez&Smart 2010; Deisenroth&Peters 2012)

Factored POMDPs (Boutilier&Poole, 1996; McAllester&Singh, 1999; Guestrin et al.,
2001)

Hierarchical POMDPSs (Pineau et al. 2001; Hansen&Zhou, 2003; Theocharous et al.,
2004; Foka et al. 2005; Toussaint et al. 2008; Sridharan et al. 2008)

Dec-POMDPS (Emery-Montemerlo et al. 2004; Szer et al. 2005; Oliehoek et al. 2008;
Seuken&Zilberstein, 2007; Amato et al., 2009; Kumar&Zilberstein 2010; Spaan et al. 2011)

Mixed Observability POMDPs (Ong et al., RSS 2005)

pPOMDPs (Araya et al., NIPS 2010)



